Knowledge

Damage mechanics

Source 📝

122:) and associated material degradation mechanisms become dominant modes of structural failure. While these deformation and damage mechanisms originate at the microscale where discrete processes dominate, practical application of failure theories to macroscale components is most readily achieved using the formalism of continuum mechanics. In this context, microscopic damage is idealized as a continuous state variable defined at all points within a structure. State equations are defined which govern the time evolution of damage. These equations may be readily integrated into finite element codes to analyze the damage evolution in complex 3D structures and calculate how long a component may safely be used before failure occurs. 1780:
thermodynamically stable and grow via diffusion when exposed to elevated temperatures. As the precipitates coarsen, their ability to restrict dislocation motion decreases as the average spacing between particles increases, thus decreasing the required Orowan stress for bowing. In the case of grain boundary precipitates, precipitate growth means that fewer grain boundaries are impeded from grain boundary sliding. When cast into the damage mechanics formalism, precipitation coarsening and its effect on strain rate may be represented by the following equations.
2512: 795:
not justified. This limitation was remedied by researchers such as A.C.F. Cocks, M.F. Ashby, and B.F. Dyson, who proposed mechanistically informed strain and damage evolution equations. Extrapolation using such equations is justified if the dominant damage mechanism remains the same at the conditions of interest.
2316: 2645:
The preceding equations are valid under uniaxial tension only. When a multiaxial state of stress is present in the system, each equation must be adapted so that the driving multiaxial stress is considered. For void-growth by power-law creep, the relevant stress is the von Mises stress as this drives
794:
While easy to apply, the lumped damage model proposed by Kachanov and Robotnov is limited by the fact that the damage state variable cannot be directly tied to a specific mechanism of strain and damage evolution. Correspondingly, extrapolation of the model beyond the original dataset of test data is
803:
In the power-law creep regime, global deformation is controlled by glide and climb of dislocations. If internal voids are present within the microstructure, global structural continuity requires that the voids must both elongate and expand laterally, further reducing the local section. When cast in
2609:
Note that both damage mechanisms are included in the creep strain rate equation. The precipitate coarsening damage mechanisms influences the void-growth damage mechanism as the void-growth mechanism depends on the global strain rate. The precipitate growth mechanisms is only time and temperature
1779:
Many modern steels and alloys are designed such that precipitates will precipitate either within the matrix or along grain boundaries during casting. These precipitates restrict dislocation motion and, if present on grain boundaries, grain boundary sliding during creep. Many precipitates are not
1188:
At very high temperature and/or low stresses, void growth on grain boundaries is primarily controlled by the diffusive flux of vacancies along the grain boundary. As matter diffuses away from the void and plates onto the adjacent grain boundaries, a roughly spherical void is maintained by rapid
19:
is concerned with the representation, or modeling, of damage of materials that is suitable for making engineering predictions about the initiation, propagation, and fracture of materials without resorting to a microscopic description that would be too complex for practical engineering analysis.
498:
In this simple case, the strain rate is governed by power-law creep with the stress enhanced by the damage state variable as damage accumulates. The damage term ω is interpreted as a distributed loss of load bearing area which results in an increased local stress at the microscale. The time to
1087: 1413: 2324: 1295: 1881: 958: 1522: 215: 2108:
Multiple damage mechanism can be combined to represent a broader range of phenomena. For instance, if both void-growth by power-law creep and precipitate coarsening are relevant mechanisms, the following combined set of equations may be used:
300: 27:, "It is often argued that the ultimate task of engineering research is to provide not so much a better insight into the examined phenomenon but to supply a rational predictive tool applicable in design". Damage mechanics is a topic of 2604: 2115: 1959: 709: 966: 1303: 2719:
Barbero, E.J., Cortes, D.H., A mechanistic model for transverse damage initiation, evolution, and stiffness reduction in laminated composites (2010) Composites Part B: Engineering, 41 (2), pp. 124-132.
2507:{\displaystyle {\dot {\omega }}_{1}={\dot {\epsilon }}_{0}\sigma ^{n}\left({\frac {1}{\left(1-\omega _{1}\right)^{n}}}-\left(1-\omega _{1}\right)\right)\left(1+K^{\prime \prime }\omega _{2}\right)^{n}} 1189:
diffusion of vacancies along the surface of the void. When cast in the damage mechanics formalism, the growth of internal voids by boundary diffusion can be represented by the following equations.
1195: 102:
function but this requires additional phenomenological parameters that must be found through experimentation, which is expensive, time consuming, and virtually no one does. On the other hand,
572: 2001: 94:. A damage activation criterion is needed to predict damage initiation. Damage evolution does not progress spontaneously after initiation, thus requiring a damage evolution model. In 1786: 1561: 1126: 810: 748: 368: 784: 473: 2071: 1421: 332: 437: 136: 2635: 2098: 1678: 599: 529: 1765: 1178: 221: 2021: 1698: 1581: 1146: 619: 388: 1651: 118:
When mechanical structures are exposed to temperatures exceeding one-third of the melting temperature of the material of construction, time-dependent deformation (
2520: 1604: 2041: 1738: 1718: 1624: 493: 408: 2311:{\displaystyle {\dot {\epsilon }}={\dot {\epsilon }}_{0}\sigma ^{n}\left(1+{\frac {2r_{h}^{0}}{d}}\left\right)\left(1+K^{\prime \prime }\omega _{2}\right)^{n}} 1889: 627: 1082:{\displaystyle {\dot {\omega }}={\dot {\epsilon }}_{0}\sigma ^{n}\left({\frac {1}{\left(1-\omega \right)^{n}}}-\left(1-\omega \right)\right)} 130:
L. M. Kachanov and Y. N. Rabotnov suggested the following evolution equations for the creep strain ε and a lumped damage state variable ω:
1408:{\displaystyle {\dot {\omega }}={\dot {\epsilon }}_{0}\phi _{0}\sigma {\frac {1}{\omega ^{1/2}\ln \left({\frac {1}{\omega }}\right)}}} 2646:
the global creep deformation; however, for void-growth by boundary diffusion, the maximum principal stress drives the vacancy flux.
804:
the damage mechanics formalism, the growth of internal voids by power-law creep can be represented by the following equations.
750:
and n are found by fitting the creep strain rate equation at zero damage to minimum creep rate measurements. Model parameters
2849: 2781: 1290:{\displaystyle {\dot {\epsilon }}={\dot {\epsilon }}_{0}\phi _{0}\sigma {\frac {2l}{d\ln \left({\frac {1}{\omega }}\right)}}} 2702:
Struik, L C E, Physical aging in amorphous polymers and other materials, Elsevier Scientific Pub. Co.; New York, 1978,
534: 3042: 2981: 2920: 2707: 601:
is taken to be 1, this results in the following prediction for a structure loaded under a constant uniaxial stress
76: 1876:{\displaystyle {\dot {\epsilon }}={\dot {\epsilon }}_{0}\sigma ^{n}\left(1+K^{\prime \prime }\omega \right)^{n}} 3101: 953:{\displaystyle {\dot {\epsilon }}={\dot {\epsilon }}_{0}\sigma ^{n}\left(1+{\frac {2r_{h}^{0}}{d}}\left\right)} 1967: 1530: 1095: 717: 337: 3096: 1517:{\displaystyle \phi _{0}={\frac {2D_{B}\delta _{B}\Omega }{kTl^{3}}}{\frac {1}{{\dot {\varepsilon }}_{0}}}} 753: 442: 3106: 2046: 308: 413: 210:{\displaystyle {\dot {\epsilon }}={\dot {\epsilon }}_{0}\left({\frac {\sigma }{1-\omega }}\right)^{n}} 3075:
Dyson, B. F. (1992). "Materials Data Requirements, Creep Damage Mechanisms, and Predictive Models".
499:
failure is determined by integrating the damage evolution equation from an initial undamaged state
106:
of damage formulations are able to predict both damage initiation and evolution without additional
23:
Damage mechanics illustrates the typical engineering approach to model complex phenomena. To quote
295:{\displaystyle {\dot {\omega }}={\dot {\omega }}_{0}\left({\frac {\sigma }{1-\omega }}\right)^{m}} 2665: 2655: 2613: 2076: 1656: 577: 502: 99: 1743: 1151: 2006: 1683: 1566: 1131: 604: 373: 55:
and remaining life of the material that is damaging as a result of thermomechanical load and
2599:{\displaystyle {\dot {\omega }}_{2}={\frac {K^{\prime }}{3}}\left(1-\omega _{2}\right)^{4}} 1629: 95: 8: 119: 107: 32: 3061: 3000: 2939: 1586: 2814: 2746: 2026: 1723: 1703: 1609: 478: 393: 2684:
Krajcinovic, D., Damage mechanics (1989) Mechanics of Materials, 8 (2-3), pp. 117-197.
3027: 2966: 2905: 2878: 2845: 2818: 2777: 2750: 2703: 28: 24: 3014:
Cocks, A. C. F.; Ashby, M. F. (1 January 1982). "On creep fracture by void growth".
2953:
Cocks, A. C. F.; Ashby, M. F. (1 January 1982). "On creep fracture by void growth".
2892:
Cocks, A. C. F.; Ashby, M. F. (1 January 1982). "On creep fracture by void growth".
2865:
Cocks, A. C. F.; Ashby, M. F. (1 January 1982). "On creep fracture by void growth".
3057: 3023: 2996: 2962: 2935: 2901: 2874: 2837: 2806: 2769: 2738: 2660: 1954:{\displaystyle {\dot {\omega }}={\frac {K^{\prime }}{3}}\left(1-\omega \right)^{4}} 704:{\displaystyle t_{f}={\frac {1}{\left(m+1\right){\dot {\omega }}_{0}\sigma ^{m}}}} 2841: 2773: 80: 60: 40: 103: 2810: 2742: 84: 3090: 87: 90:
forces that motivate further damage. Initially the material is pristine, or
2797:
Kachanov, Lazar M. (1 April 1999). "Rupture Time Under Creep Conditions".
2729:
Kachanov, Lazar M. (1 April 1999). "Rupture Time Under Creep Conditions".
786:
and m are found by fitting the above equation to creep rupture life data.
1768: 68: 48: 72: 52: 2073:
is a parameter linking the precipitation damage to the strain rate,
1740:
is the absolute temperatures. It is noted that factors present in
789: 56: 3043:"Creep and fracture of metals : mechanisms and mechanics" 2982:"Creep and fracture of metals : mechanisms and mechanics" 2921:"Creep and fracture of metals : mechanisms and mechanics" 2610:
dependent and hence does not depend on the void-growth damage
1180:
is the average initial void radius, and d is the grain size.
63:
may be measurable, e.g., crack density, or inferred from the
98:
like formulations, the damage evolution is controlled by a
410:
is the creep stress exponent of the material of interest,
1771:
pre-factors due to the similarity of the two mechanisms.
2693:
Dusan Krajcinovic, Mechanics of Materials 8 (1989) 169.
1148:
is the applied stress, n is the creep stress exponent,
2478: 2282: 2058: 1854: 2616: 2523: 2327: 2118: 2079: 2049: 2029: 2009: 1970: 1892: 1789: 1746: 1726: 1706: 1686: 1659: 1632: 1612: 1589: 1569: 1533: 1424: 1306: 1198: 1154: 1134: 1098: 969: 813: 756: 720: 630: 607: 580: 537: 505: 481: 445: 416: 396: 376: 340: 311: 224: 139: 1183: 113: 2629: 2598: 2506: 2310: 2092: 2065: 2035: 2015: 1995: 1953: 1875: 1759: 1732: 1712: 1692: 1672: 1645: 1618: 1598: 1575: 1555: 1516: 1407: 1289: 1172: 1140: 1120: 1081: 952: 778: 742: 703: 613: 593: 566: 523: 487: 467: 431: 402: 382: 362: 326: 294: 209: 798: 3088: 567:{\displaystyle \left(\omega =\omega _{f}\right)} 2100:determines the rate of precipitate coarsening. 790:Mechanistically informed damage state variables 125: 2103: 1653:is the grain-boundary diffusion coefficient, 3013: 2952: 2891: 2864: 2832:Rabotnov, Y. N. (1969). "Creep rupture". 2764:Rabotnov, Y. N. (1969). "Creep rupture". 1774: 2831: 2796: 2763: 2728: 1996:{\displaystyle \ {\dot {\epsilon }}_{0}} 3089: 1606:is the center-to-center void spacing, 1556:{\displaystyle {\dot {\epsilon }}_{0}} 1121:{\displaystyle {\dot {\epsilon }}_{0}} 743:{\displaystyle {\dot {\epsilon _{0}}}} 363:{\displaystyle {\dot {\epsilon }}_{0}} 3074: 3040: 2979: 2918: 2640: 779:{\displaystyle {\dot {\omega _{0}}}} 468:{\displaystyle {\dot {\omega }}_{0}} 439:is the rate of damage accumulation, 2043:is the creep-rate stress exponent, 475:is the damage-rate multiplier, and 13: 3077:High Temperature Structural Design 2553: 2475: 2279: 2085: 2066:{\displaystyle K^{\prime \prime }} 2055: 1915: 1851: 1687: 1464: 327:{\displaystyle {\dot {\epsilon }}} 14: 3118: 3062:10.1051/rphysap:01988002304060500 3001:10.1051/rphysap:01988002304060500 2940:10.1051/rphysap:01988002304060500 2799:International Journal of Fracture 2731:International Journal of Fracture 1680:is the grain boundary thickness, 1184:Void-growth by Boundary Diffusion 432:{\displaystyle {\dot {\omega }}} 114:Creep Continuum Damage Mechanics 77:coefficient of thermal expansion 3068: 3034: 3007: 2973: 2946: 2912: 2885: 531:to a specified critical damage 495:is the damage stress exponent. 2858: 2825: 2790: 2757: 2722: 2713: 2696: 2687: 2678: 2003:is the creep-rate multiplier, 1563:is the creep-rate multiplier, 1128:is the creep-rate multiplier, 799:Void-growth by Power-Law Creep 518: 506: 370:is the creep-rate multiplier, 1: 3016:Progress in Materials Science 2955:Progress in Materials Science 2894:Progress in Materials Science 2867:Progress in Materials Science 2671: 1720:is Boltzmann’s constant, and 3028:10.1016/0079-6425(82)90001-9 2967:10.1016/0079-6425(82)90001-9 2906:10.1016/0079-6425(82)90001-9 2879:10.1016/0079-6425(82)90001-9 2842:10.1007/978-3-642-85640-2_26 2774:10.1007/978-3-642-85640-2_26 126:Lumped damage state variable 7: 3050:Revue de Physique Appliquée 2989:Revue de Physique Appliquée 2928:Revue de Physique Appliquée 2649: 2630:{\displaystyle \omega _{1}} 2104:Combining Damage Mechanisms 2093:{\displaystyle K^{\prime }} 1673:{\displaystyle \delta _{B}} 594:{\displaystyle \omega _{f}} 524:{\displaystyle (\omega =0)} 79:, remaining life, etc. The 10: 3123: 334:is the creep strain rate, 1760:{\displaystyle \phi _{0}} 1173:{\displaystyle r_{h}^{0}} 1767:are very similar to the 2811:10.1023/A:1018671022008 2743:10.1023/A:1018671022008 2666:Critical plane analysis 2656:Lumped damage mechanics 2023:is the applied stress, 2016:{\displaystyle \sigma } 1693:{\displaystyle \Omega } 1583:is the applied stress, 1576:{\displaystyle \sigma } 1141:{\displaystyle \sigma } 614:{\displaystyle \sigma } 390:is the applied stress, 383:{\displaystyle \sigma } 31:that relies heavily on 2631: 2600: 2508: 2312: 2094: 2067: 2037: 2017: 1997: 1955: 1877: 1775:Precipitate Coarsening 1761: 1734: 1714: 1700:is the atomic volume, 1694: 1674: 1647: 1620: 1600: 1577: 1557: 1518: 1409: 1291: 1174: 1142: 1122: 1083: 954: 780: 744: 705: 615: 595: 568: 525: 489: 469: 433: 404: 384: 364: 328: 296: 211: 35:. Most of the work on 3102:Materials degradation 2632: 2601: 2509: 2313: 2095: 2068: 2038: 2018: 1998: 1956: 1878: 1762: 1735: 1715: 1695: 1675: 1648: 1646:{\displaystyle D_{B}} 1621: 1601: 1578: 1558: 1519: 1410: 1292: 1175: 1143: 1123: 1084: 955: 781: 745: 706: 616: 596: 569: 526: 490: 470: 434: 405: 385: 365: 329: 297: 212: 3041:Dyson, B.F. (1988). 2980:Dyson, B.F. (1988). 2919:Dyson, B.F. (1988). 2614: 2521: 2325: 2116: 2077: 2047: 2027: 2007: 1968: 1890: 1787: 1744: 1724: 1704: 1684: 1657: 1630: 1610: 1587: 1567: 1531: 1422: 1304: 1196: 1152: 1132: 1096: 967: 811: 754: 718: 628: 605: 578: 535: 503: 479: 443: 414: 394: 374: 338: 309: 222: 137: 3097:Continuum mechanics 2194: 1626:is the grain size, 1169: 889: 108:material properties 33:continuum mechanics 3107:Mechanical failure 2641:Multiaxial Effects 2627: 2596: 2504: 2308: 2180: 2090: 2063: 2033: 2013: 1993: 1951: 1873: 1757: 1730: 1710: 1690: 1670: 1643: 1616: 1599:{\displaystyle 2l} 1596: 1573: 1553: 1514: 1405: 1287: 1170: 1155: 1138: 1118: 1079: 950: 875: 776: 740: 701: 611: 591: 564: 521: 485: 465: 429: 400: 380: 360: 324: 292: 207: 71:property, such as 67:they have on some 2851:978-3-642-85642-6 2834:Applied Mechanics 2783:978-3-642-85642-6 2766:Applied Mechanics 2561: 2534: 2422: 2360: 2338: 2244: 2199: 2144: 2128: 2036:{\displaystyle n} 1984: 1973: 1923: 1902: 1815: 1799: 1733:{\displaystyle T} 1713:{\displaystyle k} 1619:{\displaystyle d} 1544: 1512: 1503: 1486: 1403: 1396: 1332: 1316: 1285: 1278: 1224: 1208: 1109: 1050: 995: 979: 932: 894: 839: 823: 773: 737: 714:Model parameters 699: 679: 488:{\displaystyle m} 456: 426: 403:{\displaystyle n} 351: 321: 280: 250: 234: 195: 165: 149: 43:to represent the 29:applied mechanics 25:Dusan Krajcinovic 3114: 3081: 3080: 3072: 3066: 3065: 3047: 3038: 3032: 3031: 3011: 3005: 3004: 2986: 2977: 2971: 2970: 2950: 2944: 2943: 2925: 2916: 2910: 2909: 2889: 2883: 2882: 2862: 2856: 2855: 2829: 2823: 2822: 2794: 2788: 2787: 2761: 2755: 2754: 2726: 2720: 2717: 2711: 2700: 2694: 2691: 2685: 2682: 2661:Failure analysis 2636: 2634: 2633: 2628: 2626: 2625: 2605: 2603: 2602: 2597: 2595: 2594: 2589: 2585: 2584: 2583: 2562: 2557: 2556: 2547: 2542: 2541: 2536: 2535: 2527: 2513: 2511: 2510: 2505: 2503: 2502: 2497: 2493: 2492: 2491: 2482: 2481: 2457: 2453: 2452: 2448: 2447: 2446: 2423: 2421: 2420: 2415: 2411: 2410: 2409: 2385: 2378: 2377: 2368: 2367: 2362: 2361: 2353: 2346: 2345: 2340: 2339: 2331: 2317: 2315: 2314: 2309: 2307: 2306: 2301: 2297: 2296: 2295: 2286: 2285: 2261: 2257: 2256: 2252: 2245: 2243: 2242: 2237: 2233: 2232: 2231: 2207: 2200: 2195: 2193: 2188: 2175: 2162: 2161: 2152: 2151: 2146: 2145: 2137: 2130: 2129: 2121: 2099: 2097: 2096: 2091: 2089: 2088: 2072: 2070: 2069: 2064: 2062: 2061: 2042: 2040: 2039: 2034: 2022: 2020: 2019: 2014: 2002: 2000: 1999: 1994: 1992: 1991: 1986: 1985: 1977: 1971: 1960: 1958: 1957: 1952: 1950: 1949: 1944: 1940: 1924: 1919: 1918: 1909: 1904: 1903: 1895: 1882: 1880: 1879: 1874: 1872: 1871: 1866: 1862: 1858: 1857: 1833: 1832: 1823: 1822: 1817: 1816: 1808: 1801: 1800: 1792: 1766: 1764: 1763: 1758: 1756: 1755: 1739: 1737: 1736: 1731: 1719: 1717: 1716: 1711: 1699: 1697: 1696: 1691: 1679: 1677: 1676: 1671: 1669: 1668: 1652: 1650: 1649: 1644: 1642: 1641: 1625: 1623: 1622: 1617: 1605: 1603: 1602: 1597: 1582: 1580: 1579: 1574: 1562: 1560: 1559: 1554: 1552: 1551: 1546: 1545: 1537: 1523: 1521: 1520: 1515: 1513: 1511: 1510: 1505: 1504: 1496: 1489: 1487: 1485: 1484: 1483: 1467: 1463: 1462: 1453: 1452: 1439: 1434: 1433: 1414: 1412: 1411: 1406: 1404: 1402: 1401: 1397: 1389: 1377: 1376: 1372: 1355: 1350: 1349: 1340: 1339: 1334: 1333: 1325: 1318: 1317: 1309: 1296: 1294: 1293: 1288: 1286: 1284: 1283: 1279: 1271: 1255: 1247: 1242: 1241: 1232: 1231: 1226: 1225: 1217: 1210: 1209: 1201: 1179: 1177: 1176: 1171: 1168: 1163: 1147: 1145: 1144: 1139: 1127: 1125: 1124: 1119: 1117: 1116: 1111: 1110: 1102: 1088: 1086: 1085: 1080: 1078: 1074: 1073: 1069: 1051: 1049: 1048: 1043: 1039: 1020: 1013: 1012: 1003: 1002: 997: 996: 988: 981: 980: 972: 959: 957: 956: 951: 949: 945: 944: 940: 933: 931: 930: 925: 921: 902: 895: 890: 888: 883: 870: 857: 856: 847: 846: 841: 840: 832: 825: 824: 816: 785: 783: 782: 777: 775: 774: 769: 768: 759: 749: 747: 746: 741: 739: 738: 733: 732: 723: 710: 708: 707: 702: 700: 698: 697: 696: 687: 686: 681: 680: 672: 668: 664: 645: 640: 639: 620: 618: 617: 612: 600: 598: 597: 592: 590: 589: 573: 571: 570: 565: 563: 559: 558: 557: 530: 528: 527: 522: 494: 492: 491: 486: 474: 472: 471: 466: 464: 463: 458: 457: 449: 438: 436: 435: 430: 428: 427: 419: 409: 407: 406: 401: 389: 387: 386: 381: 369: 367: 366: 361: 359: 358: 353: 352: 344: 333: 331: 330: 325: 323: 322: 314: 301: 299: 298: 293: 291: 290: 285: 281: 279: 265: 258: 257: 252: 251: 243: 236: 235: 227: 216: 214: 213: 208: 206: 205: 200: 196: 194: 180: 173: 172: 167: 166: 158: 151: 150: 142: 37:damage mechanics 17:Damage mechanics 3122: 3121: 3117: 3116: 3115: 3113: 3112: 3111: 3087: 3086: 3085: 3084: 3073: 3069: 3045: 3039: 3035: 3012: 3008: 2984: 2978: 2974: 2951: 2947: 2923: 2917: 2913: 2890: 2886: 2863: 2859: 2852: 2830: 2826: 2795: 2791: 2784: 2762: 2758: 2727: 2723: 2718: 2714: 2701: 2697: 2692: 2688: 2683: 2679: 2674: 2652: 2643: 2621: 2617: 2615: 2612: 2611: 2590: 2579: 2575: 2568: 2564: 2563: 2552: 2548: 2546: 2537: 2526: 2525: 2524: 2522: 2519: 2518: 2498: 2487: 2483: 2474: 2470: 2463: 2459: 2458: 2442: 2438: 2431: 2427: 2416: 2405: 2401: 2394: 2390: 2389: 2384: 2383: 2379: 2373: 2369: 2363: 2352: 2351: 2350: 2341: 2330: 2329: 2328: 2326: 2323: 2322: 2302: 2291: 2287: 2278: 2274: 2267: 2263: 2262: 2238: 2227: 2223: 2216: 2212: 2211: 2206: 2205: 2201: 2189: 2184: 2176: 2174: 2167: 2163: 2157: 2153: 2147: 2136: 2135: 2134: 2120: 2119: 2117: 2114: 2113: 2106: 2084: 2080: 2078: 2075: 2074: 2054: 2050: 2048: 2045: 2044: 2028: 2025: 2024: 2008: 2005: 2004: 1987: 1976: 1975: 1974: 1969: 1966: 1965: 1945: 1930: 1926: 1925: 1914: 1910: 1908: 1894: 1893: 1891: 1888: 1887: 1867: 1850: 1846: 1839: 1835: 1834: 1828: 1824: 1818: 1807: 1806: 1805: 1791: 1790: 1788: 1785: 1784: 1777: 1751: 1747: 1745: 1742: 1741: 1725: 1722: 1721: 1705: 1702: 1701: 1685: 1682: 1681: 1664: 1660: 1658: 1655: 1654: 1637: 1633: 1631: 1628: 1627: 1611: 1608: 1607: 1588: 1585: 1584: 1568: 1565: 1564: 1547: 1536: 1535: 1534: 1532: 1529: 1528: 1506: 1495: 1494: 1493: 1488: 1479: 1475: 1468: 1458: 1454: 1448: 1444: 1440: 1438: 1429: 1425: 1423: 1420: 1419: 1388: 1384: 1368: 1364: 1360: 1359: 1354: 1345: 1341: 1335: 1324: 1323: 1322: 1308: 1307: 1305: 1302: 1301: 1270: 1266: 1256: 1248: 1246: 1237: 1233: 1227: 1216: 1215: 1214: 1200: 1199: 1197: 1194: 1193: 1186: 1164: 1159: 1153: 1150: 1149: 1133: 1130: 1129: 1112: 1101: 1100: 1099: 1097: 1094: 1093: 1059: 1055: 1044: 1029: 1025: 1024: 1019: 1018: 1014: 1008: 1004: 998: 987: 986: 985: 971: 970: 968: 965: 964: 926: 911: 907: 906: 901: 900: 896: 884: 879: 871: 869: 862: 858: 852: 848: 842: 831: 830: 829: 815: 814: 812: 809: 808: 801: 792: 764: 760: 758: 757: 755: 752: 751: 728: 724: 722: 721: 719: 716: 715: 692: 688: 682: 671: 670: 669: 654: 650: 649: 644: 635: 631: 629: 626: 625: 606: 603: 602: 585: 581: 579: 576: 575: 553: 549: 542: 538: 536: 533: 532: 504: 501: 500: 480: 477: 476: 459: 448: 447: 446: 444: 441: 440: 418: 417: 415: 412: 411: 395: 392: 391: 375: 372: 371: 354: 343: 342: 341: 339: 336: 335: 313: 312: 310: 307: 306: 286: 269: 264: 260: 259: 253: 242: 241: 240: 226: 225: 223: 220: 219: 201: 184: 179: 175: 174: 168: 157: 156: 155: 141: 140: 138: 135: 134: 128: 116: 81:state variables 61:state variables 41:state variables 12: 11: 5: 3120: 3110: 3109: 3104: 3099: 3083: 3082: 3067: 3056:(4): 605–613. 3033: 3022:(3): 189–244. 3006: 2995:(4): 605–613. 2972: 2961:(3): 189–244. 2945: 2934:(4): 605–613. 2911: 2900:(3): 189–244. 2884: 2873:(3): 189–244. 2857: 2850: 2824: 2789: 2782: 2756: 2721: 2712: 2695: 2686: 2676: 2675: 2673: 2670: 2669: 2668: 2663: 2658: 2651: 2648: 2642: 2639: 2624: 2620: 2607: 2606: 2593: 2588: 2582: 2578: 2574: 2571: 2567: 2560: 2555: 2551: 2545: 2540: 2533: 2530: 2515: 2514: 2501: 2496: 2490: 2486: 2480: 2477: 2473: 2469: 2466: 2462: 2456: 2451: 2445: 2441: 2437: 2434: 2430: 2426: 2419: 2414: 2408: 2404: 2400: 2397: 2393: 2388: 2382: 2376: 2372: 2366: 2359: 2356: 2349: 2344: 2337: 2334: 2319: 2318: 2305: 2300: 2294: 2290: 2284: 2281: 2277: 2273: 2270: 2266: 2260: 2255: 2251: 2248: 2241: 2236: 2230: 2226: 2222: 2219: 2215: 2210: 2204: 2198: 2192: 2187: 2183: 2179: 2173: 2170: 2166: 2160: 2156: 2150: 2143: 2140: 2133: 2127: 2124: 2105: 2102: 2087: 2083: 2060: 2057: 2053: 2032: 2012: 1990: 1983: 1980: 1962: 1961: 1948: 1943: 1939: 1936: 1933: 1929: 1922: 1917: 1913: 1907: 1901: 1898: 1884: 1883: 1870: 1865: 1861: 1856: 1853: 1849: 1845: 1842: 1838: 1831: 1827: 1821: 1814: 1811: 1804: 1798: 1795: 1776: 1773: 1754: 1750: 1729: 1709: 1689: 1667: 1663: 1640: 1636: 1615: 1595: 1592: 1572: 1550: 1543: 1540: 1525: 1524: 1509: 1502: 1499: 1492: 1482: 1478: 1474: 1471: 1466: 1461: 1457: 1451: 1447: 1443: 1437: 1432: 1428: 1416: 1415: 1400: 1395: 1392: 1387: 1383: 1380: 1375: 1371: 1367: 1363: 1358: 1353: 1348: 1344: 1338: 1331: 1328: 1321: 1315: 1312: 1298: 1297: 1282: 1277: 1274: 1269: 1265: 1262: 1259: 1254: 1251: 1245: 1240: 1236: 1230: 1223: 1220: 1213: 1207: 1204: 1185: 1182: 1167: 1162: 1158: 1137: 1115: 1108: 1105: 1090: 1089: 1077: 1072: 1068: 1065: 1062: 1058: 1054: 1047: 1042: 1038: 1035: 1032: 1028: 1023: 1017: 1011: 1007: 1001: 994: 991: 984: 978: 975: 961: 960: 948: 943: 939: 936: 929: 924: 920: 917: 914: 910: 905: 899: 893: 887: 882: 878: 874: 868: 865: 861: 855: 851: 845: 838: 835: 828: 822: 819: 800: 797: 791: 788: 772: 767: 763: 736: 731: 727: 712: 711: 695: 691: 685: 678: 675: 667: 663: 660: 657: 653: 648: 643: 638: 634: 610: 588: 584: 562: 556: 552: 548: 545: 541: 520: 517: 514: 511: 508: 484: 462: 455: 452: 425: 422: 399: 379: 357: 350: 347: 320: 317: 303: 302: 289: 284: 278: 275: 272: 268: 263: 256: 249: 246: 239: 233: 230: 217: 204: 199: 193: 190: 187: 183: 178: 171: 164: 161: 154: 148: 145: 127: 124: 115: 112: 104:micromechanics 9: 6: 4: 3: 2: 3119: 3108: 3105: 3103: 3100: 3098: 3095: 3094: 3092: 3078: 3071: 3063: 3059: 3055: 3051: 3044: 3037: 3029: 3025: 3021: 3017: 3010: 3002: 2998: 2994: 2990: 2983: 2976: 2968: 2964: 2960: 2956: 2949: 2941: 2937: 2933: 2929: 2922: 2915: 2907: 2903: 2899: 2895: 2888: 2880: 2876: 2872: 2868: 2861: 2853: 2847: 2843: 2839: 2835: 2828: 2820: 2816: 2812: 2808: 2804: 2800: 2793: 2785: 2779: 2775: 2771: 2767: 2760: 2752: 2748: 2744: 2740: 2736: 2732: 2725: 2716: 2709: 2708:9780444416551 2705: 2699: 2690: 2681: 2677: 2667: 2664: 2662: 2659: 2657: 2654: 2653: 2647: 2638: 2622: 2618: 2591: 2586: 2580: 2576: 2572: 2569: 2565: 2558: 2549: 2543: 2538: 2531: 2528: 2517: 2516: 2499: 2494: 2488: 2484: 2471: 2467: 2464: 2460: 2454: 2449: 2443: 2439: 2435: 2432: 2428: 2424: 2417: 2412: 2406: 2402: 2398: 2395: 2391: 2386: 2380: 2374: 2370: 2364: 2357: 2354: 2347: 2342: 2335: 2332: 2321: 2320: 2303: 2298: 2292: 2288: 2275: 2271: 2268: 2264: 2258: 2253: 2249: 2246: 2239: 2234: 2228: 2224: 2220: 2217: 2213: 2208: 2202: 2196: 2190: 2185: 2181: 2177: 2171: 2168: 2164: 2158: 2154: 2148: 2141: 2138: 2131: 2125: 2122: 2112: 2111: 2110: 2101: 2081: 2051: 2030: 2010: 1988: 1981: 1978: 1946: 1941: 1937: 1934: 1931: 1927: 1920: 1911: 1905: 1899: 1896: 1886: 1885: 1868: 1863: 1859: 1847: 1843: 1840: 1836: 1829: 1825: 1819: 1812: 1809: 1802: 1796: 1793: 1783: 1782: 1781: 1772: 1770: 1752: 1748: 1727: 1707: 1665: 1661: 1638: 1634: 1613: 1593: 1590: 1570: 1548: 1541: 1538: 1507: 1500: 1497: 1490: 1480: 1476: 1472: 1469: 1459: 1455: 1449: 1445: 1441: 1435: 1430: 1426: 1418: 1417: 1398: 1393: 1390: 1385: 1381: 1378: 1373: 1369: 1365: 1361: 1356: 1351: 1346: 1342: 1336: 1329: 1326: 1319: 1313: 1310: 1300: 1299: 1280: 1275: 1272: 1267: 1263: 1260: 1257: 1252: 1249: 1243: 1238: 1234: 1228: 1221: 1218: 1211: 1205: 1202: 1192: 1191: 1190: 1181: 1165: 1160: 1156: 1135: 1113: 1106: 1103: 1075: 1070: 1066: 1063: 1060: 1056: 1052: 1045: 1040: 1036: 1033: 1030: 1026: 1021: 1015: 1009: 1005: 999: 992: 989: 982: 976: 973: 963: 962: 946: 941: 937: 934: 927: 922: 918: 915: 912: 908: 903: 897: 891: 885: 880: 876: 872: 866: 863: 859: 853: 849: 843: 836: 833: 826: 820: 817: 807: 806: 805: 796: 787: 770: 765: 761: 734: 729: 725: 693: 689: 683: 676: 673: 665: 661: 658: 655: 651: 646: 641: 636: 632: 624: 623: 622: 608: 586: 582: 560: 554: 550: 546: 543: 539: 515: 512: 509: 496: 482: 460: 453: 450: 423: 420: 397: 377: 355: 348: 345: 318: 315: 287: 282: 276: 273: 270: 266: 261: 254: 247: 244: 237: 231: 228: 218: 202: 197: 191: 188: 185: 181: 176: 169: 162: 159: 152: 146: 143: 133: 132: 131: 123: 121: 111: 109: 105: 101: 97: 93: 89: 88:thermodynamic 86: 82: 78: 74: 70: 66: 62: 58: 54: 50: 46: 42: 38: 34: 30: 26: 21: 18: 3076: 3070: 3053: 3049: 3036: 3019: 3015: 3009: 2992: 2988: 2975: 2958: 2954: 2948: 2931: 2927: 2914: 2897: 2893: 2887: 2870: 2866: 2860: 2833: 2827: 2805:(1): 11–18. 2802: 2798: 2792: 2765: 2759: 2737:(1): 11–18. 2734: 2730: 2724: 2715: 2698: 2689: 2680: 2644: 2608: 2107: 1963: 1778: 1526: 1187: 1091: 802: 793: 713: 497: 304: 129: 117: 91: 64: 44: 36: 22: 16: 15: 2836:: 342–349. 2768:: 342–349. 1769:Coble creep 69:macroscopic 3091:Categories 2672:References 96:plasticity 2819:116979654 2751:116979654 2619:ω 2577:ω 2573:− 2554:′ 2532:˙ 2529:ω 2485:ω 2479:′ 2476:′ 2440:ω 2436:− 2425:− 2403:ω 2399:− 2371:σ 2358:˙ 2355:ϵ 2336:˙ 2333:ω 2289:ω 2283:′ 2280:′ 2247:− 2225:ω 2221:− 2155:σ 2142:˙ 2139:ϵ 2126:˙ 2123:ϵ 2086:′ 2059:′ 2056:′ 2011:σ 1982:˙ 1979:ϵ 1938:ω 1935:− 1916:′ 1900:˙ 1897:ω 1860:ω 1855:′ 1852:′ 1826:σ 1813:˙ 1810:ϵ 1797:˙ 1794:ϵ 1749:ϕ 1688:Ω 1662:δ 1571:σ 1542:˙ 1539:ϵ 1501:˙ 1498:ε 1465:Ω 1456:δ 1427:ϕ 1394:ω 1382:⁡ 1362:ω 1352:σ 1343:ϕ 1330:˙ 1327:ϵ 1314:˙ 1311:ω 1276:ω 1264:⁡ 1244:σ 1235:ϕ 1222:˙ 1219:ϵ 1206:˙ 1203:ϵ 1136:σ 1107:˙ 1104:ϵ 1067:ω 1064:− 1053:− 1037:ω 1034:− 1006:σ 993:˙ 990:ϵ 977:˙ 974:ω 935:− 919:ω 916:− 850:σ 837:˙ 834:ϵ 821:˙ 818:ϵ 771:˙ 762:ω 735:˙ 726:ϵ 690:σ 677:˙ 674:ω 609:σ 583:ω 551:ω 544:ω 510:ω 454:˙ 451:ω 424:˙ 421:ω 378:σ 349:˙ 346:ϵ 319:˙ 316:ϵ 277:ω 274:− 267:σ 248:˙ 245:ω 232:˙ 229:ω 192:ω 189:− 182:σ 163:˙ 160:ϵ 147:˙ 144:ϵ 100:hardening 85:conjugate 73:stiffness 53:stiffness 2650:See also 305:Where, 51:on the 45:effects 2848:  2817:  2780:  2749:  2706:  1972:  1964:Where, 1527:Where, 1092:Where, 92:intact 65:effect 59:. The 57:ageing 49:damage 3046:(PDF) 2985:(PDF) 2924:(PDF) 2815:S2CID 2747:S2CID 574:. If 120:creep 83:have 39:uses 2846:ISBN 2778:ISBN 2704:ISBN 3058:doi 3024:doi 2997:doi 2963:doi 2936:doi 2902:doi 2875:doi 2838:doi 2807:doi 2770:doi 2739:doi 47:of 3093:: 3054:23 3052:. 3048:. 3020:27 3018:. 2993:23 2991:. 2987:. 2959:27 2957:. 2932:23 2930:. 2926:. 2898:27 2896:. 2871:27 2869:. 2844:. 2813:. 2803:97 2801:. 2776:. 2745:. 2735:97 2733:. 2637:. 1379:ln 1261:ln 621:: 110:. 75:, 3079:. 3064:. 3060:: 3030:. 3026:: 3003:. 2999:: 2969:. 2965:: 2942:. 2938:: 2908:. 2904:: 2881:. 2877:: 2854:. 2840:: 2821:. 2809:: 2786:. 2772:: 2753:. 2741:: 2710:. 2623:1 2592:4 2587:) 2581:2 2570:1 2566:( 2559:3 2550:K 2544:= 2539:2 2500:n 2495:) 2489:2 2472:K 2468:+ 2465:1 2461:( 2455:) 2450:) 2444:1 2433:1 2429:( 2418:n 2413:) 2407:1 2396:1 2392:( 2387:1 2381:( 2375:n 2365:0 2348:= 2343:1 2304:n 2299:) 2293:2 2276:K 2272:+ 2269:1 2265:( 2259:) 2254:] 2250:1 2240:n 2235:) 2229:1 2218:1 2214:( 2209:1 2203:[ 2197:d 2191:0 2186:h 2182:r 2178:2 2172:+ 2169:1 2165:( 2159:n 2149:0 2132:= 2082:K 2052:K 2031:n 1989:0 1947:4 1942:) 1932:1 1928:( 1921:3 1912:K 1906:= 1869:n 1864:) 1848:K 1844:+ 1841:1 1837:( 1830:n 1820:0 1803:= 1753:0 1728:T 1708:k 1666:B 1639:B 1635:D 1614:d 1594:l 1591:2 1549:0 1508:0 1491:1 1481:3 1477:l 1473:T 1470:k 1460:B 1450:B 1446:D 1442:2 1436:= 1431:0 1399:) 1391:1 1386:( 1374:2 1370:/ 1366:1 1357:1 1347:0 1337:0 1320:= 1281:) 1273:1 1268:( 1258:d 1253:l 1250:2 1239:0 1229:0 1212:= 1166:0 1161:h 1157:r 1114:0 1076:) 1071:) 1061:1 1057:( 1046:n 1041:) 1031:1 1027:( 1022:1 1016:( 1010:n 1000:0 983:= 947:) 942:] 938:1 928:n 923:) 913:1 909:( 904:1 898:[ 892:d 886:0 881:h 877:r 873:2 867:+ 864:1 860:( 854:n 844:0 827:= 766:0 730:0 694:m 684:0 666:) 662:1 659:+ 656:m 652:( 647:1 642:= 637:f 633:t 587:f 561:) 555:f 547:= 540:( 519:) 516:0 513:= 507:( 483:m 461:0 398:n 356:0 288:m 283:) 271:1 262:( 255:0 238:= 203:n 198:) 186:1 177:( 170:0 153:=

Index

Dusan Krajcinovic
applied mechanics
continuum mechanics
state variables
damage
stiffness
ageing
state variables
macroscopic
stiffness
coefficient of thermal expansion
state variables
conjugate
thermodynamic
plasticity
hardening
micromechanics
material properties
creep
Coble creep
Lumped damage mechanics
Failure analysis
Critical plane analysis
ISBN
9780444416551
doi
10.1023/A:1018671022008
S2CID
116979654
doi

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.