Knowledge

Differential centrifugation

Source 📝

646:) or gels through which the sample passes. This separates the sample into layers by relative density, based on the principle that molecules settle down under a centrifugal force until they reach a medium with the density the same as theirs. The degree of separation or number of layers depends on the solution or gel. Differential centrifugation, on the other hand, does not utilize a density gradient, and the centrifugation is taken in increasing speeds. The different centrifugation speeds often create separation into not more than two fractions, so the supernatant can be separated further in additional centrifugation steps. For that, each step the centrifugation speed has to be increased until the desired particles are separated. In contrast, the density gradient centrifugation is usually performed with just one centrifugation speed. 122: 1308: 603:. An ultracentrifuge consists of a refrigerated, low-pressure chamber containing a rotor which is driven by an electrical motor capable of high speed rotation. Samples are placed in tubes within or attached to the rotor. Rotational speed may reach up to 100,000 rpm for floor model, 150,000 rpm for bench-top model (Beckman Optima Max-XP or Sorvall MTX150 or himac CS150NX), creating centrifugal speed forces of 800,000g to 1,000,000g. This force causes 25: 611:
then exposing the subsequent supernatants to sequentially greater centrifugal fields. Each time a portion of different density is sedimented to the bottom of the container and extracted, and repeated application produces a rank of layers which includes different parts of the original sample. Additional steps can be taken to further refine each of the obtained pellets.
200:. Thus, the differential centrifugation method is the successive pelleting of particles from the previous supernatant, using increasingly higher centrifugation forces. Cellular organelles separated by differential centrifugation maintain a relatively high degree of normal functioning, as long as they are not subject to denaturing conditions during isolation. 610:
Since different fragments of a cell have different sizes and densities, each fragment will settle into a pellet with different minimum centrifugal forces. Thus, separation of the sample into different layers can be done by first centrifuging the original lysate under weak forces, removing the pellet,
451:
Differential centrifugation can be used with intact particles (e.g. biological cells, microparticles, nanoparticles), or used to separate the component parts of a given particle. Using the example of a separation of eukaryotic organelles from intact cells, the cell must first be lysed and
233:
Larger particles sediment more quickly and at lower centrifugal forces. If a particle is less dense than the fluid (e.g., fats in water), the particle will not sediment, but rather will float, regardless of strength of the g-force experienced by the particle.
626:(S) can be calculated. Large values of S (faster sedimentation rate) correspond to larger molecular weight. Dense particle sediments more rapidly. Elongated proteins have larger frictional coefficients, and sediment more slowly to ensure accuracy. 376: 460:; harsher techniques or over homogenization will lead to a lower proportion of intact organelles). Once the crude organelle extract is obtained, it may be subjected to a varying centrifugation speeds to separate the organelles: 787: 196:
and/or time. Differential centrifugation is suitable for crude separations on the basis of sedimentation rate, but more fine grained purifications may be done on the basis of density through
847:
Livshits, Mikhail A.; Khomyakova, Elena; Evtushenko, Evgeniy G.; Lazarev, Vassili N.; Kulemin, Nikolay A.; Semina, Svetlana E.; Generozov, Edward V.; Govorun, Vadim M. (30 November 2015).
153:. Although often applied in biological analysis, differential centrifugation is a general technique also suitable for crude purification of non-living suspended particles (e.g. 796: 262: 185:, where particles that sediment sufficiently quickly at a given centrifugal force for a given time form a compact "pellet" at the bottom of the centrifugation tube. 618:
of a macromolecule, as well as solvent density, rotor size and rate of rotation. The sedimentation velocity can be monitored during the experiment to calculate
1008: 400: 634:
The difference between differential and density gradient centrifugation techniques is that the latter method uses solutions of different densities (e.g.
1124: 972:
Taylor, Douglas D.; Shah, Sahil (1 October 2015). "Methods of isolating extracellular vesicles impact down-stream analyses of their cargoes".
42: 89: 239: 197: 61: 950: 821: 165:). In a typical case where differential centrifugation is used to analyze cell-biological phenomena (e.g. organelle distribution), a 68: 216:
of a given suspended particle (as long as the particle is denser than the fluid) is largely a function of the following factors:
242:
produces a separation profile dependent on particle-density alone, and therefore is suitable for more fine-grained separations.
1055:
Yu, Li-Li; Zhu, Jing; Liu, Jin-Xia; Jiang, Feng; Ni, Wen-Kai; Qu, Li-Shuai; Ni, Run-Zhou; Lu, Cui-Hua; Xiao, Ming-Bing (2018).
1020: 933: 831: 75: 238:
separates components not only on the basis of density, but also of particle size and shape. In contrast, a more specialized
684: 57: 1117: 731: 108: 464:
Typical differential centrifugation parameters for a biological sample (path length of centrifugation ≈1–5 cm)
1282: 655: 750:
Darnell, James; Baltimore, David; Matsudaira, Paul; Zipursky, S. Lawrence; Berk, Arnold; Lodish, Harvey (2000).
1492: 1292: 193: 46: 1482: 1272: 1110: 674: 1247: 1307: 1322: 82: 849:"Isolation of exosomes by differential centrifugation: Theoretical analysis of a commonly used protocol" 1342: 1382: 1267: 623: 772: 256:
must be modified to account for the variation in g-force with distance from the center of rotation.
1425: 1152: 453: 795:. Principles & Techniques of Biochemistry and Molecular Biology. pp. 1–27. Archived from 1477: 1192: 1057:"A Comparison of Traditional and Novel Methods for the Separation of Exosomes from Human Samples" 615: 35: 714:
Ohlendieck, Kay; Harding, Stephen E. (19 April 2018). "Centrifugation and Ultracentrifugation".
371:{\displaystyle D={\sqrt {\frac {18\eta \,\ln(R_{f}/R_{i})}{(\rho _{p}-\rho _{f})\omega ^{2}t}}}} 1487: 1287: 1217: 923: 1472: 1407: 1402: 1207: 1167: 759: 1357: 1242: 1187: 860: 1037: 8: 1177: 864: 669: 1237: 1133: 1083: 1056: 904: 891: 848: 629: 457: 1377: 1252: 1212: 1088: 1016: 989: 929: 896: 878: 827: 727: 389: 235: 908: 607:
of macromolecules, and can even cause non-uniform distributions of small molecules.
192:(non-pelleted solution) is removed from the tube and re-centrifuged at an increased 1078: 1068: 981: 886: 868: 719: 716:
Wilson and Walker's Principles and Techniques of Biochemistry and Molecular Biology
619: 428: 166: 1435: 1372: 1297: 1277: 1257: 1232: 1172: 689: 600: 246: 985: 121: 1451: 1162: 751: 253: 182: 723: 1466: 1392: 1367: 882: 604: 213: 174: 154: 1352: 1337: 1227: 1197: 1092: 1073: 993: 900: 134: 130: 1327: 1182: 1038:"Types of Centrifuge & Centrifugation (definition, principle, uses)" 585:
Ribosomal subunits, small poly ribosomes, some soluble enzyme complexes
252:, even for very small (nanoscale) particles. When a centrifuge is used, 1347: 1332: 1222: 1157: 1102: 545: 873: 1430: 249: 245:
High g-force makes sedimentation of small particles much faster than
158: 146: 922:
Harding, Stephen E.; Scott, David; Rowe, Arther (16 December 2007).
789:
Practical Techniques for Centrifugal Separations – Application Guide
630:
Differences between differential and density gradient centrifugation
24: 1387: 1362: 1147: 846: 694: 568:
Cytosol, ribosomal subunits, small polyribosomes, enzyme complexes
385:
D is the minimum diameter of the particles expected to sediment (m)
150: 749: 1262: 643: 635: 178: 162: 1202: 639: 518:
Benchtop fixed-angle centrifuge, or swinging bucket centrifuge
498:
Benchtop fixed-angle centrifuge, or swinging bucket centrifuge
1397: 562:
High speed fixed-angle centrifuge, or vacuum ultracentrifuge
170: 565:
Plasma membrane, microsomal fraction, large polyribosomes
599:
The lysed sample is now ready for centrifugation in an
925:
Analytical Ultracentrifugation: Techniques and Methods
265: 823:
Cell and Molecular Biology: Concepts and Experiments
1009:"Structure, assembly and secretion of lipoproteins" 541:Mitochondria, chloroplasts, lysosomes, peroxisomes 49:. Unsourced material may be challenged and removed. 1013:Biochemistry of Lipids, Lipoproteins and Membranes 370: 713: 1464: 1007:Vance, Dennis E.; Vance, J. E. (6 August 1996). 921: 149:and other sub-cellular particles based on their 501:Intact (eukaryotic) cells, macroscopic debris 1118: 1054: 509:Gently lysed cells (e.g. dounce homogenizer) 819: 424:is the fluid volumetric mass density (kg/m) 240:equilibrium density-gradient centrifugation 198:equilibrium density-gradient centrifugation 181:. The lysate is then subjected to repeated 16:Method of separating particles in a mixture 1125: 1111: 1006: 971: 614:Sedimentation depends on mass, shape, and 548:(known as post mitochondrial supernatant) 417:is particle volumetric mass density (kg/m) 1082: 1072: 890: 872: 745: 743: 434:t is the time required to sediment from R 282: 145:) is a common procedure used to separate 109:Learn how and when to remove this message 1132: 785: 456:(ideally by a gentle technique, such as 120: 1035: 826:. John Wiley & Sons. pp. 28–. 752:"Purification of Cells and Their Parts" 1465: 740: 594: 1106: 1036:Sapkota, Anupama (3 September 2020). 410:is the initial radius of rotation (m) 143:differential velocity centrifugation 47:adding citations to reliable sources 18: 685:Buoyant density ultracentrifugation 13: 14: 1504: 1306: 948: 538:Benchtop fixed-angle centrifuge 23: 1048: 1029: 820:Gerald Karp (19 October 2009). 524:Cytosol, non-nuclei organelles 188:After each centrifugation, the 177:and release the organelles and 34:needs additional citations for 1000: 965: 942: 928:. Royal Society of Chemistry. 915: 840: 813: 779: 707: 348: 322: 317: 289: 1: 1061:BioMed Research International 786:Griffith, Owen Mitch (2010). 700: 58:"Differential centrifugation" 951:"Centrifugation Separations" 675:Resources in other libraries 573:Supernatant of previous row 553:Supernatant of previous row 529:Supernatant of previous row 446: 7: 986:10.1016/j.ymeth.2015.02.019 649: 504:Varies depending on sample 489:Unlysed (eukaryotic) cells 139:differential centrifugation 125:Differential centrifugation 10: 1509: 1343:Electrostatic precipitator 1444: 1416: 1383:Rotary vacuum-drum filter 1315: 1304: 1140: 724:10.1017/9781316677056.014 670:Resources in your library 624:sedimentation coefficient 576:50,000 x g - 100,000 x g 556:50,000 x g - 100,000 x g 203: 1426:Aqueous two-phase system 1248:Liquid–liquid extraction 208:In a viscous fluid, the 1323:API oil–water separator 1193:Dissolved air flotation 616:partial specific volume 582:Vacuum ultracentrifuge 229:Particle size and shape 1288:Solid-phase extraction 767:Cite journal requires 388:Ρ (or Îź) is the fluid 372: 126: 1493:Laboratory techniques 1408:Vacuum ceramic filter 1403:Sublimation apparatus 1208:Electrochromatography 1168:Cross-flow filtration 484:Supernatant contents 458:Dounce homogenization 373: 223:Difference in density 124: 1483:Industrial processes 1358:Fractionating column 1153:Acid–base extraction 1134:Separation processes 1074:10.1155/2018/3634563 263: 43:improve this article 1178:Cyclonic separation 865:2015NatSR...517319L 661:Ultracentrifugation 595:Ultracentrifugation 465: 220:Gravitational force 1238:Gravity separation 853:Scientific Reports 478:Instrument needed 463: 401:radius of rotation 368: 151:sedimentation rate 127: 1460: 1459: 1378:Rapid sand filter 1273:Recrystallization 1253:Electroextraction 1213:Electrofiltration 1022:978-0-08-086092-3 935:978-1-84755-261-7 874:10.1038/srep17319 833:978-0-470-48337-4 656:Library resources 592: 591: 390:dynamic viscosity 366: 365: 236:Centrifugal force 194:centrifugal force 119: 118: 111: 93: 1500: 1310: 1127: 1120: 1113: 1104: 1103: 1097: 1096: 1086: 1076: 1052: 1046: 1045: 1033: 1027: 1026: 1004: 998: 997: 969: 963: 962: 946: 940: 939: 919: 913: 912: 894: 876: 844: 838: 837: 817: 811: 810: 808: 807: 801: 794: 783: 777: 776: 770: 765: 763: 755: 747: 738: 737: 711: 620:molecular weight 481:Pellet contents 466: 462: 429:angular velocity 377: 375: 374: 369: 367: 364: 360: 359: 347: 346: 334: 333: 320: 316: 315: 306: 301: 300: 274: 273: 169:sample is first 114: 107: 103: 100: 94: 92: 51: 27: 19: 1508: 1507: 1503: 1502: 1501: 1499: 1498: 1497: 1463: 1462: 1461: 1456: 1440: 1418: 1412: 1373:Protein skimmer 1311: 1302: 1298:Ultrafiltration 1278:Reverse osmosis 1258:Microfiltration 1233:Froth flotation 1173:Crystallization 1136: 1131: 1101: 1100: 1053: 1049: 1034: 1030: 1023: 1005: 1001: 970: 966: 947: 943: 936: 920: 916: 845: 841: 834: 818: 814: 805: 803: 799: 792: 784: 780: 768: 766: 757: 756: 748: 741: 734: 712: 708: 703: 690:Jerome Vinograd 681: 680: 679: 664: 663: 659: 652: 632: 601:ultracentrifuge 597: 449: 441: 437: 423: 416: 409: 398: 355: 351: 342: 338: 329: 325: 321: 311: 307: 302: 296: 292: 275: 272: 264: 261: 260: 226:Fluid viscosity 206: 183:centrifugations 141:(also known as 115: 104: 98: 95: 52: 50: 40: 28: 17: 12: 11: 5: 1506: 1496: 1495: 1490: 1485: 1480: 1478:Centrifugation 1475: 1458: 1457: 1455: 1454: 1452:Unit operation 1448: 1446: 1442: 1441: 1439: 1438: 1433: 1428: 1422: 1420: 1414: 1413: 1411: 1410: 1405: 1400: 1395: 1390: 1385: 1380: 1375: 1370: 1365: 1360: 1355: 1350: 1345: 1340: 1335: 1330: 1325: 1319: 1317: 1313: 1312: 1305: 1303: 1301: 1300: 1295: 1290: 1285: 1280: 1275: 1270: 1265: 1260: 1255: 1250: 1245: 1240: 1235: 1230: 1225: 1220: 1215: 1210: 1205: 1200: 1195: 1190: 1185: 1180: 1175: 1170: 1165: 1163:Chromatography 1160: 1155: 1150: 1144: 1142: 1138: 1137: 1130: 1129: 1122: 1115: 1107: 1099: 1098: 1047: 1028: 1021: 999: 964: 941: 934: 914: 839: 832: 812: 778: 769:|journal= 739: 732: 705: 704: 702: 699: 698: 697: 692: 687: 678: 677: 672: 666: 665: 654: 653: 651: 648: 631: 628: 596: 593: 590: 589: 586: 583: 580: 577: 574: 570: 569: 566: 563: 560: 557: 554: 550: 549: 542: 539: 536: 533: 530: 526: 525: 522: 519: 516: 513: 510: 506: 505: 502: 499: 496: 493: 490: 486: 485: 482: 479: 476: 473: 470: 448: 445: 444: 443: 439: 435: 432: 425: 421: 418: 414: 411: 407: 404: 396: 393: 386: 379: 378: 363: 358: 354: 350: 345: 341: 337: 332: 328: 324: 319: 314: 310: 305: 299: 295: 291: 288: 285: 281: 278: 271: 268: 231: 230: 227: 224: 221: 205: 202: 175:cell membranes 117: 116: 31: 29: 22: 15: 9: 6: 4: 3: 2: 1505: 1494: 1491: 1489: 1488:Fractionation 1486: 1484: 1481: 1479: 1476: 1474: 1471: 1470: 1468: 1453: 1450: 1449: 1447: 1443: 1437: 1434: 1432: 1429: 1427: 1424: 1423: 1421: 1415: 1409: 1406: 1404: 1401: 1399: 1396: 1394: 1393:Spinning cone 1391: 1389: 1386: 1384: 1381: 1379: 1376: 1374: 1371: 1369: 1368:Mixer-settler 1366: 1364: 1361: 1359: 1356: 1354: 1351: 1349: 1346: 1344: 1341: 1339: 1336: 1334: 1331: 1329: 1326: 1324: 1321: 1320: 1318: 1314: 1309: 1299: 1296: 1294: 1291: 1289: 1286: 1284: 1283:Sedimentation 1281: 1279: 1276: 1274: 1271: 1269: 1268:Precipitation 1266: 1264: 1261: 1259: 1256: 1254: 1251: 1249: 1246: 1244: 1241: 1239: 1236: 1234: 1231: 1229: 1226: 1224: 1221: 1219: 1216: 1214: 1211: 1209: 1206: 1204: 1201: 1199: 1196: 1194: 1191: 1189: 1186: 1184: 1181: 1179: 1176: 1174: 1171: 1169: 1166: 1164: 1161: 1159: 1156: 1154: 1151: 1149: 1146: 1145: 1143: 1139: 1135: 1128: 1123: 1121: 1116: 1114: 1109: 1108: 1105: 1094: 1090: 1085: 1080: 1075: 1070: 1066: 1062: 1058: 1051: 1043: 1042:Microbe Notes 1039: 1032: 1024: 1018: 1014: 1010: 1003: 995: 991: 987: 983: 979: 975: 968: 960: 956: 952: 945: 937: 931: 927: 926: 918: 910: 906: 902: 898: 893: 888: 884: 880: 875: 870: 866: 862: 858: 854: 850: 843: 835: 829: 825: 824: 816: 802:on 2023-02-07 798: 791: 790: 782: 774: 761: 753: 746: 744: 735: 733:9781107162273 729: 725: 721: 717: 710: 706: 696: 693: 691: 688: 686: 683: 682: 676: 673: 671: 668: 667: 662: 657: 647: 645: 641: 637: 627: 625: 621: 617: 612: 608: 606: 605:sedimentation 602: 587: 584: 581: 578: 575: 572: 571: 567: 564: 561: 558: 555: 552: 551: 547: 543: 540: 537: 534: 531: 528: 527: 523: 520: 517: 514: 511: 508: 507: 503: 500: 497: 494: 491: 488: 487: 483: 480: 477: 474: 471: 469:Sample input 468: 467: 461: 459: 455: 433: 430: 426: 419: 412: 405: 402: 399:is the final 394: 391: 387: 384: 383: 382: 361: 356: 352: 343: 339: 335: 330: 326: 312: 308: 303: 297: 293: 286: 283: 279: 276: 269: 266: 259: 258: 257: 255: 251: 248: 243: 241: 237: 228: 225: 222: 219: 218: 217: 215: 214:sedimentation 211: 201: 199: 195: 191: 186: 184: 180: 176: 173:to break the 172: 168: 164: 160: 156: 155:nanoparticles 152: 148: 144: 140: 136: 132: 123: 113: 110: 102: 91: 88: 84: 81: 77: 74: 70: 67: 63: 60: â€“  59: 55: 54:Find sources: 48: 44: 38: 37: 32:This article 30: 26: 21: 20: 1473:Cell biology 1353:Filter press 1338:Depth filter 1228:Flocculation 1198:Distillation 1064: 1060: 1050: 1041: 1031: 1015:. Elsevier. 1012: 1002: 977: 973: 967: 958: 954: 949:Frei, Mark. 944: 924: 917: 859:(1): 17319. 856: 852: 842: 822: 815: 804:. Retrieved 797:the original 788: 781: 760:cite journal 715: 709: 660: 633: 622:. Values of 613: 609: 598: 450: 380: 244: 232: 209: 207: 189: 187: 142: 138: 135:cell biology 131:biochemistry 128: 105: 99:October 2009 96: 86: 79: 72: 65: 53: 41:Please help 36:verification 33: 1328:Belt filter 1293:Sublimation 1183:Decantation 718:: 424–453. 532:15,000 x g 454:homogenized 254:Stokes' law 190:supernatant 161:particles, 1467:Categories 1417:Multiphase 1348:Evaporator 1333:Centrifuge 1223:Filtration 1218:Extraction 1158:Adsorption 1148:Absorption 806:2020-10-14 701:References 546:microsomes 431:(radian/s) 147:organelles 69:newspapers 1431:Azeotrope 1141:Processes 961:(5): 6–7. 883:2045-2322 544:Cytosol, 447:Procedure 427:ω is the 353:ω 340:ρ 336:− 327:ρ 287:⁡ 280:η 250:diffusion 159:colloidal 1445:Concepts 1436:Eutectic 1388:Scrubber 1363:Leachate 1243:Leaching 1188:Dialysis 1093:30148165 994:25766927 980:: 3–10. 955:BioFiles 909:14200669 901:26616523 695:Svedberg 650:See also 588:Cytosol 579:120 min 512:600 x g 492:100 x g 472:G force 247:Brownian 1419:systems 1316:Devices 1263:Osmosis 1084:6083592 1067:: 1–9. 974:Methods 892:4663484 861:Bibcode 644:Percoll 636:sucrose 559:60 min 535:20 min 521:Nuclei 515:10 min 179:cytosol 163:viruses 83:scholar 1203:Drying 1091:  1081:  1019:  992:  932:  907:  899:  889:  881:  830:  730:  658:about 640:Ficoll 495:5 min 392:(Pa.s) 381:where 204:Theory 167:tissue 85:  78:  71:  64:  56:  1398:Still 905:S2CID 800:(PDF) 793:(PDF) 475:Time 171:lysed 90:JSTOR 76:books 1089:PMID 1065:2018 1017:ISBN 990:PMID 930:ISBN 897:PMID 879:ISSN 828:ISBN 773:help 728:ISBN 438:to R 210:rate 133:and 62:news 1079:PMC 1069:doi 982:doi 887:PMC 869:doi 720:doi 442:(s) 403:(m) 212:of 129:In 45:by 1469:: 1087:. 1077:. 1063:. 1059:. 1040:. 1011:. 988:. 978:87 976:. 957:. 953:. 903:. 895:. 885:. 877:. 867:. 855:. 851:. 764:: 762:}} 758:{{ 742:^ 726:. 642:, 638:, 284:ln 277:18 157:, 137:, 1126:e 1119:t 1112:v 1095:. 1071:: 1044:. 1025:. 996:. 984:: 959:6 938:. 911:. 871:: 863:: 857:5 836:. 809:. 775:) 771:( 754:. 736:. 722:: 440:f 436:i 422:f 420:ρ 415:p 413:ρ 408:i 406:R 397:f 395:R 362:t 357:2 349:) 344:f 331:p 323:( 318:) 313:i 309:R 304:/ 298:f 294:R 290:( 270:= 267:D 112:) 106:( 101:) 97:( 87:¡ 80:¡ 73:¡ 66:¡ 39:.

Index


verification
improve this article
adding citations to reliable sources
"Differential centrifugation"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message

biochemistry
cell biology
organelles
sedimentation rate
nanoparticles
colloidal
viruses
tissue
lysed
cell membranes
cytosol
centrifugations
centrifugal force
equilibrium density-gradient centrifugation
sedimentation
Centrifugal force
equilibrium density-gradient centrifugation
Brownian

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑