Knowledge

Diamagnetism

Source 📝

669: 833: 31: 1212: 56: 682: 3203: 1140: 852:) are so much stronger such that, when different forms of magnetism are present in a material, the diamagnetic contribution is usually negligible. Substances where the diamagnetic behaviour is the strongest effect are termed diamagnetic materials, or diamagnets. Diamagnetic materials are those that some people generally think of as 1898: 1745: 1287:
The electrons in a material generally settle in orbitals, with effectively zero resistance and act like current loops. Thus it might be imagined that diamagnetism effects in general would be common, since any applied magnetic field would generate currents in these loops that would oppose the change,
1239:
seems to preclude the possibility of static magnetic levitation. However, Earnshaw's theorem applies only to objects with positive susceptibilities, such as ferromagnets (which have a permanent positive moment) and paramagnets (which induce a positive moment). These are attracted to field maxima,
823:
is used in chemistry to determine whether a particle (atom, ion, or molecule) is paramagnetic or diamagnetic: If all electrons in the particle are paired, then the substance made of this particle is diamagnetic; If it has unpaired electrons, then the substance is paramagnetic.
2562: 1787: 1634: 2588:
Suzuki, Motohiro; Kawamura, Naomi; Miyagawa, hayato; Garitaonandia, Jose S.; Yamamoto, Yoshiyuki; Hori, Hidenobu (24 January 2012). "Measurement of a Pauli and Orbital Paramagnetic State in Bulk Gold Using X-Ray Magnetic Circular Dichroism Spectroscopy".
1197:) is covered with a layer of water (that is thin compared to the diameter of the magnet) then the field of the magnet significantly repels the water. This causes a slight dimple in the water's surface that may be seen by a reflection in its surface. 923:. This means that diamagnetic materials are repelled by magnetic fields. However, since diamagnetism is such a weak property, its effects are not observable in everyday life. For example, the magnetic susceptibility of diamagnets such as water is 2038: 1299:
proves that there cannot be any diamagnetism or paramagnetism in a purely classical system. However, the classical theory of Langevin for diamagnetism gives the same prediction as the quantum theory. The classical theory is given below.
749:
effect that occurs in all materials; when it is the only contribution to the magnetism, the material is called diamagnetic. In paramagnetic and ferromagnetic substances, the weak diamagnetic force is overcome by the attractive force of
2180: 840:. On keeping diamagnetic materials in a magnetic field, the electron orbital motion changes in such a way that magnetic dipole moments are induced on the atoms / molecules in the direction opposite to the external magnetic field 1616: 1491: 1528: 1782: 2292: 1288:
in a similar way to superconductors, which are essentially perfect diamagnets. However, since the electrons are rigidly held in orbitals by the charge of the protons and are further constrained by the
2079:, an effect associated with the polarization of delocalized electrons' spins. For the bulk case of a 3D system and low magnetic fields, the (volume) diamagnetic susceptibility can be calculated using 1893:{\displaystyle \scriptstyle \left\langle \rho ^{2}\right\rangle \;=\;\left\langle x^{2}\right\rangle \;+\;\left\langle y^{2}\right\rangle \;=\;{\frac {2}{3}}\left\langle r^{2}\right\rangle } 1273:, an important step forward since mice are closer biologically to humans than frogs. JPL said it hopes to perform experiments regarding the effects of microgravity on bone and muscle mass. 1438: 2422:
of the charge carriers differing from the electron mass in vacuum, increasing the diamagnetic contribution. The formula presented here only applies for the bulk; in confined systems like
1740:{\displaystyle \scriptstyle \left\langle x^{2}\right\rangle \;=\;\left\langle y^{2}\right\rangle \;=\;\left\langle z^{2}\right\rangle \;=\;{\frac {1}{3}}\left\langle r^{2}\right\rangle } 792:
demonstrated that it was a property of matter and concluded that every material responded (in either a diamagnetic or paramagnetic way) to an applied magnetic field. On a suggestion by
2372: 844:
Diamagnetism is a property of all materials, and always makes a weak contribution to the material's response to a magnetic field. However, other forms of magnetism (such as
37:
has one of the largest diamagnetic constants of any room temperature material. Here a pyrolytic carbon sheet is levitated by its repulsion from the strong magnetic field of
1930: 2212: 889: 2405: 1276:
Recent experiments studying the growth of protein crystals have led to a technique using powerful magnets to allow growth in ways that counteract Earth's gravity.
2430:. Additionally, for strong magnetic fields, the susceptibility of delocalized electrons oscillates as a function of the field strength, a phenomenon known as the 1251:
permanent magnets. This can be done with all components at room temperature, making a visually effective and relatively convenient demonstration of diamagnetism.
2323: 1918: 2089: 1240:
which do not exist in free space. Diamagnets (which induce a negative moment) are attracted to field minima, and there can be a field minimum in free space.
2658: 713: 1262:, has conducted experiments where water and other substances were successfully levitated. Most spectacularly, a live frog (see figure) was levitated. 902:
Diamagnetic materials, like water, or water-based materials, have a relative magnetic permeability that is less than or equal to 1, and therefore a
1279:
A simple homemade device for demonstration can be constructed out of bismuth plates and a few permanent magnets that levitate a permanent magnet.
3385: 2738: 982:
in one plane. Nevertheless, these values are orders of magnitude smaller than the magnetism exhibited by paramagnets and ferromagnets. Because
3059: 1546: 1456: 1496: 996:, which has a magnetic susceptibility less than 0 (and is thus by definition a diamagnetic material), but when measured carefully with 3240: 2812:
Liu, Yuanming; Zhu, Da-Ming; Strayer, Donald M.; Israelsson, Ulf E. (2010). "Magnetic levitation of large water droplets and mice".
2411:(number of states per energy per volume). This formula takes into account the spin degeneracy of the carriers (spin-1/2 electrons). 1750: 2876: 2221: 1628: 706: 3145:
Richter, Klaus; Ullmo, Denis; Jalabert, Rodolfo A. (1996). "Orbital magnetism in the ballistic regime: geometrical effects".
2950: 2419: 2903: 3013: 2937: 769:. In most materials, diamagnetism is a weak effect which can be detected only by sensitive laboratory instruments, but a 3022: 2071:, and instead considers the weak counteracting field that forms when the electrons' trajectories are curved due to the 2670: 997: 699: 686: 1247:, which is an unusually strongly diamagnetic material, can be stably floated in a magnetic field, such as that from 1381: 668: 992:
In rare cases, the diamagnetic contribution can be stronger than paramagnetic contribution. This is the case for
755: 1206: 2328: 461: 3233: 3207: 3037:
Landau, L. D. "Diamagnetismus der metalle." Zeitschrift für Physik A Hadrons and Nuclei 64.9 (1930): 629-637.
2431: 1447:
of a current loop is equal to the current times the area of the loop. Suppose the field is aligned with the
989:
is derived from the ratio of the internal magnetic field to the applied field, it is a dimensionless value.
3390: 3328: 1296: 1000:, has an extremely weak paramagnetic contribution that is overcome by a stronger diamagnetic contribution. 636: 116: 2790: 2760: 1255: 1228: 17: 2814: 641: 266: 2752: 2033:{\displaystyle \chi ={\frac {\mu _{0}n\mu }{B}}=-{\frac {\mu _{0}e^{2}Zn}{6m}}\langle r^{2}\rangle .} 1289: 1266: 832: 531: 206: 3226: 2427: 526: 521: 47: 2850: 1235:
Diamagnets may be levitated in stable equilibrium in a magnetic field, with no power consumption.
611: 3285: 2633: 2461: – Mathematical inequality relating the derivative of a function to its covariant derivative 2188: 2076: 2044: 1921: 1144: 903: 216: 1621:
If the distribution of charge is spherically symmetric, we can suppose that the distribution of
773:
acts as a strong diamagnet because it entirely expels any magnetic field from its interior (the
621: 3110:
Lévy, L. P.; Reich, D. H.; Pfeiffer, L.; West, K. (1993). "Aharonov-Bohm ballistic billiards".
3085: 2458: 2415: 1311:'s theory of diamagnetism (1905) applies to materials containing atoms with closed shells (see 1292:, many materials exhibit diamagnetism, but typically respond very little to the applied field. 1270: 734: 606: 546: 516: 466: 186: 76: 3048: 1236: 885: 646: 261: 246: 2059:
because there are also non-localized electrons. The theory that describes diamagnetism in a
3164: 3119: 2942: 2823: 2598: 236: 126: 2381: 8: 3323: 2782: 2175:{\displaystyle \chi =-\mu _{0}{\frac {e^{2}}{12\pi ^{2}m\hbar }}{\sqrt {2mE_{\rm {F}}}},} 2080: 759: 476: 286: 136: 3168: 3123: 2827: 2602: 864:, most organic compounds such as petroleum and some plastics, and many metals including 3395: 3308: 3280: 3180: 3154: 2986: 2524: 2499: 2443: 1903: 1244: 857: 746: 616: 591: 339: 330: 2297: 1176:), because they expel all magnetic fields (except in a thin surface layer) due to the 3268: 3184: 3176: 3131: 3018: 2990: 2946: 2732: 2666: 2614: 2529: 2408: 1338: 1248: 1163: 1159: 1148: 1063: 873: 770: 586: 431: 321: 241: 3355: 3172: 3127: 2982: 2831: 2610: 2606: 2519: 2511: 2448: 1269:(JPL) in Pasadena, California announced it had successfully levitated mice using a 1033: 962: 291: 256: 251: 211: 181: 151: 111: 71: 38: 34: 30: 3213: 2713: 2687: 2515: 1444: 1220: 1177: 793: 789: 774: 751: 601: 551: 421: 176: 88: 3345: 3318: 3313: 3303: 3008: 2932: 2907: 1152: 894: 884:. The magnetic susceptibility values of various molecular fragments are called 869: 845: 837: 781: 730: 673: 651: 631: 626: 581: 501: 436: 334: 221: 66: 2835: 1211: 3379: 3340: 3335: 3275: 2994: 2966: 2881: 2480: 2375: 2072: 1308: 849: 820: 742: 362: 343: 325: 226: 146: 556: 2618: 2533: 2453: 2215: 1224: 738: 737:
in them in the opposite direction, causing a repulsive force. In contrast,
576: 566: 536: 496: 491: 471: 296: 156: 2418:
the ratio between Landau and Pauli susceptibilities may change due to the
1784:
is the mean square distance of the electrons from the nucleus. Therefore,
3159: 2423: 1312: 1259: 1219:
levitates inside a 32 mm (1.26 in) diameter vertical bore of a
1194: 596: 571: 541: 486: 481: 413: 55: 3350: 3214:
The Feynman Lectures on Physics Vol. II Ch. 34: The Magnetism of Matter
2068: 2043:
In atoms, Langevin susceptibility is of the same order of magnitude as
506: 348: 141: 3249: 2060: 1611:{\displaystyle \mu =-{\frac {Ze^{2}B}{4m}}\langle \rho ^{2}\rangle .} 1531: 1486:{\displaystyle \scriptstyle \pi \left\langle \rho ^{2}\right\rangle } 561: 511: 384: 231: 131: 2970: 3360: 2587: 1372: 1322: 1103: 121: 1523:{\displaystyle \scriptstyle \left\langle \rho ^{2}\right\rangle } 1083: 1043: 941: 881: 785: 441: 426: 389: 380: 375: 3202: 2688:"Neodymium supermagnets: Some demonstrations—Diamagnetic water" 2056: 1155:
expels the magnetic field and then acts as a perfect diamagnet.
1113: 1073: 865: 745:
materials are attracted by a magnetic field. Diamagnetism is a
394: 370: 101: 1777:{\displaystyle \scriptstyle \left\langle r^{2}\right\rangle } 1123: 399: 96: 3218: 1139: 906:
less than or equal to 0, since susceptibility is defined as
2287:{\displaystyle -\mu _{0}\mu _{\rm {B}}^{2}g(E_{\rm {F}})/3} 1216: 1093: 1053: 993: 877: 861: 2075:. Landau diamagnetism, however, should be contrasted with 106: 2811: 2665:(2nd ed.). Amsterdam: Academic Press. p. 23. 3011:(2005). "Chapter 14: Diamagnetism and Paramagnetism". 2300: 1791: 1754: 1638: 1500: 1460: 3109: 2481:"Diamagnetic Levitation – Historical Milestones" 2384: 2331: 2224: 2191: 2092: 1933: 1906: 1790: 1753: 1637: 1549: 1499: 1459: 1384: 3144: 2500:"John Tyndall and the Early History of Diamagnetism" 729:
is the property of materials that are repelled by a
1920:is the number of atoms per unit volume, the volume 2399: 2366: 2317: 2286: 2206: 2174: 2032: 1912: 1892: 1776: 1739: 1610: 1522: 1485: 1432: 3084:Drakos, Nikos; Moore, Ross; Young, Peter (2002). 1207:Magnetic levitation § Diamagnetic levitation 3377: 3083: 2434:, also first described theoretically by Landau. 2055:The Langevin theory is not the full picture for 2877:"Magnetic gravity trick grows perfect crystals" 2325:times Pauli paramagnetic susceptibility, where 796:, Faraday first referred to the phenomenon as 3234: 2906:. ForceField. 2 December 2008. Archived from 2485:Rev. Roum. Sci. Techn. Électrotechn. Et Énerg 1433:{\displaystyle I=-{\frac {Ze^{2}B}{4\pi m}}.} 707: 2024: 2011: 1602: 1589: 1453:axis. The average loop area can be given as 1355:. The number of revolutions per unit time is 940:. The most strongly diamagnetic material is 2737:: CS1 maint: numeric names: authors list ( 3241: 3227: 2975:Journal de Physique Théorique et Appliquée 1860: 1856: 1837: 1833: 1814: 1810: 1707: 1703: 1684: 1680: 1661: 1657: 788:was repelled by magnetic fields. In 1845, 758:of diamagnetic materials is less than the 714: 700: 54: 3158: 2927: 2925: 2523: 2367:{\displaystyle \mu _{\rm {B}}=e\hbar /2m} 1188: 2965: 1303: 1210: 1138: 868:, particularly the heavy ones with many 831: 29: 2874: 2711: 2497: 2478: 1629:independent and identically distributed 1540:axis. The magnetic moment is therefore 780:Diamagnetism was first discovered when 733:; an applied magnetic field creates an 27:Magnetic property of ordinary materials 14: 3386:Electric and magnetic fields in matter 3378: 3007: 2931: 2922: 2685: 3222: 3017:(8 ed.). John Wiley & Sons. 2849:Choi, Charles Q. (9 September 2009). 2657: 2551:. Oxford University Press. June 2017. 2045:Van Vleck paramagnetic susceptibility 1229:Nijmegen High Field Magnet Laboratory 3040: 2848: 2625: 2426:, the description is altered due to 836:Diamagnetic material interaction in 3014:Introduction to Solid State Physics 2938:Introduction to Solid State Physics 1530:is the mean square distance of the 24: 2338: 2267: 2244: 2198: 2161: 1365:, so the current for an atom with 1134: 25: 3407: 3195: 3046: 2904:"Fun with diamagnetic levitation" 2350: 2141: 1183: 998:X-ray magnetic circular dichroism 3201: 3049:"Diamagnetism and paramagnetism" 2987:10.1051/jphystap:019050040067800 2875:Kleiner, Kurt (10 August 2007). 2631: 2498:Jackson, Roland (21 July 2014). 1223:in a magnetic field of about 16 1193:If a powerful magnet (such as a 1151:(right). At the transition, the 681: 680: 667: 3138: 3103: 3077: 3065:from the original on 4 May 2006 3031: 3001: 2959: 2896: 2868: 2842: 2805: 2775: 2745: 2634:"Magnetic Properties of Solids" 2971:"Sur la théorie du magnétisme" 2705: 2679: 2651: 2611:10.1103/PhysRevLett.108.047201 2581: 2555: 2540: 2491: 2472: 2394: 2388: 2273: 2258: 1007:Notable diamagnetic materials 13: 1: 3248: 3090:Electrons in a magnetic field 2465: 1200: 965:may have a susceptibility of 3329:ferromagnetic superconductor 3177:10.1016/0370-1573(96)00010-5 3132:10.1016/0921-4526(93)90161-x 2516:10.1080/00033790.2014.929743 2050: 827: 812:), then later changed it to 7: 3112:Physica B: Condensed Matter 2791:Radboud University Nijmegen 2761:Radboud University Nijmegen 2547:"diamagnetic, adj. and n". 2437: 2207:{\displaystyle E_{\rm {F}}} 1256:Radboud University Nijmegen 10: 3412: 2815:Advances in Space Research 1922:diamagnetic susceptibility 1315:). A field with intensity 1265:In September 2009, NASA's 1204: 267:Spin gapless semiconductor 3296: 3256: 2836:10.1016/j.asr.2009.08.033 2432:De Haas–Van Alphen effect 1290:Pauli exclusion principle 1282: 1267:Jet Propulsion Laboratory 1143:Transition from ordinary 207:Electronic band structure 2753:"Diamagnetic Levitation" 2479:Küstler, Gerald (2007). 2218:. This is equivalent to 1297:Bohr–Van Leeuwen theorem 117:Bose–Einstein condensate 48:Condensed matter physics 3286:Van Vleck paramagnetism 2851:"Mice levitated in lab" 2591:Physical Review Letters 2083:, which in SI units is 904:magnetic susceptibility 2714:"Diamagnetism Gallery" 2459:Diamagnetic inequality 2401: 2368: 2319: 2288: 2208: 2176: 2034: 1914: 1894: 1778: 1741: 1612: 1524: 1487: 1434: 1271:superconducting magnet 1232: 1189:Curving water surfaces 1156: 841: 784:observed in 1778 that 760:permeability of vacuum 735:induced magnetic field 41: 3086:"Landau diamagnetism" 2943:John Wiley & Sons 2787:High Field Laboratory 2783:"The Real Levitation" 2757:High Field Laboratory 2686:Beatty, Bill (2005). 2659:Poole, Charles P. Jr. 2563:"Magnetic Properties" 2402: 2369: 2320: 2289: 2209: 2177: 2035: 1915: 1895: 1779: 1742: 1613: 1534:perpendicular to the 1525: 1488: 1435: 1304:Langevin diamagnetism 1214: 1142: 835: 756:magnetic permeability 754:in the material. The 262:Topological insulator 33: 3210:at Wikimedia Commons 2945:. pp. 299–302. 2567:Chemistry LibreTexts 2416:doped semiconductors 2400:{\displaystyle g(E)} 2382: 2329: 2298: 2222: 2189: 2090: 1931: 1904: 1788: 1751: 1635: 1547: 1497: 1457: 1382: 280:Electronic phenomena 127:Fermionic condensate 3391:Magnetic levitation 3356:amorphous magnetism 3324:superferromagnetism 3169:1996PhR...276....1R 3124:1993PhyB..189..204L 2910:on 12 February 2008 2828:2010AdSpR..45..208L 2603:2012PhRvL.108d7201S 2428:quantum confinement 2254: 2081:Landau quantization 2077:Pauli paramagnetism 2065:Landau diamagnetism 1008: 287:Quantum Hall effect 3309:antiferromagnetism 3281:superparamagnetism 3056:NTNU lecture notes 2444:Antiferromagnetism 2397: 2364: 2315: 2284: 2238: 2204: 2172: 2030: 1910: 1890: 1889: 1774: 1773: 1737: 1736: 1608: 1520: 1519: 1483: 1482: 1430: 1245:pyrolytic graphite 1237:Earnshaw's theorem 1233: 1164:perfect diamagnets 1162:may be considered 1157: 1006: 886:Pascal's constants 842: 747:quantum mechanical 674:Physics portal 42: 3371: 3370: 3269:superdiamagnetism 3257:Magnetic response 3206:Media related to 2952:978-0-471-87474-4 2663:Superconductivity 2504:Annals of Science 2487:. 52, 3: 265–282. 2409:density of states 2318:{\textstyle -1/3} 2167: 2145: 2061:free electron gas 2009: 1963: 1913:{\displaystyle n} 1869: 1716: 1587: 1425: 1371:electrons is (in 1339:Larmor precession 1149:superconductivity 1132: 1131: 1104:Carbon (graphite) 724: 723: 432:Granular material 200:Electronic phases 39:neodymium magnets 16:(Redirected from 3403: 3243: 3236: 3229: 3220: 3219: 3205: 3189: 3188: 3162: 3160:cond-mat/9609201 3142: 3136: 3135: 3118:(1–4): 204–209. 3107: 3101: 3100: 3098: 3096: 3081: 3075: 3074: 3072: 3070: 3064: 3053: 3044: 3038: 3035: 3029: 3028: 3005: 2999: 2998: 2963: 2957: 2956: 2941:(6th ed.). 2929: 2920: 2919: 2917: 2915: 2900: 2894: 2893: 2891: 2889: 2872: 2866: 2865: 2863: 2861: 2846: 2840: 2839: 2809: 2803: 2802: 2800: 2798: 2779: 2773: 2772: 2770: 2768: 2749: 2743: 2742: 2736: 2728: 2726: 2724: 2712:Quit007 (2011). 2709: 2703: 2702: 2700: 2698: 2692:Science Hobbyist 2683: 2677: 2676: 2655: 2649: 2648: 2646: 2644: 2629: 2623: 2622: 2585: 2579: 2578: 2576: 2574: 2569:. 2 October 2013 2559: 2553: 2552: 2544: 2538: 2537: 2527: 2495: 2489: 2488: 2476: 2449:Magnetochemistry 2406: 2404: 2403: 2398: 2373: 2371: 2370: 2365: 2357: 2343: 2342: 2341: 2324: 2322: 2321: 2316: 2311: 2293: 2291: 2290: 2285: 2280: 2272: 2271: 2270: 2253: 2248: 2247: 2237: 2236: 2213: 2211: 2210: 2205: 2203: 2202: 2201: 2181: 2179: 2178: 2173: 2168: 2166: 2165: 2164: 2148: 2146: 2144: 2137: 2136: 2123: 2122: 2113: 2111: 2110: 2039: 2037: 2036: 2031: 2023: 2022: 2010: 2008: 2000: 1993: 1992: 1983: 1982: 1972: 1964: 1959: 1952: 1951: 1941: 1919: 1917: 1916: 1911: 1899: 1897: 1896: 1891: 1888: 1884: 1883: 1870: 1862: 1855: 1851: 1850: 1832: 1828: 1827: 1809: 1805: 1804: 1783: 1781: 1780: 1775: 1772: 1768: 1767: 1746: 1744: 1743: 1738: 1735: 1731: 1730: 1717: 1709: 1702: 1698: 1697: 1679: 1675: 1674: 1656: 1652: 1651: 1627:coordinates are 1626: 1617: 1615: 1614: 1609: 1601: 1600: 1588: 1586: 1578: 1574: 1573: 1560: 1539: 1529: 1527: 1526: 1521: 1518: 1514: 1513: 1492: 1490: 1489: 1484: 1481: 1477: 1476: 1452: 1439: 1437: 1436: 1431: 1426: 1424: 1413: 1409: 1408: 1395: 1370: 1364: 1363: 1354: 1337:, gives rise to 1336: 1330: 1321:, applied to an 1320: 1243:A thin slice of 1175: 1084:Carbon (diamond) 1034:Pyrolytic carbon 1009: 1005: 981: 980: 978: 963:pyrolytic carbon 960: 959: 957: 939: 938: 936: 922: 898: 752:magnetic dipoles 716: 709: 702: 689: 684: 683: 676: 672: 671: 292:Spin Hall effect 182:Phase transition 152:Luttinger liquid 89:States of matter 72:Phase transition 58: 44: 43: 35:Pyrolytic carbon 21: 3411: 3410: 3406: 3405: 3404: 3402: 3401: 3400: 3376: 3375: 3372: 3367: 3297:Magnetic states 3292: 3252: 3247: 3198: 3193: 3192: 3147:Physics Reports 3143: 3139: 3108: 3104: 3094: 3092: 3082: 3078: 3068: 3066: 3062: 3051: 3045: 3041: 3036: 3032: 3025: 3009:Kittel, Charles 3006: 3002: 2964: 2960: 2953: 2933:Kittel, Charles 2930: 2923: 2913: 2911: 2902: 2901: 2897: 2887: 2885: 2873: 2869: 2859: 2857: 2847: 2843: 2810: 2806: 2796: 2794: 2781: 2780: 2776: 2766: 2764: 2751: 2750: 2746: 2730: 2729: 2722: 2720: 2710: 2706: 2696: 2694: 2684: 2680: 2673: 2656: 2652: 2642: 2640: 2630: 2626: 2586: 2582: 2572: 2570: 2561: 2560: 2556: 2546: 2545: 2541: 2496: 2492: 2477: 2473: 2468: 2440: 2383: 2380: 2379: 2353: 2337: 2336: 2332: 2330: 2327: 2326: 2307: 2299: 2296: 2295: 2276: 2266: 2265: 2261: 2249: 2243: 2242: 2232: 2228: 2223: 2220: 2219: 2197: 2196: 2192: 2190: 2187: 2186: 2160: 2159: 2155: 2147: 2132: 2128: 2124: 2118: 2114: 2112: 2106: 2102: 2091: 2088: 2087: 2053: 2018: 2014: 2001: 1988: 1984: 1978: 1974: 1973: 1971: 1947: 1943: 1942: 1940: 1932: 1929: 1928: 1924:in SI units is 1905: 1902: 1901: 1879: 1875: 1871: 1861: 1846: 1842: 1838: 1823: 1819: 1815: 1800: 1796: 1792: 1789: 1786: 1785: 1763: 1759: 1755: 1752: 1749: 1748: 1726: 1722: 1718: 1708: 1693: 1689: 1685: 1670: 1666: 1662: 1647: 1643: 1639: 1636: 1633: 1632: 1625: 1622: 1596: 1592: 1579: 1569: 1565: 1561: 1559: 1548: 1545: 1544: 1538: 1535: 1509: 1505: 1501: 1498: 1495: 1494: 1472: 1468: 1464: 1458: 1455: 1454: 1451: 1448: 1445:magnetic moment 1414: 1404: 1400: 1396: 1394: 1383: 1380: 1379: 1369: 1366: 1361: 1359: 1356: 1353: 1349: 1345: 1342: 1341:with frequency 1335: 1332: 1329: 1326: 1319: 1316: 1306: 1285: 1221:Bitter solenoid 1209: 1203: 1191: 1186: 1178:Meissner effect 1173: 1167: 1160:Superconductors 1137: 1135:Superconductors 1025:Superconductor 1020: 1003: 988: 976: 974: 972: 966: 955: 953: 951: 945: 934: 932: 930: 924: 920: 913: 907: 892: 830: 794:William Whewell 790:Michael Faraday 775:Meissner effect 768: 720: 679: 666: 665: 658: 657: 656: 456: 448: 447: 446: 422:Amorphous solid 416: 406: 405: 404: 383: 365: 355: 354: 353: 342: 340:Antiferromagnet 333: 331:Superparamagnet 324: 311: 310:Magnetic phases 303: 302: 301: 281: 273: 272: 271: 201: 193: 192: 191: 177:Order parameter 171: 170:Phase phenomena 163: 162: 161: 91: 81: 28: 23: 22: 15: 12: 11: 5: 3409: 3399: 3398: 3393: 3388: 3369: 3368: 3366: 3365: 3364: 3363: 3358: 3348: 3346:mictomagnetism 3343: 3338: 3333: 3332: 3331: 3326: 3319:ferromagnetism 3316: 3314:ferrimagnetism 3311: 3306: 3304:altermagnetism 3300: 3298: 3294: 3293: 3291: 3290: 3289: 3288: 3283: 3273: 3272: 3271: 3260: 3258: 3254: 3253: 3246: 3245: 3238: 3231: 3223: 3217: 3216: 3211: 3197: 3196:External links 3194: 3191: 3190: 3137: 3102: 3076: 3039: 3030: 3024:978-0471415268 3023: 3000: 2981:(1): 678–693. 2967:Langevin, Paul 2958: 2951: 2921: 2895: 2867: 2841: 2822:(1): 208–213. 2804: 2774: 2744: 2704: 2678: 2671: 2650: 2632:Nave, Carl L. 2624: 2580: 2554: 2539: 2510:(4): 435–489. 2490: 2470: 2469: 2467: 2464: 2463: 2462: 2456: 2451: 2446: 2439: 2436: 2420:effective mass 2396: 2393: 2390: 2387: 2363: 2360: 2356: 2352: 2349: 2346: 2340: 2335: 2314: 2310: 2306: 2303: 2283: 2279: 2275: 2269: 2264: 2260: 2257: 2252: 2246: 2241: 2235: 2231: 2227: 2200: 2195: 2183: 2182: 2171: 2163: 2158: 2154: 2151: 2143: 2140: 2135: 2131: 2127: 2121: 2117: 2109: 2105: 2101: 2098: 2095: 2067:, named after 2052: 2049: 2041: 2040: 2029: 2026: 2021: 2017: 2013: 2007: 2004: 1999: 1996: 1991: 1987: 1981: 1977: 1970: 1967: 1962: 1958: 1955: 1950: 1946: 1939: 1936: 1909: 1887: 1882: 1878: 1874: 1868: 1865: 1859: 1854: 1849: 1845: 1841: 1836: 1831: 1826: 1822: 1818: 1813: 1808: 1803: 1799: 1795: 1771: 1766: 1762: 1758: 1734: 1729: 1725: 1721: 1715: 1712: 1706: 1701: 1696: 1692: 1688: 1683: 1678: 1673: 1669: 1665: 1660: 1655: 1650: 1646: 1642: 1623: 1619: 1618: 1607: 1604: 1599: 1595: 1591: 1585: 1582: 1577: 1572: 1568: 1564: 1558: 1555: 1552: 1536: 1517: 1512: 1508: 1504: 1480: 1475: 1471: 1467: 1463: 1449: 1441: 1440: 1429: 1423: 1420: 1417: 1412: 1407: 1403: 1399: 1393: 1390: 1387: 1367: 1357: 1351: 1347: 1343: 1333: 1327: 1317: 1305: 1302: 1284: 1281: 1205:Main article: 1202: 1199: 1190: 1187: 1185: 1184:Demonstrations 1182: 1171: 1153:superconductor 1136: 1133: 1130: 1129: 1126: 1120: 1119: 1116: 1110: 1109: 1106: 1100: 1099: 1096: 1090: 1089: 1086: 1080: 1079: 1076: 1070: 1069: 1066: 1060: 1059: 1056: 1050: 1049: 1046: 1040: 1039: 1036: 1030: 1029: 1026: 1022: 1021: 1018: 1013: 986: 970: 949: 928: 918: 911: 870:core electrons 856:, and include 846:ferromagnetism 838:magnetic field 829: 826: 782:Anton Brugmans 771:superconductor 766: 731:magnetic field 722: 721: 719: 718: 711: 704: 696: 693: 692: 691: 690: 677: 660: 659: 655: 654: 649: 644: 639: 634: 629: 624: 619: 614: 609: 604: 599: 594: 589: 584: 579: 574: 569: 564: 559: 554: 549: 544: 539: 534: 529: 524: 519: 514: 509: 504: 499: 494: 489: 484: 479: 474: 469: 464: 458: 457: 454: 453: 450: 449: 445: 444: 439: 437:Liquid crystal 434: 429: 424: 418: 417: 412: 411: 408: 407: 403: 402: 397: 392: 387: 378: 373: 367: 366: 363:Quasiparticles 361: 360: 357: 356: 352: 351: 346: 337: 328: 322:Superdiamagnet 319: 313: 312: 309: 308: 305: 304: 300: 299: 294: 289: 283: 282: 279: 278: 275: 274: 270: 269: 264: 259: 254: 249: 247:Thermoelectric 244: 242:Superconductor 239: 234: 229: 224: 222:Mott insulator 219: 214: 209: 203: 202: 199: 198: 195: 194: 190: 189: 184: 179: 173: 172: 169: 168: 165: 164: 160: 159: 154: 149: 144: 139: 134: 129: 124: 119: 114: 109: 104: 99: 93: 92: 87: 86: 83: 82: 80: 79: 74: 69: 63: 60: 59: 51: 50: 26: 9: 6: 4: 3: 2: 3408: 3397: 3394: 3392: 3389: 3387: 3384: 3383: 3381: 3374: 3362: 3359: 3357: 3354: 3353: 3352: 3349: 3347: 3344: 3342: 3341:metamagnetism 3339: 3337: 3336:helimagnetism 3334: 3330: 3327: 3325: 3322: 3321: 3320: 3317: 3315: 3312: 3310: 3307: 3305: 3302: 3301: 3299: 3295: 3287: 3284: 3282: 3279: 3278: 3277: 3276:paramagnetism 3274: 3270: 3267: 3266: 3265: 3262: 3261: 3259: 3255: 3251: 3244: 3239: 3237: 3232: 3230: 3225: 3224: 3221: 3215: 3212: 3209: 3204: 3200: 3199: 3186: 3182: 3178: 3174: 3170: 3166: 3161: 3156: 3152: 3148: 3141: 3133: 3129: 3125: 3121: 3117: 3113: 3106: 3091: 3087: 3080: 3061: 3057: 3050: 3047:Chang, M. C. 3043: 3034: 3026: 3020: 3016: 3015: 3010: 3004: 2996: 2992: 2988: 2984: 2980: 2977:(in French). 2976: 2972: 2968: 2962: 2954: 2948: 2944: 2940: 2939: 2934: 2928: 2926: 2909: 2905: 2899: 2884: 2883: 2882:New Scientist 2878: 2871: 2856: 2852: 2845: 2837: 2833: 2829: 2825: 2821: 2817: 2816: 2808: 2792: 2788: 2784: 2778: 2762: 2758: 2754: 2748: 2740: 2734: 2719: 2715: 2708: 2693: 2689: 2682: 2674: 2672:9780080550480 2668: 2664: 2660: 2654: 2639: 2638:Hyper Physics 2635: 2628: 2620: 2616: 2612: 2608: 2604: 2600: 2597:(4): 047201. 2596: 2592: 2584: 2568: 2564: 2558: 2550: 2543: 2535: 2531: 2526: 2521: 2517: 2513: 2509: 2505: 2501: 2494: 2486: 2482: 2475: 2471: 2460: 2457: 2455: 2452: 2450: 2447: 2445: 2442: 2441: 2435: 2433: 2429: 2425: 2421: 2417: 2412: 2410: 2391: 2385: 2377: 2376:Bohr magneton 2361: 2358: 2354: 2347: 2344: 2333: 2312: 2308: 2304: 2301: 2281: 2277: 2262: 2255: 2250: 2239: 2233: 2229: 2225: 2217: 2193: 2169: 2156: 2152: 2149: 2138: 2133: 2129: 2125: 2119: 2115: 2107: 2103: 2099: 2096: 2093: 2086: 2085: 2084: 2082: 2078: 2074: 2073:Lorentz force 2070: 2066: 2062: 2058: 2048: 2046: 2027: 2019: 2015: 2005: 2002: 1997: 1994: 1989: 1985: 1979: 1975: 1968: 1965: 1960: 1956: 1953: 1948: 1944: 1937: 1934: 1927: 1926: 1925: 1923: 1907: 1885: 1880: 1876: 1872: 1866: 1863: 1857: 1852: 1847: 1843: 1839: 1834: 1829: 1824: 1820: 1816: 1811: 1806: 1801: 1797: 1793: 1769: 1764: 1760: 1756: 1732: 1727: 1723: 1719: 1713: 1710: 1704: 1699: 1694: 1690: 1686: 1681: 1676: 1671: 1667: 1663: 1658: 1653: 1648: 1644: 1640: 1630: 1605: 1597: 1593: 1583: 1580: 1575: 1570: 1566: 1562: 1556: 1553: 1550: 1543: 1542: 1541: 1533: 1515: 1510: 1506: 1502: 1478: 1473: 1469: 1465: 1461: 1446: 1427: 1421: 1418: 1415: 1410: 1405: 1401: 1397: 1391: 1388: 1385: 1378: 1377: 1376: 1374: 1340: 1324: 1314: 1310: 1309:Paul Langevin 1301: 1298: 1293: 1291: 1280: 1277: 1274: 1272: 1268: 1263: 1261: 1257: 1252: 1250: 1246: 1241: 1238: 1230: 1226: 1222: 1218: 1213: 1208: 1198: 1196: 1181: 1179: 1170: 1165: 1161: 1154: 1150: 1146: 1141: 1127: 1125: 1122: 1121: 1117: 1115: 1112: 1111: 1107: 1105: 1102: 1101: 1097: 1095: 1092: 1091: 1087: 1085: 1082: 1081: 1077: 1075: 1072: 1071: 1067: 1065: 1062: 1061: 1057: 1055: 1052: 1051: 1047: 1045: 1042: 1041: 1037: 1035: 1032: 1031: 1027: 1024: 1023: 1017: 1014: 1011: 1010: 1004: 1001: 999: 995: 990: 985: 969: 964: 948: 943: 927: 917: 910: 905: 900: 896: 891: 888:(named after 887: 883: 879: 875: 871: 867: 863: 859: 855: 851: 850:paramagnetism 847: 839: 834: 825: 822: 821:rule of thumb 817: 815: 811: 807: 803: 799: 795: 791: 787: 783: 778: 776: 772: 765: 761: 757: 753: 748: 744: 743:ferromagnetic 740: 736: 732: 728: 717: 712: 710: 705: 703: 698: 697: 695: 694: 688: 678: 675: 670: 664: 663: 662: 661: 653: 650: 648: 645: 643: 640: 638: 635: 633: 630: 628: 625: 623: 620: 618: 615: 613: 610: 608: 605: 603: 600: 598: 595: 593: 590: 588: 585: 583: 580: 578: 575: 573: 570: 568: 565: 563: 560: 558: 555: 553: 550: 548: 545: 543: 540: 538: 535: 533: 530: 528: 525: 523: 520: 518: 515: 513: 510: 508: 505: 503: 500: 498: 495: 493: 490: 488: 485: 483: 480: 478: 475: 473: 470: 468: 465: 463: 462:Van der Waals 460: 459: 452: 451: 443: 440: 438: 435: 433: 430: 428: 425: 423: 420: 419: 415: 410: 409: 401: 398: 396: 393: 391: 388: 386: 382: 379: 377: 374: 372: 369: 368: 364: 359: 358: 350: 347: 345: 341: 338: 336: 332: 329: 327: 323: 320: 318: 315: 314: 307: 306: 298: 295: 293: 290: 288: 285: 284: 277: 276: 268: 265: 263: 260: 258: 257:Ferroelectric 255: 253: 252:Piezoelectric 250: 248: 245: 243: 240: 238: 235: 233: 230: 228: 227:Semiconductor 225: 223: 220: 218: 215: 213: 210: 208: 205: 204: 197: 196: 188: 185: 183: 180: 178: 175: 174: 167: 166: 158: 155: 153: 150: 148: 147:Superfluidity 145: 143: 140: 138: 135: 133: 130: 128: 125: 123: 120: 118: 115: 113: 110: 108: 105: 103: 100: 98: 95: 94: 90: 85: 84: 78: 75: 73: 70: 68: 65: 64: 62: 61: 57: 53: 52: 49: 46: 45: 40: 36: 32: 19: 3373: 3264:diamagnetism 3263: 3208:Diamagnetism 3150: 3146: 3140: 3115: 3111: 3105: 3093:. Retrieved 3089: 3079: 3067:. Retrieved 3055: 3042: 3033: 3012: 3003: 2978: 2974: 2961: 2936: 2914:26 September 2912:. Retrieved 2908:the original 2898: 2888:26 September 2886:. Retrieved 2880: 2870: 2860:26 September 2858:. Retrieved 2855:Live Science 2854: 2844: 2819: 2813: 2807: 2797:26 September 2795:. Retrieved 2786: 2777: 2767:26 September 2765:. Retrieved 2756: 2747: 2723:26 September 2721:. Retrieved 2717: 2707: 2697:26 September 2695:. Retrieved 2691: 2681: 2662: 2653: 2641:. Retrieved 2637: 2627: 2594: 2590: 2583: 2571:. Retrieved 2566: 2557: 2548: 2542: 2507: 2503: 2493: 2484: 2474: 2454:Moses effect 2424:quantum dots 2413: 2216:Fermi energy 2184: 2064: 2054: 2042: 1620: 1442: 1325:with charge 1307: 1294: 1286: 1278: 1275: 1264: 1253: 1242: 1234: 1192: 1168: 1158: 1145:conductivity 1015: 1002: 991: 983: 967: 946: 925: 915: 908: 901: 854:non-magnetic 853: 843: 818: 814:diamagnetism 813: 809: 805: 801: 800:(the prefix 797: 779: 763: 739:paramagnetic 727:Diamagnetism 726: 725: 592:von Klitzing 316: 297:Kondo effect 157:Time crystal 137:Fermi liquid 3153:(1): 1–83. 3095:27 November 3069:24 February 1313:dielectrics 1260:Netherlands 1195:supermagnet 961:, although 893: [ 890:Paul Pascal 798:diamagnetic 414:Soft matter 335:Ferromagnet 18:Diamagnetic 3380:Categories 3351:spin glass 2718:DeviantART 2643:9 November 2573:21 January 2549:OED Online 2466:References 2294:, exactly 2069:Lev Landau 2063:is called 1249:rare earth 1201:Levitation 1147:(left) to 872:, such as 557:Louis Néel 547:Schrieffer 455:Scientists 349:Spin glass 344:Metamagnet 326:Paramagnet 142:Supersolid 3396:Magnetism 3250:Magnetism 3185:119330207 2995:0368-3893 2351:ℏ 2334:μ 2302:− 2240:μ 2230:μ 2226:− 2142:ℏ 2130:π 2104:μ 2100:− 2094:χ 2051:In metals 2025:⟩ 2012:⟨ 1976:μ 1969:− 1957:μ 1945:μ 1935:χ 1798:ρ 1603:⟩ 1594:ρ 1590:⟨ 1557:− 1551:μ 1532:electrons 1507:ρ 1470:ρ 1462:π 1419:π 1392:− 1331:and mass 828:Materials 819:A simple 637:Abrikosov 552:Josephson 522:Van Vleck 512:Luttinger 385:Polariton 317:Diamagnet 237:Conductor 232:Semimetal 217:Insulator 132:Fermi gas 3361:spin ice 3060:Archived 2969:(1905). 2935:(1986). 2733:cite web 2661:(2007). 2619:22400883 2534:26221835 2438:See also 1886:⟩ 1873:⟨ 1853:⟩ 1840:⟨ 1830:⟩ 1817:⟨ 1807:⟩ 1794:⟨ 1770:⟩ 1757:⟨ 1747:, where 1733:⟩ 1720:⟨ 1700:⟩ 1687:⟨ 1677:⟩ 1664:⟨ 1654:⟩ 1641:⟨ 1516:⟩ 1503:⟨ 1493:, where 1479:⟩ 1466:⟨ 1373:SI units 1323:electron 1012:Material 804:meaning 687:Category 642:Ginzburg 617:Laughlin 577:Kadanoff 532:Shockley 517:Anderson 472:von Laue 122:Bose gas 3165:Bibcode 3120:Bibcode 2824:Bibcode 2599:Bibcode 2525:4524391 2407:is the 2374:is the 2214:is the 1631:. Then 1227:at the 1215:A live 1064:Mercury 1044:Bismuth 942:bismuth 882:bismuth 874:mercury 806:through 786:bismuth 647:Leggett 622:Störmer 607:Bednorz 567:Giaever 537:Bardeen 527:Hubbard 502:Peierls 492:Onsager 442:Polymer 427:Colloid 390:Polaron 381:Plasmon 376:Exciton 3183:  3021:  2993:  2949:  2793:. 2011 2763:. 2011 2669:  2617:  2532:  2522:  2185:where 2057:metals 1283:Theory 1258:, the 1225:teslas 1128:−0.91 1114:Copper 1074:Silver 1058:−6.74 1048:−16.6 1038:−40.9 866:copper 810:across 685:  652:Parisi 612:Müller 602:Rohrer 597:Binnig 587:Wilson 582:Fisher 542:Cooper 507:Landau 395:Magnon 371:Phonon 212:Plasma 112:Plasma 102:Liquid 67:Phases 3181:S2CID 3155:arXiv 3063:(PDF) 3052:(PDF) 1900:. If 1624:x,y,z 1124:Water 1118:−1.0 1108:−1.6 1098:−1.8 1088:−2.1 1078:−2.6 1068:−2.9 975:−4.00 954:−1.66 933:−9.05 897:] 858:water 562:Esaki 487:Bloch 482:Debye 477:Bragg 467:Onnes 400:Roton 97:Solid 3097:2012 3071:2011 3019:ISBN 2991:ISSN 2947:ISBN 2916:2011 2890:2011 2862:2011 2799:2011 2769:2020 2739:link 2725:2011 2699:2011 2667:ISBN 2645:2008 2615:PMID 2575:2020 2530:PMID 2378:and 1443:The 1295:The 1254:The 1217:frog 1174:= −1 1094:Lead 1054:Neon 1028:−10 994:gold 880:and 878:gold 862:wood 802:dia- 741:and 632:Tsui 627:Yang 572:Kohn 497:Mott 3173:doi 3151:276 3128:doi 3116:189 2983:doi 2832:doi 2607:doi 2595:108 2520:PMC 2512:doi 2414:In 1360:/ 2 1350:/ 2 921:− 1 899:). 848:or 808:or 777:). 187:QCP 107:Gas 77:QCP 3382:: 3179:. 3171:. 3163:. 3149:. 3126:. 3114:. 3088:. 3058:. 3054:. 2989:. 2973:. 2924:^ 2879:. 2853:. 2830:. 2820:45 2818:. 2789:. 2785:. 2759:. 2755:. 2735:}} 2731:{{ 2716:. 2690:. 2636:. 2613:. 2605:. 2593:. 2565:. 2528:. 2518:. 2508:72 2506:. 2502:. 2483:. 2126:12 2047:. 1375:) 1348:eB 1346:= 1231:. 1180:. 979:10 973:= 958:10 952:= 944:, 937:10 931:= 914:= 895:fr 876:, 860:, 816:. 762:, 3242:e 3235:t 3228:v 3187:. 3175:: 3167:: 3157:: 3134:. 3130:: 3122:: 3099:. 3073:. 3027:. 2997:. 2985:: 2979:4 2955:. 2918:. 2892:. 2864:. 2838:. 2834:: 2826:: 2801:. 2771:. 2741:) 2727:. 2701:. 2675:. 2647:. 2621:. 2609:: 2601:: 2577:. 2536:. 2514:: 2395:) 2392:E 2389:( 2386:g 2362:m 2359:2 2355:/ 2348:e 2345:= 2339:B 2313:3 2309:/ 2305:1 2282:3 2278:/ 2274:) 2268:F 2263:E 2259:( 2256:g 2251:2 2245:B 2234:0 2199:F 2194:E 2170:, 2162:F 2157:E 2153:m 2150:2 2139:m 2134:2 2120:2 2116:e 2108:0 2097:= 2028:. 2020:2 2016:r 2006:m 2003:6 1998:n 1995:Z 1990:2 1986:e 1980:0 1966:= 1961:B 1954:n 1949:0 1938:= 1908:n 1881:2 1877:r 1867:3 1864:2 1858:= 1848:2 1844:y 1835:+ 1825:2 1821:x 1812:= 1802:2 1765:2 1761:r 1728:2 1724:r 1714:3 1711:1 1705:= 1695:2 1691:z 1682:= 1672:2 1668:y 1659:= 1649:2 1645:x 1606:. 1598:2 1584:m 1581:4 1576:B 1571:2 1567:e 1563:Z 1554:= 1537:z 1511:2 1474:2 1450:z 1428:. 1422:m 1416:4 1411:B 1406:2 1402:e 1398:Z 1389:= 1386:I 1368:Z 1362:π 1358:ω 1352:m 1344:ω 1334:m 1328:e 1318:B 1172:v 1169:χ 1166:( 1019:v 1016:χ 987:v 984:χ 977:× 971:v 968:χ 956:× 950:v 947:χ 935:× 929:v 926:χ 919:v 916:μ 912:v 909:χ 767:0 764:μ 715:e 708:t 701:v 20:)

Index

Diamagnetic

Pyrolytic carbon
neodymium magnets
Condensed matter physics

Phases
Phase transition
QCP
States of matter
Solid
Liquid
Gas
Plasma
Bose–Einstein condensate
Bose gas
Fermionic condensate
Fermi gas
Fermi liquid
Supersolid
Superfluidity
Luttinger liquid
Time crystal
Order parameter
Phase transition
QCP
Electronic band structure
Plasma
Insulator
Mott insulator

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.