Knowledge

DNA computing

Source đź“ť

227:
complete. While newer ways with external enzyme sources are reporting faster and more compact circuits, Chatterjee et al. demonstrated an interesting idea in the field to speed up computation through localized DNA circuits, a concept being further explored by other groups. This idea, while originally proposed in the field of computer architecture, has been adopted in this field as well. In computer architecture, it is very well-known that if the instructions are executed in sequence, having them loaded in the cache will inevitably lead to fast performance, also called the principle of localization. This is because with instructions in fast cache memory, there is no need swap them in and out of main memory, which can be slow. Similarly, in
457: 444:, which itself is a tumor suppressor. On negative diagnosis it was decided to release a suppressor of the positive diagnosis drug instead of doing nothing. A limitation of this implementation is that two separate automata are required, one to administer each drug. The entire process of evaluation until drug release took around an hour to complete. This method also requires transition molecules as well as the FokI enzyme to be present. The requirement for the FokI enzyme limits application 105:
required in Adleman's implementation would grow exponentially. Therefore, computer scientists and biochemists started exploring tile-assembly where the goal was to use a small set of DNA strands as tiles to perform arbitrary computations upon growth. Other avenues that were theoretically explored in the late 90's include DNA-based security and cryptography, computational capacity of DNA systems, DNA memories and disks, and DNA-based robotics.
148:. Within seconds, the small fragments form bigger ones, representing the different travel routes. Through a chemical reaction, the DNA fragments representing the longer routes were eliminated. The remains are the solution to the problem, but overall, the experiment lasted a week. However, current technical limitations prevent the evaluation of the results. Therefore, the experiment isn't suitable for the application, but it is nevertheless a 205:
input #i. These strands bind to certain DNA enzymes present in the bins, resulting, in one of these bins, in the deformation of the DNA enzymes which binds to the substrate and cuts it. The corresponding bin becomes fluorescent, indicating which box is being played by the DNA computer. The DNA enzymes are divided among the bins in such a way as to ensure that the best the human player can achieve is a draw, as in real tic-tac-toe.
320:, or toehold, on another DNA molecule, which allows it to displace another strand segment from the molecule. This allows the creation of modular logic components such as AND, OR, and NOT gates and signal amplifiers, which can be linked into arbitrarily large computers. This class of DNA computers does not require enzymes or any chemical capability of the DNA. 361:
limit. The amount of fluorescence can then be measured to tell whether or not a reaction took place. The DNAzyme that changes is then "used", and cannot initiate any more reactions. Because of this, these reactions take place in a device such as a continuous stirred-tank reactor, where old product is removed and new molecules added.
558:
The slow processing speed of a DNA computer (the response time is measured in minutes, hours or days, rather than milliseconds) is compensated by its potential to make a high amount of multiple parallel computations. This allows the system to take a similar amount of time for a complex calculation as
20: 510:
in that it takes advantage of the many different molecules of DNA to try many different possibilities at once. For certain specialized problems, DNA computers are faster and smaller than any other computer built so far. Furthermore, particular mathematical computations have been demonstrated to work
100:
about a decade before Len Adleman's demonstration. Ned's original idea in the 1980s was to build arbitrary structures using bottom-up DNA self-assembly for applications in crystallography. However, it morphed into the field of structural DNA self-assembly which as of 2020 is extremely sophisticated.
84:
Since then the field has expanded into several avenues. In 1995, the idea for DNA-based memory was proposed by Eric Baum who conjectured that a vast amount of data can be stored in a tiny amount of DNA due to its ultra-high density. This expanded the horizon of DNA computing into the realm of memory
204:
By default, the computer is considered to have played first in the central square. The human player starts with eight different types of DNA strands corresponding to the eight remaining boxes that may be played. To play box number i, the human player pours into all bins the strands corresponding to
196:
against a human player. The calculator consists of nine bins corresponding to the nine squares of the game. Each bin contains a substrate and various combinations of DNA enzymes. The substrate itself is composed of a DNA strand onto which was grafted a fluorescent chemical group at one end, and the
226:
One of the challenges of DNA computing is its speed. While DNA as a substrate is biologically compatible i.e. it can be used at places where silicon technology cannot, its computation speed is still very slow. For example, the square-root circuit used as a benchmark in field took over 100 hours to
217:
at Caltech developed a DNA-based artificial neural network that can recognize 100-bit hand-written digits. They achieve this by programming on computer in advance with appropriate set of weights represented by varying concentrations weight molecules which will later be added to the test tube that
360:
The DNAzyme logic gate changes its structure when it binds to a matching oligonucleotide and the fluorogenic substrate it is bonded to is cleaved free. While other materials can be used, most models use a fluorescence-based substrate because it is very easy to detect, even at the single molecule
104:
In 1994, Prof. Seeman's group demonstrated early DNA lattice structures using a small set of DNA components. While the demonstration by Adleman showed the possibility of DNA-based computers, the DNA design was trivial because as the number of nodes in a graph grows, the number of DNA components
263:
for implementing reversible gates and circuits on DNA computers by combining DNA computing and reversible computing techniques. This paper also proposes a universal reversible gate library (URGL) for synthesizing n-bit reversible circuits on DNA computers with an average length and cost of the
255:
and his group at Duke University have proposed two different techniques to reuse the computing DNA complexes. The first design uses dsDNA gates, while the second design uses DNA hairpin complexes. While both the designs face some issues (such as reaction leaks), this appears to represent a
373:
machines, respectively; Stojanovic has also demonstrated logic gates using the 8-17 DNAzyme. While these DNAzymes have been demonstrated to be useful for constructing logic gates, they are limited by the need for a metal cofactor to function, such as Zn or Mn, and thus are not useful
119:
first demonstrated the idea of a DNA-based walker that traversed along a track similar to a line follower robot. They used molecular biology as a source of energy for the walker. Since this first demonstration, a wide variety of DNA-based walkers have been demonstrated.
336:
showed that DNA can be used as a substrate to implement arbitrary chemical reactions. This opened the way to design and synthesis of biochemical controllers since the expressive power of CRNs is equivalent to a Turing machine. Such controllers can potentially be used
144:". For this purpose, different DNA fragments were created, each one of them representing a city that had to be visited. Every one of these fragments is capable of a linkage with the other fragments created. These DNA fragments were produced and mixed in a 231:, the DNA strands responsible for computation are fixed on a breadboard-like substrate ensuring physical proximity of the computing gates. Such localized DNA computing techniques have shown to potentially reduce the computation time by 559:
for a simple one. This is achieved by the fact that millions or billions of molecules interact with each other simultaneously. However, it is much harder to analyze the answers given by a DNA computer than by a digital one.
2263:
Song, Tianqi; Eshra, Abeer; Shah, Shalin; Bui, Hieu; Fu, Daniel; Yang, Ming; Mokhtar, Reem; Reif, John (2019-09-23). "Fast and compact DNA logic circuits based on single-stranded gates using strand-displacing polymerase".
782:
Organick, Lee; Ang, Siena Dumas; Chen, Yuan-Jyue; Lopez, Randolph; Yekhanin, Sergey; Makarychev, Konstantin; Racz, Miklos Z.; Kamath, Govinda; Gopalan, Parikshit; Nguyen, Bichlien; Takahashi, Christopher N. (March 2018).
518:, the study of which problems are computationally solvable using different models of computation. For example, if the space required for the solution of a problem grows exponentially with the size of the problem ( 357:. These DNAzymes are used to build logic gates analogous to digital logic in silicon; however, DNAzymes are limited to 1-, 2-, and 3-input gates with no current implementation for evaluating statements in series. 385:, consisting of a single strand of DNA which has a loop at an end, are a dynamic structure that opens and closes when a piece of DNA bonds to the loop part. This effect has been exploited to create several 1715:
Ong, Luvena L.; Hanikel, Nikita; Yaghi, Omar K.; Grun, Casey; Strauss, Maximilian T.; Bron, Patrick; Lai-Kee-Him, Josephine; Schueder, Florian; Wang, Bei; Wang, Pengfei; Kishi, Jocelyn Y. (December 2017).
364:
Two commonly used DNAzymes are named E6 and 8-17. These are popular because they allow cleaving of a substrate in any arbitrary location. Stojanovic and MacDonald have used the E6 DNAzymes to build the
3508:— The book starts with an introduction to DNA-related matters, the basics of biochemistry and language and computation theory, and progresses to the advanced mathematical theory of DNA computing. 2876:
MacDonald, J.; Li, Y.; Sutovic, M.; Lederman, H.; Pendri, K.; Lu, W.; Andrews, B. L.; Stefanovic, D.; Stojanovic, M. N. (2006). "Medium Scale Integration of Molecular Logic Gates in an Automaton".
50:. Research and development in this area concerns theory, experiments, and applications of DNA computing. Although the field originally started with the demonstration of a computing application by 546:" production. A Caltech group is working on the manufacturing of these nucleic-acid-based integrated circuits. One of these chips can compute whole square roots. A compiler has been written in 328:
The full stack for DNA computing looks very similar to a traditional computer architecture. At the highest level, a C-like general purpose programming language is expressed using a set of
54:
in 1994, it has now been expanded to several other avenues such as the development of storage technologies, nanoscale imaging modalities, synthetic controllers and reaction networks, etc.
436:. Their automata evaluated the expression of each gene, one gene at a time, and on positive diagnosis then released a single strand DNA molecule (ssDNA) that is an antisense for 478:
DNA nanotechnology has been applied to the related field of DNA computing. DNA tiles can be designed to contain multiple sticky ends with sequences chosen so that they act as
2323:
Chatterjee, Gourab; Dalchau, Neil; Muscat, Richard A.; Phillips, Andrew; Seelig, Georg (2017-07-24). "A spatially localized architecture for fast and modular DNA computing".
300:
The most fundamental operation in DNA computing and molecular programming is the strand displacement mechanism. Currently, there are two ways to perform strand displacement:
329: 316:
Besides simple strand displacement schemes, DNA computers have also been constructed using the concept of toehold exchange. In this system, an input DNA strand binds to a
526:, it still grows exponentially with the size of the problem on DNA machines. For very large EXPSPACE problems, the amount of DNA required is too large to be practical. 1396: 3305: 272:
There are multiple methods for building a computing device based on DNA, each with its own advantages and disadvantages. Most of these build the basic logic gates (
2578:
Goel, Ashish; Ibrahimi, Morteza (2009). "Renewable, Time-Responsive DNA Logic Gates for Scalable Digital Circuits". In Deaton, Russell; Suyama, Akira (eds.).
2374:
Bui, Hieu; Shah, Shalin; Mokhtar, Reem; Song, Tianqi; Garg, Sudhanshu; Reif, John (2018-01-25). "Localized DNA Hybridization Chain Reactions on DNA Origami".
3586: 1954:
Yin, Peng; Yan, Hao; Daniell, Xiaoju G.; Turberfield, Andrew J.; Reif, John H. (2004). "A Unidirectional DNA Walker That Moves Autonomously along a Track".
1997: 3543: 3029: 3229: 3503: 3018: 964:
Jungmann, Ralf; Avendaño, Maier S.; Dai, Mingjie; Woehrstein, Johannes B.; Agasti, Sarit S.; Feiger, Zachary; Rodal, Avital; Yin, Peng (May 2016).
1470: 3050: 3591: 2865: 1321: 448:, at least for use in "cells of higher organisms". It should also be pointed out that the 'software' molecules can be reused in this case. 101:
Self-assembled structure from a few nanometers tall all the way up to several tens of micrometers in size have been demonstrated in 2018.
1084:
Chen, Yuan-Jyue; Dalchau, Neil; Srinivas, Niranjan; Phillips, Andrew; Cardelli, Luca; Soloveichik, David; Seelig, Georg (October 2013).
332:. This intermediate representation gets translated to domain-level DNA design and then implemented using a set of DNA strands. In 2010, 1427: 1352: 498:. This shows that computation can be incorporated into the assembly of DNA arrays, increasing its scope beyond simple periodic arrays. 256:
significant breakthrough in the field of DNA computing. Some other groups have also attempted to address the gate reusability problem.
197:
other end, a repressor group. Fluorescence is only active if the molecules of the substrate are cut in half. The DNA enzymes simulate
2911: 838:
Shah, Shalin; Dubey, Abhishek K.; Reif, John (2019-04-10). "Programming Temporal DNA Barcodes for Single-Molecule Fingerprinting".
366: 515: 2953: 201:. For example, such a DNA will unfold if two specific types of DNA strand are introduced to reproduce the logic function AND. 3525: 3487: 3463: 2595: 3164: 2084:
Qian, Lulu; Winfree, Erik; Bruck, Jehoshua (July 2011). "Neural network computation with DNA strand displacement cascades".
1403: 3407: 3278:
Kahan, M.; Gil, B.; Adar, R.; Shapiro, E. (2008). "Towards molecular computers that operate in a biological environment".
2468: 3570: 3453: 1030:; Chen, Yuan-Jyue; Reif, John (2020-05-04). "Using Strand Displacing Polymerase To Program Chemical Reaction Networks". 252: 66: 2204:
Qian, L.; Winfree, E. (2011-06-02). "Scaling Up Digital Circuit Computation with DNA Strand Displacement Cascades".
473: 3621: 3241:
Bond, G. L.; Hu, W.; Levine, A. J. (2005). "MDM2 is a Central Node in the p53 Pathway: 12 Years and Counting".
1391: 136:
was a test tube filled with 100 microliters of a DNA solution. He managed to solve an instance of the directed
2653: 3616: 3062: 2005: 3026: 3641: 3515: 3636: 3243: 1466: 141: 112:
showed that the DNA operations performed by genetic recombination in some organisms are Turing complete.
3015: 2923: 2531:"Renewable DNA seesaw logic circuits enabled by photoregulation of toehold-mediated strand displacement" 3626: 3092: 1782: 140:
problem. In Adleman's experiment, the Hamiltonian Path Problem was implemented notationally as the "
2582:. Lecture Notes in Computer Science. Vol. 5877. Berlin, Heidelberg: Springer. pp. 67–77. 2018:
Braich, Ravinderjit S., et al. "Solution of a satisfiability problem on a gel-based DNA computer."
1316: 1293: 589: 523: 169: 74: 31: 3601: 1152:
Srinivas, Niranjan; Parkin, James; Seelig, Georg; Winfree, Erik; Soloveichik, David (2017-12-15).
3564: 1328: 353:
or DNAzyme) catalyze a reaction when interacting with the appropriate input, such as a matching
1288: 247:, bringing the technology one step closer to the silicon-based computing used in (for example) 2466:
Eshra, A.; Shah, S.; Song, T.; Reif, J. (2019). "Renewable DNA hairpin-based logic circuits".
1718:"Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components" 3576: 1900: 604: 584: 3422: 3379: 3287: 3193: 3126: 2885: 2781: 2722: 2668: 2624: 2542: 2487: 2332: 2273: 2213: 2151: 2041: 1849: 1837: 1794: 1729: 1665: 1602: 1547: 1494: 1280: 1217: 1097: 910: 847: 732: 667: 634: 409:; there is analogous hardware, in the form of an enzyme, and software, in the form of DNA. 192:
In 2002, J. Macdonald, D. Stefanović and M. Stojanović created a DNA computer able to play
47: 3433: 2417:
Garg, Sudhanshu; Shah, Shalin; Bui, Hieu; Song, Tianqi; Mokhtar, Reem; Reif, John (2018).
1899:
Bancroft, Carter; Bowler, Timothy; Bloom, Brian; Clelland, Catherine Taylor (2001-09-07).
416:
enzyme and expanded on their work by going on to show automata that diagnose and react to
8: 2140:"Scaling up molecular pattern recognition with DNA-based winner-take-all neural networks" 3581: 3383: 3291: 3197: 3130: 2889: 2785: 2726: 2672: 2628: 2546: 2491: 2336: 2277: 2217: 2155: 2045: 1853: 1798: 1733: 1669: 1606: 1551: 1498: 1284: 1221: 1101: 914: 851: 736: 671: 3513: 3497: 3214: 3181: 3147: 3114: 3079: 2855: 2830:
Stojanovic, M. N.; Stefanovic, D. (2003). "A deoxyribozyme-based molecular automaton".
2746: 2692: 2511: 2477: 2305: 2245: 2183: 2117: 2071: 1936: 1881: 1758: 1717: 1697: 1634: 1271:
Adleman, L. M. (1994). "Molecular computation of solutions to combinatorial problems".
1248: 1205: 1126: 1085: 1063: 998: 965: 941: 898: 879: 820: 764: 701: 614: 599: 579: 507: 487: 93: 3554: 3347: 3320: 2053: 1806: 1459: 1384: 1367: 259:
Using strand displacement reactions (SRDs), reversible proposals are presented in the
3560: 3548: 3521: 3483: 3459: 3352: 3260: 3219: 3152: 3084: 2997: 2943: 2901: 2847: 2809: 2804: 2769: 2756: 2738: 2684: 2591: 2560: 2503: 2448: 2440: 2399: 2391: 2356: 2348: 2309: 2297: 2289: 2237: 2229: 2175: 2167: 2109: 2101: 1979: 1971: 1928: 1920: 1873: 1865: 1818: 1810: 1763: 1745: 1701: 1689: 1681: 1626: 1618: 1571: 1563: 1559: 1520: 1512: 1421: 1346: 1306: 1253: 1235: 1183: 1175: 1131: 1113: 1067: 1055: 1047: 1003: 985: 946: 928: 871: 863: 824: 812: 804: 756: 748: 693: 685: 619: 609: 574: 495: 461: 248: 43: 3113:
Benenson, Y.; Paz-Elizur, T.; Adar, R.; Keinan, E.; Livneh, Z.; Shapiro, E. (2001).
2696: 2249: 2187: 1940: 883: 768: 3387: 3342: 3332: 3295: 3252: 3209: 3201: 3142: 3134: 3074: 3066: 2987: 2982: 2977: 2965: 2935: 2893: 2839: 2799: 2789: 2750: 2730: 2676: 2632: 2583: 2550: 2515: 2495: 2430: 2383: 2340: 2281: 2221: 2159: 2121: 2093: 2049: 1963: 1916: 1912: 1885: 1857: 1802: 1753: 1737: 1673: 1638: 1610: 1555: 1502: 1454: 1379: 1298: 1243: 1225: 1165: 1121: 1105: 1039: 993: 977: 936: 918: 855: 796: 740: 675: 629: 180: 149: 137: 70: 2859: 2734: 705: 3411: 3337: 3168: 3162: 3033: 3022: 2819: 1861: 1781:
Leier, André; Richter, Christoph; Banzhaf, Wolfgang; Rauhe, Hilmar (2000-06-01).
1591:"Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns" 859: 456: 417: 354: 289: 232: 228: 161: 129: 62: 51: 3404: 3299: 2587: 2499: 1442: 594: 406: 244: 198: 78: 3473: 2285: 2163: 1653: 1590: 899:"Wide-field subdiffraction imaging by accumulated binding of diffusing probes" 3610: 3256: 2564: 2507: 2444: 2395: 2352: 2293: 2233: 2171: 2139: 2105: 1975: 1924: 1869: 1814: 1749: 1685: 1622: 1567: 1516: 1315:— The first DNA computing paper. Describes a solution for the directed 1239: 1179: 1117: 1051: 1027: 989: 932: 867: 808: 752: 689: 464:
on their surfaces. Click the image for further details. Image from Rothemund
350: 285: 3514:
Zoja Ignatova; Israel Martinez-Perez; Karl-Heinz Zimmermann (January 2008).
3423:
Scaling Up Digital Circuit Computation with DNA Strand Displacement Cascades
2680: 2387: 2225: 1507: 1482: 1302: 1230: 1170: 1153: 923: 744: 680: 655: 412:
Benenson, Shapiro and colleagues have demonstrated a DNA computer using the
92:
The field of DNA computing can be categorized as a sub-field of the broader
77:. Since the initial Adleman experiments, advances have occurred and various 3631: 3475: 3356: 3264: 3223: 3156: 3088: 3070: 3046: 3001: 2947: 2905: 2851: 2794: 2742: 2688: 2452: 2435: 2418: 2403: 2360: 2344: 2301: 2241: 2179: 2113: 1983: 1967: 1932: 1822: 1767: 1693: 1630: 1257: 1187: 1135: 1109: 1059: 1007: 950: 875: 816: 784: 760: 697: 624: 514:
DNA computing does not provide any new capabilities from the standpoint of
483: 260: 39: 2813: 2652:
Seelig, G.; Soloveichik, D.; Zhang, D. Y.; Winfree, E. (8 December 2006).
1877: 1575: 1524: 1310: 3449: 3182:"An autonomous molecular computer for logical control of gene expression" 1043: 569: 394: 281: 273: 193: 176: 3391: 3205: 2637: 2612: 2097: 1741: 1677: 1614: 1538:
Seeman, Nadrian C. (1982-11-21). "Nucleic acid junctions and lattices".
3230:
An autonomous molecular computer for logical control of gene expression
2992: 2555: 2530: 1652:
Wagenbauer, Klaus F.; Sigl, Christian; Dietz, Hendrik (December 2017).
981: 433: 386: 333: 317: 277: 221: 2939: 2897: 2713:
Weiss, S. (1999). "Fluorescence Spectroscopy of Single Biomolecules".
389:. These logic gates have been used to create the computers MAYA I and 3138: 800: 479: 214: 145: 133: 109: 19: 3115:"Programmable and autonomous computing machine made of biomolecules" 3051:"A Mechanical Turing Machine: Blueprint for a Biomolecular Computer" 2843: 2482: 1589:
Tikhomirov, Grigory; Petersen, Philip; Qian, Lulu (December 2017).
720: 543: 519: 116: 3180:
Benenson, Y.; Gil, B.; Ben-Dor, U.; Adar, R.; Shapiro, E. (2004).
2966:"Dinucleotide Junction Cleavage Versatility of 8-17 Deoxyribozyme" 721:"DNA Fountain enables a robust and efficient storage architecture" 261:"Synthesis Strategy of Reversible Circuits on DNA Computers" paper 123: 97: 539: 491: 390: 375: 370: 73:
use of DNA as a form of computation which solved the seven-point
3597:
International Meeting on DNA Computing and Molecular Programming
3596: 2529:
Song, Xin; Eshra, Abeer; Dwyer, Chris; Reif, John (2017-05-25).
1836:
Guarnieri, Frank; Fliss, Makiko; Bancroft, Carter (1996-07-12).
288:
from a DNA basis. Some of the different bases include DNAzymes,
2322: 1204:
Soloveichik, David; Seelig, Georg; Winfree, Erik (2010-03-23).
421: 405:
Enzyme-based DNA computers are usually of the form of a simple
69:
initially developed this field in 1994. Adleman demonstrated a
23:
The biocompatible computing device: Deoxyribonucleic acid (DNA)
1469:, a hard-on-average NP-complete problem. Also available here: 2651: 1483:"Building an associative memory vastly larger than the brain" 1366:
Boneh, D.; Dunworth, C.; Lipton, R. J.; Sgall, J. ĂŤ. (1996).
963: 482:. A DX array has been demonstrated whose assembly encodes an 425: 3112: 2921: 2613:"Synthesis Strategy of Reversible Circuits on DNA Computers" 1443:"Using DNA to solve the Bounded Post Correspondence Problem" 2922:
Stojanovic, M. N.; Mitchell, T. E.; Stefanovic, D. (2002).
1898: 1440: 1151: 1083: 547: 437: 429: 413: 3027:
MAYA II, a second-generation tic-tac-toe playing automaton
2875: 238: 3318: 535: 441: 35: 3470:— The first general text to cover the whole field. 3319:
Rothemund, P. W. K.; Papadakis, N.; Winfree, E. (2004).
1953: 1780: 1365: 1203: 341:
for applications such as preventing hormonal imbalance.
3321:"Algorithmic Self-Assembly of DNA Sierpinski Triangles" 897:
Sharonov, Alexey; Hochstrasser, Robin M. (2006-12-12).
264:
constructed circuits better than the previous methods.
3592:
Japanese Researchers store information in bacteria DNA
3587:
Bringing DNA computers to life, in Scientific American
3582:- The New York Times DNA Computer for detecting Cancer 3179: 1835: 1588: 1026:
Shah, Shalin; Wee, Jasmine; Song, Tianqi; Ceze, Luis;
3314: 3312: 132:
presented the first prototype of a DNA computer. The
3532:— A new general text to cover the whole field. 2829: 1654:"Gigadalton-scale shape-programmable DNA assemblies" 1206:"DNA as a universal substrate for chemical kinetics" 896: 781: 656:"Next-Generation Digital Information Storage in DNA" 486:
operation; this allows the DNA array to implement a
323: 222:
Improved speed with Localized (cache-like) Computing
3277: 1714: 1651: 966:"Quantitative super-resolution imaging with qPAINT" 3309: 2757:http://www.lps.ens.fr/~vincent/smb/PDF/weiss-1.pdf 2528: 2373: 243:Subsequent research on DNA computing has produced 3559:. In: Die Neue Gesellschaft / Frankfurter Hefte 2465: 2068:Des assemblages d'ADN rompus au jeu et au travail 2032:Adleman, Leonard M (1998). "Computing with DNA". 1998:"Biocomputing researcher awarded the Bucke Prize" 1086:"Programmable chemical controllers made from DNA" 654:Church, G. M.; Gao, Y.; Kosuri, S. (2012-08-16). 295: 208: 160:First results to these problems were obtained by 3608: 2262: 2083: 2066:- J. Macdonald, D. Stefanovic et M. Stojanovic, 1441:Lila Kari; Greg Gloor; Sheng Yu (January 2000). 460:DNA arrays that display a representation of the 89:demonstrations were made almost after a decade. 2964:Cruz, R. P. G.; Withers, J. B.; Li, Y. (2004). 2774:Proceedings of the National Academy of Sciences 2416: 1210:Proceedings of the National Academy of Sciences 1025: 903:Proceedings of the National Academy of Sciences 785:"Random access in large-scale DNA data storage" 718: 653: 124:Applications, examples, and recent developments 3173: 3602:LiveScience.com-How DNA Could Power Computers 2963: 837: 719:Erlich, Yaniv; Zielinski, Dina (2017-03-02). 474:DNA nanotechnology: Algorithmic self-assembly 3502:: CS1 maint: multiple names: authors list ( 3455:Theoretical and Experimental DNA Computation 3240: 2767: 2610: 2577: 1154:"Enzyme-free nucleic acid dynamical systems" 451: 3448: 2770:"A general purpose RNA-cleaving DNA enzyme" 2203: 2138:Cherry, Kevin M.; Qian, Lulu (2018-07-04). 2074:, No. 375, January 2009, p. 68-75 529: 304:Toehold mediated strand displacement (TMSD) 2611:Rofail, Mirna; Younes, Ahmed (July 2021). 2137: 2022:. Springer Berlin Heidelberg, 2001. 27-42. 307:Polymerase-based strand displacement (PSD) 16:Computing using molecular biology hardware 3346: 3336: 3213: 3146: 3078: 2991: 2981: 2803: 2793: 2654:"Enzyme-free nucleic acid logic circuits" 2636: 2554: 2481: 2434: 1901:"Long-Term Storage of Information in DNA" 1757: 1506: 1458: 1383: 1292: 1247: 1229: 1169: 1125: 997: 940: 922: 679: 155: 2928:Journal of the American Chemical Society 2708: 2706: 2419:"Renewable Time-Responsive DNA Circuits" 1032:Journal of the American Chemical Society 455: 18: 3480:DNA Computing - New Computing Paradigms 3271: 3106: 3045: 2580:DNA Computing and Molecular Programming 2031: 1956:Angewandte Chemie International Edition 1465:— Describes a solution for the bounded 1270: 239:Renewable (or reversible) DNA computing 3609: 3458:. Natural Computing Series. Springer. 3372:Computing in Science & Engineering 3370:Lewin, D. I. (2002). "DNA computing". 1783:"Cryptography with DNA binary strands" 1537: 1426:: CS1 maint: archived copy as title ( 1351:: CS1 maint: archived copy as title ( 81:have been proven to be constructible. 3567:, Heft 2/96, Februar 1996, S. 170–172 3369: 2768:Santoro, S. W.; Joyce, G. F. (1997). 2712: 2703: 2199: 2197: 2133: 2131: 1990: 1390:— Describes a solution for the 1199: 1197: 46:hardware, instead of the traditional 1480: 1147: 1145: 1079: 1077: 1021: 1019: 1017: 2469:IEEE Transactions on Nanotechnology 1947: 1368:"On the computational power of DNA" 1264: 542:was established in 2009 aiming at " 311: 187: 13: 3474:Gheorge Paun, Grzegorz Rozenberg, 3441: 2367: 2256: 2194: 2128: 1194: 14: 3653: 3537: 2924:"Deoxyribozyme-Based Logic Gates" 2054:10.1038/scientificamerican0898-54 1142: 1074: 1014: 957: 647: 330:chemical reaction networks (CRNs) 324:Chemical reaction networks (CRNs) 292:, enzymes, and toehold exchange. 67:University of Southern California 553: 420:: under expression of the genes 3427: 3416: 3398: 3363: 3234: 3039: 3008: 2957: 2915: 2869: 2823: 2761: 2645: 2604: 2571: 2522: 2459: 2410: 2316: 2077: 2060: 2025: 2012: 1892: 1829: 1774: 1708: 1645: 1582: 1531: 1474: 1434: 1359: 501: 3556:DNS – Ein neuer Supercomputer? 3280:Physica D: Nonlinear Phenomena 2983:10.1016/j.chembiol.2003.12.012 1917:10.1126/science.293.5536.1763c 1540:Journal of Theoretical Biology 1392:Boolean satisfiability problem 890: 831: 775: 712: 296:Strand displacement mechanisms 209:Neural network based computing 1: 3063:Weizmann Institute of Science 2735:10.1126/science.283.5408.1676 2006:University of Western Ontario 1807:10.1016/S0303-2647(00)00083-6 1460:10.1016/s0304-3975(99)00100-0 1385:10.1016/S0166-218X(96)00058-3 641: 218:holds the input DNA strands. 3338:10.1371/journal.pbio.0020424 1862:10.1126/science.273.5272.220 1560:10.1016/0022-5193(82)90002-9 1447:Theoretical Computer Science 1372:Discrete Applied Mathematics 860:10.1021/acs.nanolett.9b00590 7: 3549:How Stuff Works explanation 3300:10.1016/j.physd.2008.01.027 3244:Current Cancer Drug Targets 2588:10.1007/978-3-642-10604-0_7 1467:Post correspondence problem 562: 506:DNA computing is a form of 344: 142:travelling salesman problem 10: 3658: 3571:'DNA computer' cracks code 3014:Darko Stefanovic's Group, 2500:10.1109/TNANO.2019.2896189 1481:Baum, E. B. (1995-04-28). 471: 428:and an over expression of 400: 267: 183:problem with 20 variables. 172:in a graph with 7 summits. 57: 3520:. Springer. p. 288. 3410:October 14, 2011, at the 2286:10.1038/s41565-019-0544-5 2164:10.1038/s41586-018-0289-6 452:Algorithmic self-assembly 440:. MDM2 is a repressor of 30:is an emerging branch of 3406:(Caltech's own article) 3257:10.2174/1568009053332627 1317:Hamiltonian path problem 590:DNA digital data storage 530:Alternative technologies 245:reversible DNA computing 85:technology although the 75:Hamiltonian path problem 32:unconventional computing 3304:. Also available here: 3228:. Also available here: 3161:. Also available here: 2970:Chemistry & Biology 2910:. Also available here: 2864:. Also available here: 2818:. Also available here: 2755:. Also available here: 2681:10.1126/science.1132493 2388:10.1021/acsnano.7b06699 2226:10.1126/science.1200520 1508:10.1126/science.7725109 1394:. Also available here: 1319:. Also available here: 1303:10.1126/science.7973651 1231:10.1073/pnas.0909380107 1171:10.1126/science.aal2052 924:10.1073/pnas.0609643104 745:10.1126/science.aaj2038 681:10.1126/science.1226355 229:localized DNA computing 3071:10.1098/rsfs.2011.0118 2795:10.1073/pnas.94.9.4262 2436:10.1002/smll.201801470 2345:10.1038/nnano.2017.127 1968:10.1002/anie.200460522 1110:10.1038/nnano.2013.189 534:A partnership between 469: 156:Combinatorial problems 24: 3622:Models of computation 3544:DNA modeled computing 3016:Molecular Logic Gates 2325:Nature Nanotechnology 2266:Nature Nanotechnology 1090:Nature Nanotechnology 605:Molecular electronics 585:DNA code construction 459: 290:deoxyoligonucleotides 179:problem as well as a 22: 3617:Classes of computers 3517:DNA Computing Models 2952:. Also available at 2832:Nature Biotechnology 1044:10.1021/jacs.0c02240 789:Nature Biotechnology 635:Molecular logic gate 524:von Neumann machines 516:computability theory 334:Erik Winfree's group 48:electronic computing 3642:American inventions 3482:. Springer-Verlag. 3392:10.1109/5992.998634 3384:2002CSE.....4c...5L 3292:2008PhyD..237.1165K 3206:10.1038/nature02551 3198:2004Natur.429..423B 3131:2001Natur.414..430B 2890:2006NanoL...6.2598M 2786:1997PNAS...94.4262S 2727:1999Sci...283.1676W 2721:(5408): 1676–1683. 2673:2006Sci...314.1585S 2667:(5805): 1585–1588. 2638:10.3390/sym13071242 2629:2021Symm...13.1242R 2547:2017RSCAd...728130S 2541:(45): 28130–28144. 2492:2019ITNan..18..252E 2337:2017NatNa..12..920C 2278:2019NatNa..14.1075S 2218:2011Sci...332.1196Q 2212:(6034): 1196–1201. 2156:2018Natur.559..370C 2098:10.1038/nature10262 2046:1998SciAm.279b..54A 2034:Scientific American 1911:(5536): 1763–1765. 1854:1996Sci...273..220G 1799:2000BiSys..57...13L 1742:10.1038/nature24648 1734:2017Natur.552...72O 1678:10.1038/nature24651 1670:2017Natur.552...78W 1615:10.1038/nature24655 1607:2017Natur.552...67T 1552:1982JThBi..99..237S 1499:1995Sci...268..583B 1285:1994Sci...266.1021A 1279:(5187): 1021–1024. 1222:2010PNAS..107.5393S 1102:2013NatNa...8..755C 915:2006PNAS..10318911S 909:(50): 18911–18916. 852:2019NanoL..19.2668S 737:2017Sci...355..950E 672:2012Sci...337.1628C 511:on a DNA computer. 233:orders of magnitude 175:In 2002: Solving a 168:In 1994: Solving a 3637:DNA nanotechnology 3167:2012-05-10 at the 3032:2010-06-18 at the 3021:2010-06-18 at the 2556:10.1039/C7RA02607B 1164:(6369): eaal2052. 982:10.1038/nmeth.3804 615:Parallel computing 600:Membrane computing 580:Computational gene 508:parallel computing 490:which generates a 488:cellular automaton 470: 381:A design called a 284:) associated with 25: 3627:Molecular biology 3527:978-0-387-73635-8 3489:978-3-540-64196-4 3465:978-3-540-65773-6 3192:(6990): 423–429. 3125:(6862): 430–434. 2940:10.1021/ja016756v 2934:(14): 3555–3561. 2898:10.1021/nl0620684 2884:(11): 2598–2603. 2597:978-3-642-10604-0 2272:(11): 1075–1081. 2150:(7714): 370–376. 2092:(7356): 368–372. 1962:(37): 4906–4911. 1848:(5272): 220–223. 1493:(5210): 583–585. 1216:(12): 5393–5398. 1038:(21): 9587–9593. 731:(6328): 950–954. 620:Quantum computing 610:Peptide computing 575:Chemical computer 496:Sierpinski gasket 462:Sierpinski gasket 251:. In particular, 213:Kevin Cherry and 199:logical functions 117:John Reif's group 96:field started by 44:molecular biology 3649: 3531: 3507: 3501: 3493: 3478:(October 1998). 3469: 3436: 3431: 3425: 3420: 3414: 3402: 3396: 3395: 3367: 3361: 3360: 3350: 3340: 3316: 3307: 3303: 3286:(9): 1165–1172. 3275: 3269: 3268: 3238: 3232: 3227: 3217: 3177: 3171: 3160: 3150: 3139:10.1038/35106533 3110: 3104: 3103: 3101: 3100: 3091:. Archived from 3082: 3043: 3037: 3012: 3006: 3005: 2995: 2985: 2961: 2955: 2951: 2919: 2913: 2909: 2873: 2867: 2863: 2838:(9): 1069–1074. 2827: 2821: 2817: 2807: 2797: 2780:(9): 4262–4266. 2765: 2759: 2754: 2710: 2701: 2700: 2658: 2649: 2643: 2642: 2640: 2608: 2602: 2601: 2575: 2569: 2568: 2558: 2526: 2520: 2519: 2485: 2463: 2457: 2456: 2438: 2414: 2408: 2407: 2382:(2): 1146–1155. 2371: 2365: 2364: 2320: 2314: 2313: 2260: 2254: 2253: 2201: 2192: 2191: 2135: 2126: 2125: 2081: 2075: 2064: 2058: 2057: 2029: 2023: 2016: 2010: 2009: 2008:, March 21, 2002 1994: 1988: 1987: 1951: 1945: 1944: 1896: 1890: 1889: 1838:"Making DNA Add" 1833: 1827: 1826: 1778: 1772: 1771: 1761: 1712: 1706: 1705: 1649: 1643: 1642: 1586: 1580: 1579: 1535: 1529: 1528: 1510: 1478: 1472: 1464: 1462: 1438: 1432: 1431: 1425: 1417: 1415: 1414: 1408: 1402:. Archived from 1401: 1389: 1387: 1363: 1357: 1356: 1350: 1342: 1340: 1339: 1333: 1327:. Archived from 1326: 1314: 1296: 1268: 1262: 1261: 1251: 1233: 1201: 1192: 1191: 1173: 1149: 1140: 1139: 1129: 1081: 1072: 1071: 1023: 1012: 1011: 1001: 961: 955: 954: 944: 926: 894: 888: 887: 846:(4): 2668–2673. 835: 829: 828: 801:10.1038/nbt.4079 779: 773: 772: 716: 710: 709: 683: 651: 630:Wetware computer 397:to some extent. 312:Toehold exchange 188:Tic-tac-toe game 170:Hamiltonian path 150:proof of concept 138:Hamiltonian path 71:proof-of-concept 3657: 3656: 3652: 3651: 3650: 3648: 3647: 3646: 3607: 3606: 3540: 3535: 3528: 3495: 3494: 3490: 3466: 3444: 3442:Further reading 3439: 3432: 3428: 3421: 3417: 3412:Wayback Machine 3403: 3399: 3368: 3364: 3317: 3310: 3276: 3272: 3239: 3235: 3178: 3174: 3169:Wayback Machine 3111: 3107: 3098: 3096: 3055:Interface Focus 3044: 3040: 3034:Wayback Machine 3023:Wayback Machine 3013: 3009: 2962: 2958: 2920: 2916: 2874: 2870: 2828: 2824: 2766: 2762: 2711: 2704: 2656: 2650: 2646: 2609: 2605: 2598: 2576: 2572: 2527: 2523: 2464: 2460: 2429:(33): 1801470. 2415: 2411: 2372: 2368: 2321: 2317: 2261: 2257: 2202: 2195: 2136: 2129: 2082: 2078: 2072:Pour la Science 2065: 2061: 2030: 2026: 2017: 2013: 1996: 1995: 1991: 1952: 1948: 1897: 1893: 1834: 1830: 1779: 1775: 1728:(7683): 72–77. 1713: 1709: 1664:(7683): 78–83. 1650: 1646: 1601:(7683): 67–71. 1587: 1583: 1536: 1532: 1479: 1475: 1439: 1435: 1419: 1418: 1412: 1410: 1406: 1399: 1397:"Archived copy" 1395: 1364: 1360: 1344: 1343: 1337: 1335: 1331: 1324: 1322:"Archived copy" 1320: 1269: 1265: 1202: 1195: 1150: 1143: 1096:(10): 755–762. 1082: 1075: 1024: 1015: 962: 958: 895: 891: 836: 832: 780: 776: 717: 713: 652: 648: 644: 639: 565: 556: 532: 504: 476: 454: 418:prostate cancer 403: 393:which can play 355:oligonucleotide 349:Catalytic DNA ( 347: 326: 314: 298: 270: 241: 224: 211: 190: 162:Leonard Adleman 158: 130:Leonard Adleman 126: 94:DNA nanoscience 79:Turing machines 63:Leonard Adleman 60: 17: 12: 11: 5: 3655: 3645: 3644: 3639: 3634: 3629: 3624: 3619: 3605: 3604: 3599: 3594: 3589: 3584: 3579: 3574: 3568: 3551: 3546: 3539: 3538:External links 3536: 3534: 3533: 3526: 3510: 3509: 3488: 3471: 3464: 3445: 3443: 3440: 3438: 3437: 3426: 3415: 3397: 3362: 3308: 3270: 3233: 3172: 3105: 3049:(1999-12-07). 3038: 3007: 2956: 2914: 2868: 2844:10.1038/nbt862 2822: 2760: 2702: 2644: 2603: 2596: 2570: 2521: 2458: 2409: 2366: 2331:(9): 920–927. 2315: 2255: 2193: 2127: 2076: 2059: 2024: 2011: 1989: 1946: 1891: 1828: 1773: 1707: 1644: 1581: 1546:(2): 237–247. 1530: 1473: 1453:(2): 192–203. 1433: 1378:(1–3): 79–94. 1358: 1294:10.1.1.54.2565 1263: 1193: 1141: 1073: 1028:Strauss, Karin 1013: 976:(5): 439–442. 970:Nature Methods 956: 889: 830: 795:(3): 242–248. 774: 711: 666:(6102): 1628. 645: 643: 640: 638: 637: 632: 627: 622: 617: 612: 607: 602: 597: 595:DNA sequencing 592: 587: 582: 577: 572: 566: 564: 561: 555: 552: 531: 528: 503: 500: 472:Main article: 453: 450: 407:Turing machine 402: 399: 346: 343: 325: 322: 313: 310: 309: 308: 305: 297: 294: 269: 266: 240: 237: 223: 220: 210: 207: 189: 186: 185: 184: 173: 157: 154: 125: 122: 59: 56: 15: 9: 6: 4: 3: 2: 3654: 3643: 3640: 3638: 3635: 3633: 3630: 3628: 3625: 3623: 3620: 3618: 3615: 3614: 3612: 3603: 3600: 3598: 3595: 3593: 3590: 3588: 3585: 3583: 3580: 3578: 3575: 3573:, Physics Web 3572: 3569: 3566: 3562: 3558: 3557: 3553:Dirk de Pol: 3552: 3550: 3547: 3545: 3542: 3541: 3529: 3523: 3519: 3518: 3512: 3511: 3505: 3499: 3491: 3485: 3481: 3477: 3472: 3467: 3461: 3457: 3456: 3452:(June 2005). 3451: 3447: 3446: 3434: 3430: 3424: 3419: 3413: 3409: 3405: 3401: 3393: 3389: 3385: 3381: 3377: 3373: 3366: 3358: 3354: 3349: 3344: 3339: 3334: 3330: 3326: 3322: 3315: 3313: 3306: 3301: 3297: 3293: 3289: 3285: 3281: 3274: 3266: 3262: 3258: 3254: 3250: 3246: 3245: 3237: 3231: 3225: 3221: 3216: 3211: 3207: 3203: 3199: 3195: 3191: 3187: 3183: 3176: 3170: 3166: 3163: 3158: 3154: 3149: 3144: 3140: 3136: 3132: 3128: 3124: 3120: 3116: 3109: 3095:on 2009-01-03 3094: 3090: 3086: 3081: 3076: 3072: 3068: 3064: 3060: 3056: 3052: 3048: 3047:Shapiro, Ehud 3042: 3035: 3031: 3028: 3024: 3020: 3017: 3011: 3003: 2999: 2994: 2989: 2984: 2979: 2975: 2971: 2967: 2960: 2954: 2949: 2945: 2941: 2937: 2933: 2929: 2925: 2918: 2912: 2907: 2903: 2899: 2895: 2891: 2887: 2883: 2879: 2872: 2866: 2861: 2857: 2853: 2849: 2845: 2841: 2837: 2833: 2826: 2820: 2815: 2811: 2806: 2801: 2796: 2791: 2787: 2783: 2779: 2775: 2771: 2764: 2758: 2752: 2748: 2744: 2740: 2736: 2732: 2728: 2724: 2720: 2716: 2709: 2707: 2698: 2694: 2690: 2686: 2682: 2678: 2674: 2670: 2666: 2662: 2655: 2648: 2639: 2634: 2630: 2626: 2622: 2618: 2614: 2607: 2599: 2593: 2589: 2585: 2581: 2574: 2566: 2562: 2557: 2552: 2548: 2544: 2540: 2536: 2532: 2525: 2517: 2513: 2509: 2505: 2501: 2497: 2493: 2489: 2484: 2479: 2475: 2471: 2470: 2462: 2454: 2450: 2446: 2442: 2437: 2432: 2428: 2424: 2420: 2413: 2405: 2401: 2397: 2393: 2389: 2385: 2381: 2377: 2370: 2362: 2358: 2354: 2350: 2346: 2342: 2338: 2334: 2330: 2326: 2319: 2311: 2307: 2303: 2299: 2295: 2291: 2287: 2283: 2279: 2275: 2271: 2267: 2259: 2251: 2247: 2243: 2239: 2235: 2231: 2227: 2223: 2219: 2215: 2211: 2207: 2200: 2198: 2189: 2185: 2181: 2177: 2173: 2169: 2165: 2161: 2157: 2153: 2149: 2145: 2141: 2134: 2132: 2123: 2119: 2115: 2111: 2107: 2103: 2099: 2095: 2091: 2087: 2080: 2073: 2069: 2063: 2055: 2051: 2047: 2043: 2039: 2035: 2028: 2021: 2020:DNA Computing 2015: 2007: 2003: 1999: 1993: 1985: 1981: 1977: 1973: 1969: 1965: 1961: 1957: 1950: 1942: 1938: 1934: 1930: 1926: 1922: 1918: 1914: 1910: 1906: 1902: 1895: 1887: 1883: 1879: 1875: 1871: 1867: 1863: 1859: 1855: 1851: 1847: 1843: 1839: 1832: 1824: 1820: 1816: 1812: 1808: 1804: 1800: 1796: 1792: 1788: 1784: 1777: 1769: 1765: 1760: 1755: 1751: 1747: 1743: 1739: 1735: 1731: 1727: 1723: 1719: 1711: 1703: 1699: 1695: 1691: 1687: 1683: 1679: 1675: 1671: 1667: 1663: 1659: 1655: 1648: 1640: 1636: 1632: 1628: 1624: 1620: 1616: 1612: 1608: 1604: 1600: 1596: 1592: 1585: 1577: 1573: 1569: 1565: 1561: 1557: 1553: 1549: 1545: 1541: 1534: 1526: 1522: 1518: 1514: 1509: 1504: 1500: 1496: 1492: 1488: 1484: 1477: 1471: 1468: 1461: 1456: 1452: 1448: 1444: 1437: 1429: 1423: 1409:on 2012-04-06 1405: 1398: 1393: 1386: 1381: 1377: 1373: 1369: 1362: 1354: 1348: 1334:on 2005-02-06 1330: 1323: 1318: 1312: 1308: 1304: 1300: 1295: 1290: 1286: 1282: 1278: 1274: 1267: 1259: 1255: 1250: 1245: 1241: 1237: 1232: 1227: 1223: 1219: 1215: 1211: 1207: 1200: 1198: 1189: 1185: 1181: 1177: 1172: 1167: 1163: 1159: 1155: 1148: 1146: 1137: 1133: 1128: 1123: 1119: 1115: 1111: 1107: 1103: 1099: 1095: 1091: 1087: 1080: 1078: 1069: 1065: 1061: 1057: 1053: 1049: 1045: 1041: 1037: 1033: 1029: 1022: 1020: 1018: 1009: 1005: 1000: 995: 991: 987: 983: 979: 975: 971: 967: 960: 952: 948: 943: 938: 934: 930: 925: 920: 916: 912: 908: 904: 900: 893: 885: 881: 877: 873: 869: 865: 861: 857: 853: 849: 845: 841: 834: 826: 822: 818: 814: 810: 806: 802: 798: 794: 790: 786: 778: 770: 766: 762: 758: 754: 750: 746: 742: 738: 734: 730: 726: 722: 715: 707: 703: 699: 695: 691: 687: 682: 677: 673: 669: 665: 661: 657: 650: 646: 636: 633: 631: 628: 626: 623: 621: 618: 616: 613: 611: 608: 606: 603: 601: 598: 596: 593: 591: 588: 586: 583: 581: 578: 576: 573: 571: 568: 567: 560: 554:Pros and cons 551: 549: 545: 541: 537: 527: 525: 522:problems) on 521: 517: 512: 509: 499: 497: 493: 489: 485: 481: 475: 467: 463: 458: 449: 447: 443: 439: 435: 431: 427: 423: 419: 415: 410: 408: 398: 396: 392: 388: 384: 379: 377: 372: 368: 362: 358: 356: 352: 351:deoxyribozyme 342: 340: 335: 331: 321: 319: 306: 303: 302: 301: 293: 291: 287: 286:digital logic 283: 279: 275: 265: 262: 257: 254: 250: 246: 236: 234: 230: 219: 216: 206: 202: 200: 195: 182: 178: 174: 171: 167: 166: 165: 163: 153: 151: 147: 143: 139: 135: 131: 121: 118: 113: 111: 108:Before 2002, 106: 102: 99: 95: 90: 88: 82: 80: 76: 72: 68: 64: 55: 53: 49: 45: 41: 37: 33: 29: 28:DNA computing 21: 3577:Ars Technica 3555: 3516: 3479: 3476:Arto Salomaa 3454: 3429: 3418: 3400: 3375: 3371: 3365: 3331:(12): e424. 3328: 3325:PLOS Biology 3324: 3283: 3279: 3273: 3248: 3242: 3236: 3189: 3185: 3175: 3122: 3118: 3108: 3097:. Retrieved 3093:the original 3058: 3054: 3041: 3010: 2976:(1): 57–67. 2973: 2969: 2959: 2931: 2927: 2917: 2881: 2878:Nano Letters 2877: 2871: 2835: 2831: 2825: 2777: 2773: 2763: 2718: 2714: 2664: 2660: 2647: 2620: 2616: 2606: 2579: 2573: 2538: 2535:RSC Advances 2534: 2524: 2473: 2467: 2461: 2426: 2422: 2412: 2379: 2375: 2369: 2328: 2324: 2318: 2269: 2265: 2258: 2209: 2205: 2147: 2143: 2089: 2085: 2079: 2067: 2062: 2040:(2): 54–61. 2037: 2033: 2027: 2019: 2014: 2002:Western News 2001: 1992: 1959: 1955: 1949: 1908: 1904: 1894: 1845: 1841: 1831: 1793:(1): 13–22. 1790: 1786: 1776: 1725: 1721: 1710: 1661: 1657: 1647: 1598: 1594: 1584: 1543: 1539: 1533: 1490: 1486: 1476: 1450: 1446: 1436: 1411:. Retrieved 1404:the original 1375: 1371: 1361: 1336:. Retrieved 1329:the original 1276: 1272: 1266: 1213: 1209: 1161: 1157: 1093: 1089: 1035: 1031: 973: 969: 959: 906: 902: 892: 843: 840:Nano Letters 839: 833: 792: 788: 777: 728: 724: 714: 663: 659: 649: 625:Transcriptor 557: 533: 513: 505: 502:Capabilities 477: 465: 445: 411: 404: 382: 380: 363: 359: 348: 338: 327: 315: 299: 271: 258: 242: 225: 212: 203: 191: 159: 127: 114: 107: 103: 91: 86: 83: 61: 40:biochemistry 27: 26: 3450:Martyn Amos 3065:: 497–503. 2993:11375/23673 2623:(7): 1242. 2476:: 252–259. 570:Biocomputer 494:called the 395:tic-tac-toe 387:logic gates 194:tic-tac-toe 177:NP-complete 52:Len Adleman 34:which uses 3611:Categories 3378:(3): 5–8. 3251:(1): 3–8. 3099:2009-08-13 2483:1704.06371 1787:Biosystems 1413:2011-10-14 1338:2005-11-21 642:References 480:Wang tiles 442:protein 53 318:sticky end 98:Ned Seeman 3565:0177-6738 3498:cite book 2565:2046-2069 2508:1536-125X 2445:1613-6829 2396:1936-0851 2353:1748-3387 2310:202729100 2294:1748-3387 2234:0036-8075 2172:0028-0836 2106:0028-0836 1976:1521-3773 1925:0036-8075 1870:0036-8075 1815:0303-2647 1750:1476-4687 1702:205262182 1686:1476-4687 1623:1476-4687 1568:0022-5193 1517:0036-8075 1289:CiteSeerX 1240:0027-8424 1180:0036-8075 1118:1748-3395 1068:218504535 1052:0002-7863 990:1548-7105 933:0027-8424 868:1530-6984 825:205285821 809:1546-1696 753:0036-8075 690:0036-8075 544:DNA chips 383:stem loop 253:John Reif 215:Lulu Qian 146:test tube 115:In 2003, 110:Lila Kari 3408:Archived 3357:15583715 3265:15720184 3224:15116117 3165:Archived 3157:11719800 3089:22649583 3030:Archived 3019:Archived 3002:15112995 2948:11929243 2906:17090098 2852:12923549 2743:10073925 2697:10966324 2689:17158324 2617:Symmetry 2453:30022600 2404:29357217 2376:ACS Nano 2361:28737747 2302:31548688 2250:10053541 2242:21636773 2188:49566504 2180:29973727 2114:21776082 1984:15372637 1941:34699434 1933:11556362 1823:10963862 1768:29219968 1694:29219966 1631:29219965 1422:cite web 1347:cite web 1258:20203007 1188:29242317 1136:24077029 1060:32364723 1008:27018580 951:17142314 884:84841635 876:30896178 817:29457795 769:13470340 761:28254941 698:22903519 563:See also 520:EXPSPACE 345:DNAzymes 128:In 1994 87:in vitro 3380:Bibcode 3288:Bibcode 3215:3838955 3194:Bibcode 3148:3838952 3127:Bibcode 3080:3363030 2886:Bibcode 2814:9113977 2782:Bibcode 2751:9697423 2723:Bibcode 2715:Science 2669:Bibcode 2661:Science 2625:Bibcode 2543:Bibcode 2516:5616325 2488:Bibcode 2333:Bibcode 2274:Bibcode 2214:Bibcode 2206:Science 2152:Bibcode 2122:1735584 2042:Bibcode 1905:Science 1886:6051207 1878:8662501 1850:Bibcode 1842:Science 1795:Bibcode 1759:5786436 1730:Bibcode 1666:Bibcode 1639:4455780 1603:Bibcode 1576:6188926 1548:Bibcode 1525:7725109 1495:Bibcode 1487:Science 1311:7973651 1281:Bibcode 1273:Science 1249:2851759 1218:Bibcode 1158:Science 1127:4150546 1098:Bibcode 999:4941813 942:1748151 911:Bibcode 848:Bibcode 733:Bibcode 725:Science 668:Bibcode 660:Science 540:Caltech 492:fractal 468:, 2004. 446:in vivo 401:Enzymes 391:MAYA II 376:in vivo 371:MAYA II 339:in vivo 268:Methods 65:of the 58:History 3563:  3524:  3486:  3462:  3435:Online 3355:  3348:534809 3345:  3263:  3222:  3212:  3186:Nature 3155:  3145:  3119:Nature 3087:  3077:  3000:  2946:  2904:  2860:184520 2858:  2850:  2812:  2802:  2749:  2741:  2695:  2687:  2594:  2563:  2514:  2506:  2451:  2443:  2402:  2394:  2359:  2351:  2308:  2300:  2292:  2248:  2240:  2232:  2186:  2178:  2170:  2144:Nature 2120:  2112:  2104:  2086:Nature 1982:  1974:  1939:  1931:  1923:  1884:  1876:  1868:  1821:  1813:  1766:  1756:  1748:  1722:Nature 1700:  1692:  1684:  1658:Nature 1637:  1629:  1621:  1595:Nature 1574:  1566:  1523:  1515:  1309:  1291:  1256:  1246:  1238:  1186:  1178:  1134:  1124:  1116:  1066:  1058:  1050:  1006:  996:  988:  949:  939:  931:  882:  874:  866:  823:  815:  807:  767:  759:  751:  706:934617 704:  696:  688:  466:et al. 422:PPAP2B 367:MAYA I 134:TT-100 42:, and 3061:(4). 2856:S2CID 2805:20710 2747:S2CID 2693:S2CID 2657:(PDF) 2512:S2CID 2478:arXiv 2423:Small 2306:S2CID 2246:S2CID 2184:S2CID 2118:S2CID 1937:S2CID 1882:S2CID 1698:S2CID 1635:S2CID 1407:(PDF) 1400:(PDF) 1332:(PDF) 1325:(PDF) 1064:S2CID 880:S2CID 821:S2CID 765:S2CID 702:S2CID 426:GSTP1 181:3-SAT 3561:ISSN 3522:ISBN 3504:link 3484:ISBN 3460:ISBN 3353:PMID 3261:PMID 3220:PMID 3153:PMID 3085:PMID 3025:and 2998:PMID 2944:PMID 2902:PMID 2848:PMID 2810:PMID 2739:PMID 2685:PMID 2592:ISBN 2561:ISSN 2504:ISSN 2449:PMID 2441:ISSN 2400:PMID 2392:ISSN 2357:PMID 2349:ISSN 2298:PMID 2290:ISSN 2238:PMID 2230:ISSN 2176:PMID 2168:ISSN 2110:PMID 2102:ISSN 1980:PMID 1972:ISSN 1929:PMID 1921:ISSN 1874:PMID 1866:ISSN 1819:PMID 1811:ISSN 1764:PMID 1746:ISSN 1690:PMID 1682:ISSN 1627:PMID 1619:ISSN 1572:PMID 1564:ISSN 1521:PMID 1513:ISSN 1428:link 1353:link 1307:PMID 1254:PMID 1236:ISSN 1184:PMID 1176:ISSN 1132:PMID 1114:ISSN 1056:PMID 1048:ISSN 1004:PMID 986:ISSN 947:PMID 929:ISSN 872:PMID 864:ISSN 813:PMID 805:ISSN 757:PMID 749:ISSN 694:PMID 686:ISSN 548:Perl 538:and 438:MDM2 432:and 430:PIM1 424:and 414:FokI 369:and 3632:DNA 3388:doi 3343:PMC 3333:doi 3296:doi 3284:237 3253:doi 3210:PMC 3202:doi 3190:429 3143:PMC 3135:doi 3123:414 3075:PMC 3067:doi 2988:hdl 2978:doi 2936:doi 2932:124 2894:doi 2840:doi 2800:PMC 2790:doi 2731:doi 2719:283 2677:doi 2665:314 2633:doi 2584:doi 2551:doi 2496:doi 2431:doi 2384:doi 2341:doi 2282:doi 2222:doi 2210:332 2160:doi 2148:559 2094:doi 2090:475 2050:doi 2038:279 1964:doi 1913:doi 1909:293 1858:doi 1846:273 1803:doi 1754:PMC 1738:doi 1726:552 1674:doi 1662:552 1611:doi 1599:552 1556:doi 1503:doi 1491:268 1455:doi 1451:231 1380:doi 1299:doi 1277:266 1244:PMC 1226:doi 1214:107 1166:doi 1162:358 1122:PMC 1106:doi 1040:doi 1036:142 994:PMC 978:doi 937:PMC 919:doi 907:103 856:doi 797:doi 741:doi 729:355 676:doi 664:337 536:IBM 484:XOR 434:HPN 282:NOT 274:AND 249:PCs 36:DNA 3613:: 3500:}} 3496:{{ 3386:. 3374:. 3351:. 3341:. 3327:. 3323:. 3311:^ 3294:. 3282:. 3259:. 3247:. 3218:. 3208:. 3200:. 3188:. 3184:. 3151:. 3141:. 3133:. 3121:. 3117:. 3083:. 3073:. 3057:. 3053:. 2996:. 2986:. 2974:11 2972:. 2968:. 2942:. 2930:. 2926:. 2900:. 2892:. 2880:. 2854:. 2846:. 2836:21 2834:. 2808:. 2798:. 2788:. 2778:94 2776:. 2772:. 2745:. 2737:. 2729:. 2717:. 2705:^ 2691:. 2683:. 2675:. 2663:. 2659:. 2631:. 2621:13 2619:. 2615:. 2590:. 2559:. 2549:. 2537:. 2533:. 2510:. 2502:. 2494:. 2486:. 2474:18 2472:. 2447:. 2439:. 2427:14 2425:. 2421:. 2398:. 2390:. 2380:12 2378:. 2355:. 2347:. 2339:. 2329:12 2327:. 2304:. 2296:. 2288:. 2280:. 2270:14 2268:. 2244:. 2236:. 2228:. 2220:. 2208:. 2196:^ 2182:. 2174:. 2166:. 2158:. 2146:. 2142:. 2130:^ 2116:. 2108:. 2100:. 2088:. 2070:, 2048:. 2036:. 2004:, 2000:, 1978:. 1970:. 1960:43 1958:. 1935:. 1927:. 1919:. 1907:. 1903:. 1880:. 1872:. 1864:. 1856:. 1844:. 1840:. 1817:. 1809:. 1801:. 1791:57 1789:. 1785:. 1762:. 1752:. 1744:. 1736:. 1724:. 1720:. 1696:. 1688:. 1680:. 1672:. 1660:. 1656:. 1633:. 1625:. 1617:. 1609:. 1597:. 1593:. 1570:. 1562:. 1554:. 1544:99 1542:. 1519:. 1511:. 1501:. 1489:. 1485:. 1449:. 1445:. 1424:}} 1420:{{ 1376:71 1374:. 1370:. 1349:}} 1345:{{ 1305:. 1297:. 1287:. 1275:. 1252:. 1242:. 1234:. 1224:. 1212:. 1208:. 1196:^ 1182:. 1174:. 1160:. 1156:. 1144:^ 1130:. 1120:. 1112:. 1104:. 1092:. 1088:. 1076:^ 1062:. 1054:. 1046:. 1034:. 1016:^ 1002:. 992:. 984:. 974:13 972:. 968:. 945:. 935:. 927:. 917:. 905:. 901:. 878:. 870:. 862:. 854:. 844:19 842:. 819:. 811:. 803:. 793:36 791:. 787:. 763:. 755:. 747:. 739:. 727:. 723:. 700:. 692:. 684:. 674:. 662:. 658:. 550:. 378:. 280:, 278:OR 276:, 235:. 164:. 152:. 38:, 3530:. 3506:) 3492:. 3468:. 3394:. 3390:: 3382:: 3376:4 3359:. 3335:: 3329:2 3302:. 3298:: 3290:: 3267:. 3255:: 3249:5 3226:. 3204:: 3196:: 3159:. 3137:: 3129:: 3102:. 3069:: 3059:2 3036:. 3004:. 2990:: 2980:: 2950:. 2938:: 2908:. 2896:: 2888:: 2882:6 2862:. 2842:: 2816:. 2792:: 2784:: 2753:. 2733:: 2725:: 2699:. 2679:: 2671:: 2641:. 2635:: 2627:: 2600:. 2586:: 2567:. 2553:: 2545:: 2539:7 2518:. 2498:: 2490:: 2480:: 2455:. 2433:: 2406:. 2386:: 2363:. 2343:: 2335:: 2312:. 2284:: 2276:: 2252:. 2224:: 2216:: 2190:. 2162:: 2154:: 2124:. 2096:: 2056:. 2052:: 2044:: 1986:. 1966:: 1943:. 1915:: 1888:. 1860:: 1852:: 1825:. 1805:: 1797:: 1770:. 1740:: 1732:: 1704:. 1676:: 1668:: 1641:. 1613:: 1605:: 1578:. 1558:: 1550:: 1527:. 1505:: 1497:: 1463:. 1457:: 1430:) 1416:. 1388:. 1382:: 1355:) 1341:. 1313:. 1301:: 1283:: 1260:. 1228:: 1220:: 1190:. 1168:: 1138:. 1108:: 1100:: 1094:8 1070:. 1042:: 1010:. 980:: 953:. 921:: 913:: 886:. 858:: 850:: 827:. 799:: 771:. 743:: 735:: 708:. 678:: 670::

Index


unconventional computing
DNA
biochemistry
molecular biology
electronic computing
Len Adleman
Leonard Adleman
University of Southern California
proof-of-concept
Hamiltonian path problem
Turing machines
DNA nanoscience
Ned Seeman
Lila Kari
John Reif's group
Leonard Adleman
TT-100
Hamiltonian path
travelling salesman problem
test tube
proof of concept
Leonard Adleman
Hamiltonian path
NP-complete
3-SAT
tic-tac-toe
logical functions
Lulu Qian
localized DNA computing

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑