Knowledge

Dissipation

Source đź“ť

1473: 1497: 1509: 1485: 383:(Lord Kelvin) in 1852. Lord Kelvin deduced that a subset of the above-mentioned irreversible dissipative processes will occur unless a process is governed by a "perfect thermodynamic engine". The processes that Lord Kelvin identified were friction, diffusion, conduction of heat and the absorption of light. 220:
equation, which is free of dissipation, is solved by a numerical approximation method, the energy of the initial wave may be reduced in a way analogous to a diffusional process. Such a method is said to contain 'dissipation'. In some cases, "artificial dissipation" is intentionally added to improve
179:
formalism. A dissipative process requires a collection of admissible individual Hamiltonian descriptions, exactly which one describes the actual particular occurrence of the process of interest being unknown. This includes friction and hammering, and all similar forces that result in decoherency of
171:
regarded friction as the prime example of an irreversible thermodynamic process. In a process in which the temperature is locally continuously defined, the local density of rate of entropy production times local temperature gives the local density of dissipated power.
256:
Dissipation is the process of converting mechanical energy of downward-flowing water into thermal and acoustical energy. Various devices are designed in stream beds to reduce the kinetic energy of flowing waters to reduce their
484: 1545: 586: 1206: 435: 216:") refers to certain side-effects that may occur as a result of a numerical solution to a differential equation. When the pure 1250: 925: 453: 148: 1392: 234: 200:
The term is also applied to the loss of energy due to generation of unwanted heat in electric and electronic circuits.
542: 521: 397: 380: 1535: 1333: 97:(reduces the capacity of the combination of the two bodies to do work), but never decreases in an isolated system. 499:
Thomas, J.W. Numerical Partial Differential Equation: Finite Difference Methods. Springer-Verlag. New York. (1995)
81:
is dissipative because it is a transfer of energy other than by thermodynamic work or by transfer of matter, and
1540: 1343: 1513: 873: 409: 86: 1432: 691: 579: 1550: 374: 82: 1338: 1196: 858: 803: 783: 778: 17: 1267: 611: 1489: 1427: 1412: 808: 788: 233:
A formal, mathematical definition of dissipation, as commonly used in the mathematical study of
940: 836: 763: 753: 634: 572: 101: 353:
is said to dissipate. The precise nature of the effects depends on the nature of the wave: an
880: 671: 209: 176: 74: 70: 175:
A particular occurrence of a dissipative process cannot be described by a single individual
123:
at a certain rate. The entropy production rate times local temperature gives the dissipated
1328: 1301: 1279: 1186: 1119: 868: 798: 743: 445: 50: 46: 31: 8: 1407: 1350: 1272: 1245: 930: 793: 768: 414: 222: 213: 181: 1387: 1365: 1355: 1191: 392: 164: 132: 120: 1496: 1289: 1114: 975: 935: 905: 890: 863: 773: 676: 616: 606: 538: 517: 449: 362: 140: 109: 1448: 1422: 1417: 1397: 1382: 1223: 1213: 993: 920: 656: 441: 354: 144: 66: 1477: 1458: 1372: 1139: 1054: 910: 900: 885: 843: 748: 698: 649: 124: 73:
from an initial form to a final form, where the capacity of the final form to do
58: 196:"The conversion of mechanical energy into heat is called energy dissipation." – 1453: 1402: 1377: 1181: 1146: 1079: 1069: 985: 965: 960: 945: 915: 895: 853: 831: 813: 713: 703: 639: 509: 278: 113: 62: 38: 163:
Dissipative thermodynamic processes are essentially irreversible because they
1529: 1501: 1360: 1320: 1284: 1240: 1166: 1129: 1047: 970: 738: 733: 686: 666: 404: 306: 239: 152: 78: 379:
The concept of dissipation was introduced in the field of thermodynamics by
1257: 1201: 1151: 1134: 955: 728: 661: 556:
On the universal tendency in nature to the dissipation of mechanical energy
270: 27:
Irreversible transformation of energy into forms less capable of doing work
1262: 1228: 1102: 1092: 1035: 1018: 1003: 950: 848: 471:(1926). "Ăśber die BegrĂĽndung des zweiten Hauptsatzes der Thermodynamik", 342: 322: 94: 1296: 1218: 1156: 1124: 1064: 758: 468: 338: 262: 168: 136: 1306: 1233: 1107: 1087: 1059: 998: 350: 266: 217: 185: 128: 1042: 1023: 1008: 708: 358: 334: 1176: 718: 258: 90: 487:
Thermodynamique de l'Ă©volution (The Thermodynamics of Evolution)
723: 644: 595: 326: 274: 54: 514:
Thermodynamic Theory of Structure, Stability, and Fluctuations
30:"Dissipative" redirects here. For the mathematical term, see 89:, in conduction and radiation from one body to another, the 1097: 1030: 1013: 681: 346: 330: 318: 357:, for instance, may dissipate close to the surface due to 305:
Electrical current flow through an electrical resistance (
564: 127:. Important examples of irreversible processes are: 77:
is less than that of the initial form. For example,
558:
Philosophical Magazine, Ser. 4, p. 304 (1852).
289:Important examples of irreversible processes are: 184:or directed energy flow into an indirected or more 473:Sitzungsber. Preuss. Akad. Wiss., Phys. Math. Kl. 1527: 361:with the land mass, and at higher levels due to 139:through a flow resistance, diffusion (mixing), 535:Nonequilibrium Thermodynamics: Ensemble Method 433: 341:. In many cases, the "lost" energy raises the 85:previously concentrated energy. Following the 580: 265:. Very often, these devices look like small 537:, Kluwer Academic Publications, Dordrecht, 251: 587: 573: 284: 119:Processes with defined local temperature 313: 212:, numerical dissipation (also known as " 203: 116:with an associated increase in entropy. 440:(2 ed.). Oxford University Press. 434:Escudier, Marcel; Atkins, Tony (2019). 273:, where water flows vertically or over 14: 1528: 1207:Integrated gasification combined cycle 437:A Dictionary of Mechanical Engineering 293:Heat flow through a thermal resistance 1251:Radioisotope thermoelectric generator 926:Quantum chromodynamics binding energy 568: 1484: 516:, Wiley-Interscience, London, 1971, 446:10.1093/acref/9780198832102.001.0001 296:Fluid flow through a flow resistance 235:measure-preserving dynamical systems 180:energy—that is, conversion of 1508: 1393:World energy supply and consumption 24: 108:is the irreversible conversion of 25: 1562: 398:General equation of heat transfer 225:characteristics of the solution. 1507: 1495: 1483: 1472: 1471: 1546:Non-equilibrium thermodynamics 548: 527: 502: 493: 478: 462: 427: 345:of the system. For example, a 228: 13: 1: 420: 158: 410:Principle of maximum entropy 87:second law of thermodynamics 53:. In a dissipative process, 7: 386: 246: 10: 1567: 594: 375:Timeline of thermodynamics 372: 368: 237:, is given in the article 79:transfer of energy as heat 29: 1467: 1441: 1317: 1197:Fossil fuel power station 1165: 1078: 984: 859:Electric potential energy 824: 804:Thermodynamic temperature 784:Thermodynamic free energy 779:Thermodynamic equilibrium 625: 602: 191: 1268:Concentrated solar power 252:In hydraulic engineering 188:distribution of energy. 1536:Thermodynamic processes 809:Volume (thermodynamics) 789:Thermodynamic potential 692:Mass–energy equivalence 489:, parole Ă©ditions, 2012 764:Quantum thermodynamics 754:Laws of thermodynamics 635:Conservation of energy 285:Irreversible processes 102:mechanical engineering 1541:Thermodynamic entropy 881:Interatomic potential 672:Energy transformation 314:Waves or oscillations 210:computational physics 204:Computational physics 149:electrical resistance 1329:Efficient energy use 1302:Airborne wind energy 1280:Solar thermal energy 1187:Electricity delivery 799:Thermodynamic system 744:Irreversible process 277:to lose some of its 51:thermodynamic system 47:irreversible process 45:is the result of an 32:Dissipative operator 1351:Energy conservation 1273:Photovoltaic system 1246:Nuclear power plant 931:Quantum fluctuation 794:Thermodynamic state 769:Thermal equilibrium 415:Two-dimensional gas 223:numerical stability 214:Numerical diffusion 1388:Sustainable energy 1366:Energy development 1356:Energy consumption 1192:Energy engineering 393:Entropy production 302:Chemical reactions 299:Diffusion (mixing) 141:chemical reactions 133:thermal resistance 75:thermodynamic work 1551:Dynamical systems 1523: 1522: 1290:Solar power tower 936:Quantum potential 774:Thermal reservoir 677:Energy transition 533:Eu, B.C. (1998). 455:978-0-19-883210-2 363:radiative cooling 333:, typically from 259:erosive potential 110:mechanical energy 16:(Redirected from 1558: 1511: 1510: 1499: 1487: 1486: 1475: 1474: 1449:Carbon footprint 1383:Renewable energy 1224:Hydroelectricity 1214:Geothermal power 657:Energy condition 589: 582: 575: 566: 565: 559: 552: 546: 531: 525: 508:Glansdorff, P., 506: 500: 497: 491: 482: 476: 466: 460: 459: 431: 355:atmospheric wave 198:François Roddier 147:flow through an 145:electric current 21: 1566: 1565: 1561: 1560: 1559: 1557: 1556: 1555: 1526: 1525: 1524: 1519: 1463: 1459:Waste-to-energy 1437: 1373:Energy security 1319: 1313: 1169: 1161: 1140:Natural uranium 1074: 1055:Mechanical wave 986:Energy carriers 980: 820: 749:Isolated system 627: 621: 598: 593: 563: 562: 553: 549: 532: 528: 507: 503: 498: 494: 483: 479: 467: 463: 456: 432: 428: 423: 389: 381:William Thomson 377: 371: 316: 287: 254: 249: 231: 206: 194: 165:produce entropy 161: 121:produce entropy 49:that affects a 35: 28: 23: 22: 15: 12: 11: 5: 1564: 1554: 1553: 1548: 1543: 1538: 1521: 1520: 1518: 1517: 1505: 1493: 1481: 1468: 1465: 1464: 1462: 1461: 1456: 1454:Jevons paradox 1451: 1445: 1443: 1439: 1438: 1436: 1435: 1430: 1425: 1420: 1415: 1410: 1405: 1400: 1395: 1390: 1385: 1380: 1378:Energy storage 1375: 1370: 1369: 1368: 1358: 1353: 1348: 1347: 1346: 1341: 1336: 1325: 1323: 1315: 1314: 1312: 1311: 1310: 1309: 1304: 1294: 1293: 1292: 1287: 1277: 1276: 1275: 1270: 1260: 1255: 1254: 1253: 1248: 1238: 1237: 1236: 1231: 1226: 1216: 1211: 1210: 1209: 1204: 1194: 1189: 1184: 1182:Electric power 1179: 1173: 1171: 1163: 1162: 1160: 1159: 1154: 1149: 1144: 1143: 1142: 1132: 1127: 1122: 1117: 1112: 1111: 1110: 1105: 1100: 1090: 1084: 1082: 1080:Primary energy 1076: 1075: 1073: 1072: 1067: 1062: 1057: 1052: 1051: 1050: 1040: 1039: 1038: 1028: 1027: 1026: 1021: 1011: 1006: 1001: 996: 990: 988: 982: 981: 979: 978: 973: 968: 963: 958: 953: 948: 943: 938: 933: 928: 923: 918: 913: 908: 903: 898: 893: 888: 883: 878: 877: 876: 866: 861: 856: 851: 846: 841: 840: 839: 828: 826: 822: 821: 819: 818: 817: 816: 811: 806: 801: 796: 791: 786: 781: 776: 771: 766: 761: 756: 751: 746: 741: 736: 731: 726: 721: 716: 714:Entropic force 711: 704:Thermodynamics 701: 696: 695: 694: 689: 679: 674: 669: 664: 659: 654: 653: 652: 642: 637: 631: 629: 623: 622: 620: 619: 614: 609: 603: 600: 599: 592: 591: 584: 577: 569: 561: 560: 547: 526: 501: 492: 477: 461: 454: 425: 424: 422: 419: 418: 417: 412: 407: 402: 401: 400: 388: 385: 370: 367: 315: 312: 311: 310: 303: 300: 297: 294: 286: 283: 279:kinetic energy 253: 250: 248: 245: 230: 227: 205: 202: 193: 190: 160: 157: 114:thermal energy 39:thermodynamics 26: 9: 6: 4: 3: 2: 1563: 1552: 1549: 1547: 1544: 1542: 1539: 1537: 1534: 1533: 1531: 1516: 1515: 1506: 1504: 1503: 1498: 1494: 1492: 1491: 1482: 1480: 1479: 1470: 1469: 1466: 1460: 1457: 1455: 1452: 1450: 1447: 1446: 1444: 1440: 1434: 1433:United States 1431: 1429: 1428:South America 1426: 1424: 1421: 1419: 1416: 1414: 1411: 1409: 1406: 1404: 1401: 1399: 1396: 1394: 1391: 1389: 1386: 1384: 1381: 1379: 1376: 1374: 1371: 1367: 1364: 1363: 1362: 1361:Energy policy 1359: 1357: 1354: 1352: 1349: 1345: 1342: 1340: 1337: 1335: 1332: 1331: 1330: 1327: 1326: 1324: 1322: 1316: 1308: 1305: 1303: 1300: 1299: 1298: 1295: 1291: 1288: 1286: 1285:Solar furnace 1283: 1282: 1281: 1278: 1274: 1271: 1269: 1266: 1265: 1264: 1261: 1259: 1256: 1252: 1249: 1247: 1244: 1243: 1242: 1241:Nuclear power 1239: 1235: 1232: 1230: 1227: 1225: 1222: 1221: 1220: 1217: 1215: 1212: 1208: 1205: 1203: 1200: 1199: 1198: 1195: 1193: 1190: 1188: 1185: 1183: 1180: 1178: 1175: 1174: 1172: 1168: 1167:Energy system 1164: 1158: 1155: 1153: 1150: 1148: 1145: 1141: 1138: 1137: 1136: 1133: 1131: 1128: 1126: 1123: 1121: 1120:Gravitational 1118: 1116: 1113: 1109: 1106: 1104: 1101: 1099: 1096: 1095: 1094: 1091: 1089: 1086: 1085: 1083: 1081: 1077: 1071: 1068: 1066: 1063: 1061: 1058: 1056: 1053: 1049: 1048:Hydrogen fuel 1046: 1045: 1044: 1041: 1037: 1034: 1033: 1032: 1029: 1025: 1022: 1020: 1017: 1016: 1015: 1012: 1010: 1007: 1005: 1002: 1000: 997: 995: 992: 991: 989: 987: 983: 977: 974: 972: 969: 967: 964: 962: 959: 957: 954: 952: 949: 947: 944: 942: 939: 937: 934: 932: 929: 927: 924: 922: 919: 917: 914: 912: 909: 907: 904: 902: 899: 897: 894: 892: 889: 887: 884: 882: 879: 875: 872: 871: 870: 869:Gravitational 867: 865: 862: 860: 857: 855: 852: 850: 847: 845: 842: 838: 835: 834: 833: 830: 829: 827: 823: 815: 812: 810: 807: 805: 802: 800: 797: 795: 792: 790: 787: 785: 782: 780: 777: 775: 772: 770: 767: 765: 762: 760: 757: 755: 752: 750: 747: 745: 742: 740: 739:Heat transfer 737: 735: 734:Heat capacity 732: 730: 727: 725: 722: 720: 717: 715: 712: 710: 707: 706: 705: 702: 700: 697: 693: 690: 688: 687:Negative mass 685: 684: 683: 680: 678: 675: 673: 670: 668: 667:Energy system 665: 663: 660: 658: 655: 651: 648: 647: 646: 643: 641: 638: 636: 633: 632: 630: 624: 618: 615: 613: 610: 608: 605: 604: 601: 597: 590: 585: 583: 578: 576: 571: 570: 567: 557: 551: 544: 543:0-7923-4980-6 540: 536: 530: 523: 522:0-471-30280-5 519: 515: 511: 510:Prigogine, I. 505: 496: 490: 488: 481: 474: 470: 465: 457: 451: 447: 443: 439: 438: 430: 426: 416: 413: 411: 408: 406: 405:Flood control 403: 399: 396: 395: 394: 391: 390: 384: 382: 376: 366: 364: 360: 356: 352: 348: 344: 340: 336: 332: 328: 324: 320: 308: 307:Joule heating 304: 301: 298: 295: 292: 291: 290: 282: 280: 276: 272: 268: 264: 263:river bottoms 261:on banks and 260: 244: 242: 241: 240:wandering set 236: 226: 224: 219: 215: 211: 201: 199: 189: 187: 183: 178: 173: 170: 166: 156: 154: 153:Joule heating 150: 146: 142: 138: 134: 130: 126: 122: 117: 115: 111: 107: 103: 98: 96: 92: 88: 84: 80: 76: 72: 68: 64: 60: 56: 52: 48: 44: 40: 33: 19: 1512: 1500: 1488: 1476: 1258:Oil refinery 1202:Cogeneration 1135:Nuclear fuel 941:Quintessence 729:Free entropy 662:Energy level 626:Fundamental 555: 550: 534: 529: 513: 504: 495: 486: 485:Roddier F., 480: 472: 464: 436: 429: 378: 323:oscillations 317: 288: 255: 238: 232: 207: 197: 195: 174: 162: 118: 105: 99: 93:varies with 65:, or system 61:, bulk flow 42: 36: 1514:WikiProject 1334:Agriculture 1263:Solar power 1229:Tidal power 1103:Natural gas 1093:Fossil fuel 1036:Latent heat 1004:Electricity 554:W. Thomson 349:that loses 343:temperature 229:Mathematics 177:Hamiltonian 106:dissipation 95:temperature 43:dissipation 1530:Categories 1297:Wind power 1219:Hydropower 1170:components 1125:Hydropower 1115:Geothermal 1065:Sound wave 976:Zero-point 906:Mechanical 891:Ionization 864:Electrical 759:Negentropy 640:Energetics 475:, 453—463. 469:Planck, M. 421:References 373:See also: 339:turbulence 267:waterfalls 159:Definition 137:fluid flow 131:through a 71:transforms 1408:Australia 1344:Transport 1339:Computing 1307:Wind farm 1234:Wave farm 1108:Petroleum 1088:Bioenergy 1060:Radiation 999:Capacitor 921:Potential 351:amplitude 218:advection 186:isotropic 129:heat flow 67:potential 18:Dissipate 1478:Category 1043:Hydrogen 1009:Enthalpy 911:Negative 901:Magnetic 886:Internal 844:Chemical 709:Enthalpy 628:concepts 545:, p. 49, 524:, p. 61. 512:(1971). 387:See also 359:friction 335:friction 271:cascades 247:Examples 182:coherent 59:internal 1490:Commons 1318:Use and 1177:Biomass 1147:Radiant 994:Battery 966:Thermal 961:Surface 946:Radiant 916:Phantom 896:Kinetic 874:Binding 854:Elastic 837:Nuclear 832:Binding 719:Entropy 617:Outline 607:History 369:History 325:, lose 91:entropy 83:spreads 63:kinetic 1502:Portal 1423:Mexico 1418:Europe 1413:Canada 1398:Africa 1321:supply 1130:Marine 1019:Fossil 971:Vacuum 724:Exergy 645:Energy 596:Energy 541:  520:  452:  327:energy 275:riprap 192:Energy 169:Planck 143:, and 55:energy 1442:Misc. 1152:Solar 956:Sound 825:Types 699:Power 650:Units 612:Index 329:over 319:Waves 125:power 112:into 1403:Asia 1157:Wind 1098:Coal 1070:Work 1031:Heat 1014:Fuel 951:Rest 849:Dark 814:Work 682:Mass 539:ISBN 518:ISBN 450:ISBN 347:wave 331:time 221:the 1024:Oil 442:doi 337:or 321:or 269:or 208:In 155:). 100:In 37:In 1532:: 448:. 365:. 309:). 281:. 243:. 167:. 135:, 104:, 69:) 41:, 588:e 581:t 574:v 458:. 444:: 151:( 57:( 34:. 20:)

Index

Dissipate
Dissipative operator
thermodynamics
irreversible process
thermodynamic system
energy
internal
kinetic
potential
transforms
thermodynamic work
transfer of energy as heat
spreads
second law of thermodynamics
entropy
temperature
mechanical engineering
mechanical energy
thermal energy
produce entropy
power
heat flow
thermal resistance
fluid flow
chemical reactions
electric current
electrical resistance
Joule heating
produce entropy
Planck

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑