Knowledge

Dimictic lake

Source đź“ť

453:. Early winter is thus a period of restratification. If there is relatively little wind, or the lake is deep, only a thin layer of buoyant cold water forms above denser 4°C waters and the lake will be "cryostratified" once ice forms. If the lake experiences strong winds or is shallow, then the whole water column can cool to near 0°C before ice forms, these colder lakes are termed "cryomictic". Once ice forms on a lake, the heat fluxes from the atmosphere are largely shut down and the initial cyrostratified or cryomictic conditions are largely locked in. The development of thermal stratification during winter is then defined by two periods: Winter I and Winter II. During the early winter period of Winter I the major heat flux is due to heat stored in sediment; during this period the lake heats up from beneath forming a deep layer of 4 Â°C water. During late winter, the surface ice starts to melt and with the increased length of the day, there is increased sunlight that penetrates through the ice into the upper water column. Thus during Winter II, the major heat flux is now from above, and the warming causes an unstable layer to form, resulting in solar driven convection. This mixing of the upper water column is important for keeping plankton in suspension, which in turn influences the timing of under-ice algal blooms and levels of dissolved oxygen. Coriolis forces can also become important in driving circulation patterns due to differential heating by solar radiation. The winter period of lakes is probably the least studied, but the chemistry and biology are still very active under the ice. 465: 327: 273:, a category which includes all lakes which mix one or more times per year. During winter, dimictic lakes are covered by a layer of ice, creating a cold layer at the surface, a slightly warmer layer beneath the ice, and a still-warmer unfrozen bottom layer, while during summer, the same temperature-derived density differences separate the warm surface waters (the 336:
density differences, the lake readily mixes from top to bottom. During winter any additional cooling below 4 Â°C results in stratification of water column, so dimictic lakes usually have an inverse thermal stratification, with water at 0 Â°C below ice and then with temperatures increasing to near 4 Â°C at the lake's base.
335:
Mixing (overturning) typically occurs during the spring and autumn, when the lake is "isothermal" (i.e. at the same temperature from the top to the bottom). At this time, the water throughout the lake is near 4 Â°C (the temperature of maximum density), and, in the absence of any temperature or
440:
In late summer, air temperatures drop and the surface of lakes cool, resulting in a deeper mixed layer, until at some point the water column becomes isothermal, and generally high in dissolved oxygen. During fall a combination of wind and cooling air temperatures continue to keep the water column
344:
Once the ice melts, the water column can be mixed by the wind. In large lakes the upper water column is often below 4 Â°C when the ice melts, so that spring is characterized by continued mixing by solar driven convection, until the water column reaches 4 Â°C. In small lakes, the period of
1234:
Kirillin, Georgiy; Leppäranta, Matti; Terzhevik, Arkady; Granin, Nikolai; Bernhardt, Juliane; Engelhardt, Christof; Efremova, Tatyana; Golosov, Sergey; Palshin, Nikolai; Sherstyankin, Pavel; Zdorovennova, Galina (October 2012). "Physics of seasonally ice-covered lakes: a review".
330:
There is a seasonal cycle of thermal stratification with two periods of mixing in spring and fall. Such lakes are termed "dimictic'. During summer there is a strong thermal stratification, while there is a weaker inverse stratification in winter. (Figure modified
268:
is a body of freshwater whose difference in temperature between surface and bottom layers becomes negligible twice per year, allowing all strata of the lake's water to circulate vertically. All dimictic lakes are also considered
1385:
Bouffard, Damien; Zdorovennova, Galina; Bogdanov, Sergey; Efremova, Tatyana; Lavanchy, SĂ©bastien; Palshin, Nikolay; Terzhevik, Arkady; VinnĂĄ, Love RĂĄman; Volkov, Sergey; WĂĽest, Alfred; Zdorovennov, Roman (2019-02-19).
281:). In the spring and fall, these temperature differences briefly disappear, and the body of water overturns and circulates from top to bottom. Such lakes are common in mid-latitude regions with temperate climates. 1599:
Hampton, Stephanie E.; Galloway, Aaron W. E.; Powers, Stephen M.; Ozersky, Ted; Woo, Kara H.; Batt, Ryan D.; Labou, Stephanie G.; O'Reilly, Catherine M.; Sharma, Sapna; Lottig, Noah R.; Stanley, Emily H. (2017).
1539:
Ozersky, Ted; Bramburger, Andrew J.; Elgin, Ashley K.; Vanderploeg, Henry A.; Wang, Jia; Austin, Jay A.; Carrick, Hunter J.; Chavarie, Louise; Depew, David C.; Fisk, Aaron T.; Hampton, Stephanie E. (2021).
1175:
Yang, Bernard; Wells, Mathew G.; McMeans, Bailey C.; Dugan, Hilary A.; Rusak, James A.; Weyhenmeyer, Gesa A.; Brentrup, Jennifer A.; Hrycik, Allison R.; Laas, Alo; Pilla, Rachel M.; Austin, Jay A. (2021).
373:, usually defined as the region where temperature gradients exceed 1 Â°C/m. Due to the stable density gradient, mixing is inhibited within the thermocline, which reduces the vertical transport of 839:
Chowdhury, Mijanur R.; Wells, Mathew G.; Cossu, Remo (December 2015). "Observations and environmental implications of variability in the vertical turbulent mixing in Lake Simcoe".
735:
Pierson, D.C.; Weyhenmeyer, G. A.; Arvola, L.; Benson, B.; Blenckner, T.; Kratz, T.; Livingstone, D.M.; Markensten, H.; Marzec, G.; Pettersson, K.; Weathers, K. (February 2011).
988:
Chowdhury, Mijanur R.; Wells, Mathew G.; Howell, Todd (April 2016). "Movements of the thermocline lead to high variability in benthic mixing in the nearshore of a large lake".
357:
During summer, the heat fluxes from the atmosphere to a lake warms the surface layers. This results in dimictic lakes have a strong thermal stratification, with a warm
935:
Choi, Jun; Troy, Cary D.; Hsieh, Tsung-Chan; Hawley, Nathan; McCormick, Michael J. (July 2012). "A year of internal Poincaré waves in southern Lake Michigan".
251: 345:
spring overturn can be very brief, so that spring overturn is often much shorter than the fall overturn. As the upper water column warms past 4 Â°C a
381:
and has a high sediment oxygen demand, the hypolimnion in dimictic lakes can become hypoxic during summer stratification, as often seen in
632:
Cannon, D. J.; Troy, C. D.; Liao, Q.; Bootsma, H. A. (2019-06-28). "Ice-Free Radiative Convection Drives Spring Mixing in a Large Lake".
524: 1437:"Mixing, stratification, and plankton under lake-ice during winter in a large lake: Implications for spring dissolved oxygen levels" 244: 449:
After the water column reaches the temperature of maximum density at 4°C, any subsequent cooling produces less dense water due to
563:
Wells, M. G., & Troy, C. D. (2022). Surface Mixed Layers in Lakes. In Encyclopedia of Inland Waters (pp. 546–561). Elsevier.
400:(due to the Earth's rotation). This is expected to occur when the period of internal seiche becomes comparable to the local 441:
mixed. The water continues to cool until the temperature reaches 4 Â°C. Often fall overturn can last for 3–4 months.
237: 1149: 1124: 786:"Influence of Lake Surface Area and Depth Upon Thermal Stratification and the Depth of the Summer Thermocline" 1287: 585:"High-Frequency Observations of Temperature and Dissolved Oxygen Reveal Under-Ice Convection in a Large Lake" 392:
due to energy input from winds. If the lake is small (less than 5 km in length), then the period of the
396:
is well predicted by the Merian formulae. Long period internal waves in larger lakes can be influenced by
1177: 1436: 736: 1490:
RamĂłn, Cintia L.; Ulloa, Hugo N.; Doda, Tomy; Winters, Kraig B.; Bouffard, Damien (2021-04-07).
1683: 35: 1601: 1613: 1553: 1503: 1448: 1399: 1302: 1244: 1189: 1136: 1089: 997: 944: 901: 848: 797: 748: 699: 641: 596: 547: 405: 8: 450: 378: 346: 125: 77: 1617: 1557: 1507: 1452: 1403: 1314: 1306: 1248: 1193: 1140: 1093: 1001: 948: 905: 852: 801: 752: 703: 645: 600: 1472: 1326: 1268: 1213: 1021: 821: 665: 401: 809: 1647: 1639: 1581: 1521: 1491: 1476: 1464: 1417: 1367: 1330: 1318: 1260: 1217: 1205: 1154: 1105: 1062: 1025: 1013: 970: 917: 874: 825: 813: 766: 717: 669: 657: 614: 564: 374: 220: 1542:"The Changing Face of Winter: Lessons and Questions from the Laurentian Great Lakes" 1125:"Wind Mixing and Restratification in a Lake near the Temperature of Maximum Density" 1629: 1621: 1571: 1561: 1511: 1456: 1407: 1357: 1310: 1272: 1252: 1197: 1144: 1097: 1052: 1041:"Internal waves pump waters in and out of a deep coastal embayment of a large lake" 1005: 960: 952: 913: 909: 864: 856: 805: 756: 707: 649: 604: 539: 1669:"Circulation: annual patterns of dimictic lakes" at Encyclopædia Britannica Online 1412: 1387: 1080:
Bouffard, Damien; Lemmin, Ulrich (December 2013). "Kelvin waves in Lake Geneva".
193: 180: 158: 147: 1362: 1345: 1101: 860: 397: 315: 225: 57: 1516: 1256: 1677: 1643: 1585: 1525: 1468: 1421: 1371: 1322: 1264: 1209: 1158: 1109: 1066: 1017: 974: 921: 878: 817: 770: 721: 661: 618: 425: 417: 389: 295: 46: 761: 1651: 470: 421: 305: 290: 204: 68: 1576: 1566: 1541: 1201: 1009: 965: 956: 653: 609: 584: 503: 429: 413: 409: 370: 366: 362: 310: 300: 278: 114: 103: 583:
Yang, Bernard; Young, Joelle; Brown, Laura; Wells, Mathew (2017-12-23).
1634: 1039:
Flood, Bryan; Wells, Mathew; Dunlop, Erin; Young, Joelle (2019-08-14).
869: 498: 493: 488: 483: 358: 274: 270: 92: 1668: 1625: 1460: 1057: 1040: 712: 687: 382: 1435:
Yang, Bernard; Wells, Mathew G.; Li, Jingzhi; Young, Joelle (2020).
1384: 543: 388:
During summer stratification, most lakes are observed to experience
1538: 1233: 478: 424:) the observed frequencies of internal seiches are dominated by 326: 393: 321: 1346:"Convection in ice-covered lakes: effects on algal suspension" 734: 688:"Observations of radiatively driven convection in a deep lake" 785: 1598: 1150:
10.1175/1520-0485(1981)011<1516:wmaria>2.0.co;2
1492:"Bathymetry and latitude modify lake warming under ice" 892:
Mortimer, C. H. (January 1974). "Lake hydrodynamics".
1489: 1174: 1038: 631: 987: 460: 1178:"A New Thermal Categorization of Ice-Covered Lakes" 934: 838: 737:"An automated method to monitor lake ice phenology" 582: 525:"A revised classification of lakes based on mixing" 784:Gorham, Eville; Boyce, Farrell M. (January 1989). 565:https://doi.org/10.1016/B978-0-12-819166-8.00126-2 532:Canadian Journal of Fisheries and Aquatic Sciences 1123:Farmer, David M.; Carmack, Eddy (November 1981). 1675: 1434: 1388:"Under-ice convection dynamics in a boreal lake" 444: 1546:Journal of Geophysical Research: Biogeosciences 404:, which is 16.971 hours at a latitude of 45 °N 1286:Bouffard, Damien; WĂĽest, Alfred (2019-01-05). 1079: 1285: 1122: 284: 245: 578: 576: 574: 572: 322:Seasonal cycles of mixing and stratification 783: 451:non-linearity of equation of state of water 252: 238: 16:Body of freshwater that mixes twice a year 1633: 1575: 1565: 1515: 1411: 1361: 1148: 1056: 964: 868: 760: 711: 608: 569: 891: 352: 325: 937:Journal of Geophysical Research: Oceans 1676: 1343: 685: 277:), from the colder bottom waters (the 1229: 1227: 1170: 1168: 522: 681: 679: 1496:Hydrology and Earth System Sciences 1315:10.1146/annurev-fluid-010518-040506 741:Limnology and Oceanography: Methods 13: 1224: 1165: 339: 14: 1695: 1662: 676: 1295:Annual Review of Fluid Mechanics 1129:Journal of Physical Oceanography 463: 435: 1592: 1532: 1483: 1428: 1378: 1337: 1279: 1116: 1082:Journal of Great Lakes Research 1073: 1032: 981: 928: 841:Journal of Great Lakes Research 790:Journal of Great Lakes Research 365:by the metalimnion. Within the 914:10.1080/05384680.1974.11923886 885: 832: 777: 728: 625: 557: 523:Lewis, William M. Jr. (1983). 516: 1: 1413:10.1080/20442041.2018.1533356 894:SIL Communications, 1953-1996 810:10.1016/s0380-1330(89)71479-9 686:Austin, Jay A. (2019-04-22). 509: 445:Winter inverse stratification 1350:Journal of Plankton Research 1182:Geophysical Research Letters 634:Geophysical Research Letters 589:Geophysical Research Letters 7: 456: 406:(link to Coriolis utility). 10: 1700: 1441:Limnology and Oceanography 1102:10.1016/j.jglr.2013.09.005 1045:Limnology and Oceanography 861:10.1016/j.jglr.2015.07.008 692:Limnology and Oceanography 285:Examples of dimictic lakes 1517:10.5194/hess-25-1813-2021 1363:10.1093/plankt/19.12.1859 1257:10.1007/s00027-012-0279-y 1602:"Ecology under lake ice" 990:Water Resources Research 361:separated from the cold 1344:Kelley, Dan E. (1997). 762:10.4319/lom.2010.9.0074 595:(24): 12, 218–12, 226. 408:In large lakes (such a 347:thermal stratification 332: 1288:"Convection in Lakes" 353:Summer stratification 329: 1567:10.1029/2021JG006247 1552:(6): e2021JG006247. 1202:10.1029/2020GL091374 1188:(3): e2020GL091374. 1010:10.1002/2015wr017725 957:10.1029/2012jc007984 654:10.1029/2019gl082916 610:10.1002/2017GL075373 1618:2017EcolL..20...98H 1558:2021JGRG..12606247O 1508:2021HESS...25.1813R 1453:2020LimOc..65.2713Y 1404:2019InWat...9..142B 1307:2019AnRFM..51..189B 1249:2012AqSci..74..659K 1194:2021GeoRL..4891374Y 1141:1981JPO....11.1516F 1094:2013JGLR...39..637B 1002:2016WRR....52.3019C 949:2012JGRC..117.7014C 906:1974SILC...20..124M 853:2015JGLR...41..995C 802:1989JGLR...15..233G 753:2011LimOM...9...74P 704:2019LimOc..64.2152A 646:2019GeoRL..46.6811C 601:2017GeoRL..4412218Y 349:starts to develop. 78:Lake stratification 333: 221:Aquatic ecosystems 1626:10.1111/ele.12699 1461:10.1002/lno.11543 1447:(11): 2713–2729. 1356:(12): 1859–1880. 1135:(11): 1516–1533. 1058:10.1002/lno.11292 713:10.1002/lno.11175 640:(12): 6811–6820. 538:(10): 1779–1787. 262: 261: 1691: 1656: 1655: 1637: 1596: 1590: 1589: 1579: 1569: 1536: 1530: 1529: 1519: 1502:(4): 1813–1825. 1487: 1481: 1480: 1432: 1426: 1425: 1415: 1382: 1376: 1375: 1365: 1341: 1335: 1334: 1292: 1283: 1277: 1276: 1237:Aquatic Sciences 1231: 1222: 1221: 1172: 1163: 1162: 1152: 1120: 1114: 1113: 1077: 1071: 1070: 1060: 1036: 1030: 1029: 996:(4): 3019–3039. 985: 979: 978: 968: 932: 926: 925: 889: 883: 882: 872: 836: 830: 829: 781: 775: 774: 764: 732: 726: 725: 715: 698:(5): 2152–2160. 683: 674: 673: 629: 623: 622: 612: 580: 567: 561: 555: 554: 552: 546:. Archived from 529: 520: 473: 468: 467: 466: 375:dissolved oxygen 254: 247: 240: 203: 201: 192: 190: 179: 177: 168: 166: 157: 155: 146: 144: 126:Destratification 124: 122: 113: 111: 102: 100: 91: 89: 67: 65: 56: 54: 45: 43: 34: 32: 19: 18: 1699: 1698: 1694: 1693: 1692: 1690: 1689: 1688: 1674: 1673: 1665: 1660: 1659: 1606:Ecology Letters 1597: 1593: 1537: 1533: 1488: 1484: 1433: 1429: 1383: 1379: 1342: 1338: 1290: 1284: 1280: 1232: 1225: 1173: 1166: 1121: 1117: 1078: 1074: 1037: 1033: 986: 982: 933: 929: 890: 886: 847:(4): 995–1009. 837: 833: 782: 778: 733: 729: 684: 677: 630: 626: 581: 570: 562: 558: 550: 544:10.1139/f83-207 527: 521: 517: 512: 469: 464: 462: 459: 447: 438: 402:inertial period 398:Coriolis forces 394:internal seiche 377:. If a lake is 355: 342: 340:Spring overturn 324: 287: 258: 199: 198: 194:Meromictic lake 188: 187: 181:Polymictic lake 175: 174: 164: 163: 159:Monomictic lake 153: 152: 148:Holomictic lake 142: 141: 120: 119: 109: 108: 98: 97: 87: 86: 63: 62: 52: 51: 41: 40: 30: 29: 17: 12: 11: 5: 1697: 1687: 1686: 1672: 1671: 1664: 1663:External links 1661: 1658: 1657: 1591: 1577:2027.42/168250 1531: 1482: 1427: 1398:(2): 142–161. 1377: 1336: 1301:(1): 189–215. 1278: 1243:(4): 659–682. 1223: 1164: 1115: 1088:(4): 637–645. 1072: 1051:(2): 205–223. 1031: 980: 927: 900:(1): 124–197. 884: 831: 796:(2): 233–245. 776: 727: 675: 624: 568: 556: 553:on 2009-03-06. 514: 513: 511: 508: 507: 506: 501: 496: 491: 486: 481: 475: 474: 458: 455: 446: 443: 437: 434: 426:PoincarĂ© waves 390:internal waves 354: 351: 341: 338: 323: 320: 319: 318: 316:Lake Altaussee 313: 308: 303: 298: 293: 286: 283: 260: 259: 257: 256: 249: 242: 234: 231: 230: 229: 228: 226:Wild fisheries 223: 215: 214: 210: 209: 208: 207: 196: 185: 184: 183: 172: 161: 136: 135: 131: 130: 129: 128: 117: 106: 95: 81: 80: 74: 73: 72: 71: 60: 58:Profundal zone 49: 38: 24: 23: 15: 9: 6: 4: 3: 2: 1696: 1685: 1684:Lakes by type 1682: 1681: 1679: 1670: 1667: 1666: 1653: 1649: 1645: 1641: 1636: 1631: 1627: 1623: 1619: 1615: 1612:(1): 98–111. 1611: 1607: 1603: 1595: 1587: 1583: 1578: 1573: 1568: 1563: 1559: 1555: 1551: 1547: 1543: 1535: 1527: 1523: 1518: 1513: 1509: 1505: 1501: 1497: 1493: 1486: 1478: 1474: 1470: 1466: 1462: 1458: 1454: 1450: 1446: 1442: 1438: 1431: 1423: 1419: 1414: 1409: 1405: 1401: 1397: 1393: 1392:Inland Waters 1389: 1381: 1373: 1369: 1364: 1359: 1355: 1351: 1347: 1340: 1332: 1328: 1324: 1320: 1316: 1312: 1308: 1304: 1300: 1296: 1289: 1282: 1274: 1270: 1266: 1262: 1258: 1254: 1250: 1246: 1242: 1238: 1230: 1228: 1219: 1215: 1211: 1207: 1203: 1199: 1195: 1191: 1187: 1183: 1179: 1171: 1169: 1160: 1156: 1151: 1146: 1142: 1138: 1134: 1130: 1126: 1119: 1111: 1107: 1103: 1099: 1095: 1091: 1087: 1083: 1076: 1068: 1064: 1059: 1054: 1050: 1046: 1042: 1035: 1027: 1023: 1019: 1015: 1011: 1007: 1003: 999: 995: 991: 984: 976: 972: 967: 966:2027.42/95363 962: 958: 954: 950: 946: 942: 938: 931: 923: 919: 915: 911: 907: 903: 899: 895: 888: 880: 876: 871: 866: 862: 858: 854: 850: 846: 842: 835: 827: 823: 819: 815: 811: 807: 803: 799: 795: 791: 787: 780: 772: 768: 763: 758: 754: 750: 746: 742: 738: 731: 723: 719: 714: 709: 705: 701: 697: 693: 689: 682: 680: 671: 667: 663: 659: 655: 651: 647: 643: 639: 635: 628: 620: 616: 611: 606: 602: 598: 594: 590: 586: 579: 577: 575: 573: 566: 560: 549: 545: 541: 537: 533: 526: 519: 515: 505: 502: 500: 497: 495: 492: 490: 487: 485: 482: 480: 477: 476: 472: 461: 454: 452: 442: 436:Fall overturn 433: 431: 427: 423: 419: 418:Lake Michigan 415: 411: 407: 403: 399: 395: 391: 386: 384: 380: 376: 372: 368: 364: 360: 350: 348: 337: 328: 317: 314: 312: 309: 307: 304: 302: 299: 297: 296:Lake Superior 294: 292: 289: 288: 282: 280: 276: 272: 267: 266:dimictic lake 255: 250: 248: 243: 241: 236: 235: 233: 232: 227: 224: 222: 219: 218: 217: 216: 212: 211: 206: 197: 195: 186: 182: 173: 171: 170:Dimictic lake 162: 160: 151: 150: 149: 140: 139: 138: 137: 133: 132: 127: 118: 116: 107: 105: 96: 94: 85: 84: 83: 82: 79: 76: 75: 70: 61: 59: 50: 48: 47:Limnetic zone 39: 37: 36:Littoral zone 28: 27: 26: 25: 21: 20: 1609: 1605: 1594: 1549: 1545: 1534: 1499: 1495: 1485: 1444: 1440: 1430: 1395: 1391: 1380: 1353: 1349: 1339: 1298: 1294: 1281: 1240: 1236: 1185: 1181: 1132: 1128: 1118: 1085: 1081: 1075: 1048: 1044: 1034: 993: 989: 983: 940: 936: 930: 897: 893: 887: 844: 840: 834: 793: 789: 779: 747:(2): 74–83. 744: 740: 730: 695: 691: 637: 633: 627: 592: 588: 559: 548:the original 535: 531: 518: 471:Lakes portal 448: 439: 430:Kelvin waves 422:Lake Ontario 387: 356: 343: 334: 306:Lake Opeongo 291:Lake Mendota 265: 263: 205:Amictic lake 169: 69:Benthic zone 1635:10919/94398 943:(C7): n/a. 870:1807/107899 504:Thermocline 414:Lake Geneva 410:Lake Simcoe 371:thermocline 369:there is a 367:metalimnion 363:hypolimnion 311:Loch Lomond 301:Lake Simcoe 279:hypolimnion 115:Hypolimnion 104:Metalimnion 510:References 499:Polymictic 494:Monomictic 489:Meromictic 484:Holomictic 359:epilimnion 275:epilimnion 271:holomictic 134:Lake types 93:Epilimnion 22:Lake zones 1644:1461-0248 1586:2169-8961 1526:1027-5606 1477:225490164 1469:1939-5590 1422:2044-2041 1372:0142-7873 1331:125132769 1323:0066-4189 1265:1015-1621 1218:233921281 1210:1944-8007 1159:0022-3670 1110:0380-1330 1067:0024-3590 1026:130510367 1018:0043-1397 975:0148-0227 922:0538-4680 879:0380-1330 826:128748369 818:0380-1330 771:1541-5856 722:0024-3590 670:197574599 662:0094-8276 619:0094-8276 383:Lake Erie 379:eutrophic 1678:Category 1652:27889953 457:See also 213:See also 1614:Bibcode 1554:Bibcode 1504:Bibcode 1449:Bibcode 1400:Bibcode 1303:Bibcode 1273:6722239 1245:Bibcode 1190:Bibcode 1137:Bibcode 1090:Bibcode 998:Bibcode 945:Bibcode 902:Bibcode 849:Bibcode 798:Bibcode 749:Bibcode 700:Bibcode 642:Bibcode 597:Bibcode 479:Amictic 1650:  1642:  1584:  1524:  1475:  1467:  1420:  1370:  1329:  1321:  1271:  1263:  1216:  1208:  1157:  1108:  1065:  1024:  1016:  973:  920:  877:  824:  816:  769:  720:  668:  660:  617:  202:  200:  191:  189:  178:  176:  167:  165:  156:  154:  145:  143:  123:  121:  112:  110:  101:  99:  90:  88:  66:  64:  55:  53:  44:  42:  33:  31:  1473:S2CID 1327:S2CID 1291:(PDF) 1269:S2CID 1214:S2CID 1022:S2CID 822:S2CID 666:S2CID 551:(PDF) 528:(PDF) 331:from) 1648:PMID 1640:ISSN 1582:ISSN 1522:ISSN 1465:ISSN 1418:ISSN 1368:ISSN 1319:ISSN 1261:ISSN 1206:ISSN 1155:ISSN 1106:ISSN 1063:ISSN 1014:ISSN 971:ISSN 918:ISSN 875:ISSN 814:ISSN 767:ISSN 718:ISSN 658:ISSN 615:ISSN 428:and 1630:hdl 1622:doi 1572:hdl 1562:doi 1550:126 1512:doi 1457:doi 1408:doi 1358:doi 1311:doi 1253:doi 1198:doi 1145:doi 1098:doi 1053:doi 1006:doi 961:hdl 953:doi 941:117 910:doi 865:hdl 857:doi 806:doi 757:doi 708:doi 650:doi 605:doi 540:doi 420:or 1680:: 1646:. 1638:. 1628:. 1620:. 1610:20 1608:. 1604:. 1580:. 1570:. 1560:. 1548:. 1544:. 1520:. 1510:. 1500:25 1498:. 1494:. 1471:. 1463:. 1455:. 1445:65 1443:. 1439:. 1416:. 1406:. 1394:. 1390:. 1366:. 1354:19 1352:. 1348:. 1325:. 1317:. 1309:. 1299:51 1297:. 1293:. 1267:. 1259:. 1251:. 1241:74 1239:. 1226:^ 1212:. 1204:. 1196:. 1186:48 1184:. 1180:. 1167:^ 1153:. 1143:. 1133:11 1131:. 1127:. 1104:. 1096:. 1086:39 1084:. 1061:. 1049:65 1047:. 1043:. 1020:. 1012:. 1004:. 994:52 992:. 969:. 959:. 951:. 939:. 916:. 908:. 898:20 896:. 873:. 863:. 855:. 845:41 843:. 820:. 812:. 804:. 794:15 792:. 788:. 765:. 755:. 743:. 739:. 716:. 706:. 696:64 694:. 690:. 678:^ 664:. 656:. 648:. 638:46 636:. 613:. 603:. 593:44 591:. 587:. 571:^ 536:40 534:. 530:. 432:. 416:, 412:, 385:. 264:A 1654:. 1632:: 1624:: 1616:: 1588:. 1574:: 1564:: 1556:: 1528:. 1514:: 1506:: 1479:. 1459:: 1451:: 1424:. 1410:: 1402:: 1396:9 1374:. 1360:: 1333:. 1313:: 1305:: 1275:. 1255:: 1247:: 1220:. 1200:: 1192:: 1161:. 1147:: 1139:: 1112:. 1100:: 1092:: 1069:. 1055:: 1028:. 1008:: 1000:: 977:. 963:: 955:: 947:: 924:. 912:: 904:: 881:. 867:: 859:: 851:: 828:. 808:: 800:: 773:. 759:: 751:: 745:9 724:. 710:: 702:: 672:. 652:: 644:: 621:. 607:: 599:: 542:: 253:e 246:t 239:v

Index

Littoral zone
Limnetic zone
Profundal zone
Benthic zone
Lake stratification
Epilimnion
Metalimnion
Hypolimnion
Destratification
Holomictic lake
Monomictic lake
Dimictic lake
Polymictic lake
Meromictic lake
Amictic lake
Aquatic ecosystems
Wild fisheries
v
t
e
holomictic
epilimnion
hypolimnion
Lake Mendota
Lake Superior
Lake Simcoe
Lake Opeongo
Loch Lomond
Lake Altaussee
Cycles of thermal stratification in a dimictic lake.

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑