Knowledge

Dendrite (crystal)

Source 📝

112: 1315: 1352: 20: 199:
needed to have some type of anisotropic surface tension. This breakthrough lead to the microscopic solvability condition theory (MSC), however this theory still failed since although for isotropic surface tension there could not be a steady solution, it was experimentally shown that there were nearly steady solutions which the theory did not predict.
132: 124: 32: 207:
Nowadays the best understanding for dendritic crystals comes in the form of the macroscopic continuum model which assumes that both the solid and the liquid parts of the system are continuous media and the interface is a surface. This model uses the microscopic structure of the material and uses the
1338:
play a much smaller role. This is because the interface is atomically rough; because of the small difference in structure between the liquid and the solid state, the transition from liquid to solid is somewhat gradual and one observes some interface thickness. Consequently, the surface energy will
1632:
in the liquid) could be excluded. The experimental results indicated that at lower supercooling (up to 1.3 K), these convective effects are indeed significant. Compared to the growth in microgravity, the tip velocity during dendritic growth under normal gravity was found to be up to several times
198:
A decade later several groups of researchers went back to the Nash-Glicksman problem and focused on simplified versions of it. Through this they found that the problem for isotropic surface tension had no solutions. This result meant that a system with a steady needle growth solution necessarily
164:
for a classical needle growth. However they only found an inaccurate numerical solution close to the tip of the needle and they found that under a given growth condition, the tip velocity has a unique maximum value. This became known as the maximum velocity principle (MVP) but was ruled out by
189:
and the radius of the tip of the dendrite. They claimed a system would be unstable for small σ causing it to form dendrites. At the time however Langer and Mßller-Krumbhaar were unable to obtain a stability criterion for certain growth systems which lead to the MSH theory being abandoned.
104: 817:
directions. The table below gives an overview of preferred crystallographic directions for dendritic growth. Note that when the strain energy minimisation effect dominates over surface energy minimisation, one might find a different growth direction, such as with
165:
Glicksman and Nash themselves very quickly. In the following two years Glicksman improved the numerical methods used, but did not realise the non-linear integro-differential equation had no mathematical solutions making his results meaningless.
775:. Therefore, growth mainly takes place at the tip the parabolic interface, which draws out longer and longer. Eventually, the sides of this parabolic tip will also exhibit instabilities giving a dendrite its characteristic shape. 386:
However, anisotropy in the surface energy implies that the interface will deform to find the energetically most favourable shape. For cubic symmetry in 2D we can express this anisotropy int the surface energy as
359: 483: 681:
provides a method to determine the shape of the crystal. In principle, we can understand the deformation as an attempt by the system to minimise the area with the highest effective surface energy.
1238: 1613: 1168: 1054: 1023: 894: 991: 846: 815: 561: 1112: 617: 1296: 1134: 383:
is the radius of the sphere. This curvature undercooling, the effective lowering of the melting point at the interface, sustains the spherical shape for small radii.
1076: 178: 1261: 1191: 961: 939: 917: 304: 267: 773: 637: 725: 1335: 657: 583: 689:
Taking into account attachment kinetics, we can derive that both for spherical growth and for flat surface growth, the growth velocity decreases with time by
749: 381: 157: 1383:
and other rock types, depositing dendritic crystals as the solution flows through. A variety of manganese oxides and hydroxides are involved, including:
660: 1343:. For this reason, one would not expect faceted crystals as found for atomically smooth interfaces observed in crystals of more complex molecules. 311: 663:' crystals, i.e. the interface would be a crystallographic plane inhibiting growth along this part of the interface due to attachment kinetics. 392: 153: 1790: 1755: 1721: 220:
liquid. This formation will at first grow spherically until this shape is no longer stable. This instability has two causes:
1941: 1872: 75:), which means "tree", since the crystal's structure resembles that of a tree. These crystals can be synthesised by using a 1371:
form as naturally occurring fissures in the rock are filled by percolating mineral solutions. They form when water rich in
79:
pure liquid, however they are also quite common in nature. The most common crystals in nature exhibit dendritic growth are
65: 495: 181:
proposed the marginal stability hypothesis (MSH). This hypothesis used a stability parameter σ which depended on the
1202: 269:, which is the excess energy at the liquid-solid interface to accommodate the structural changes at the interface. 161: 1946: 1147: 1002: 873: 1029: 273: 966: 825: 794: 1082: 787:, as this structure causes the anisotropy in surface energy. For instance, a dendrite growing with 588: 488: 216:
Dendrite formation starts with some nucleation, i.e. the first appearance of solid growth, in the
152:
because of their appearance. The first theory for the creation of these patterns was published by
1647: 1266: 1117: 1898: 1059: 111: 1244: 1174: 944: 922: 900: 783:
When dendrites start to grow with tips in different directions, they display their underlying
279: 242: 754: 1936: 1663: 788: 622: 232:
and the attachment kinetics of particles to crystallographic planes when they have formed.
692: 8: 1853:
Potter, R.M; Rossman, G.R. (1979). "The mineralogy of manganese dendrites and coatings".
642: 568: 182: 1683:
Kobayashi, R. (1993). "Modeling and numerical simulations of dendritic crystal growth".
1628:
missions to investigate dendritic growth in an environment where the effect of gravity (
1835: 1652: 1367:
In paleontology, dendritic mineral crystal forms are often mistaken for fossils. These
678: 672: 229: 1951: 1976: 1914: 1839: 1827: 1786: 1751: 1717: 1698: 1685: 1621: 784: 40: 1956: 208:
general understanding of nucleation to accurately predict how a dendrite will grow.
1910: 1897:
Glicksman, M. E.; Koss, M.B; Bushnell, L. T.; LaCombe, J. C.; Winsa, E. A. (1995).
1819: 1778: 1694: 1309: 734: 366: 1876: 186: 174: 131: 123: 1807: 639:, the "strong anisotropy" causes the surface stiffness to be negative for some 236: 225: 1823: 1970: 1831: 1642: 1625: 135:
A simplified diagram for a smooth solid-liquid interface at the atomic level.
60: 1334:
the process of forming dendrites is very similar to other crystals, but the
127:
A simplified diagram for a rough solid-liquid interface at the atomic level.
1660:—Space Shuttle mission featuring the Isothermal Dendritic Growth Experiment 1460: 1368: 217: 145: 76: 36: 659:. This means that these orientations cannot appear, leading to so-called ' 1514: 1360: 1351: 1931: 1629: 1550: 1487: 1433: 1387: 221: 160:
in 1974, they used a very mathematical method and derived a non-linear
116: 1961: 1612: 1380: 1372: 80: 70: 31: 24: 1899:"Space flight data from the Isothermal Dendritic Growth Experiment" 1340: 1319: 1314: 819: 791:
crystal structure will have a preferred growth direction along the
728: 619:. In this case we speak of "weak anisotropy". For larger values of 276:
then gives a melting point depression compared to a flat interface
1772: 1782: 1323: 1318:
Dendritic crystallization after melting inside sealed ampules of
88: 56: 52: 55:
that develops with a typical multi-branching form, resembling a
1657: 1598: 149: 1714:
Interfacial Wave Theory of Pattern Formation in Solidification
19: 1957:
Dendritic growth in Local-Nonequilibrium Solidification Model
1602: 1597:
A three-dimensional form of dendrite develops in fissures in
1331: 354:{\displaystyle \Delta T_{m}\propto {\frac {\gamma _{sl}}{r}}} 92: 84: 1896: 565:
where we note that this quantity is positive for all angles
1379:
flows along fractures and bedding planes between layers of
1376: 1356: 103: 1281: 1097: 852:
Preferred growth direction for common crystal structures
16:
Crystal that develops with a typical multi-branching form
1808:"Orientations of dendritic growth during solidification" 1620:
The Isothermal Dendritic Growth Experiment (IDGE) was a
478:{\displaystyle \gamma _{sl}(\theta )=\gamma _{sl}^{0}.} 828: 797: 757: 737: 695: 645: 625: 591: 571: 369: 282: 245: 23:
Manganese dendrites on a limestone bedding plane from
1269: 1247: 1205: 1177: 1150: 1120: 1085: 1062: 1032: 1005: 969: 947: 925: 903: 876: 677:
For both above and below the critical anisotropy the
498: 395: 314: 193: 1624:solidification experiment that researchers used on 1290: 1255: 1232: 1185: 1162: 1128: 1106: 1070: 1048: 1017: 985: 955: 933: 911: 888: 840: 809: 767: 743: 719: 651: 631: 611: 577: 555: 477: 375: 353: 298: 261: 1968: 168: 144:The first dendritic patterns were discovered in 1873:"Isothermal Dendritic Growth Experiment (IDGE)" 1607: 235:On the solid-liquid interface, we can define a 1346: 202: 1852: 1746:Dantzig, Jonathan A.; Rappaz, Michel (2009). 1745: 1233:{\displaystyle \langle 10{\bar {1}}0\rangle } 778: 139: 1227: 1206: 1157: 1151: 1012: 1006: 883: 877: 835: 829: 822:, which has as a preferred growth direction 804: 798: 35:Simulation of dendritic solidification in a 95:can also be found in dendritic structures. 1942:The Isothermal Dendritic Growth Experiment 1682: 1616:Animated GIF of dendrite formation - NASA 1611: 1350: 1313: 130: 122: 110: 102: 30: 18: 1969: 1359:(sodium chloride) on the surface of a 1774:Statistical Physics of Crystal Growth 1770: 666: 211: 107:Ice dendrite formation on a snowflake 1777:. World Scientific. pp. 68–73. 1741: 1739: 1737: 1735: 1733: 731:growth, where the length grows with 1805: 1163:{\displaystyle \langle 110\rangle } 1049:{\displaystyle {\ce {\delta - Fe}}} 1018:{\displaystyle \langle 100\rangle } 889:{\displaystyle \langle 100\rangle } 13: 1812:Metals and Materials International 1711: 1303: 848:, even though it is a BCC latice. 684: 315: 283: 14: 1988: 1925: 1730: 986:{\displaystyle {\ce {\gamma-Fe}}} 194:Microscopic solvability condition 841:{\textstyle \langle 111\rangle } 810:{\textstyle \langle 100\rangle } 556:{\displaystyle \gamma _{sl}^{0}} 272:For a spherical interface, the 1890: 1865: 1846: 1806:Lee, Dong Nyung (2017-02-21). 1799: 1764: 1705: 1676: 1218: 1107:{\displaystyle {\ce {NH_4Cl}}} 612:{\textstyle \epsilon <1/15} 550: 547: 538: 517: 469: 466: 457: 439: 415: 409: 1: 1962:All About Manganese Dendrites 1937:What are manganese dendrites? 1669: 169:Marginal stability hypothesis 162:integro-differential equation 1915:10.1016/0273-1177(95)00156-9 1875:. 2005-02-15. Archived from 1699:10.1016/0167-2789(93)90120-P 1608:NASA microgravity experiment 1291:{\displaystyle {\ce {H_2O}}} 1129:{\displaystyle {\ce {CsCl}}} 727:. We do however find stable 7: 1636: 1347:Mineralogy and paleontology 1071:{\displaystyle {\ce {SCN}}} 860:Preferred growth direction 203:Macroscopic continuum model 173:Four years later, in 1978, 148:and are often mistaken for 10: 1993: 1932:Mindat Manganese Dendrites 1903:Advances in Space Research 1307: 1256:{\displaystyle {\ce {Zn}}} 1186:{\displaystyle {\ce {Sn}}} 956:{\displaystyle {\ce {Ni}}} 934:{\displaystyle {\ce {Cu}}} 912:{\displaystyle {\ce {Al}}} 779:Preferred growth direction 670: 140:Maximum velocity principle 98: 64: 59:. The name comes from the 1824:10.1007/s12540-017-6360-2 306:, which has the relation 299:{\textstyle \Delta T_{m}} 262:{\textstyle \gamma _{sl}} 115:Example of a dendrite on 1952:Dendritic Solidification 768:{\textstyle {\sqrt {t}}} 1750:. pp. 51–58, 289. 1648:Monocrystalline whisker 1355:Branching dendrites of 43:developed by Kobayashi. 27:, Germany. Scale in mm. 1617: 1364: 1336:kinetics of attachment 1327: 1292: 1257: 1234: 1187: 1164: 1130: 1108: 1072: 1050: 1019: 987: 957: 935: 913: 890: 842: 811: 769: 745: 721: 653: 633: 632:{\textstyle \epsilon } 613: 579: 557: 479: 377: 355: 300: 274:Gibbs–Thomson equation 263: 136: 128: 120: 108: 44: 39:pure liquid using the 28: 1855:American Mineralogist 1771:Saito, Yukio (1996). 1712:Xu, Jian-Jun (2017). 1615: 1354: 1317: 1293: 1258: 1235: 1188: 1165: 1131: 1109: 1073: 1051: 1020: 988: 958: 936: 914: 891: 843: 812: 770: 746: 722: 720:{\textstyle t^{-1/2}} 654: 634: 614: 580: 558: 487:This gives rise to a 480: 378: 356: 301: 264: 134: 126: 114: 106: 87:on windows, but many 34: 22: 1664:Whisker (metallurgy) 1267: 1245: 1203: 1175: 1148: 1118: 1083: 1060: 1030: 1003: 967: 945: 923: 901: 874: 826: 795: 755: 735: 693: 652:{\textstyle \theta } 643: 623: 589: 578:{\textstyle \theta } 569: 496: 393: 367: 312: 280: 243: 228:of the solid/liquid 1879:on 15 February 2005 1283: 1099: 853: 751:and the width with 516: 438: 183:thermal diffusivity 1653:Patterns in nature 1618: 1555:(Ba,Mn,Mg,Ca,K,Na) 1365: 1328: 1288: 1271: 1253: 1230: 1183: 1160: 1126: 1104: 1087: 1068: 1056:, Succinonitrile ( 1046: 1015: 983: 953: 931: 909: 886: 857:Crystal structure 851: 838: 807: 765: 741: 717: 679:Wulff construction 673:Wulff construction 667:Wulff construction 649: 629: 609: 575: 553: 499: 475: 421: 373: 351: 296: 259: 212:Dendrite formation 137: 129: 121: 109: 45: 29: 1792:978-981-02-2834-7 1757:978-2-940222-17-9 1723:978-3-319-52662-1 1716:. pp. 8–13. 1622:materials science 1301: 1300: 1286: 1274: 1251: 1221: 1181: 1124: 1102: 1090: 1066: 1044: 981: 951: 929: 907: 785:crystal structure 763: 489:surface stiffness 349: 41:phase-field model 1984: 1919: 1918: 1894: 1888: 1887: 1885: 1884: 1869: 1863: 1862: 1850: 1844: 1843: 1803: 1797: 1796: 1768: 1762: 1761: 1743: 1728: 1727: 1709: 1703: 1702: 1680: 1592: 1590: 1589: 1581: 1580: 1572: 1571: 1563: 1562: 1546: 1545: 1544: 1536: 1535: 1527: 1526: 1510: 1509: 1508: 1500: 1499: 1483: 1482: 1481: 1473: 1472: 1456: 1455: 1454: 1446: 1445: 1429: 1427: 1426: 1418: 1417: 1409: 1408: 1400: 1399: 1310:Dendrite (metal) 1297: 1295: 1294: 1289: 1287: 1284: 1282: 1279: 1272: 1262: 1260: 1259: 1254: 1252: 1249: 1239: 1237: 1236: 1231: 1223: 1222: 1214: 1192: 1190: 1189: 1184: 1182: 1179: 1169: 1167: 1166: 1161: 1135: 1133: 1132: 1127: 1125: 1122: 1113: 1111: 1110: 1105: 1103: 1100: 1098: 1095: 1088: 1077: 1075: 1074: 1069: 1067: 1064: 1055: 1053: 1052: 1047: 1045: 1042: 1041: 1024: 1022: 1021: 1016: 992: 990: 989: 984: 982: 979: 978: 962: 960: 959: 954: 952: 949: 940: 938: 937: 932: 930: 927: 918: 916: 915: 910: 908: 905: 895: 893: 892: 887: 854: 850: 847: 845: 844: 839: 816: 814: 813: 808: 774: 772: 771: 766: 764: 759: 750: 748: 747: 742: 726: 724: 723: 718: 716: 715: 711: 658: 656: 655: 650: 638: 636: 635: 630: 618: 616: 615: 610: 605: 584: 582: 581: 576: 562: 560: 559: 554: 515: 510: 484: 482: 481: 476: 437: 432: 408: 407: 382: 380: 379: 374: 360: 358: 357: 352: 350: 345: 344: 332: 327: 326: 305: 303: 302: 297: 295: 294: 268: 266: 265: 260: 258: 257: 179:MĂźller-Krumbhaar 74: 68: 1992: 1991: 1987: 1986: 1985: 1983: 1982: 1981: 1967: 1966: 1928: 1923: 1922: 1895: 1891: 1882: 1880: 1871: 1870: 1866: 1851: 1847: 1804: 1800: 1793: 1769: 1765: 1758: 1744: 1731: 1724: 1710: 1706: 1681: 1677: 1672: 1639: 1610: 1601:, forming moss 1588: 1585: 1584: 1583: 1579: 1576: 1575: 1574: 1570: 1567: 1566: 1565: 1561: 1558: 1557: 1556: 1554: 1543: 1540: 1539: 1538: 1534: 1531: 1530: 1529: 1525: 1522: 1521: 1520: 1518: 1507: 1504: 1503: 1502: 1498: 1495: 1494: 1493: 1491: 1480: 1477: 1476: 1475: 1471: 1468: 1467: 1466: 1464: 1453: 1450: 1449: 1448: 1444: 1441: 1440: 1439: 1437: 1425: 1422: 1421: 1420: 1416: 1413: 1412: 1411: 1407: 1404: 1403: 1402: 1398: 1395: 1394: 1393: 1391: 1349: 1312: 1306: 1304:Metal dendrites 1280: 1275: 1270: 1268: 1265: 1264: 1248: 1246: 1243: 1242: 1213: 1212: 1204: 1201: 1200: 1178: 1176: 1173: 1172: 1149: 1146: 1145: 1121: 1119: 1116: 1115: 1096: 1091: 1086: 1084: 1081: 1080: 1063: 1061: 1058: 1057: 1037: 1033: 1031: 1028: 1027: 1004: 1001: 1000: 974: 970: 968: 965: 964: 948: 946: 943: 942: 926: 924: 921: 920: 904: 902: 899: 898: 875: 872: 871: 827: 824: 823: 796: 793: 792: 781: 758: 756: 753: 752: 736: 733: 732: 707: 700: 696: 694: 691: 690: 687: 685:Growth velocity 675: 669: 644: 641: 640: 624: 621: 620: 601: 590: 587: 586: 570: 567: 566: 511: 503: 497: 494: 493: 433: 425: 400: 396: 394: 391: 390: 368: 365: 364: 337: 333: 331: 322: 318: 313: 310: 309: 290: 286: 281: 278: 277: 250: 246: 244: 241: 240: 214: 205: 196: 187:surface tension 171: 142: 101: 17: 12: 11: 5: 1990: 1980: 1979: 1965: 1964: 1959: 1954: 1949: 1944: 1939: 1934: 1927: 1926:External links 1924: 1921: 1920: 1909:(7): 181–184. 1889: 1864: 1845: 1818:(2): 320–325. 1798: 1791: 1763: 1756: 1748:Solidification 1729: 1722: 1704: 1674: 1673: 1671: 1668: 1667: 1666: 1661: 1655: 1650: 1645: 1638: 1635: 1609: 1606: 1595: 1594: 1586: 1577: 1568: 1559: 1548: 1541: 1532: 1523: 1512: 1505: 1496: 1485: 1478: 1469: 1458: 1451: 1442: 1431: 1423: 1414: 1405: 1396: 1348: 1345: 1339:become nearly 1308:Main article: 1305: 1302: 1299: 1298: 1278: 1240: 1229: 1226: 1220: 1217: 1211: 1208: 1198: 1194: 1193: 1170: 1159: 1156: 1153: 1143: 1139: 1138: 1094: 1040: 1036: 1025: 1014: 1011: 1008: 998: 994: 993: 977: 973: 896: 885: 882: 879: 869: 865: 864: 861: 858: 837: 834: 831: 806: 803: 800: 780: 777: 762: 744:{\textstyle t} 740: 714: 710: 706: 703: 699: 686: 683: 671:Main article: 668: 665: 648: 628: 608: 604: 600: 597: 594: 574: 552: 549: 546: 543: 540: 537: 534: 531: 528: 525: 522: 519: 514: 509: 506: 502: 474: 471: 468: 465: 462: 459: 456: 453: 450: 447: 444: 441: 436: 431: 428: 424: 420: 417: 414: 411: 406: 403: 399: 376:{\textstyle r} 372: 348: 343: 340: 336: 330: 325: 321: 317: 293: 289: 285: 256: 253: 249: 237:surface energy 226:surface energy 213: 210: 204: 201: 195: 192: 170: 167: 141: 138: 100: 97: 15: 9: 6: 4: 3: 2: 1989: 1978: 1975: 1974: 1972: 1963: 1960: 1958: 1955: 1953: 1950: 1948: 1947:Snow crystals 1945: 1943: 1940: 1938: 1935: 1933: 1930: 1929: 1916: 1912: 1908: 1904: 1900: 1893: 1878: 1874: 1868: 1860: 1856: 1849: 1841: 1837: 1833: 1829: 1825: 1821: 1817: 1813: 1809: 1802: 1794: 1788: 1784: 1780: 1776: 1775: 1767: 1759: 1753: 1749: 1742: 1740: 1738: 1736: 1734: 1725: 1719: 1715: 1708: 1700: 1696: 1692: 1688: 1687: 1679: 1675: 1665: 1662: 1659: 1656: 1654: 1651: 1649: 1646: 1644: 1643:Brownian tree 1641: 1640: 1634: 1631: 1627: 1626:Space Shuttle 1623: 1614: 1605: 1604: 1600: 1593:) and others. 1552: 1549: 1516: 1513: 1489: 1486: 1462: 1459: 1435: 1432: 1389: 1386: 1385: 1384: 1382: 1378: 1374: 1370: 1369:pseudofossils 1362: 1358: 1353: 1344: 1342: 1337: 1333: 1325: 1321: 1316: 1311: 1276: 1241: 1224: 1215: 1209: 1199: 1196: 1195: 1171: 1154: 1144: 1141: 1140: 1137: 1092: 1038: 1034: 1026: 1009: 999: 996: 995: 975: 971: 897: 880: 870: 867: 866: 862: 859: 856: 855: 849: 832: 821: 801: 790: 786: 776: 760: 738: 730: 712: 708: 704: 701: 697: 682: 680: 674: 664: 662: 646: 626: 606: 602: 598: 595: 592: 572: 563: 544: 541: 535: 532: 529: 526: 523: 520: 512: 507: 504: 500: 491: 490: 485: 472: 463: 460: 454: 451: 448: 445: 442: 434: 429: 426: 422: 418: 412: 404: 401: 397: 388: 384: 370: 361: 346: 341: 338: 334: 328: 323: 319: 307: 291: 287: 275: 270: 254: 251: 247: 238: 233: 231: 227: 223: 219: 209: 200: 191: 188: 184: 180: 176: 166: 163: 159: 155: 151: 147: 146:palaeontology 133: 125: 118: 113: 105: 96: 94: 90: 86: 82: 78: 73: 67: 62: 61:Ancient Greek 58: 54: 50: 42: 38: 33: 26: 21: 1906: 1902: 1892: 1881:. Retrieved 1877:the original 1867: 1861:: 1219–1226. 1858: 1854: 1848: 1815: 1811: 1801: 1783:10.1142/3261 1773: 1766: 1747: 1713: 1707: 1690: 1684: 1678: 1619: 1596: 1461:cryptomelane 1366: 1329: 1079: 782: 688: 676: 564: 492: 486: 389: 385: 362: 308: 271: 234: 215: 206: 197: 172: 143: 71: 48: 46: 1693:: 410–423. 1515:romanechite 1361:century egg 1142:Tetragonal 218:supercooled 77:supercooled 37:supercooled 1883:2022-01-26 1670:References 1630:convection 1551:todorokite 1488:hollandite 1434:coronadite 1388:birnessite 222:anisotropy 117:pyrolusite 81:snowflakes 47:A crystal 1840:136225767 1832:1598-9623 1633:greater. 1381:limestone 1373:manganese 1341:isotropic 1228:⟩ 1219:¯ 1207:⟨ 1158:⟩ 1152:⟨ 1039:− 1035:δ 1013:⟩ 1007:⟨ 976:− 972:γ 884:⟩ 878:⟨ 863:Examples 836:⟩ 830:⟨ 805:⟩ 799:⟨ 729:parabolic 702:− 647:θ 627:ϵ 593:ϵ 573:θ 545:θ 536:⁡ 530:ϵ 524:− 501:γ 464:θ 455:⁡ 449:ϵ 423:γ 413:θ 398:γ 335:γ 329:∝ 316:Δ 284:Δ 248:γ 230:interface 158:Glicksman 25:Solnhofen 1977:Crystals 1971:Category 1637:See also 1320:rubidium 89:minerals 49:dendrite 1686:Physica 1324:caesium 1136:-type) 661:faceted 224:in the 150:fossils 99:History 72:dĂŠndron 66:δένδρον 57:fractal 53:crystal 1838:  1830:  1789:  1754:  1720:  1658:STS-87 1599:quartz 1332:metals 1326:metal. 363:where 185:, the 175:Langer 93:metals 1836:S2CID 1603:agate 1519:(Ba,H 585:when 85:frost 63:word 51:is a 1828:ISSN 1787:ISBN 1752:ISBN 1718:ISBN 1528:O)Mn 1492:BaMn 1438:PbMn 1377:iron 1375:and 1357:salt 1330:For 1322:and 1197:HCP 1123:CsCl 997:BCC 868:FCC 596:< 177:and 156:and 154:Nash 91:and 83:and 1911:doi 1820:doi 1779:doi 1695:doi 1582:•3H 1465:KMn 1419:•9H 1155:110 1078:), 1065:SCN 1010:100 881:100 833:111 802:100 789:BCC 533:cos 452:cos 1973:: 1907:16 1905:. 1901:. 1859:64 1857:. 1834:. 1826:. 1816:23 1814:. 1810:. 1785:. 1732:^ 1691:63 1689:. 1578:12 1564:Mn 1542:10 1506:16 1479:16 1452:16 1415:27 1406:14 1401:Mn 1392:Na 1263:, 1250:Zn 1210:10 1180:Sn 1101:Cl 1089:NH 1043:Fe 980:Fe 963:, 950:Ni 941:, 928:Cu 919:, 906:Al 820:Cr 607:15 527:15 239:, 1917:. 1913:: 1886:. 1842:. 1822:: 1795:. 1781:: 1760:. 1726:. 1701:. 1697:: 1591:O 1587:2 1573:O 1569:3 1560:2 1553:( 1547:) 1537:O 1533:5 1524:2 1517:( 1511:) 1501:O 1497:8 1490:( 1484:) 1474:O 1470:8 1463:( 1457:) 1447:O 1443:8 1436:( 1430:) 1428:O 1424:2 1410:O 1397:4 1390:( 1363:. 1285:O 1277:2 1273:H 1225:0 1216:1 1114:( 1093:4 761:t 739:t 713:2 709:/ 705:1 698:t 603:/ 599:1 551:] 548:) 542:4 539:( 521:1 518:[ 513:0 508:l 505:s 473:. 470:] 467:) 461:4 458:( 446:+ 443:1 440:[ 435:0 430:l 427:s 419:= 416:) 410:( 405:l 402:s 371:r 347:r 342:l 339:s 324:m 320:T 292:m 288:T 255:l 252:s 119:. 69:(

Index


Solnhofen

supercooled
phase-field model
crystal
fractal
Ancient Greek
δένδρον
supercooled
snowflakes
frost
minerals
metals


pyrolusite


palaeontology
fossils
Nash
Glicksman
integro-differential equation
Langer
MĂźller-Krumbhaar
thermal diffusivity
surface tension
supercooled
anisotropy

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑