Knowledge

Mantle convection

Source đź“ť

290:
contributes to the change in creep mechanisms with location. While creep behavior is generally plotted as homologous temperature versus stress, in the case of the mantle it is often more useful to look at the pressure dependence of stress. Though stress is simply force over area, defining the area is difficult in geology. Equation 1 demonstrates the pressure dependence of stress. Since it is very difficult to simulate the high pressures in the mantle (1MPa at 300–400 km), the low pressure laboratory data is usually extrapolated to high pressures by applying creep concepts from metallurgy.
142: 1811: 172: 158: 1823: 150: 20: 256:). On a global scale, surface expression of this convection is the tectonic plate motions and therefore has speeds of a few cm per year. Speeds can be faster for small-scale convection occurring in low viscosity regions beneath the lithosphere, and slower in the lowermost mantle where viscosities are larger. A single shallow convection cycle takes on the order of 50 million years, though deeper convection can be closer to 200 million years. 1835: 500: 296: 568:
from preferred lattice orientations as a result of deformation. Under dislocation creep, crystal structures reorient into lower stress orientations. This does not happen under diffusional creep, thus observation of preferred orientations in samples lends credence to the dominance of dislocation creep.
567:
Additional deformation in the mantle can be attributed to transformation enhanced ductility. Below 400 km, the olivine undergoes a pressure-induced phase transformation, which can cause more deformation due to the increased ductility. Further evidence for the dominance of power law creep comes
563:
tends to dominate instead. 14 MPa is the stress below which diffusional creep dominates and above which power law creep dominates at 0.5Tm of olivine. Thus, even for relatively low temperatures, the stress diffusional creep would operate at is too low for realistic conditions. Though the power law
289:
characteristics of the upper mantle are largely those of olivine. The strength of olivine is proportional to its melting temperature, and is also very sensitive to water and silica content. The solidus depression by impurities, primarily Ca, Al, and Na, and pressure affects creep behavior and thus
200:
Although it is accepted that subducting slabs cross the mantle transition zone and descend into the lower mantle, debate about the existence and continuity of plumes persists, with important implications for the style of mantle convection. This debate is linked to the controversy regarding whether
127:, although the basic mechanisms are varied. Volcanism may occur due to processes that add buoyancy to partially melted mantle, which would cause upward flow of the partial melt as it decreases in density. Secondary convection may cause surface volcanism as a consequence of intraplate extension and 264:
consistent with upwelling. This broad-scale pattern of flow is also consistent with the tectonic plate motions, which are the surface expression of convection in the Earth's mantle and currently indicate convergence toward the western Pacific and the Americas, and divergence away from the central
277:
Due to the varying temperatures and pressures between the lower and upper mantle, a variety of creep processes can occur, with dislocation creep dominating in the lower mantle and diffusional creep occasionally dominating in the upper mantle. However, there is a large transition region in creep
232:
suggest that they must be sourced from a part of the Earth that has not previously been melted and reprocessed in the same way as mid-ocean ridge basalts have been. This has been interpreted as their originating from a different less well-mixed region, suggested to be the lower mantle. Others,
564:
creep rate increases with increasing water content due to weakening (reducing activation energy of diffusion and thus increasing the NH creep rate) NH is generally still not large enough to dominate. Nevertheless, diffusional creep can dominate in very cold or deep parts of the upper mantle.
265:
Pacific and Africa. The persistence of net tectonic divergence away from Africa and the Pacific for the past 250 myr indicates the long-term stability of this general mantle flow pattern and is consistent with other studies that suggest long-term stability of the
259:
Currently, whole mantle convection is thought to include broad-scale downwelling beneath the Americas and the western Pacific, both regions with a long history of subduction, and upwelling flow beneath the central Pacific and Africa, both of which exhibit
551:
per second. Stresses in the mantle are dependent on density, gravity, thermal expansion coefficients, temperature differences driving convection, and the distance over which convection occurs—all of which give stresses around a fraction of 3-30MPa.
495:{\displaystyle \left({\frac {\partial \ln \sigma }{\partial P}}\right)_{T,{\dot {\epsilon }}}=\left({\frac {1}{TT_{m}}}\right)\times \left({\frac {\partial \ln \sigma }{\partial (1/T)}}\right)_{P,{\dot {\epsilon }}}\times {\frac {dT_{m}}{dP}}} 251:
for convection within Earth's mantle is estimated to be of order 10, which indicates vigorous convection. This value corresponds to whole mantle convection (i.e. convection extending from the Earth's surface to the border with the
73:. Upwelling beneath the spreading centers is a shallow, rising component of mantle convection and in most cases not directly linked to the global mantle upwelling. The hot material added at spreading centers cools down by 179:
During the late 20th century, there was significant debate within the geophysics community as to whether convection is likely to be "layered" or "whole". Although elements of this debate still continue, results from
196:
rise from the CMB all the way to the surface. This model is strongly based on the results of global seismic tomography models, which typically show slab and plume-like anomalies crossing the mantle transition zone.
1111: 184:, numerical simulations of mantle convection and examination of Earth's gravitational field are all beginning to suggest the existence of whole mantle convection, at least at the present time. In this 549: 1112:
http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?bibcode=1972IAUS...48..212T&db_key=AST&page_ind=0&data_type=GIF&type=SCREEN_VIEW&classic=YES
278:
processes between the upper and lower mantle, and even within each section creep properties can change strongly with location and thus temperature and pressure.
1501:
Borch, Robert S.; Green, Harry W. (1987-11-26). "Dependence of creep in olivine on homologous temperature and its implications for flow in the mantle".
233:
however, have pointed out that geochemical differences could indicate the inclusion of a small component of near-surface material from the lithosphere.
1095: 228:, helium-3 is not naturally produced on Earth. It also quickly escapes from Earth's atmosphere when erupted. The elevated He-3:He-4 ratio of 785: 1621: 212:
Many geochemistry studies have argued that the lavas erupted in intraplate areas are different in composition from shallow-derived
648: 1018: 991: 964: 922: 892: 859: 768: 85:
of the plate, the material has thermally contracted to become dense, and it sinks under its own weight in the process of
1124: 266: 65:. The lithosphere is divided into tectonic plates that are continuously being created or consumed at plate boundaries. 688: 1614: 43: 253: 1340:
Torsvik, Trond H.; Steinberger, Bernhard; Ashwal, Lewis D.; Doubrovine, Pavel V.; Trønnes, Reidar G. (2016).
706:"Mantle convection with a brittle lithosphere: thoughts on the global tectonic styles of the Earth and Venus" 1449:
Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences
576:
A similar process of slow convection probably occurs (or occurred) in the interiors of other planets (e.g.,
153:
Earth's temperature vs depth. Dashed curve: layered mantle convection. Solid curve: whole-mantle convection.
1293:"Large igneous provinces generated from the margins of the large low-velocity provinces in the deep mantle" 1092: 611: 1839: 1161: 937:
Czechowski L. (1993) Geodesy and Physics of the Earth pp 392-395, The Origin of Hotspots and The D” Layer
96:
This subducted material sinks through the Earth's interior. Some subducted material appears to reach the
1685: 1607: 508: 242: 1743: 1675: 882: 556: 1861: 1738: 730: 189: 131:. In 1993 it was suggested that inhomogeneities in D" layer have some impact on mantle convection. 1695: 1164:; Silver, Paul G. (1998). "Dynamic topography, plate driving forces and the African superswell". 784:
Fukao, Yoshio; Obayashi, Masayuki; Nakakuki, Tomoeki; Group, the Deep Slab Project (2009-01-01).
1148:
Thermal Convection with a Freely Moving Top Boundary, See section IV Discussion and Conclusions
725: 1035: 1008: 981: 948: 832: 1649: 1644: 1398: 1219: 847: 820: 756: 1544:
Karato, Shun-ichiro; Wu, Patrick (1993-05-07). "Rheology of the Upper Mantle: A Synthesis".
1414: 912: 505:
Most of the mantle has homologous temperatures of 0.65–0.75 and experiences strain rates of
1871: 1553: 1510: 1456: 1410: 1353: 1304: 1231: 1173: 1050: 812: 800: 717: 185: 117: 555:
Due to the large grain sizes (at low stresses as high as several mm), it is unlikely that
100:, while in other regions this material is impeded from sinking further, possibly due to a 8: 1866: 1827: 1753: 1220:"Stability of active mantle upwelling revealed by net characteristics of plate tectonics" 229: 109: 82: 66: 31: 1557: 1514: 1460: 1357: 1308: 1235: 1177: 1054: 804: 721: 1670: 1585: 1526: 1480: 1273: 1197: 1149: 1074: 261: 181: 74: 70: 1815: 1577: 1569: 1472: 1444: 1426: 1379: 1322: 1317: 1292: 1277: 1265: 1257: 1189: 1091:
Small-scale convection in the upper mantle beneath the Chinese Tian Shan Mountains,
1066: 1014: 987: 960: 918: 888: 855: 764: 740: 705: 684: 560: 35: 1484: 1447:; White, S.; Cook, Alan H. (1978-02-14). "Creep Laws for the Mantle of the Earth ". 1078: 1768: 1758: 1589: 1561: 1530: 1518: 1464: 1418: 1369: 1361: 1312: 1291:
Torsvik, Trond H.; Smethurst, Mark A.; Burke, Kevin; Steinberger, Bernhard (2006).
1247: 1239: 1201: 1181: 1058: 808: 735: 652: 188:, cold subducting oceanic lithosphere descends all the way from the surface to the 175:
Cross-section diagram of Earth comparing two end-member models of mantle convection
101: 1728: 1690: 1565: 1099: 878: 676: 248: 213: 47: 1006: 845: 754: 1733: 1710: 1700: 1680: 1422: 633: 141: 113: 90: 1810: 1855: 1748: 1573: 1476: 1430: 1383: 1326: 1261: 1193: 589: 58: 1128: 1062: 171: 1773: 1581: 1468: 1365: 1269: 1070: 1034:
Montelli, R; Nolet, G; Dahlen, FA; Masters, G; Engdahl ER; Hung SH (2004).
951:
Lower-mantle material properties and convection models of multiscale plumes
206: 202: 193: 128: 97: 69:
occurs as mantle is added to the growing edges of a plate, associated with
62: 157: 1665: 605: 54: 1401:(2010). "Mantle Anchor Structure: An argument for bottom up tectonics". 1243: 1093:
http://www.vlab.msi.umn.edu/reports/allpublications/files/2007-pap79.pdf
1705: 1630: 1374: 1252: 1036:"Finite-frequency tomography reveals a variety of plumes in the mantle" 162: 86: 78: 39: 145:
Earth cross-section showing location of upper (3) and lower (5) mantle
1522: 1218:
Conrad, Clinton P.; Steinberger, Bernhard; Torsvik, Trond H. (2013).
979: 593: 585: 124: 1341: 149: 19: 286: 221: 217: 1339: 1185: 1794: 282: 225: 1290: 269:
of the lowermost mantle that form the base of these upwellings.
105: 93:. Subduction is the descending component of mantle convection. 571: 23:
Simplified model of mantle convection: Whole-mantle convection
1599: 1007:
Gerald Schubert; Donald Lawson Turcotte; Peter Olson (2001).
846:
Gerald Schubert; Donald Lawson Turcotte; Peter Olson (2001).
755:
Gerald Schubert; Donald Lawson Turcotte; Peter Olson (2001).
577: 81:
of heat as it moves away from the spreading centers. At the
1778: 581: 1033: 946: 783: 1396: 1217: 1160: 1342:"Earth evolution and dynamics—a tribute to Kevin Burke" 1122:
Picture showing convection with velocities indicated.
511: 299: 1150:
http://physics.nyu.edu/jz11/publications/ConvecA.pdf
236: 216:
basalts. Specifically, they typically have elevated
917:(4th ed.). Butterworth-Heinemann. p. 5. 543: 494: 46:to the planet's surface. Mantle convection causes 1443: 1853: 980:Donald Lawson Turcotte; Gerald Schubert (2002). 679:. In David Bercovici and Gerald Schubert (ed.). 281:Since the upper mantle is primarily composed of 703: 959:. Geological Society of America. p. 159. 910: 854:. Cambridge University Press. pp. 35 ff. 763:. Cambridge University Press. pp. 16 ff. 704:Moresi, Louis; Solomatov, Viatcheslav (1998). 243:Heat transfer § Convection vs. conduction 1615: 877: 793:Annual Review of Earth and Planetary Sciences 165:generated by cooling processes in the mantle. 986:(2nd ed.). Cambridge University Press. 1013:. Cambridge University Press. p. 616. 884:Plates vs. Plumes: A Geological Controversy 572:Mantle convection in other celestial bodies 201:intraplate volcanism is caused by shallow, 1622: 1608: 1500: 947:Ctirad Matyska & David A Yuen (2007). 761:Mantle convection in the earth and planets 665:Physics Department, University of Winnipeg 637:. Advances in Geophysics, Volume 56, 2015. 1373: 1316: 1251: 873: 871: 739: 729: 61:, and the two form the components of the 1543: 906: 904: 614:- Distribution of trace elements in melt 170: 156: 148: 140: 18: 1110:Polar Wandering and Mantle Convection, 957:Plates, plumes, and planetary processes 940: 681:Treatise on Geophysics: Mantle Dynamics 16:Gradual movement of the planet's mantle 1854: 868: 813:10.1146/annurev.earth.36.031207.124224 674: 608: â€“ Study of dynamics of the Earth 272: 134: 1603: 1496: 1494: 1213: 1211: 914:Plate tectonics and crustal evolution 901: 839: 748: 668: 123:The subducted oceanic crust triggers 1834: 1397:Dziewonski, Adam M.; Lekic, Vedran; 50:to move around the Earth's surface. 1403:Earth and Planetary Science Letters 13: 1491: 1346:Canadian Journal of Earth Sciences 1208: 848:"§2.5.3: Fate of descending slabs" 414: 400: 322: 308: 267:large low-shear-velocity provinces 14: 1883: 1297:Geophysical Journal International 710:Geophysical Journal International 683:. Vol. 7. Elsevier Science. 677:"2. Physics of Mantle Convection" 646: 544:{\displaystyle 10^{-14}-10^{-16}} 237:Planform and vigour of convection 1833: 1822: 1821: 1809: 1318:10.1111/j.1365-246x.2006.03158.x 741:10.1046/j.1365-246X.1998.00521.x 631:Carlo Doglioni, Giuliano Panza: 205:processes or by plumes from the 1537: 1437: 1390: 1333: 1284: 1154: 1142: 1116: 1104: 1085: 1027: 1000: 973: 931: 1629: 777: 697: 640: 625: 431: 417: 1: 618: 584:) and some satellites (e.g., 1566:10.1126/science.260.5109.771 1162:Lithgow-Bertelloni, Carolina 757:"Chapter 2: Plate tectonics" 612:Compatibility (geochemistry) 7: 1769:Precession of the equinoxes 599: 224:ratios. Being a primordial 10: 1888: 1686:Geophysical fluid dynamics 1423:10.1016/j.epsl.2010.08.013 557:Nabarro-Herring (NH) creep 240: 34:of Earth's solid silicate 1803: 1787: 1719: 1658: 1637: 786:"Stagnant Slab: A Review" 634:Polarized Plate Tectonics 1696:Near-surface geophysics 1415:2010E&PSL.299...69D 1063:10.1126/science.1092485 911:Kent C. Condie (1997). 1744:Earth's magnetic field 1469:10.1098/rsta.1978.0003 1399:Romanowicz, Barbara A. 1366:10.1139/cjes-2015-0228 545: 496: 176: 166: 154: 146: 44:heat from the interior 24: 1816:Geophysics portal 1739:Earth's energy budget 546: 497: 174: 160: 152: 144: 22: 1125:"IRIS Image Gallery" 509: 297: 285:((Mg,Fe)2SiO4), the 230:ocean island basalts 190:core–mantle boundary 118:endothermic reaction 1788:Related disciplines 1754:Geothermal gradient 1558:1993Sci...260..771K 1515:1987Natur.330..345B 1461:1978RSPTA.288....9W 1358:2016CaJES..53.1073T 1309:2006GeoJI.167.1447T 1244:10.1038/nature12203 1236:2013Natur.498..479C 1178:1998Natur.395..269L 1055:2004Sci...303..338M 887:. Wiley-Blackwell. 805:2009AREPS..37...19F 722:1998GeoJI.133..669M 675:Ricard, Y. (2009). 649:"Mantle Convection" 273:Creep in the mantle 135:Types of convection 110:silicate perovskite 1671:Geophysical survey 1098:2013-05-30 at the 831:has generic name ( 541: 492: 262:dynamic topography 182:seismic tomography 177: 167: 155: 147: 71:seafloor spreading 25: 1849: 1848: 1764:Mantle convection 1352:(11): 1073–1087. 1230:(7455): 479–482. 1172:(6699): 269–272. 1020:978-0-521-79836-5 993:978-0-521-66624-4 966:978-0-8137-2430-0 924:978-0-7506-3386-4 894:978-1-4051-6148-0 861:978-0-521-79836-5 770:978-0-521-79836-5 561:dislocation creep 490: 457: 435: 383: 351: 329: 83:consumption edges 30:is the very slow 28:Mantle convection 1879: 1837: 1836: 1825: 1824: 1814: 1813: 1759:Gravity of Earth 1624: 1617: 1610: 1601: 1600: 1594: 1593: 1552:(5109): 771–78. 1541: 1535: 1534: 1523:10.1038/330345a0 1509:(6146): 345–48. 1498: 1489: 1488: 1441: 1435: 1434: 1394: 1388: 1387: 1377: 1337: 1331: 1330: 1320: 1303:(3): 1447–1460. 1288: 1282: 1281: 1255: 1215: 1206: 1205: 1158: 1152: 1146: 1140: 1139: 1137: 1136: 1127:. Archived from 1120: 1114: 1108: 1102: 1089: 1083: 1082: 1049:(5656): 338–43. 1040: 1031: 1025: 1024: 1004: 998: 997: 977: 971: 970: 944: 938: 935: 929: 928: 908: 899: 898: 875: 866: 865: 843: 837: 836: 830: 826: 824: 816: 790: 781: 775: 774: 752: 746: 745: 743: 733: 701: 695: 694: 672: 666: 664: 662: 660: 651:. Archived from 644: 638: 629: 550: 548: 547: 542: 540: 539: 524: 523: 501: 499: 498: 493: 491: 489: 481: 480: 479: 466: 461: 460: 459: 458: 450: 440: 436: 434: 427: 412: 398: 388: 384: 382: 381: 380: 364: 355: 354: 353: 352: 344: 334: 330: 328: 320: 306: 102:phase transition 1887: 1886: 1882: 1881: 1880: 1878: 1877: 1876: 1862:Plate tectonics 1852: 1851: 1850: 1845: 1808: 1799: 1783: 1734:Coriolis effect 1729:Chandler wobble 1721: 1715: 1691:Mineral physics 1654: 1633: 1628: 1598: 1597: 1542: 1538: 1499: 1492: 1442: 1438: 1395: 1391: 1338: 1334: 1289: 1285: 1216: 1209: 1159: 1155: 1147: 1143: 1134: 1132: 1123: 1121: 1117: 1109: 1105: 1100:Wayback Machine 1090: 1086: 1038: 1032: 1028: 1021: 1005: 1001: 994: 978: 974: 967: 945: 941: 936: 932: 925: 909: 902: 895: 876: 869: 862: 844: 840: 828: 827: 818: 817: 788: 782: 778: 771: 753: 749: 702: 698: 691: 673: 669: 658: 656: 645: 641: 630: 626: 621: 602: 574: 532: 528: 516: 512: 510: 507: 506: 482: 475: 471: 467: 465: 449: 448: 441: 423: 413: 399: 397: 393: 392: 376: 372: 368: 363: 359: 343: 342: 335: 321: 307: 305: 301: 300: 298: 295: 294: 275: 249:Rayleigh number 245: 239: 214:mid-ocean ridge 169: 168: 137: 114:magnesiowustite 57:rides atop the 48:tectonic plates 42:currents carry 17: 12: 11: 5: 1885: 1875: 1874: 1869: 1864: 1847: 1846: 1844: 1843: 1831: 1819: 1804: 1801: 1800: 1798: 1797: 1791: 1789: 1785: 1784: 1782: 1781: 1776: 1771: 1766: 1761: 1756: 1751: 1746: 1741: 1736: 1731: 1725: 1723: 1717: 1716: 1714: 1713: 1711:Tectonophysics 1708: 1703: 1701:Paleomagnetism 1698: 1693: 1688: 1683: 1681:Geomathematics 1678: 1673: 1668: 1662: 1660: 1656: 1655: 1653: 1652: 1647: 1641: 1639: 1635: 1634: 1627: 1626: 1619: 1612: 1604: 1596: 1595: 1536: 1490: 1455:(1350): 9–26. 1436: 1409:(1–2): 69–79. 1389: 1332: 1283: 1207: 1153: 1141: 1115: 1103: 1084: 1026: 1019: 999: 992: 972: 965: 949:"Figure 17 in 939: 930: 923: 900: 893: 867: 860: 838: 776: 769: 747: 731:10.1.1.30.5989 696: 689: 667: 655:on 9 June 2011 647:Kobes, Randy. 639: 623: 622: 620: 617: 616: 615: 609: 601: 598: 573: 570: 538: 535: 531: 527: 522: 519: 515: 503: 502: 488: 485: 478: 474: 470: 464: 456: 453: 447: 444: 439: 433: 430: 426: 422: 419: 416: 411: 408: 405: 402: 396: 391: 387: 379: 375: 371: 367: 362: 358: 350: 347: 341: 338: 333: 327: 324: 319: 316: 313: 310: 304: 274: 271: 247:On Earth, the 238: 235: 139: 138: 136: 133: 91:oceanic trench 89:usually at an 15: 9: 6: 4: 3: 2: 1884: 1873: 1870: 1868: 1865: 1863: 1860: 1859: 1857: 1842: 1841: 1832: 1830: 1829: 1820: 1818: 1817: 1812: 1806: 1805: 1802: 1796: 1793: 1792: 1790: 1786: 1780: 1777: 1775: 1772: 1770: 1767: 1765: 1762: 1760: 1757: 1755: 1752: 1750: 1747: 1745: 1742: 1740: 1737: 1735: 1732: 1730: 1727: 1726: 1724: 1718: 1712: 1709: 1707: 1704: 1702: 1699: 1697: 1694: 1692: 1689: 1687: 1684: 1682: 1679: 1677: 1674: 1672: 1669: 1667: 1664: 1663: 1661: 1657: 1651: 1650:Geophysicists 1648: 1646: 1643: 1642: 1640: 1636: 1632: 1625: 1620: 1618: 1613: 1611: 1606: 1605: 1602: 1591: 1587: 1583: 1579: 1575: 1571: 1567: 1563: 1559: 1555: 1551: 1547: 1540: 1532: 1528: 1524: 1520: 1516: 1512: 1508: 1504: 1497: 1495: 1486: 1482: 1478: 1474: 1470: 1466: 1462: 1458: 1454: 1450: 1446: 1440: 1432: 1428: 1424: 1420: 1416: 1412: 1408: 1404: 1400: 1393: 1385: 1381: 1376: 1371: 1367: 1363: 1359: 1355: 1351: 1347: 1343: 1336: 1328: 1324: 1319: 1314: 1310: 1306: 1302: 1298: 1294: 1287: 1279: 1275: 1271: 1267: 1263: 1259: 1254: 1249: 1245: 1241: 1237: 1233: 1229: 1225: 1221: 1214: 1212: 1203: 1199: 1195: 1191: 1187: 1186:10.1038/26212 1183: 1179: 1175: 1171: 1167: 1163: 1157: 1151: 1145: 1131:on 2011-09-28 1130: 1126: 1119: 1113: 1107: 1101: 1097: 1094: 1088: 1080: 1076: 1072: 1068: 1064: 1060: 1056: 1052: 1048: 1044: 1037: 1030: 1022: 1016: 1012: 1011: 1003: 995: 989: 985: 984: 976: 968: 962: 958: 954: 952: 943: 934: 926: 920: 916: 915: 907: 905: 896: 890: 886: 885: 880: 879:Foulger, G.R. 874: 872: 863: 857: 853: 849: 842: 834: 822: 814: 810: 806: 802: 798: 794: 787: 780: 772: 766: 762: 758: 751: 742: 737: 732: 727: 723: 719: 716:(3): 669–82. 715: 711: 707: 700: 692: 690:9780444535801 686: 682: 678: 671: 654: 650: 643: 636: 635: 628: 624: 613: 610: 607: 604: 603: 597: 595: 591: 587: 583: 579: 569: 565: 562: 558: 553: 536: 533: 529: 525: 520: 517: 513: 486: 483: 476: 472: 468: 462: 454: 451: 445: 442: 437: 428: 424: 420: 409: 406: 403: 394: 389: 385: 377: 373: 369: 365: 360: 356: 348: 345: 339: 336: 331: 325: 317: 314: 311: 302: 293: 292: 291: 288: 284: 279: 270: 268: 263: 257: 255: 250: 244: 234: 231: 227: 223: 219: 215: 210: 208: 204: 198: 195: 191: 187: 183: 173: 164: 159: 151: 143: 132: 130: 129:mantle plumes 126: 121: 119: 115: 111: 107: 103: 99: 94: 92: 88: 84: 80: 76: 72: 68: 64: 60: 59:asthenosphere 56: 51: 49: 45: 41: 37: 33: 29: 21: 1838: 1826: 1807: 1774:Seismic wave 1763: 1676:Geomagnetism 1549: 1545: 1539: 1506: 1502: 1452: 1448: 1445:Weertman, J. 1439: 1406: 1402: 1392: 1349: 1345: 1335: 1300: 1296: 1286: 1227: 1223: 1169: 1165: 1156: 1144: 1133:. Retrieved 1129:the original 1118: 1106: 1087: 1046: 1042: 1029: 1009: 1002: 982: 975: 956: 950: 942: 933: 913: 883: 851: 841: 829:|last4= 821:cite journal 799:(1): 19–46. 796: 792: 779: 760: 750: 713: 709: 699: 680: 670: 657:. Retrieved 653:the original 642: 632: 627: 575: 566: 554: 504: 280: 276: 258: 246: 211: 207:lower mantle 203:upper mantle 199: 178: 122: 98:lower mantle 95: 63:upper mantle 53:The Earth's 52: 27: 26: 1872:Geodynamics 1666:Geodynamics 1375:10852/61998 1253:10852/61522 983:Geodynamics 659:26 February 606:Geodynamics 559:dominates; 287:rheological 192:(CMB), and 55:lithosphere 1867:Convection 1856:Categories 1706:Seismology 1631:Geophysics 1135:2011-08-29 1010:Cited work 852:Cited work 619:References 241:See also: 194:hot plumes 163:superplume 87:subduction 79:convection 75:conduction 40:convection 1749:Geodynamo 1722:phenomena 1720:Physical 1659:Subfields 1574:0036-8075 1477:1364-503X 1431:0012-821X 1384:0008-4077 1327:0956-540X 1278:205234113 1262:0028-0836 1194:0028-0836 726:CiteSeerX 594:Enceladus 534:− 526:− 518:− 463:× 455:˙ 452:ϵ 415:∂ 410:σ 407:⁡ 401:∂ 390:× 349:˙ 346:ϵ 323:∂ 318:σ 315:⁡ 309:∂ 125:volcanism 67:Accretion 1828:Category 1638:Overview 1582:17746109 1485:91874725 1270:23803848 1096:Archived 1079:35802740 1071:14657505 881:(2010). 600:See also 222:helium-4 220: : 218:helium-3 1840:Commons 1795:Geodesy 1645:Outline 1590:8626640 1554:Bibcode 1546:Science 1531:4319163 1511:Bibcode 1457:Bibcode 1411:Bibcode 1354:Bibcode 1305:Bibcode 1232:Bibcode 1202:4414115 1174:Bibcode 1051:Bibcode 1043:Science 801:Bibcode 718:Bibcode 283:olivine 226:nuclide 1588:  1580:  1572:  1529:  1503:Nature 1483:  1475:  1429:  1382:  1325:  1276:  1268:  1260:  1224:Nature 1200:  1192:  1166:Nature 1077:  1069:  1017:  990:  963:  921:  891:  858:  767:  728:  687:  590:Europa 106:spinel 36:mantle 1586:S2CID 1527:S2CID 1481:S2CID 1274:S2CID 1198:S2CID 1075:S2CID 1039:(PDF) 789:(PDF) 578:Venus 186:model 116:, an 104:from 32:creep 1779:Tide 1578:PMID 1570:ISSN 1473:ISSN 1427:ISSN 1380:ISSN 1323:ISSN 1266:PMID 1258:ISSN 1190:ISSN 1067:PMID 1015:ISBN 988:ISBN 961:ISBN 919:ISBN 889:ISBN 856:ISBN 833:help 765:ISBN 685:ISBN 661:2020 582:Mars 254:core 112:and 77:and 1562:doi 1550:260 1519:doi 1507:330 1465:doi 1453:288 1419:doi 1407:299 1370:hdl 1362:doi 1313:doi 1301:167 1248:hdl 1240:doi 1228:498 1182:doi 1170:395 1059:doi 1047:303 809:doi 736:doi 714:133 596:). 209:. 108:to 38:as 1858:: 1584:. 1576:. 1568:. 1560:. 1548:. 1525:. 1517:. 1505:. 1493:^ 1479:. 1471:. 1463:. 1451:. 1425:. 1417:. 1405:. 1378:. 1368:. 1360:. 1350:53 1348:. 1344:. 1321:. 1311:. 1299:. 1295:. 1272:. 1264:. 1256:. 1246:. 1238:. 1226:. 1222:. 1210:^ 1196:. 1188:. 1180:. 1168:. 1073:. 1065:. 1057:. 1045:. 1041:. 955:. 903:^ 870:^ 850:. 825:: 823:}} 819:{{ 807:. 797:37 795:. 791:. 759:. 734:. 724:. 712:. 708:. 592:, 588:, 586:Io 580:, 537:16 530:10 521:14 514:10 404:ln 312:ln 161:A 120:. 1623:e 1616:t 1609:v 1592:. 1564:: 1556:: 1533:. 1521:: 1513:: 1487:. 1467:: 1459:: 1433:. 1421:: 1413:: 1386:. 1372:: 1364:: 1356:: 1329:. 1315:: 1307:: 1280:. 1250:: 1242:: 1234:: 1204:. 1184:: 1176:: 1138:. 1081:. 1061:: 1053:: 1023:. 996:. 969:. 953:" 927:. 897:. 864:. 835:) 815:. 811:: 803:: 773:. 744:. 738:: 720:: 693:. 663:. 487:P 484:d 477:m 473:T 469:d 446:, 443:P 438:) 432:) 429:T 425:/ 421:1 418:( 395:( 386:) 378:m 374:T 370:T 366:1 361:( 357:= 340:, 337:T 332:) 326:P 303:(

Index


creep
mantle
convection
heat from the interior
tectonic plates
lithosphere
asthenosphere
upper mantle
Accretion
seafloor spreading
conduction
convection
consumption edges
subduction
oceanic trench
lower mantle
phase transition
spinel
silicate perovskite
magnesiowustite
endothermic reaction
volcanism
mantle plumes



superplume

seismic tomography

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑