Knowledge

Travelling salesman problem

Source 📝

7113:, examined spatial cognition in pigeons by studying their flight patterns between multiple feeders in a laboratory in relation to the travelling salesman problem. In the first experiment, pigeons were placed in the corner of a lab room and allowed to fly to nearby feeders containing peas. The researchers found that pigeons largely used proximity to determine which feeder they would select next. In the second experiment, the feeders were arranged in such a way that flying to the nearest feeder at every opportunity would be largely inefficient if the pigeons needed to visit every feeder. The results of the second experiment indicate that pigeons, while still favoring proximity-based solutions, "can plan several steps ahead along the route when the differences in travel costs between efficient and less efficient routes based on proximity become larger." These results are consistent with other experiments done with non-primates, which have proven that some non-primates were able to plan complex travel routes. This suggests non-primates may possess a relatively sophisticated spatial cognitive ability. 7096:. It has been observed that humans are able to produce near-optimal solutions quickly, in a close-to-linear fashion, with performance that ranges from 1% less efficient, for graphs with 10–20 nodes, to 11% less efficient for graphs with 120 nodes. The apparent ease with which humans accurately generate near-optimal solutions to the problem has led researchers to hypothesize that humans use one or more heuristics, with the two most popular theories arguably being the convex-hull hypothesis and the crossing-avoidance heuristic. However, additional evidence suggests that human performance is quite varied, and individual differences as well as graph geometry appear to affect performance in the task. Nevertheless, results suggest that computer performance on the TSP may be improved by understanding and emulating the methods used by humans for these problems, and have also led to new insights into the mechanisms of human thought. The first issue of the 4320: 272:
that, given a near-optimal solution, one may be able to find optimality or prove optimality by adding a small number of extra inequalities (cuts). They used this idea to solve their initial 49-city problem using a string model. They found they only needed 26 cuts to come to a solution for their 49 city problem. While this paper did not give an algorithmic approach to TSP problems, the ideas that lay within it were indispensable to later creating exact solution methods for the TSP, though it would take 15 years to find an algorithmic approach in creating these cuts. As well as cutting plane methods, Dantzig, Fulkerson, and Johnson used
22: 7348:(weil diese Frage in der Praxis von jedem Postboten, ĂŒbrigens auch von vielen Reisenden zu lösen ist) die Aufgabe, fĂŒr endlich viele Punkte, deren paarweise AbstĂ€nde bekannt sind, den kĂŒrzesten die Punkte verbindenden Weg zu finden. Dieses Problem ist natĂŒrlich stets durch endlich viele Versuche lösbar. Regeln, welche die Anzahl der Versuche unter die Anzahl der Permutationen der gegebenen Punkte herunterdrĂŒcken wĂŒrden, sind nicht bekannt. Die Regel, man solle vom Ausgangspunkt erst zum nĂ€chstgelegenen Punkt, dann zu dem diesem nĂ€chstgelegenen Punkt gehen usw., liefert im allgemeinen nicht den kĂŒrzesten Weg." 3972: 2754: 3815: 216:(since in practice this question should be solved by each postman, anyway also by many travelers) the task to find, for finitely many points whose pairwise distances are known, the shortest route connecting the points. Of course, this problem is solvable by finitely many trials. Rules which would push the number of trials below the number of permutations of the given points, are not known. The rule that one first should go from the starting point to the closest point, then to the point closest to this, etc., in general does not yield the shortest route. 177: 3340: 2234: 3807: 4596:
the actual Euclidean metric, Euclidean TSP is known to be in the Counting Hierarchy, a subclass of PSPACE. With arbitrary real coordinates, Euclidean TSP cannot be in such classes, since there are uncountably many possible inputs. Despite these complications, Euclidean TSP is much easier than the general metric case for approximation. For example, the minimum spanning tree of the graph associated with an instance of the Euclidean TSP is a
2911: 4212:-opt methods are widely considered the most powerful heuristics for the problem, and are able to address special cases, such as the Hamilton Cycle Problem and other non-metric TSPs that other heuristics fail on. For many years, Lin–Kernighan–Johnson had identified optimal solutions for all TSPs where an optimal solution was known and had identified the best-known solutions for all other TSPs on which the method had been tried. 4319: 2749:{\displaystyle {\begin{aligned}\min \sum _{i=1}^{n}\sum _{j\neq i,j=1}^{n}c_{ij}x_{ij}&\colon &&\\x_{ij}\in {}&\{0,1\}&&i,j=1,\ldots ,n;\\\sum _{i=1,i\neq j}^{n}x_{ij}={}&1&&j=1,\ldots ,n;\\\sum _{j=1,j\neq i}^{n}x_{ij}={}&1&&i=1,\ldots ,n;\\u_{i}-u_{j}+1\leq {}&(n-1)(1-x_{ij})&&2\leq i\neq j\leq n;\\2\leq u_{i}\leq {}&n&&2\leq i\leq n.\end{aligned}}} 389: 310:, and other sciences. In the 1960s, however, a new approach was created that, instead of seeking optimal solutions, would produce a solution whose length is provably bounded by a multiple of the optimal length, and in doing so would create lower bounds for the problem; these lower bounds would then be used with branch-and-bound approaches. One method of doing this was to create a 3335:{\displaystyle {\begin{aligned}\min &\sum _{i=1}^{n}\sum _{j\neq i,j=1}^{n}c_{ij}x_{ij}\colon &&\\&\sum _{i=1,i\neq j}^{n}x_{ij}=1&&j=1,\ldots ,n;\\&\sum _{j=1,j\neq i}^{n}x_{ij}=1&&i=1,\ldots ,n;\\&\sum _{i\in Q}{\sum _{j\neq i,j\in Q}{x_{ij}}}\leq |Q|-1&&\forall Q\subsetneq \{1,\ldots ,n\},|Q|\geq 2.\\\end{aligned}}} 4510:. The Manhattan metric corresponds to a machine that adjusts first one coordinate, and then the other, so the time to move to a new point is the sum of both movements. The maximum metric corresponds to a machine that adjusts both coordinates simultaneously, so the time to move to a new point is the slower of the two movements. 3660:. In May 2004, the travelling salesman problem of visiting all 24,978 towns in Sweden was solved: a tour of length approximately 72,500 kilometres was found, and it was proven that no shorter tour exists. In March 2005, the travelling salesman problem of visiting all 33,810 points in a circuit board was solved using 4880:. (Alternatively, the ghost edges have weight 0, and weight w is added to all other edges.) The original 3×3 matrix shown above is visible in the bottom left and the transpose of the original in the top-right. Both copies of the matrix have had their diagonals replaced by the low-cost hop paths, represented by − 4089:. While this is a small increase in size, the initial number of moves for small problems is 10 times as big for a random start compared to one made from a greedy heuristic. This is because such 2-opt heuristics exploit 'bad' parts of a solution such as crossings. These types of heuristics are often used within 291:. The Beardwood–Halton–Hammersley theorem provides a practical solution to the travelling salesman problem. The authors derived an asymptotic formula to determine the length of the shortest route for a salesman who starts at a home or office and visits a fixed number of locations before returning to the start. 4200:. The basic Lin–Kernighan technique gives results that are guaranteed to be at least 3-opt. The Lin–Kernighan–Johnson methods compute a Lin–Kernighan tour, and then perturb the tour by what has been described as a mutation that removes at least four edges and reconnects the tour in a different way, then 3725:
cities randomly distributed on a plane, the algorithm on average yields a path 25% longer than the shortest possible path; however, there exist many specially-arranged city distributions which make the NN algorithm give the worst route. This is true for both asymmetric and symmetric TSPs. Rosenkrantz
4595:
Like the general TSP, the exact Euclidean TSP is NP-hard, but the issue with sums of radicals is an obstacle to proving that its decision version is in NP, and therefore NP-complete. A discretized version of the problem with distances rounded to integers is NP-complete. With rational coordinates and
4155:
in 1965. A special case of 3-opt is where the edges are not disjoint (two of the edges are adjacent to one another). In practice, it is often possible to achieve substantial improvement over 2-opt without the combinatorial cost of the general 3-opt by restricting the 3-changes to this special subset
3948:
Making a graph into an Eulerian graph starts with the minimum spanning tree; all the vertices of odd order must then be made even, so a matching for the odd-degree vertices must be added, which increases the order of every odd-degree vertex by 1. This leaves us with a graph where every vertex is of
2759:
The first set of equalities requires that each city is arrived at from exactly one other city, and the second set of equalities requires that from each city there is a departure to exactly one other city. The last constraint enforces that there is only a single tour covering all cities, and not two
271:
method for its solution. They wrote what is considered the seminal paper on the subject in which, with these new methods, they solved an instance with 49 cities to optimality by constructing a tour and proving that no other tour could be shorter. Dantzig, Fulkerson, and Johnson, however, speculated
4323:
1) An ant chooses a path among all possible paths and lays a pheromone trail on it. 2) All the ants are travelling on different paths, laying a trail of pheromones proportional to the quality of the solution. 3) Each edge of the best path is more reinforced than others. 4) Evaporation ensures that
3904:
To improve the lower bound, a better way of creating an Eulerian graph is needed. By the triangle inequality, the best Eulerian graph must have the same cost as the best travelling salesman tour; hence, finding optimal Eulerian graphs is at least as hard as TSP. One way of doing this is by minimum
1201:
tour which visits all vertices, as the edges chosen could make up several tours, each visiting only a subset of the vertices; arguably, it is this global requirement that makes TSP a hard problem. The MTZ and DFJ formulations differ in how they express this final requirement as linear constraints.
4311:
ACS sends out a large number of virtual ant agents to explore many possible routes on the map. Each ant probabilistically chooses the next city to visit based on a heuristic combining the distance to the city and the amount of virtual pheromone deposited on the edge to the city. The ants explore,
546:
deals with a purchaser who is charged with purchasing a set of products. He can purchase these products in several cities, but at different prices, and not all cities offer the same products. The objective is to find a route between a subset of the cities that minimizes total cost (travel cost +
374:
that has been used in many recent record solutions. Gerhard Reinelt published the TSPLIB in 1991, a collection of benchmark instances of varying difficulty, which has been used by many research groups for comparing results. In 2006, Cook and others computed an optimal tour through an 85,900-city
325:
yields a solution that, in the worst case, is at most 1.5 times longer than the optimal solution. As the algorithm was simple and quick, many hoped it would give way to a near-optimal solution method. However, this hope for improvement did not immediately materialize, and Christofides-Serdyukov
3771:
for instances satisfying the triangle inequality. A variation of the NN algorithm, called nearest fragment (NF) operator, which connects a group (fragment) of nearest unvisited cities, can find shorter routes with successive iterations. The NF operator can also be applied on an initial solution
4187:
first published their method in 1972, and it was the most reliable heuristic for solving travelling salesman problems for nearly two decades. More advanced variable-opt methods were developed at Bell Labs in the late 1980s by David Johnson and his research team. These methods (sometimes called
4513:
In its definition, the TSP does not allow cities to be visited twice, but many applications do not need this constraint. In such cases, a symmetric, non-metric instance can be reduced to a metric one. This replaces the original graph with a complete graph in which the inter-city distance
2856: 755: 4179:) of edges from the original tour, the variable-opt methods do not fix the size of the edge set to remove. Instead, they grow the set as the search process continues. The best-known method in this family is the Lin–Kernighan method (mentioned above as a misnomer for 2-opt). 6580: 560:. Several formulations are known. Two notable formulations are the Miller–Tucker–Zemlin (MTZ) formulation and the Dantzig–Fulkerson–Johnson (DFJ) formulation. The DFJ formulation is stronger, though the MTZ formulation is still useful in certain settings. 503:
machine to drill holes in a PCB. In robotic machining or drilling applications, the "cities" are parts to machine or holes (of different sizes) to drill, and the "cost of travel" includes time for retooling the robot (single-machine job sequencing
6957:, as well as in a number of other restrictive cases. Removing the condition of visiting each city "only once" does not remove the NP-hardness, since in the planar case there is an optimal tour that visits each city only once (otherwise, by the 326:
remained the method with the best worst-case scenario until 2011, when a (very) slightly improved approximation algorithm was developed for the subset of "graphical" TSPs. In 2020 this tiny improvement was extended to the full (metric) TSP.
6689: 5452: 3349:
constraint—ensures that no proper subset Q can form a sub-tour, so the solution returned is a single tour and not the union of smaller tours. Because this leads to an exponential number of possible constraints, in practice it is solved with
511:, also known as the "travelling politician problem", deals with "states" that have (one or more) "cities", and the salesman must visit exactly one city from each state. One application is encountered in ordering a solution to the 4156:
where two of the removed edges are adjacent. This so-called two-and-a-half-opt typically falls roughly midway between 2-opt and 3-opt, both in terms of the quality of tours achieved and the time required to achieve those tours.
3666:: a tour of length 66,048,945 units was found, and it was proven that no shorter tour exists. The computation took approximately 15.7 CPU-years (Cook et al. 2006). In April 2006 an instance with 85,900 points was solved using 375:
instance given by a microchip layout problem, currently the largest solved TSPLIB instance. For many other instances with millions of cities, solutions can be found that are guaranteed to be within 2–3% of an optimal tour.
152:
between DNA fragments. The TSP also appears in astronomy, as astronomers observing many sources want to minimize the time spent moving the telescope between the sources; in such problems, the TSP can be embedded inside an
7138:
For benchmarking of TSP algorithms, TSPLIB is a library of sample instances of the TSP and related problems is maintained; see the TSPLIB external reference. Many of them are lists of actual cities and layouts of actual
5161: 41:), asks the following question: "Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city?" It is an 9256:
Kyritsis, Markos; Gulliver, Stephen R.; Feredoes, Eva; Din, Shahab Ud (December 2018). "Human behaviour in the Euclidean Travelling Salesperson Problem: Computational modelling of heuristics and figural effects".
5609: 4123:
Reassemble the remaining fragments into a tour, leaving no disjoint subtours (that is, do not connect a fragment's endpoints together). This in effect simplifies the TSP under consideration into a much simpler
861: 4718: 3841:
This algorithm looks at things differently by using a result from graph theory which helps improve on the lower bound of the TSP which originated from doubling the cost of the minimum spanning tree. Given an
5726: 9118:
Vickers, Douglas; Mayo, Therese; Heitmann, Megan; Lee, Michael D; Hughes, Peter (2004). "Intelligence and individual differences in performance on three types of visually presented optimisation problems".
2778: 677: 6298: 4312:
depositing pheromone on each edge that they cross, until they have all completed a tour. At this point the ant which completed the shortest tour deposits virtual pheromone along its complete tour route (
760:
It is because these are 0/1 variables that the formulations become integer programs; all other constraints are purely linear. In particular, the objective in the program is to minimize the tour length
6843: 6908: 5086:
of the "ghost" edges linking the ghost nodes to the corresponding original nodes must be low enough to ensure that all ghost edges must belong to any optimal symmetric TSP solution on the new graph (
539:
is how to route data among data processing nodes; routes vary by time to transfer the data, but nodes also differ by their computing power and storage, compounding the problem of where to send data.
495:. A real-world example is avoiding narrow streets with big buses. The problem is of considerable practical importance, apart from evident transportation and logistics areas. A classic example is in 4766:
is called asymmetric TSP. A practical application of an asymmetric TSP is route optimization using street-level routing (which is made asymmetric by one-way streets, slip-roads, motorways, etc.).
6783: 3838:. As a matter of fact, the term "algorithm" was not commonly extended to approximation algorithms until later; the Christofides algorithm was initially referred to as the Christofides heuristic. 2916: 2239: 4580:
obeys the triangle inequality, so the Euclidean TSP forms a special case of metric TSP. However, even when the input points have integer coordinates, their distances generally take the form of
1936: 8967:
Rooij, Iris Van; Stege, Ulrike; Schactman, Alissa (1 March 2003). "Convex hull and tour crossings in the Euclidean traveling salesperson problem: Implications for human performance studies".
6466: 3985:
technique involves iteratively removing two edges and replacing them with two different edges that reconnect the fragments created by edge removal into a new and shorter tour. Similarly, the
5989: 1151: 1044: 420:(i.e., each pair of vertices is connected by an edge). If no path exists between two cities, then adding a sufficiently long edge will complete the graph without affecting the optimal tour. 4004:
For Euclidean instances, 2-opt heuristics give on average solutions that are about 5% better than those yielded by Christofides' algorithm. If we start with an initial solution made with a
3694:. Modern methods can find solutions for extremely large problems (millions of cities) within a reasonable time which are, with a high probability, just 2–3% away from the optimal solution. 7310:"Der Handlungsreisende – wie er sein soll und was er zu tun hat, um AuftrĂ€ge zu erhalten und eines glĂŒcklichen Erfolgs in seinen GeschĂ€ften gewiß zu sein – von einem alten Commis-Voyageur" 3883:
time, so if we had an Eulerian graph with cities from a TSP as vertices, then we can easily see that we could use such a method for finding an Eulerian tour to find a TSP solution. By the
7040:
travelling salesman tour is approximable within 63/38. If the distance function is symmetric, then the longest tour can be approximated within 4/3 by a deterministic algorithm and within
5528: 6052: 5201: 444:. Traffic congestion, one-way streets, and airfares for cities with different departure and arrival fees are real-world considerations that could yield a TSP problem in asymmetric form. 121:
are known, so that some instances with tens of thousands of cities can be solved completely, and even problems with millions of cities can be approximated within a small fraction of 1%.
9146:
Kyritsis, Markos; Gulliver, Stephen R.; Feredoes, Eva (12 June 2017). "Acknowledging crossing-avoidance heuristic violations when solving the Euclidean travelling salesperson problem".
5853: 4447: 1989: 6019: 3706: 1726: 347:
Great progress was made in the late 1970s and 1980, when Grötschel, Padberg, Rinaldi and others managed to exactly solve instances with up to 2,392 cities, using cutting planes and
8660:(1987). On approximation preserving reductions: Complete problems and robust measures' (Report). Department of Computer Science, University of Helsinki. Technical Report C-1987–28. 6455: 6084: 7078: 5798: 5287: 4189: 3597: 3769: 3494: 1631: 8922:
Dry, Matthew; Lee, Michael D.; Vickers, Douglas; Hughes, Peter (2006). "Human Performance on Visually Presented Traveling Salesperson Problems with Varying Numbers of Nodes".
4332: 913: 7031: 6224: 3798:, where the second matching is executed after deleting all the edges of the first matching, to yield a set of cycles. The cycles are then stitched to produce the final tour. 1770: 1366: 1192: 5935: 5378: 3539: 3488: 1276: 1082: 6347: 6137: 5879: 5752: 5672: 3579: 7264:
Labbé, Martine; Laporte, Gilbert; Martín, Inmaculada Rodríguez; Gonzålez, Juan José Salazar (May 2004). "The Ring Star Problem: Polyhedral analysis and exact algorithm".
5903: 4085: 2895: 629: 593: 6727: 6597: 5392: 1809: 1667: 4616:
points (considerably less than the number of edges). This enables the simple 2-approximation algorithm for TSP with triangle inequality above to operate more quickly.
4244: 3943: 2054: 951:. Therefore, both formulations also have the constraints that, at each vertex, there is exactly one incoming edge and one outgoing edge, which may be expressed as the 949: 5629: 5477: 4542: 2111: 1844: 1439: 1238: 7627:
Rego, CĂ©sar; Gamboa, Dorabela; Glover, Fred; Osterman, Colin (2011), "Traveling salesman problem heuristics: leading methods, implementations and latest advances",
6402: 6184: 3427: 2140: 2081: 1558: 1493: 1466: 1303: 525:. Noon and Bean demonstrated that the generalized travelling salesman problem can be transformed into a standard TSP with the same number of cities, but a modified 165:
The origins of the travelling salesperson problem are unclear. A handbook for travelling salesmen from 1832 mentions the problem and includes example tours through
5346: 4037: 3879: 1580: 232:
generated interest in the problem, which he called the "48 states problem". The earliest publication using the phrase "travelling salesman problem" was the 1949
8065:
Zverovitch, Alexei; Zhang, Weixiong; Yeo, Anders; McGeoch, Lyle A.; Gutin, Gregory; Johnson, David S. (2007), "Experimental Analysis of Heuristics for the ATSP",
6375: 2018: 2203: 2180: 1536: 1409: 972: 6157: 5307: 2223: 2160: 1513: 1386: 1324: 669: 649: 314:
of the graph and then double all its edges, which produces the bound that the length of an optimal tour is at most twice the weight of a minimum spanning tree.
10523:
Medvedev, Andrei; Lee, Michael; Butavicius, Marcus; Vickers, Douglas (1 February 2001). "Human performance on visually presented Traveling Salesman problems".
7157:, by director Timothy Lanzone, is the story of four mathematicians hired by the U.S. government to solve the most elusive problem in computer-science history: 7753:
Velednitsky, Mark (2017). "Short combinatorial proof that the DFJ polytope is contained in the MTZ polytope for the Asymmetric Traveling Salesman Problem".
915:
will effectively range over all subsets of the set of edges, which is very far from the sets of edges in a tour, and allows for a trivial minimum where all
9833:
Kaplan, H.; Lewenstein, L.; Shafrir, N.; Sviridenko, M. (2004), "Approximation Algorithms for Asymmetric TSP by Decomposing Directed Regular Multigraphs",
5090:= 0 is not always low enough). As a consequence, in the optimal symmetric tour, each original node appears next to its ghost node (e.g. a possible path is 9395: 1197:
These ensure that the chosen set of edges locally looks like that of a tour, but still allow for solutions violating the global requirement that there is
7312:(The travelling salesman – how he must be and what he should do in order to get commissions and be sure of the happy success in his business – by an old 461:(where the vertices would represent the cities, the edges would represent the roads, and the weights would be the cost or distance of that road), find a 7693:
Behzad, Arash; Modarres, Mohammad (2002), "New Efficient Transformation of the Generalized Traveling Salesman Problem into Traveling Salesman Problem",
3887:, we know that the TSP tour can be no longer than the Eulerian tour, and we therefore have a lower bound for the TSP. Such a method is described below. 8640: 9752: 10176:
Babin, Gilbert; Deneault, Stéphanie; Laportey, Gilbert (2005), "Improvements to the Or-opt Heuristic for the Symmetric Traveling Salesman Problem",
7463:
van Bevern, René; Slugina, Viktoriia A. (2020). "A historical note on the 3/2-approximation algorithm for the metric traveling salesman problem".
10740: 10614:
Rosenkrantz, Daniel J.; Stearns, Richard E.; Lewis, Philip M. II (1977). "An Analysis of Several Heuristics for the Traveling Salesman Problem".
3620:); this is the method of choice for solving large instances. This approach holds the current record, solving an instance with 85,900 cities, see 3600:
Solution of a TSP with 7 cities using a simple Branch and bound algorithm. Note: The number of permutations is much less than Brute force search
9805: 4774:
Solving an asymmetric TSP graph can be somewhat complex. The following is a 3×3 matrix containing all possible path weights between the nodes
208:, who defines the problem, considers the obvious brute-force algorithm, and observes the non-optimality of the nearest neighbour heuristic: 10116: 6997: 6988:
If the distances are restricted to 1 and 2 (but still are a metric), then the approximation ratio becomes 8/7. In the asymmetric case with
4224:
algorithms which use local searching heuristic sub-algorithms can find a route extremely close to the optimal route for 700 to 800 cities.
8130:
Ray, S. S.; Bandyopadhyay, S.; Pal, S. K. (2007). "Genetic Operators for Combinatorial Optimization in TSP and Microarray Gene Ordering".
9343:
Gibson, Brett; Wilkinson, Matthew; Kelly, Debbie (1 May 2012). "Let the pigeon drive the bus: pigeons can plan future routes in a room".
5537: 4576:
of the points. Any non-optimal solution with crossings can be made into a shorter solution without crossings by local optimizations. The
766: 7130:
adapts its morphology to create an efficient path between the food sources, which can also be viewed as an approximate solution to TSP.
532:
The sequential ordering problem deals with the problem of visiting a set of cities, where precedence relations between the cities exist.
9914:
Padberg, M.; Rinaldi, G. (1991), "A Branch-and-Cut Algorithm for the Resolution of Large-Scale Symmetric Traveling Salesman Problems",
4637: 4335:
Ant colony optimization algorithm for a TSP with 7 cities: Red and thick lines in the pheromone map indicate presence of more pheromone
4180: 2851:{\displaystyle x_{ij}={\begin{cases}1&{\text{the path goes from city }}i{\text{ to city }}j\\0&{\text{otherwise.}}\end{cases}}} 750:{\displaystyle x_{ij}={\begin{cases}1&{\text{the path goes from city }}i{\text{ to city }}j\\0&{\text{otherwise.}}\end{cases}}} 10571:(1999), "Guillotine subdivisions approximate polygonal subdivisions: A simple polynomial-time approximation scheme for geometric TSP, 5684: 5163:), and by merging the original and ghost nodes again we get an (optimal) solution of the original asymmetric problem (in our example, 3721:) lets the salesman choose the nearest unvisited city as his next move. This algorithm quickly yields an effectively short route. For 4627:
is the number of dimensions in the Euclidean space, there is a polynomial-time algorithm that finds a tour of length at most (1 + 1/
7629: 5093: 7538: 6235: 4750:
In most cases, the distance between two nodes in the TSP network is the same in both directions. The case where the distance from
5232: 243:
In the 1950s and 1960s, the problem became increasingly popular in scientific circles in Europe and the United States after the
10750: 7109: 6970: 6794: 4316:). The amount of pheromone deposited is inversely proportional to the tour length: the shorter the tour, the more it deposits. 3900:
Convert to TSP: if a city is visited twice, then create a shortcut from the city before this in the tour to the one after this.
6862: 4139:
total fragment endpoints available, the two endpoints of the fragment under consideration are disallowed. Such a constrained 2
109:
The problem was first formulated in 1930 and is one of the most intensively studied problems in optimization. It is used as a
10745: 10475: 10433: 10378: 10351: 10279: 10216: 9896: 9738: 9516: 8813: 8755: 8092: 7920: 7601: 7384: 6950: 6785:, which seem to be good up to more or less 1%. In particular, David S. Johnson obtained a lower bound by computer experiment: 484: 7427:
A detailed treatment of the connection between Menger and Whitney as well as the growth in the study of TSP can be found in
10715: 10206: 9616: 8203: 4724: 6732: 25:
Solution of a travelling salesperson problem: the black line shows the shortest possible loop that connects every red dot.
10730: 10670: 7722:
Tucker, A. W. (1960), "On Directed Graphs and Integer Programs", IBM Mathematical research Project (Princeton University)
7204: 6575:{\displaystyle \mathbb {E} \geq {\bigl (}{\tfrac {1}{4}}+{\tfrac {3}{8}}{\bigr )}{\sqrt {n}}={\tfrac {5}{8}}{\sqrt {n}},} 6850:
where 0.522 comes from the points near the square boundary which have fewer neighbours, and Christine L. Valenzuela and
9983: 8593: 4276: 1852: 4475:
In the rectilinear TSP, the distance between two cities is the sum of the absolute values of the differences of their
3497:
Solution to a symmetric TSP with 7 cities using brute force search. Note: Number of permutations: (7−1)!/2 = 360
9484: 8315: 7740: 5943: 4143:-city TSP can then be solved with brute-force methods to find the least-cost recombination of the original fragments. 1087: 980: 344:
of TSP. This supplied a mathematical explanation for the apparent computational difficulty of finding optimal tours.
200:. The general form of the TSP appears to have been first studied by mathematicians during the 1930s in Vienna and at 9199:"Sense of direction and conscientiousness as predictors of performance in the Euclidean travelling salesman problem" 7899:
Ambainis, Andris; Balodis, Kaspars; Iraids, Jānis; Kokainis, Martins; PrĆ«sis, KriĆĄjānis; Vihrovs, Jevgēnijs (2019).
7824:
C. E. Miller, A. W. Tucker, and R. A. Zemlin. 1960. Integer Programming Formulation of Traveling Salesman Problems.
3826:
follows a similar outline but combines the minimum spanning tree with a solution of another problem, minimum-weight
3772:
obtained by the NN algorithm for further improvement in an elitist model, where only better solutions are accepted.
3490:. This bound has also been reached by Exclusion-Inclusion in an attempt preceding the dynamic programming approach. 10446:; McGeoch, L. A. (1997), "The Traveling Salesman Problem: A Case Study in Local Optimization", in Aarts, E. H. L.; 10451: 8006: 5482: 7841:
Dantzig, G.; Fulkerson, R.; Johnson, S. (November 1954). "Solution of a Large-Scale Traveling-Salesman Problem".
7566:; Klein, Nathan; Gharan, Shayan Oveis (2021), "A (slightly) improved approximation algorithm for metric TSP", in 7153: 6024: 5166: 4597: 3949:
even order, which is thus Eulerian. Adapting the above method gives the algorithm of Christofides and Serdyukov:
473: 408:, and a path's distance is the edge's weight. It is a minimization problem starting and finishing at a specified 288: 76: 8591:(1991). "Probabilistic analysis of the Held and Karp lower bound for the Euclidean traveling salesman problem". 7672: 7100:
was devoted to the topic of human performance on TSP, and a 2011 review listed dozens of papers on the subject.
9296: 3501:
Improving these time bounds seems to be difficult. For example, it has not been determined whether a classical
3380:
Finding special cases for the problem ("subproblems") for which either better or exact heuristics are possible.
405: 7798:
BektaƟ, Tolga; Gouveia, Luis (2014). "Requiem for the Miller–Tucker–Zemlin subtour elimination constraints?".
7199: 5812: 4390: 10720: 10301: 10029:
Serdyukov, A. I. (1984), "An algorithm with an estimate for the traveling salesman problem of the maximum'",
7571: 7229: 1941: 9768:, Technical Report 388, Graduate School of Industrial Administration, Carnegie-Mellon University, Pittsburgh 9664:
Bellman, R. (1960), "Combinatorial Processes and Dynamic Programming", in Bellman, R.; Hall, M. Jr. (eds.),
9570: 8637: 6992:, in 2018, a constant factor approximation was developed by Svensson, Tarnawski, and VĂ©gh. An algorithm by 5994: 1675: 6407: 6060: 3834:, and was in part responsible for drawing attention to approximation algorithms as a practical approach to 3683: 3374: 397: 92: 50: 8406:
Jonker, Roy; Volgenant, Ton (1983). "Transforming asymmetric into symmetric traveling salesman problems".
7043: 3709:
Nearest Neighbour algorithm for a TSP with 7 cities. The solution changes as the starting point is changed
8408: 7576:
STOC '21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021
7327: 5757: 5531: 5246: 4105: 3714: 543: 157:. In many applications, additional constraints such as limited resources or time windows may be imposed. 103: 61: 4876:, linked to the original node with a "ghost" edge of very low (possibly negative) weight, here denoted − 4300:). It models behavior observed in real ants to find short paths between food sources and their nest, an 10269: 10229:; Espinoza, Daniel; Goycoolea, Marcos (2007), "Computing with domino-parity inequalities for the TSP", 7961: 7178: 3729: 1590: 46: 9459: 7298:
See the TSP world tour problem which has already been solved to within 0.05% of the optimal solution.
869: 99: 10735: 10725: 9571:"Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems" 7239: 7010: 6953:
is also NP-hard. The problem remains NP-hard even for the case when the cities are in the plane with
6189: 4506:
The last two metrics appear, for example, in routing a machine that drills a given set of holes in a
3989:
technique removes 3 edges and reconnects them to form a shorter tour. These are special cases of the
1735: 10389:"Traveling salesman should not be greedy: domination analysis of greedy-type heuristics for the TSP" 9721: 9549: 8936: 8033:"Traveling salesman should not be greedy: domination analysis of greedy-type heuristics for the TSP" 2803: 1331: 1156: 702: 10687: 10605: 10186: 10144: 9788: 8981: 8274: 8144: 8075: 7224: 7188: 5908: 5351: 5212: 4325: 3691: 3508: 3447: 1243: 1049: 488: 477: 466: 458: 9197:
Kyritsis, Markos; Blathras, George; Gulliver, Stephen; Varela, Vasiliki-Alexia (11 January 2017).
8885:
Macgregor, J. N.; Ormerod, T. (June 1996), "Human performance on the traveling salesman problem",
8439:(2016), "Beardwood–Halton–Hammersley theorem for stationary ergodic sequences: a counterexample", 8252:
Dorigo, Marco; Gambardella, Luca Maria (1997). "Ant Colonies for the Traveling Salesman Problem".
7309: 6684:{\displaystyle \mathbb {E} \geq {\bigl (}{\tfrac {5}{8}}+{\tfrac {19}{5184}}{\bigr )}{\sqrt {n}},} 6309: 6099: 5858: 5731: 5634: 5447:{\displaystyle {\frac {L_{n}^{*}}{\sqrt {n}}}\rightarrow \beta \qquad {\text{when }}n\to \infty ,} 4884:. In the new graph, no edge directly links original nodes and no edge directly links ghost nodes. 3548: 7219: 5884: 4289: 4281: 4240: 4090: 4046: 3906: 3831: 3795: 3687: 3441: 2864: 2162:
for each step along a tour, with a decrease only allowed where the tour passes through city 
598: 566: 65: 21: 10165: 9884: 8175:
Kahng, A. B.; Reda, S. (2004). "Match Twice and Stitch: A New TSP Tour Construction Heuristic".
4494:, the distance between two points is the maximum of the absolute values of differences of their 10678: 10600: 10181: 10180:, Cahiers du GERAD, G-2005-02 (3), Montreal: Group for Research in Decision Analysis: 402–407, 10139: 9943: 9783: 9716: 9544: 8976: 8931: 8269: 8139: 8070: 6982: 6700: 5380:
be the shortest path length (i.e. TSP solution) for this set of points, according to the usual
4227:
TSP is a touchstone for many general heuristics devised for combinatorial optimization such as
4197: 3823: 3791: 1775: 1636: 322: 264: 185: 10693: 9710: 3912: 2142:
variables then enforce that a single tour visits all cities is that they increase by at least
2023: 918: 10568: 10485:
MacGregor, J. N.; Ormerod, T. (1996), "Human performance on the traveling salesman problem",
10361:
Goldberg, D. E. (1989), "Genetic Algorithms in Search, Optimization & Machine Learning",
10095:
Combinatorial Optimization – Eureka, You Shrink! Lecture notes in computer science, vol. 2570
9071:"Convex hull or crossing avoidance? Solution heuristics in the traveling salesperson problem" 8313:
Quintas, L. V.; Supnick, Fred (1965). "On some properties of shortest Hamiltonian circuits".
7140: 7126: 4732: 4507: 4364:
A very natural restriction of the TSP is to require that the distances between cities form a
512: 496: 469:, which only asks if a Hamiltonian path (or cycle) exists in a non-complete unweighted graph. 413: 409: 401: 311: 256: 110: 10653: 10595:
Rao, S.; Smith, W. (1998). "Approximating geometrical graphs via 'spanners' and 'banyans'".
8696: 7977:
Applegate, David; Bixby, Robert; ChvĂĄtal, VaĆĄek; Cook, William; Helsgaun, Keld (June 2004).
7509: 5614: 5462: 4517: 2086: 1814: 1414: 1213: 287:
published an article entitled "The Shortest Path Through Many Points" in the journal of the
10366: 10253: 10131: 10090: 10062: 9969: 9628: 9599: 9416: 9210: 8344: 8261: 7650: 7093: 6974: 6380: 6162: 4589: 4365: 4288:
described in 1993 a method of heuristically generating "good solutions" to the TSP using a
4252: 3653: 3629: 3400: 2118: 2059: 1543: 1471: 1444: 1281: 268: 229: 9526:
Allender, Eric; BĂŒrgisser, Peter; Kjeldgaard-Pedersen, Johan; Mitersen, Peter Bro (2007),
8557:
Held, M.; Karp, R.M. (1970). "The Traveling Salesman Problem and Minimum Spanning Trees".
5312: 4013: 3971: 3855: 1565: 113:
for many optimization methods. Even though the problem is computationally difficult, many
8: 10683: 10004: 9433: 8736:"A constant-factor approximation algorithm for the asymmetric traveling salesman problem" 7965: 7900: 6989: 6958: 6352: 5800:
are replaced with observations from a stationary ergodic process with uniform marginals.
4369: 4358: 4232: 3884: 3835: 3830:. This gives a TSP tour which is at most 1.5 times the optimal. It was one of the first 3784: 3662: 3437: 1997: 557: 492: 54: 10370: 10135: 10066: 9674:
Bellman, R. (1962), "Dynamic Programming Treatment of the Travelling Salesman Problem",
9632: 9527: 9420: 9214: 8363: 8265: 6697:
Held and Karp gave a polynomial-time algorithm that provides numerical lower bounds for
4457:
on the set of vertices. When the cities are viewed as points in the plane, many natural
3814: 3656:. The total computation time was equivalent to 22.6 years on a single 500 MHz 2185: 2165: 1518: 1391: 954: 440:, paths may not exist in both directions or the distances might be different, forming a 144:
represents, for example, customers, soldering points, or DNA fragments, and the concept
10631: 10556: 10512: 10329: 10321: 10191: 10078: 10052: 9978: 9931: 9852: 9843:
Karpinski, M.; Lampis, M.; Schmied, R. (2015), "New Inapproximability bounds for TSP",
9744: 9693: 9652: 9603: 9578: 9406: 9376: 9274: 9233: 9198: 9179: 9010: 8819: 8791: 8761: 8588: 8466: 8448: 8332: 8295: 8234: 8157: 7926: 7780: 7762: 7654: 7607: 7579: 7490: 7472: 7089: 6954: 6142: 5381: 5292: 4577: 4484: 4469: 4248: 3645: 3606: 3433:
of the number of cities, so this solution becomes impractical even for only 20 cities.
3394: 2208: 2145: 1498: 1371: 1309: 654: 634: 363: 318: 201: 149: 133: 10405: 10388: 9873:
Kosaraju, S. R.; Park, J. K.; Stein, C. (1994), "Long tours and short superstrings'",
9797: 9132: 8735: 8283: 8049: 8032: 7244: 2182:
That constraint would be violated by every tour which does not pass through city 
321:
and Serdyukov (independently of each other) made a big advance in this direction: the
10548: 10540: 10504: 10471: 10447: 10429: 10410: 10374: 10347: 10297: 10275: 10212: 10157: 10082: 9960: 9902: 9892: 9734: 9656: 9644: 9512: 9368: 9360: 9238: 9171: 9163: 9100: 9092: 9051: 9002: 8994: 8949: 8904: 8823: 8809: 8751: 8530: 8513: 8436: 8421: 8287: 8226: 8088: 8013: 7916: 7736: 7611: 7597: 7494: 7380: 7281: 5224: 4458: 4228: 3641: 2228:
The MTZ formulation of TSP is thus the following integer linear programming problem:
462: 432:, the distance between two cities is the same in each opposite direction, forming an 333: 280: 260: 184:
The TSP was mathematically formulated in the 19th century by the Irish mathematician
69: 10635: 10516: 10333: 9935: 9697: 9380: 9278: 9014: 8765: 8238: 8204:"Constricting Insertion Heuristic for Traveling Salesman Problem with Neighborhoods" 7930: 4872:
To double the size, each of the nodes in the graph is duplicated, creating a second
251:
offered prizes for steps in solving the problem. Notable contributions were made by
10623: 10584: 10560: 10532: 10494: 10443: 10400: 10313: 10257: 10249: 10238: 10149: 10070: 10012: 9992: 9955: 9923: 9862: 9821: 9793: 9748: 9726: 9683: 9636: 9607: 9587: 9554: 9352: 9308: 9266: 9228: 9218: 9183: 9155: 9128: 9082: 9041: 8986: 8941: 8894: 8801: 8743: 8602: 8566: 8525: 8494: 8470: 8458: 8417: 8324: 8299: 8279: 8218: 8184: 8161: 8149: 8112: 8080: 8044: 8002: 7908: 7850: 7807: 7784: 7772: 7695:
Proceedings of the 15th International Conference of Systems Engineering (Las Vegas)
7658: 7638: 7589: 7482: 7273: 7209: 7104: 6934: 6930: 6926: 6851: 4573: 4005: 3827: 3780: 3718: 3613: 3589: 433: 348: 299: 273: 244: 233: 221: 197: 10597:
STOC '98: Proceedings of the thirtieth annual ACM symposium on Theory of computing
9223: 3628:
An exact solution for 15,112 German towns from TSPLIB was found in 2001 using the
1305:
that keeps track of the order in which the cities are visited, counting from city
176: 10674: 10655:
A Multilevel Lin-Kernighan-Helsgaun Algorithm for the Travelling Salesman Problem
10465: 10423: 10341: 10293: 10265: 10226: 10202: 10112: 9965: 9706: 9595: 9535: 9504: 9270: 8783: 8644: 8340: 7646: 7534: 7401: 7374: 7194: 7183: 7165: 5220: 4585: 4565: 4184: 3997:
is an often heard misnomer for 2-opt; Lin–Kernighan is actually the more general
3657: 3649: 3637: 3542: 3502: 3367: 563:
Common to both these formulations is that one labels the cities with the numbers
526: 508: 367: 359: 355: 329: 284: 225: 154: 118: 95: 88: 10043:
Steinerberger, Stefan (2015), "New Bounds for the Traveling Salesman Constant",
10016: 8211:
Proceedings of the International Conference on Automated Planning and Scheduling
7912: 7510:"Computer Scientists Find New Shortcuts for Infamous Traveling Salesman Problem" 10289: 10261: 9866: 9756: 8657: 8584: 7811: 7642: 7214: 4569: 4491: 3843: 3633: 3617: 3351: 2905:. Then TSP can be written as the following integer linear programming problem: 441: 417: 252: 237: 189: 137: 10588: 10208:
In Pursuit of the Traveling Salesman: Mathematics at the Limits of Computation
9640: 9356: 9159: 9069:
MacGregor, James N.; Chronicle, Edward P.; Ormerod, Thomas C. (1 March 2004).
8498: 8222: 8188: 8153: 7955: 7776: 6961:, a shortcut that skips a repeated visit would not increase the tour length). 5227:(that is, when is there a curve with finite length that visits every point in 4736: 521: 10709: 10544: 10414: 10074: 9648: 9566: 9364: 9327: 9167: 9096: 9055: 8998: 8953: 8230: 8084: 7905:
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms
7567: 7486: 7285: 7002: 5881:, by using a naĂŻve path which visits monotonically the points inside each of 5678: 4728: 4545: 4205: 4204:-opting the new tour. The mutation is often enough to move the tour from the 3847: 3592:
algorithms, which can be used to process TSPs containing thousands of cities.
516: 83:, the task is to decide whether the graph has a tour whose length is at most 10464:
Lawler, E. L.; Shmoys, D. B.; Kan, A. H. G. Rinnooy; Lenstra, J. K. (1985).
10153: 9730: 9525: 9297:"Human performance on the traveling salesman and related problems: A review" 9030:"Human Performance on the Traveling Salesman and Related Problems: A Review" 8805: 8747: 8483:
Few, L. (1955). "The shortest path and the shortest road through n points".
8369: 7593: 7376:
The Travelling Salesman Problem: A Guided Tour of Combinatorial Optimization
4742:
In practice, simpler heuristics with weaker guarantees continue to be used.
3648:. The computations were performed on a network of 110 processors located at 3377:, i.e., algorithms that deliver approximated solutions in a reasonable time. 3362:
The traditional lines of attack for the NP-hard problems are the following:
10552: 10242: 10008: 9906: 9885:"6.4.7: Applications of Network Models § Routing Problems §§ Euclidean TSP" 9809: 9372: 9313: 9242: 9175: 9104: 9046: 9029: 9006: 8945: 8570: 7978: 4461:
are metrics, and so many natural instances of TSP satisfy this constraint.
4454: 4305: 4285: 4221: 3776: 3690:, which quickly yield good solutions, have been devised. These include the 454: 294:
In the following decades, the problem was studied by many researchers from
248: 193: 10536: 10508: 10161: 9766:
Worst-case analysis of a new heuristic for the travelling salesman problem
9688: 9591: 8908: 8788:
Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing
8740:
Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing
8291: 7299: 515:
in order to minimize knife changes. Another is concerned with drilling in
10317: 9666:
Combinatorial Analysis, Proceedings of Symposia in Applied Mathematics 10
8606: 8485: 7854: 7563: 7234: 6946: 4581: 4468:
In the Euclidean TSP (see below), the distance between two cities is the
4264: 4236: 4193: 3783:
that has the points as its vertices; it can be computed efficiently with
3397:). The running time for this approach lies within a polynomial factor of 3390: 337: 295: 205: 170: 124:
The TSP has several applications even in its purest formulation, such as
42: 9996: 9774:
Hassin, R.; Rubinstein, S. (2000), "Better approximations for max TSP",
9460:"'Travelling Salesman' movie considers the repercussions if P equals NP" 8514:"A parallel tabu search algorithm for large traveling salesman problems" 8116: 7829: 4739:
in 2010 for their concurrent discovery of a PTAS for the Euclidean TSP.
3605:
Progressive improvement algorithms, which use techniques reminiscent of
136:. Slightly modified, it appears as a sub-problem in many areas, such as 10499: 10195: 10007:(2005). "On the history of combinatorial optimization (till 1960)". In 9087: 9070: 8990: 8899: 8779: 8462: 8336: 8107:
Rosenkrantz, D. J.; Stearns, R. E.; Lewis, P. M. (14–16 October 1974).
7441: 7439: 7437: 7325:
A discussion of the early work of Hamilton and Kirkman can be found in
7107:
titled "Let the Pigeon Drive the Bus," named after the children's book
6993: 4592:
needed to perform exact comparisons of the lengths of different tours.
10343:
Computers and Intractability: A Guide to the Theory of NP-completeness
10325: 9558: 8202:
Alatartsev, Sergey; Augustine, Marcus; Ortmeier, Frank (2 June 2013).
8111:. 15th Annual Symposium on Switching and Automata Theory (swat 1974). 8069:, Combinatorial Optimization, Springer, Boston, MA, pp. 445–487, 7964:. How to cut unfruitful branches using reduced rows and columns as in 7901:"Quantum Speedups for Exponential-Time Dynamic Programming Algorithms" 7277: 7092:
variant of the problem, has attracted the attention of researchers in
3956:
Create a matching for the problem with the set of cities of odd order.
3806: 472:
The requirement of returning to the starting city does not change the
10622:(5). SIAM (Society for Industrial and Applied Mathematics): 563–581. 9981:(1993), "The traveling salesman problem with distances one and two", 5309:
independent random variables with uniform distribution in the square
4301: 4152: 3818:
Using a shortcut heuristic on the graph created by the matching above
3430: 303: 129: 114: 10627: 9927: 9825: 9396:"Computation of the travelling salesman problem by a shrinking blob" 8328: 8007:"The Traveling Salesman Problem: A Case Study in Local Optimization" 7434: 6969:
In the general case, finding a shortest travelling salesman tour is
5238: 4464:
The following are some examples of metric TSPs for various metrics.
4167:
The variable-opt method is related to, and a generalization of, the
9946:(1977), "The Euclidean traveling salesman problem is NP-complete", 8796: 8664: 8620: 7767: 7584: 7477: 7158: 5604:{\displaystyle \beta =\lim _{n\to \infty }\mathbb {E} /{\sqrt {n}}} 1495:
equal to the number of edges along that tour, when going from city
856:{\displaystyle \sum _{i=1}^{n}\sum _{j\neq i,j=1}^{n}c_{ij}x_{ij}.} 547:
purchasing cost) and enables the purchase of all required products.
125: 10057: 9857: 9411: 8830: 8453: 8031:
Gutina, Gregory; Yeob, Anders; Zverovich, Alexey (15 March 2002).
7409:(Technical report). Santa Monica, CA: The RAND Corporation. RM-303 4568:, the optimal solution to the travelling salesman problem forms a 4008:, then the average number of moves greatly decreases again and is 3705: 2760:
or more disjointed tours that only collectively cover all cities.
9832: 9812:(1962), "A Dynamic Programming Approach to Sequencing Problems", 7121:
When presented with a spatial configuration of food sources, the
6922: 4713:{\displaystyle O{\left(n(\log n)^{O(c{\sqrt {d}})^{d-1}}\right)}} 4112:-opt or variable-opt technique. It involves the following steps: 3726:
et al. showed that the NN algorithm has the approximation factor
2205:
so the only way to satisfy it is that the tour passing city 
341: 307: 166: 8742:. Stoc 2018. Los Angeles, CA, USA: ACM Press. pp. 204–213. 5721:{\displaystyle {\frac {L_{n}^{*}}{\sqrt {n}}}\rightarrow \beta } 436:. This symmetry halves the number of possible solutions. In the 9712:
Proc. 17th ACM-SIAM Symposium on Discrete Algorithms (SODA '06)
7122: 4096: 536: 10340:
Garey, Michael R.; Johnson, David S. (1979). "A2.3: ND22–24".
10117:"Molecular Computation of Solutions To Combinatorial Problems" 9615:
Beardwood, J.; Halton, J.H.; Hammersley, J.M. (October 1959),
9196: 3801: 3596: 388: 9814:
Journal of the Society for Industrial and Applied Mathematics
8842: 7898: 5215:
which asks the following: under what conditions may a subset
5156:{\displaystyle \mathrm {A\to A'\to C\to C'\to B\to B'\to A} } 4324:
the bad solutions disappear. The map is a work of Yves Aubry
4041:; however, for random starts, the average number of moves is 3986: 3981: 3894:
Create duplicates for every edge to create an Eulerian graph.
3493: 500: 10522: 8866: 8109:
Approximate algorithms for the traveling salesperson problem
6293:{\displaystyle \mathbb {E} \geq {\tfrac {1}{2}}{\sqrt {n}}.} 4331: 3393:(ordered combinations) and see which one is cheapest (using 240:, "On the Hamiltonian game (a traveling salesman problem)." 10093:(2003), "Exact Algorithms for NP-Hard Problems: A Survey", 9255: 8715: 8201: 7379:(Repr. with corrections. ed.). John Wiley & sons. 5479:
is a positive constant that is not known explicitly. Since
2844: 1540:
Because linear programming favors non-strict inequalities (
743: 263:
from the RAND Corporation, who expressed the problem as an
10248: 7937: 7263: 6941:, decide whether there is a round-trip route cheaper than 3370:, which work reasonably fast only for small problem sizes. 551: 9614: 9502: 9068: 8734:
Svensson, Ola; Tarnawski, Jakub; VĂ©gh, LĂĄszlĂł A. (2018).
8538: 8351: 8064: 7976: 7445: 6978: 6838:{\displaystyle L_{n}^{*}\gtrsim 0.7080{\sqrt {n}}+0.522,} 3677: 3671: 3621: 10645:
A Multilevel Approach to the Travelling Salesman Problem
9875:
Proc. 35th Ann. IEEE Symp. on Foundations of Comput. Sci
9145: 8676: 7626: 7539:"Computer Scientists Break Traveling Salesperson Record" 6903:{\displaystyle L_{n}^{*}\gtrsim 0.7078{\sqrt {n}}+0.551} 4304:
behavior resulting from each ant's preference to follow
3794:, Match Twice and Stitch (MTS), performs two sequential 2763: 79:, the decision version of the TSP (where given a length 10613: 10288: 9976: 8670: 8375: 8106: 7840: 4192:) build on the Lin–Kernighan method, adding ideas from 1584:
we would like to impose constraints to the effect that
224:
who was looking to solve a school bus routing problem.
220:
It was first considered mathematically in the 1930s by
10700: 10463: 10302:"Solution of a large-scale traveling salesman problem" 9842: 9835:
In Proc. 44th IEEE Symp. on Foundations of Comput. Sci
9117: 8836: 7706: 7403:
On the Hamiltonian game (a traveling salesman problem)
7036:
The corresponding maximization problem of finding the
6653: 6638: 6551: 6522: 6507: 6269: 4631:) times the optimal for geometric instances of TSP in 10225: 10175: 9709:(2006), "8/7-approximation algorithm for (1,2)-TSP", 8854: 8733: 7880: 7843:
Journal of the Operations Research Society of America
7709:
Combinatorial optimization: algorithms and complexity
7046: 7013: 6865: 6797: 6735: 6703: 6600: 6469: 6410: 6383: 6355: 6312: 6238: 6192: 6165: 6145: 6102: 6063: 6027: 5997: 5946: 5911: 5887: 5861: 5815: 5760: 5734: 5687: 5637: 5617: 5540: 5485: 5465: 5395: 5354: 5315: 5295: 5249: 5169: 5096: 4786:. One option is to turn an asymmetric matrix of size 4640: 4520: 4393: 4151:-opt methods are 3-opt, as introduced by Shen Lin of 4049: 4016: 3915: 3858: 3732: 3551: 3511: 3450: 3403: 2914: 2867: 2781: 2237: 2211: 2188: 2168: 2148: 2121: 2089: 2062: 2026: 2000: 1944: 1855: 1817: 1778: 1738: 1678: 1639: 1593: 1568: 1546: 1521: 1501: 1474: 1447: 1417: 1394: 1374: 1334: 1312: 1284: 1246: 1216: 1159: 1090: 1052: 983: 957: 921: 872: 769: 680: 657: 637: 601: 569: 465:
with the least weight. This is more general than the
10697:
by Jon McLoone at the Wolfram Demonstrations Project
9342: 8020:. London: John Wiley and Sons Ltd. pp. 215–310. 7331:
by Biggs, Lloyd, and Wilson (Clarendon Press, 1986).
6854:
obtained the following other numerical lower bound:
6778:{\displaystyle \beta (\simeq L_{n}^{*}/{\sqrt {n}})} 3345:
The last constraint of the DFJ formulation—called a
10387:Gutin, G.; Yeo, A.; Zverovich, A. (15 March 2002). 8966: 8921: 8129: 8030: 7164:Solutions to the problem are used by mathematician 7033:. The best known inapproximability bound is 75/74. 6306:A better lower bound is obtained by observing that 4258: 1441:variables), one may find satisfying values for the 1205: 9676:Journal of the Association for Computing Machinery 9621:Proceedings of the Cambridge Philosophical Society 9488:By Evelyn Lamb, Scientific American, 31 April 2015 7072: 7025: 6902: 6837: 6777: 6721: 6683: 6574: 6449: 6396: 6369: 6341: 6292: 6218: 6178: 6151: 6131: 6078: 6046: 6013: 5983: 5929: 5897: 5873: 5847: 5792: 5746: 5720: 5666: 5623: 5603: 5522: 5471: 5446: 5372: 5340: 5301: 5281: 5195: 5155: 4712: 4536: 4441: 4079: 4031: 3937: 3873: 3763: 3573: 3533: 3482: 3421: 3334: 2889: 2850: 2748: 2217: 2197: 2174: 2154: 2134: 2105: 2075: 2048: 2012: 1983: 1930: 1838: 1803: 1764: 1720: 1661: 1625: 1574: 1552: 1530: 1507: 1487: 1460: 1433: 1403: 1380: 1360: 1318: 1297: 1270: 1232: 1186: 1145: 1076: 1038: 966: 943: 907: 855: 749: 663: 643: 623: 587: 10425:The Traveling Salesman Problem and Its Variations 10386: 9872: 9668:, American Mathematical Society, pp. 217–249 8848: 8387: 8251: 8067:The Traveling Salesman Problem and Its Variations 7562: 7462: 7417:– via Defense Technical Information Center. 6057:Fietcher empirically suggested an upper bound of 5239:Path length for random sets of points in a square 4380:is never farther than the route via intermediate 3697:Several categories of heuristics are recognized. 1931:{\displaystyle u_{i}-u_{j}+1\leq (n-1)(1-x_{ij})} 10707: 10484: 9773: 8884: 8872: 8583: 5548: 2919: 2242: 1411:For a given tour (as encoded into values of the 10274:(2nd ed.). MIT Press. pp. 1027–1033. 10178:The Journal of the Operational Research Society 9704: 8721: 8405: 7083: 5984:{\displaystyle L_{n}^{*}\leq {\sqrt {2n}}+1.75} 1146:{\displaystyle \sum _{j=1,j\neq i}^{n}x_{ij}=1} 1039:{\displaystyle \sum _{i=1,i\neq j}^{n}x_{ij}=1} 10442: 9913: 9393: 8790:. Stoc 2020. Chicago, IL: ACM. pp. 1–13. 8784:"An improved approximation algorithm for ATSP" 8655: 8312: 8001: 7943: 7692: 6964: 4483:-coordinates. This metric is often called the 4357:or Δ-TSP, the intercity distances satisfy the 671:. The main variables in the formulations are: 10042: 9942: 9883:Larson, Richard C.; Odoni, Amedeo R. (1981), 9503:Applegate, D. L.; Bixby, R. M.; ChvĂĄtal, V.; 8544: 8434: 8357: 7957:Traveling Salesman Problem - Branch and Bound 7797: 6666: 6632: 6535: 6501: 3953:Find a minimum spanning tree for the problem. 3891:Find a minimum spanning tree for the problem. 3389:The most direct solution would be to try all 196:was a recreational puzzle based on finding a 16:NP-hard problem in combinatorial optimization 10459:, John Wiley and Sons Ltd., pp. 215–310 10339: 9763: 9294: 9027: 8697:"О ĐœĐ”ĐșĐŸŃ‚ĐŸŃ€Ń‹Ń… эĐșŃŃ‚Ń€Đ”ĐŒĐ°Đ»ŃŒĐœŃ‹Ń… ĐŸĐ±Ń…ĐŸĐŽĐ°Ń… ĐČ ĐłŃ€Đ°Ń„Đ°Ń…" 8682: 8638:Christine L. Valenzuela and Antonia J. Jones 7421: 5523:{\displaystyle L_{n}^{*}\leq 2{\sqrt {n}}+2} 3779:of a set of points is the minimum-perimeter 3545:for TSP due to Ambainis et al. runs in time 3303: 3285: 2372: 2360: 1975: 1957: 890: 873: 499:manufacturing: scheduling of a route of the 10421: 9882: 8699:[On some extremal walks in graphs] 8381: 7752: 7707:Papadimitriou, C.H.; Steiglitz, K. (1998), 7393: 6983:the algorithm of Christofides and Serdyukov 6916: 6047:{\displaystyle \beta \leq 0.984{\sqrt {2}}} 5754:may not exist if the independent locations 5196:{\displaystyle \mathrm {A\to C\to B\to A} } 4127:Each fragment endpoint can be connected to 4100:-opt heuristic, or Lin–Kernighan heuristics 4093:heuristics to re-optimize route solutions. 3802:The Algorithm of Christofides and Serdyukov 423: 10453:Local Search in Combinatorial Optimisation 8778: 8018:Local Search in Combinatorial Optimisation 7997: 7995: 7675:How Do You Fix School Bus Routes? Call MIT 6977:(and thus symmetric), the problem becomes 6404:and the closest and second closest points 4769: 4270: 3700: 2768:Label the cities with the numbers 1, ..., 1811:which is not correct. Instead MTZ use the 491:with the minimal weight of the weightiest 173:, but contains no mathematical treatment. 148:represents travelling times or cost, or a 10604: 10498: 10404: 10185: 10143: 10089: 10056: 10028: 10003: 9959: 9877:, IEEE Computer Society, pp. 166–177 9856: 9787: 9720: 9687: 9548: 9528:"On the Complexity of Numerical Analysis" 9410: 9312: 9232: 9222: 9086: 9045: 8980: 8935: 8898: 8860: 8795: 8694: 8529: 8452: 8273: 8174: 8143: 8074: 8048: 7886: 7766: 7735:, Princeton, NJ: PrincetonUP, pp. 545–7, 7583: 7533: 7507: 7476: 7446:Beardwood, Halton & Hammersley (1959) 7428: 7341: 7191:(also known as "Chinese postman problem") 6602: 6471: 6314: 6240: 6104: 5639: 5564: 4215: 1732:achieve that, because this also requires 10594: 10567: 10422:Gutin, G.; Punnen, A. P. (18 May 2007). 10360: 9804: 9290: 9288: 8556: 8511: 7875: 7800:European Journal of Operational Research 7630:European Journal of Operational Research 7399: 7257: 6973:-complete. If the distance measure is a 6925:(more precisely, it is complete for the 5848:{\displaystyle L^{*}\leq 2{\sqrt {n}}+2} 4442:{\displaystyle d_{AB}\leq d_{AC}+d_{CB}} 4330: 4263:This starts with a sub-tour such as the 3970: 3813: 3805: 3704: 3595: 3492: 387: 175: 98:for any algorithm for the TSP increases 91:problems. Thus, it is possible that the 20: 10651: 10642: 10470:. John Wiley & Sons, Incorporated. 10111: 9845:Journal of Computer and System Sciences 9673: 9663: 9617:"The Shortest Path Through Many Points" 9394:Jones, Jeff; Adamatzky, Andrew (2014), 7992: 7871: 7867: 7622: 7620: 7458: 7456: 7454: 7368: 7366: 7364: 7362: 7360: 7358: 7356: 7354: 7344:. Original German: "Wir bezeichnen als 6937:version ("given the costs and a number 6377:times the sum of the distances between 3824:algorithm of Christofides and Serdyukov 3609:. This works well for up to 200 cities. 3357: 1984:{\displaystyle i,j\in \{2,\dotsc ,n\},} 552:Integer linear programming formulations 509:generalized travelling salesman problem 276:algorithms perhaps for the first time. 10741:Computational problems in graph theory 10708: 10266:"35.2: The traveling-salesman problem" 9295:MacGregor, James N.; Chu, Yun (2011), 9121:Personality and Individual Differences 9028:MacGregor, James N.; Chu, Yun (2011). 8837:Karpinski, Lampis & Schmied (2015) 8428: 7372: 7116: 6951:bottleneck travelling salesman problem 6226:, one gets (after a short computation) 6014:{\displaystyle \beta \leq {\sqrt {2}}} 4372:; that is, the direct connection from 3909:using algorithms with a complexity of 3678:Heuristic and approximation algorithms 2225:also passes through all other cities. 1721:{\displaystyle u_{j}\geq u_{i}+x_{ij}} 1240:variables as above, there is for each 485:bottleneck travelling salesman problem 453:An equivalent formulation in terms of 10024:. Amsterdam: Elsevier. pp. 1–68. 9565: 9457: 9285: 8671:Papadimitriou & Yannakakis (1993) 8393: 7830:https://doi.org/10.1145/321043.321046 6450:{\displaystyle X_{i},X_{j}\neq X_{0}} 6079:{\displaystyle \beta \leq 0.73\dots } 5233:analyst's travelling salesman problem 4600:, and so can be computed in expected 4588:, making it difficult to perform the 3959:Find an Eulerian tour for this graph. 3897:Find an Eulerian tour for this graph. 3616:and problem-specific cut generation ( 2764:Dantzig–Fulkerson–Johnson formulation 383: 140:. In these applications, the concept 10684:TSPLIB, Sample instances for the TSP 10677: (archived 17 December 2013) at 10201: 7617: 7508:Klarreich, Erica (30 January 2013). 7451: 7351: 7073:{\displaystyle (33+\varepsilon )/25} 6021:, later improved by Karloff (1987): 5206: 4725:polynomial-time approximation scheme 4175:-opt methods remove a fixed number ( 3966: 3436:One of the earliest applications of 631:to be the cost (distance) from city 416:exactly once. Often, the model is a 10346:. W. H. Freeman. pp. 211–212. 8482: 7400:Robinson, Julia (5 December 1949). 7205:Steiner travelling salesman problem 7110:Don't Let the Pigeon Drive the Bus! 5793:{\displaystyle X_{1},\ldots ,X_{n}} 5384:. It is known that, almost surely, 5282:{\displaystyle X_{1},\ldots ,X_{n}} 3541:exists. The currently best quantum 3444:, which solves the problem in time 3384: 2056:does not impose a relation between 447: 400:, such that cities are the graph's 13: 10104: 9984:Mathematics of Operations Research 9451: 8594:Mathematics of Operations Research 7146: 5741: 5611:, hence lower and upper bounds on 5558: 5438: 5189: 5183: 5177: 5171: 5149: 5139: 5132: 5122: 5115: 5105: 5098: 4758:is not equal to the distance from 4318: 4277:Ant colony optimization algorithms 4159: 3733: 3276: 77:theory of computational complexity 72:are three generalizations of TSP. 14: 10762: 10664: 10018:Handbook of Discrete Optimization 8849:Kosaraju, Park & Stein (1994) 8441:The Annals of Applied Probability 8316:The American Mathematical Monthly 7733:Linear Programming and Extensions 7340:Cited and English translation in 6921:The problem has been shown to be 6588:The currently-best lower bound is 5211:There is an analogous problem in 4790:into a symmetric matrix of size 2 4472:between the corresponding points. 4267:and then inserts other vertices. 3764:{\displaystyle \Theta (\log |V|)} 3670:, taking over 136 CPU-years; see 1626:{\displaystyle u_{j}\geq u_{i}+1} 866:Without further constraints, the 188:and by the British mathematician 7007:achieves a performance ratio of 5231:)? This problem is known as the 4584:, and the length of a tour is a 4339: 4259:Constricting Insertion Heuristic 3715:nearest neighbour (NN) algorithm 1206:Miller–Tucker–Zemlin formulation 908:{\displaystyle \{x_{ij}\}_{i,j}} 556:The TSP can be formulated as an 487:: Find a Hamiltonian cycle in a 412:after having visited each other 323:Christofides-Serdyukov algorithm 10045:Advances in Applied Probability 9477: 9458:Geere, Duncan (26 April 2012). 9426: 9387: 9336: 9321: 9249: 9190: 9139: 9111: 9062: 9021: 8960: 8915: 8878: 8772: 8727: 8695:Serdyukov, Anatoliy I. (1978), 8688: 8649: 8631: 8613: 8577: 8550: 8505: 8476: 8399: 8306: 8245: 8195: 8168: 8123: 8100: 8058: 8024: 7970: 7949: 7892: 7861: 7834: 7828:7, 4 (Oct. 1960), 326–329. DOI: 7818: 7791: 7746: 7725: 7716: 7700: 7686: 7665: 7556: 7527: 7501: 7026:{\displaystyle 22+\varepsilon } 6219:{\displaystyle X_{i}\neq X_{0}} 5426: 4598:Euclidean minimum spanning tree 3975:An example of a 2-opt iteration 3962:Convert to TSP using shortcuts. 2020:provides sufficient slack that 1765:{\displaystyle u_{j}\geq u_{i}} 535:A common interview question at 483:Another related problem is the 289:Cambridge Philosophical Society 10487:Perception & Psychophysics 10467:The Traveling Salesman Problem 10211:. Princeton University Press. 9776:Information Processing Letters 9511:, Princeton University Press, 9509:The Traveling Salesman Problem 9034:The Journal of Problem Solving 8924:The Journal of Problem Solving 8887:Perception & Psychophysics 8873:Hassin & Rubinstein (2000) 7572:Williams, Virginia Vassilevska 7334: 7319: 7303: 7292: 7059: 7047: 6772: 6739: 6624: 6606: 6493: 6475: 6336: 6318: 6262: 6244: 6126: 6108: 6090: 5803: 5738: 5712: 5661: 5643: 5586: 5568: 5555: 5435: 5420: 5329: 5316: 5186: 5180: 5174: 5146: 5135: 5129: 5118: 5112: 5101: 4687: 4673: 4666: 4653: 4074: 4071: 4065: 4053: 4026: 4020: 3932: 3919: 3868: 3862: 3758: 3754: 3746: 3736: 3568: 3555: 3528: 3515: 3477: 3454: 3416: 3407: 3318: 3310: 3263: 3255: 2661: 2639: 2636: 2624: 1925: 1903: 1900: 1888: 1833: 1821: 1361:{\displaystyle u_{i}<u_{j}} 1187:{\displaystyle i=1,\ldots ,n.} 392:Symmetric TSP with four cities 378: 35:travelling salesperson problem 1: 10751:Metaphors referring to people 10575:-MST, and related problems", 10406:10.1016/S0166-218X(01)00195-0 9798:10.1016/S0020-0190(00)00097-1 9495: 9485:When the Mona Lisa is NP-Hard 9333:, 2006, retrieved 2014-06-06. 9224:10.1016/j.heliyon.2017.e00461 9133:10.1016/s0191-8869(03)00200-9 8782:; Vygen, Jens (8 June 2020). 8722:Berman & Karpinski (2006) 8284:10.1016/S0303-2647(97)01708-5 8050:10.1016/S0166-218X(01)00195-0 7230:Mixed Chinese postman problem 7168:in a subgenre called TSP art. 7133: 5930:{\displaystyle 1/{\sqrt {n}}} 5530:(see below), it follows from 5373:{\displaystyle L_{n}^{\ast }} 4745: 4572:through all of the points, a 4208:identified by Lin–Kernighan. 3534:{\displaystyle O(1.9999^{n})} 3483:{\displaystyle O(n^{2}2^{n})} 2897:to be the distance from city 2813:the path goes from city  1271:{\displaystyle i=1,\ldots ,n} 1077:{\displaystyle j=1,\ldots ,n} 712:the path goes from city  106:) with the number of cities. 10746:Hamiltonian paths and cycles 10393:Discrete Applied Mathematics 10365:, New York: Addison-Wesley, 10231:INFORMS Journal on Computing 10097:, Springer, pp. 185–207 9977:Papadimitriou, Christos H.; 9961:10.1016/0304-3975(77)90012-3 9948:Theoretical Computer Science 9438:comopt.ifi.uni-heidelberg.de 9271:10.1016/j.cogsys.2018.07.027 8531:10.1016/0166-218X(92)00033-I 8422:10.1016/0167-6377(83)90048-2 8037:Discrete Applied Mathematics 7944:Padberg & Rinaldi (1991) 7084:Human and animal performance 6985:approximates it within 1.5. 6342:{\displaystyle \mathbb {E} } 6132:{\displaystyle \mathbb {E} } 5874:{\displaystyle \beta \leq 2} 5747:{\displaystyle n\to \infty } 5667:{\displaystyle \mathbb {E} } 4559: 3574:{\displaystyle O(1.728^{n})} 544:travelling purchaser problem 62:travelling purchaser problem 51:theoretical computer science 7: 10716:Travelling salesman problem 8409:Operations Research Letters 8177:Operations Research Letters 7913:10.1137/1.9781611975482.107 7755:Operations Research Letters 7731:Dantzig, George B. (1963), 7200:Seven Bridges of Königsberg 7172: 7088:The TSP, in particular the 7080:by a randomized algorithm. 6965:Complexity of approximation 6159:times the distance between 5898:{\displaystyle {\sqrt {n}}} 5532:bounded convergence theorem 4290:simulation of an ant colony 4080:{\displaystyle O(n\log(n))} 2890:{\displaystyle c_{ij}>0} 1328:the interpretation is that 624:{\displaystyle c_{ij}>0} 588:{\displaystyle 1,\ldots ,n} 31:travelling salesman problem 10: 10769: 10731:Combinatorial optimization 10694:Traveling Salesman Problem 10671:Traveling Salesman Problem 10271:Introduction to Algorithms 9944:Papadimitriou, Christos H. 9867:10.1016/j.jcss.2015.06.003 9329:Journal of Problem Solving 9301:Journal of Problem Solving 9259:Cognitive Systems Research 7966:Hungarian matrix algorithm 7812:10.1016/j.ejor.2013.07.038 7643:10.1016/j.ejor.2010.09.010 7179:Canadian traveller problem 7098:Journal of Problem Solving 4274: 3584:Other approaches include: 3505:for TSP that runs in time 160: 87:) belongs to the class of 47:combinatorial optimization 10616:SIAM Journal on Computing 10589:10.1137/S0097539796309764 10577:SIAM Journal on Computing 9889:Urban Operations Research 9764:Christofides, N. (1976), 9641:10.1017/s0305004100034095 9357:10.1007/s10071-011-0463-9 9160:10.1007/s00426-017-0881-7 8499:10.1112/s0025579300000784 8382:Larson & Odoni (1981) 8223:10.1609/icaps.v23i1.13539 8189:10.1016/j.orl.2004.04.001 8154:10.1007/s10489-006-0018-y 8005:; McGeoch, L. A. (1997). 7777:10.1016/j.orl.2017.04.010 7240:Snow plow routing problem 6722:{\displaystyle L_{n}^{*}} 4344: 4308:deposited by other ants. 4171:-opt method. Whereas the 4135:other possibilities: of 2 4108:is a special case of the 3979:The pairwise exchange or 3442:Held–Karp algorithm 3373:Devising "suboptimal" or 1804:{\displaystyle x_{ij}=0,} 1662:{\displaystyle x_{ij}=1.} 519:manufacturing; see e.g., 398:undirected weighted graph 396:TSP can be modeled as an 132:, and the manufacture of 10688:University of Heidelberg 10015:; R. Weismantel (eds.). 8512:Fiechter, C.-N. (1994). 8085:10.1007/0-306-48213-4_10 7979:"Optimal Tour of Sweden" 7487:10.1016/j.hm.2020.04.003 7250: 7189:Route inspection problem 6917:Computational complexity 5213:geometric measure theory 4800:Asymmetric path weights 4245:river formation dynamics 4147:The most popular of the 4120:mutually disjoint edges. 3938:{\displaystyle O(n^{3})} 3832:approximation algorithms 3692:multi-fragment algorithm 3688:approximation algorithms 2049:{\displaystyle x_{ij}=0} 1994:where the constant term 944:{\displaystyle x_{ij}=0} 478:Hamiltonian path problem 474:computational complexity 467:Hamiltonian path problem 424:Asymmetric and symmetric 404:, paths are the graph's 332:showed in 1972 that the 10652:Walshaw, Chris (2001), 10643:Walshaw, Chris (2000), 10363:Reading: Addison-Wesley 10154:10.1126/science.7973651 9731:10.1145/1109557.1109627 8806:10.1145/3357713.3384233 8748:10.1145/3188745.3188824 8643:25 October 2007 at the 7743:, sixth printing, 1974. 7677:in Wall street Journal" 7594:10.1145/3406325.3451009 7328:Graph Theory, 1736–1936 7220:Vehicle routing problem 4890:Symmetric path weights 4770:Conversion to symmetric 4723:time; this is called a 4556:in the original graph. 4453:The edges then build a 4282:Artificial intelligence 4271:Ant colony optimization 4241:ant colony optimization 4106:Lin–Kernighan heuristic 4091:vehicle routing problem 3993:-opt method. The label 3701:Constructive heuristics 3672:Applegate et al. (2006) 3622:Applegate et al. (2006) 1388:is visited before city 459:complete weighted graph 155:optimal control problem 66:vehicle routing problem 10701:TSP visualization tool 10679:University of Waterloo 10525:Psychological Research 10243:10.1287/ijoc.1060.0204 10075:10.1239/aap/1427814579 9314:10.7771/1932-6246.1090 9148:Psychological Research 9075:Memory & Cognition 9047:10.7771/1932-6246.1090 8969:Memory & Cognition 8946:10.7771/1932-6246.1004 8589:Bertsimas, Dimitris J. 8571:10.1287/opre.18.6.1138 8370:Allender et al. (2007) 8012:. In Aarts, E. H. L.; 7907:. pp. 1783–1793. 7876:Held & Karp (1962) 7373:Lawler, E. L. (1985). 7074: 7027: 6904: 6839: 6779: 6723: 6685: 6576: 6451: 6398: 6371: 6343: 6294: 6220: 6186:and the closest point 6180: 6153: 6133: 6080: 6048: 6015: 5985: 5931: 5899: 5875: 5849: 5794: 5748: 5722: 5668: 5631:follow from bounds on 5625: 5624:{\displaystyle \beta } 5605: 5524: 5473: 5472:{\displaystyle \beta } 5448: 5374: 5342: 5303: 5283: 5197: 5157: 4714: 4538: 4537:{\displaystyle d_{AB}} 4443: 4336: 4328: 4216:Randomized improvement 4198:evolutionary computing 4081: 4033: 3976: 3939: 3875: 3819: 3811: 3792:constructive heuristic 3765: 3710: 3601: 3575: 3535: 3498: 3484: 3423: 3336: 3136: 3050: 2979: 2946: 2891: 2852: 2750: 2531: 2444: 2298: 2265: 2219: 2199: 2176: 2156: 2136: 2107: 2106:{\displaystyle u_{i}.} 2077: 2050: 2014: 1985: 1932: 1840: 1839:{\displaystyle n(n-1)} 1805: 1766: 1722: 1663: 1627: 1576: 1554: 1532: 1509: 1489: 1462: 1435: 1434:{\displaystyle x_{ij}} 1405: 1382: 1362: 1320: 1299: 1272: 1234: 1233:{\displaystyle x_{ij}} 1188: 1147: 1123: 1078: 1040: 1016: 968: 945: 909: 857: 823: 790: 751: 665: 645: 625: 589: 558:integer linear program 393: 370:developed the program 265:integer linear program 218: 186:William Rowan Hamilton 181: 180:William Rowan Hamilton 26: 10537:10.1007/s004260000031 10254:Leiserson, Charles E. 9689:10.1145/321105.321111 9592:10.1145/290179.290180 8435:Arlotto, Alessandro; 7127:Physarum polycephalum 7075: 7028: 6905: 6840: 6780: 6724: 6686: 6577: 6452: 6399: 6397:{\displaystyle X_{0}} 6372: 6344: 6295: 6221: 6181: 6179:{\displaystyle X_{0}} 6154: 6134: 6081: 6049: 6016: 5986: 5932: 5900: 5876: 5850: 5795: 5749: 5723: 5669: 5626: 5606: 5525: 5474: 5449: 5375: 5343: 5304: 5284: 5198: 5158: 4733:Joseph S. B. Mitchell 4715: 4539: 4508:printed circuit board 4487:or city-block metric. 4444: 4334: 4322: 4314:global trail updating 4190:Lin–Kernighan–Johnson 4116:Given a tour, delete 4082: 4034: 3974: 3940: 3876: 3817: 3809: 3766: 3708: 3599: 3576: 3536: 3496: 3485: 3424: 3422:{\displaystyle O(n!)} 3337: 3104: 3018: 2947: 2926: 2892: 2853: 2751: 2499: 2412: 2266: 2245: 2220: 2200: 2177: 2157: 2137: 2135:{\displaystyle u_{i}} 2108: 2078: 2076:{\displaystyle u_{j}} 2051: 2015: 1986: 1933: 1841: 1806: 1767: 1723: 1664: 1628: 1577: 1555: 1553:{\displaystyle \geq } 1533: 1510: 1490: 1488:{\displaystyle u_{i}} 1463: 1461:{\displaystyle u_{i}} 1436: 1406: 1383: 1363: 1321: 1300: 1298:{\displaystyle u_{i}} 1273: 1235: 1189: 1148: 1091: 1079: 1041: 984: 969: 946: 910: 858: 791: 770: 752: 666: 646: 626: 590: 522:U.S. patent 7,054,798 513:cutting stock problem 391: 312:minimum spanning tree 257:Delbert Ray Fulkerson 210: 179: 24: 10721:NP-complete problems 10599:. pp. 540–550. 10318:10.1287/opre.2.4.393 10031:Upravlyaemye Sistemy 10005:Schrijver, Alexander 9715:, pp. 641–648, 8705:Upravlyaemye Sistemy 8607:10.1287/moor.16.1.72 8545:Steinerberger (2015) 8358:Papadimitriou (1977) 8132:Applied Intelligence 7855:10.1287/opre.2.4.393 7711:, Mineola, NY: Dover 7465:Historia Mathematica 7094:cognitive psychology 7044: 7011: 6863: 6795: 6733: 6701: 6598: 6467: 6408: 6381: 6353: 6310: 6236: 6190: 6163: 6143: 6100: 6061: 6025: 5995: 5944: 5909: 5885: 5859: 5813: 5758: 5732: 5685: 5635: 5615: 5538: 5483: 5463: 5393: 5352: 5341:{\displaystyle ^{2}} 5313: 5293: 5247: 5167: 5094: 4638: 4619:In general, for any 4590:symbolic computation 4518: 4391: 4253:cross entropy method 4047: 4032:{\displaystyle O(n)} 4014: 3913: 3874:{\displaystyle O(n)} 3856: 3836:intractable problems 3730: 3654:Princeton University 3630:cutting-plane method 3549: 3509: 3448: 3401: 3375:heuristic algorithms 3358:Computing a solution 2912: 2865: 2779: 2235: 2209: 2186: 2166: 2146: 2119: 2087: 2060: 2024: 1998: 1942: 1853: 1815: 1776: 1736: 1676: 1637: 1591: 1575:{\displaystyle >} 1566: 1544: 1519: 1499: 1472: 1468:variables by making 1445: 1415: 1392: 1372: 1332: 1310: 1282: 1244: 1214: 1157: 1088: 1050: 981: 955: 919: 870: 767: 678: 655: 635: 599: 567: 476:of the problem; see 340:, which implies the 230:Princeton University 33:, also known as the 10371:1989gaso.book.....G 10306:Operations Research 10136:1994Sci...266.1021A 10067:2013arXiv1311.6338S 9997:10.1287/moor.18.1.1 9979:Yannakakis, Mihalis 9633:1959PCPS...55..299B 9421:2013arXiv1303.4969J 9215:2017Heliy...300461K 8683:Christofides (1976) 8559:Operations Research 8266:1997BiSys..43...73D 8117:10.1109/SWAT.1974.4 7154:Travelling Salesman 7117:Natural computation 6990:triangle inequality 6959:triangle inequality 6955:Euclidean distances 6880: 6812: 6759: 6718: 6623: 6492: 6370:{\displaystyle n/2} 6335: 6261: 6125: 5961: 5704: 5660: 5585: 5500: 5412: 5369: 4891: 4801: 4544:is replaced by the 4370:triangle inequality 4359:triangle inequality 4233:simulated annealing 3885:triangle inequality 3810:Creating a matching 3785:dynamic programming 3668:Concorde TSP Solver 3663:Concorde TSP Solver 3612:Implementations of 3438:dynamic programming 3347:subtour elimination 2821: to city  2013:{\displaystyle n-1} 1846:linear constraints 1210:In addition to the 720: to city  283:, J.H. Halton, and 55:operations research 10569:Mitchell, J. S. B. 10500:10.3758/BF03213088 10171:on 6 February 2005 9579:Journal of the ACM 9088:10.3758/bf03196857 8991:10.3758/bf03194380 8900:10.3758/BF03213088 8585:Goemans, Michel X. 8518:Disc. Applied Math 8463:10.1214/15-AAP1142 8437:Steele, J. Michael 7578:, pp. 32–45, 7537:(8 October 2020). 7070: 7023: 6900: 6866: 6835: 6798: 6775: 6745: 6719: 6704: 6681: 6662: 6647: 6609: 6572: 6560: 6531: 6516: 6478: 6447: 6394: 6367: 6339: 6321: 6290: 6278: 6247: 6216: 6176: 6149: 6129: 6111: 6096:By observing that 6076: 6044: 6011: 5981: 5947: 5927: 5895: 5871: 5845: 5790: 5744: 5718: 5690: 5664: 5646: 5621: 5601: 5571: 5562: 5520: 5486: 5469: 5444: 5398: 5382:Euclidean distance 5370: 5355: 5338: 5299: 5279: 5223:be contained in a 5193: 5153: 4889: 4799: 4710: 4578:Euclidean distance 4564:For points in the 4534: 4485:Manhattan distance 4470:Euclidean distance 4459:distance functions 4439: 4337: 4329: 4249:swarm intelligence 4229:genetic algorithms 4077: 4029: 3977: 3935: 3871: 3820: 3812: 3761: 3711: 3646:linear programming 3644:in 1954, based on 3607:linear programming 3602: 3571: 3531: 3499: 3480: 3419: 3395:brute-force search 3332: 3330: 3234: 3205: 2887: 2848: 2843: 2746: 2744: 2215: 2198:{\displaystyle 1,} 2195: 2175:{\displaystyle 1.} 2172: 2152: 2132: 2103: 2073: 2046: 2010: 1981: 1928: 1836: 1801: 1762: 1718: 1659: 1623: 1572: 1550: 1531:{\displaystyle i.} 1528: 1505: 1485: 1458: 1431: 1404:{\displaystyle j.} 1401: 1378: 1358: 1316: 1295: 1268: 1230: 1184: 1143: 1074: 1036: 967:{\displaystyle 2n} 964: 941: 905: 853: 747: 742: 661: 641: 621: 585: 394: 384:As a graph problem 267:and developed the 182: 150:similarity measure 102:(but no more than 27: 10477:978-0-471-90413-7 10435:978-0-387-44459-8 10380:978-0-201-15767-3 10353:978-0-7167-1044-8 10281:978-0-262-03384-8 10258:Rivest, Ronald L. 10250:Cormen, Thomas H. 10218:978-0-691-15270-7 9898:978-0-13-939447-8 9891:, Prentice-Hall, 9740:978-0-89871-605-4 9559:10.1137/070697926 9518:978-0-691-12993-8 9403:Natural Computing 8815:978-1-4503-6979-4 8757:978-1-4503-5559-9 8416:(161–163): 1983. 8094:978-0-387-44459-8 7922:978-1-61197-548-2 7603:978-1-4503-8053-9 7386:978-0-471-90413-7 7278:10.1002/net.10114 7225:Graph exploration 6892: 6824: 6770: 6676: 6661: 6646: 6567: 6559: 6545: 6530: 6515: 6285: 6277: 6152:{\displaystyle n} 6042: 6009: 5973: 5925: 5893: 5837: 5710: 5709: 5599: 5547: 5512: 5430: 5418: 5417: 5302:{\displaystyle n} 5225:rectifiable curve 5207:Analyst's problem 5078: 5077: 4868: 4867: 4735:were awarded the 4684: 4298:ant colony system 3967:Pairwise exchange 3846:, we can find an 3642:Selmer M. Johnson 3207: 3190: 2839: 2822: 2814: 2218:{\displaystyle 1} 2155:{\displaystyle 1} 2115:The way that the 1938:for all distinct 1672:Merely requiring 1508:{\displaystyle 1} 1381:{\displaystyle i} 1319:{\displaystyle 1} 1278:a dummy variable 974:linear equations 738: 721: 713: 664:{\displaystyle j} 644:{\displaystyle i} 463:Hamiltonian cycle 334:Hamiltonian cycle 281:Jillian Beardwood 261:Selmer M. Johnson 214:messenger problem 198:Hamiltonian cycle 100:superpolynomially 70:ring star problem 10758: 10736:Graph algorithms 10726:NP-hard problems 10659: 10648: 10639: 10610: 10608: 10591: 10583:(4): 1298–1309, 10564: 10519: 10502: 10481: 10460: 10458: 10439: 10418: 10408: 10383: 10357: 10336: 10285: 10264:(31 July 2009). 10245: 10222: 10198: 10189: 10172: 10170: 10164:, archived from 10147: 10130:(5187): 1021–4, 10121: 10113:Adleman, Leonard 10098: 10085: 10060: 10038: 10025: 10023: 9999: 9972: 9963: 9938: 9909: 9878: 9869: 9860: 9851:(8): 1665–1677, 9838: 9837:, pp. 56–65 9828: 9800: 9791: 9769: 9759: 9724: 9707:Karpinski, Marek 9700: 9691: 9669: 9659: 9610: 9575: 9561: 9552: 9543:(5): 1987–2006, 9532: 9521: 9489: 9481: 9475: 9474: 9472: 9470: 9455: 9449: 9448: 9446: 9444: 9430: 9424: 9423: 9414: 9400: 9391: 9385: 9384: 9345:Animal Cognition 9340: 9334: 9325: 9319: 9317: 9316: 9292: 9283: 9282: 9253: 9247: 9246: 9236: 9226: 9194: 9188: 9187: 9143: 9137: 9136: 9127:(5): 1059–1071. 9115: 9109: 9108: 9090: 9066: 9060: 9059: 9049: 9025: 9019: 9018: 8984: 8964: 8958: 8957: 8939: 8919: 8913: 8911: 8902: 8882: 8876: 8870: 8864: 8861:Serdyukov (1984) 8858: 8852: 8846: 8840: 8834: 8828: 8827: 8799: 8776: 8770: 8769: 8731: 8725: 8719: 8713: 8712: 8702: 8692: 8686: 8680: 8674: 8668: 8662: 8661: 8653: 8647: 8635: 8629: 8628: 8617: 8611: 8610: 8581: 8575: 8574: 8565:(6): 1138–1162. 8554: 8548: 8542: 8536: 8535: 8533: 8509: 8503: 8502: 8480: 8474: 8473: 8456: 8447:(4): 2141–2168, 8432: 8426: 8425: 8403: 8397: 8391: 8385: 8379: 8373: 8367: 8361: 8355: 8349: 8348: 8310: 8304: 8303: 8277: 8249: 8243: 8242: 8208: 8199: 8193: 8192: 8172: 8166: 8165: 8147: 8127: 8121: 8120: 8104: 8098: 8097: 8078: 8062: 8056: 8054: 8052: 8028: 8022: 8021: 8011: 7999: 7990: 7989: 7987: 7985: 7974: 7968: 7958: 7953: 7947: 7941: 7935: 7934: 7896: 7890: 7887:Woeginger (2003) 7884: 7878: 7865: 7859: 7858: 7838: 7832: 7822: 7816: 7815: 7795: 7789: 7788: 7770: 7750: 7744: 7729: 7723: 7720: 7714: 7712: 7704: 7698: 7697: 7690: 7684: 7683: 7681: 7669: 7663: 7661: 7624: 7615: 7614: 7587: 7560: 7554: 7553: 7551: 7549: 7535:Klarreich, Erica 7531: 7525: 7524: 7522: 7520: 7505: 7499: 7498: 7480: 7460: 7449: 7443: 7432: 7429:Schrijver (2005) 7425: 7419: 7418: 7416: 7414: 7408: 7397: 7391: 7390: 7370: 7349: 7342:Schrijver (2005) 7338: 7332: 7323: 7317: 7307: 7301: 7296: 7290: 7289: 7261: 7210:Subway Challenge 7141:printed circuits 7105:animal cognition 7103:A 2011 study in 7079: 7077: 7076: 7071: 7066: 7032: 7030: 7029: 7024: 7006: 6935:decision problem 6931:function problem 6927:complexity class 6909: 6907: 6906: 6901: 6893: 6888: 6879: 6874: 6852:Antonia J. Jones 6844: 6842: 6841: 6836: 6825: 6820: 6811: 6806: 6784: 6782: 6781: 6776: 6771: 6766: 6764: 6758: 6753: 6728: 6726: 6725: 6720: 6717: 6712: 6690: 6688: 6687: 6682: 6677: 6672: 6670: 6669: 6663: 6654: 6648: 6639: 6636: 6635: 6622: 6617: 6605: 6581: 6579: 6578: 6573: 6568: 6563: 6561: 6552: 6546: 6541: 6539: 6538: 6532: 6523: 6517: 6508: 6505: 6504: 6491: 6486: 6474: 6456: 6454: 6453: 6448: 6446: 6445: 6433: 6432: 6420: 6419: 6403: 6401: 6400: 6395: 6393: 6392: 6376: 6374: 6373: 6368: 6363: 6349:is greater than 6348: 6346: 6345: 6340: 6334: 6329: 6317: 6299: 6297: 6296: 6291: 6286: 6281: 6279: 6270: 6260: 6255: 6243: 6225: 6223: 6222: 6217: 6215: 6214: 6202: 6201: 6185: 6183: 6182: 6177: 6175: 6174: 6158: 6156: 6155: 6150: 6139:is greater than 6138: 6136: 6135: 6130: 6124: 6119: 6107: 6085: 6083: 6082: 6077: 6053: 6051: 6050: 6045: 6043: 6038: 6020: 6018: 6017: 6012: 6010: 6005: 5990: 5988: 5987: 5982: 5974: 5966: 5960: 5955: 5936: 5934: 5933: 5928: 5926: 5921: 5919: 5905:slices of width 5904: 5902: 5901: 5896: 5894: 5889: 5880: 5878: 5877: 5872: 5855:, and therefore 5854: 5852: 5851: 5846: 5838: 5833: 5825: 5824: 5799: 5797: 5796: 5791: 5789: 5788: 5770: 5769: 5753: 5751: 5750: 5745: 5727: 5725: 5724: 5719: 5711: 5705: 5703: 5698: 5689: 5673: 5671: 5670: 5665: 5659: 5654: 5642: 5630: 5628: 5627: 5622: 5610: 5608: 5607: 5602: 5600: 5595: 5593: 5584: 5579: 5567: 5561: 5529: 5527: 5526: 5521: 5513: 5508: 5499: 5494: 5478: 5476: 5475: 5470: 5453: 5451: 5450: 5445: 5431: 5428: 5419: 5413: 5411: 5406: 5397: 5379: 5377: 5376: 5371: 5368: 5363: 5347: 5345: 5344: 5339: 5337: 5336: 5308: 5306: 5305: 5300: 5288: 5286: 5285: 5280: 5278: 5277: 5259: 5258: 5202: 5200: 5199: 5194: 5192: 5162: 5160: 5159: 5154: 5152: 5145: 5128: 5111: 4892: 4888: 4802: 4798: 4719: 4717: 4716: 4711: 4709: 4708: 4704: 4703: 4702: 4701: 4700: 4685: 4680: 4574:polygonalization 4543: 4541: 4540: 4535: 4533: 4532: 4448: 4446: 4445: 4440: 4438: 4437: 4422: 4421: 4406: 4405: 4353:, also known as 4306:trail pheromones 4134: 4088: 4086: 4084: 4083: 4078: 4040: 4038: 4036: 4035: 4030: 4006:greedy algorithm 3944: 3942: 3941: 3936: 3931: 3930: 3882: 3880: 3878: 3877: 3872: 3828:perfect matching 3781:monotone polygon 3770: 3768: 3767: 3762: 3757: 3749: 3719:greedy algorithm 3614:branch-and-bound 3590:branch-and-bound 3580: 3578: 3577: 3572: 3567: 3566: 3540: 3538: 3537: 3532: 3527: 3526: 3489: 3487: 3486: 3481: 3476: 3475: 3466: 3465: 3428: 3426: 3425: 3420: 3385:Exact algorithms 3368:exact algorithms 3341: 3339: 3338: 3333: 3331: 3321: 3313: 3274: 3266: 3258: 3250: 3249: 3248: 3247: 3233: 3204: 3186: 3157: 3149: 3148: 3135: 3130: 3100: 3071: 3063: 3062: 3049: 3044: 3014: 3011: 3010: 3005: 3004: 2992: 2991: 2978: 2973: 2945: 2940: 2896: 2894: 2893: 2888: 2880: 2879: 2857: 2855: 2854: 2849: 2847: 2846: 2840: 2837: 2823: 2820: 2815: 2812: 2794: 2793: 2755: 2753: 2752: 2747: 2745: 2722: 2715: 2710: 2709: 2665: 2660: 2659: 2619: 2608: 2607: 2595: 2594: 2556: 2549: 2544: 2543: 2530: 2525: 2469: 2462: 2457: 2456: 2443: 2438: 2376: 2355: 2350: 2349: 2334: 2333: 2324: 2323: 2311: 2310: 2297: 2292: 2264: 2259: 2224: 2222: 2221: 2216: 2204: 2202: 2201: 2196: 2181: 2179: 2178: 2173: 2161: 2159: 2158: 2153: 2141: 2139: 2138: 2133: 2131: 2130: 2112: 2110: 2109: 2104: 2099: 2098: 2082: 2080: 2079: 2074: 2072: 2071: 2055: 2053: 2052: 2047: 2039: 2038: 2019: 2017: 2016: 2011: 1990: 1988: 1987: 1982: 1937: 1935: 1934: 1929: 1924: 1923: 1878: 1877: 1865: 1864: 1845: 1843: 1842: 1837: 1810: 1808: 1807: 1802: 1791: 1790: 1771: 1769: 1768: 1763: 1761: 1760: 1748: 1747: 1727: 1725: 1724: 1719: 1717: 1716: 1701: 1700: 1688: 1687: 1668: 1666: 1665: 1660: 1652: 1651: 1632: 1630: 1629: 1624: 1616: 1615: 1603: 1602: 1583: 1581: 1579: 1578: 1573: 1559: 1557: 1556: 1551: 1537: 1535: 1534: 1529: 1514: 1512: 1511: 1506: 1494: 1492: 1491: 1486: 1484: 1483: 1467: 1465: 1464: 1459: 1457: 1456: 1440: 1438: 1437: 1432: 1430: 1429: 1410: 1408: 1407: 1402: 1387: 1385: 1384: 1379: 1367: 1365: 1364: 1359: 1357: 1356: 1344: 1343: 1327: 1325: 1323: 1322: 1317: 1304: 1302: 1301: 1296: 1294: 1293: 1277: 1275: 1274: 1269: 1239: 1237: 1236: 1231: 1229: 1228: 1193: 1191: 1190: 1185: 1152: 1150: 1149: 1144: 1136: 1135: 1122: 1117: 1083: 1081: 1080: 1075: 1045: 1043: 1042: 1037: 1029: 1028: 1015: 1010: 973: 971: 970: 965: 950: 948: 947: 942: 934: 933: 914: 912: 911: 906: 904: 903: 888: 887: 862: 860: 859: 854: 849: 848: 836: 835: 822: 817: 789: 784: 756: 754: 753: 748: 746: 745: 739: 736: 722: 719: 714: 711: 693: 692: 670: 668: 667: 662: 650: 648: 647: 642: 630: 628: 627: 622: 614: 613: 594: 592: 591: 586: 524: 448:Related problems 434:undirected graph 349:branch-and-bound 300:computer science 274:branch-and-bound 245:RAND Corporation 234:RAND Corporation 222:Merrill M. Flood 119:exact algorithms 10768: 10767: 10761: 10760: 10759: 10757: 10756: 10755: 10706: 10705: 10675:Wayback Machine 10667: 10662: 10628:10.1137/0206041 10478: 10456: 10436: 10428:. Springer US. 10381: 10354: 10282: 10262:Stein, Clifford 10219: 10168: 10119: 10107: 10105:Further reading 10102: 10091:Woeginger, G.J. 10021: 9928:10.1137/1033004 9899: 9826:10.1137/0110015 9741: 9722:10.1.1.430.2224 9705:Berman, Piotr; 9573: 9550:10.1.1.167.5495 9536:SIAM J. Comput. 9530: 9519: 9498: 9493: 9492: 9482: 9478: 9468: 9466: 9456: 9452: 9442: 9440: 9432: 9431: 9427: 9398: 9392: 9388: 9341: 9337: 9326: 9322: 9293: 9286: 9254: 9250: 9195: 9191: 9154:(5): 997–1009. 9144: 9140: 9116: 9112: 9067: 9063: 9026: 9022: 8965: 8961: 8937:10.1.1.360.9763 8920: 8916: 8883: 8879: 8871: 8867: 8859: 8855: 8847: 8843: 8835: 8831: 8816: 8777: 8773: 8758: 8732: 8728: 8720: 8716: 8700: 8693: 8689: 8681: 8677: 8669: 8665: 8654: 8650: 8645:Wayback Machine 8636: 8632: 8619: 8618: 8614: 8582: 8578: 8555: 8551: 8543: 8539: 8510: 8506: 8481: 8477: 8433: 8429: 8404: 8400: 8392: 8388: 8380: 8376: 8368: 8364: 8356: 8352: 8329:10.2307/2313333 8311: 8307: 8250: 8246: 8206: 8200: 8196: 8173: 8169: 8128: 8124: 8105: 8101: 8095: 8063: 8059: 8029: 8025: 8009: 8000: 7993: 7983: 7981: 7975: 7971: 7956: 7954: 7950: 7942: 7938: 7923: 7897: 7893: 7885: 7881: 7866: 7862: 7839: 7835: 7823: 7819: 7796: 7792: 7751: 7747: 7730: 7726: 7721: 7717: 7705: 7701: 7691: 7687: 7679: 7671: 7670: 7666: 7625: 7618: 7604: 7564:Karlin, Anna R. 7561: 7557: 7547: 7545: 7543:Quanta Magazine 7532: 7528: 7518: 7516: 7506: 7502: 7461: 7452: 7444: 7435: 7426: 7422: 7412: 7410: 7406: 7398: 7394: 7387: 7371: 7352: 7339: 7335: 7324: 7320: 7314:commis-voyageur 7308: 7304: 7297: 7293: 7262: 7258: 7253: 7195:Set TSP problem 7184:Exact algorithm 7175: 7166:Robert A. Bosch 7149: 7147:Popular culture 7136: 7119: 7086: 7062: 7045: 7042: 7041: 7012: 7009: 7008: 7000: 6981:-complete, and 6967: 6919: 6887: 6875: 6870: 6864: 6861: 6860: 6819: 6807: 6802: 6796: 6793: 6792: 6765: 6760: 6754: 6749: 6734: 6731: 6730: 6729:, and thus for 6713: 6708: 6702: 6699: 6698: 6671: 6665: 6664: 6652: 6637: 6631: 6630: 6618: 6613: 6601: 6599: 6596: 6595: 6562: 6550: 6540: 6534: 6533: 6521: 6506: 6500: 6499: 6487: 6482: 6470: 6468: 6465: 6464: 6441: 6437: 6428: 6424: 6415: 6411: 6409: 6406: 6405: 6388: 6384: 6382: 6379: 6378: 6359: 6354: 6351: 6350: 6330: 6325: 6313: 6311: 6308: 6307: 6280: 6268: 6256: 6251: 6239: 6237: 6234: 6233: 6210: 6206: 6197: 6193: 6191: 6188: 6187: 6170: 6166: 6164: 6161: 6160: 6144: 6141: 6140: 6120: 6115: 6103: 6101: 6098: 6097: 6093: 6062: 6059: 6058: 6037: 6026: 6023: 6022: 6004: 5996: 5993: 5992: 5965: 5956: 5951: 5945: 5942: 5941: 5920: 5915: 5910: 5907: 5906: 5888: 5886: 5883: 5882: 5860: 5857: 5856: 5832: 5820: 5816: 5814: 5811: 5810: 5806: 5784: 5780: 5765: 5761: 5759: 5756: 5755: 5733: 5730: 5729: 5699: 5694: 5688: 5686: 5683: 5682: 5655: 5650: 5638: 5636: 5633: 5632: 5616: 5613: 5612: 5594: 5589: 5580: 5575: 5563: 5551: 5539: 5536: 5535: 5507: 5495: 5490: 5484: 5481: 5480: 5464: 5461: 5460: 5427: 5407: 5402: 5396: 5394: 5391: 5390: 5364: 5359: 5353: 5350: 5349: 5332: 5328: 5314: 5311: 5310: 5294: 5291: 5290: 5273: 5269: 5254: 5250: 5248: 5245: 5244: 5241: 5221:Euclidean space 5209: 5170: 5168: 5165: 5164: 5138: 5121: 5104: 5097: 5095: 5092: 5091: 4772: 4748: 4690: 4686: 4679: 4669: 4665: 4649: 4645: 4644: 4639: 4636: 4635: 4586:sum of radicals 4566:Euclidean plane 4562: 4548:length between 4525: 4521: 4519: 4516: 4515: 4430: 4426: 4414: 4410: 4398: 4394: 4392: 4389: 4388: 4368:to satisfy the 4347: 4342: 4279: 4273: 4261: 4218: 4185:Brian Kernighan 4165: 4128: 4102: 4048: 4045: 4044: 4042: 4015: 4012: 4011: 4009: 3969: 3926: 3922: 3914: 3911: 3910: 3857: 3854: 3853: 3851: 3804: 3753: 3745: 3731: 3728: 3727: 3703: 3680: 3658:Alpha processor 3650:Rice University 3562: 3558: 3550: 3547: 3546: 3543:exact algorithm 3522: 3518: 3510: 3507: 3506: 3503:exact algorithm 3471: 3467: 3461: 3457: 3449: 3446: 3445: 3402: 3399: 3398: 3387: 3360: 3329: 3328: 3317: 3309: 3273: 3262: 3254: 3240: 3236: 3235: 3211: 3206: 3194: 3184: 3183: 3156: 3141: 3137: 3131: 3108: 3098: 3097: 3070: 3055: 3051: 3045: 3022: 3012: 3009: 2997: 2993: 2984: 2980: 2974: 2951: 2941: 2930: 2922: 2915: 2913: 2910: 2909: 2872: 2868: 2866: 2863: 2862: 2842: 2841: 2836: 2834: 2828: 2827: 2819: 2811: 2809: 2799: 2798: 2786: 2782: 2780: 2777: 2776: 2766: 2743: 2742: 2721: 2716: 2714: 2705: 2701: 2692: 2691: 2664: 2652: 2648: 2620: 2618: 2603: 2599: 2590: 2586: 2583: 2582: 2555: 2550: 2548: 2536: 2532: 2526: 2503: 2496: 2495: 2468: 2463: 2461: 2449: 2445: 2439: 2416: 2409: 2408: 2375: 2356: 2354: 2342: 2338: 2335: 2332: 2325: 2316: 2312: 2303: 2299: 2293: 2270: 2260: 2249: 2238: 2236: 2233: 2232: 2210: 2207: 2206: 2187: 2184: 2183: 2167: 2164: 2163: 2147: 2144: 2143: 2126: 2122: 2120: 2117: 2116: 2094: 2090: 2088: 2085: 2084: 2067: 2063: 2061: 2058: 2057: 2031: 2027: 2025: 2022: 2021: 1999: 1996: 1995: 1943: 1940: 1939: 1916: 1912: 1873: 1869: 1860: 1856: 1854: 1851: 1850: 1816: 1813: 1812: 1783: 1779: 1777: 1774: 1773: 1756: 1752: 1743: 1739: 1737: 1734: 1733: 1709: 1705: 1696: 1692: 1683: 1679: 1677: 1674: 1673: 1644: 1640: 1638: 1635: 1634: 1611: 1607: 1598: 1594: 1592: 1589: 1588: 1567: 1564: 1563: 1561: 1545: 1542: 1541: 1520: 1517: 1516: 1500: 1497: 1496: 1479: 1475: 1473: 1470: 1469: 1452: 1448: 1446: 1443: 1442: 1422: 1418: 1416: 1413: 1412: 1393: 1390: 1389: 1373: 1370: 1369: 1352: 1348: 1339: 1335: 1333: 1330: 1329: 1311: 1308: 1307: 1306: 1289: 1285: 1283: 1280: 1279: 1245: 1242: 1241: 1221: 1217: 1215: 1212: 1211: 1208: 1158: 1155: 1154: 1128: 1124: 1118: 1095: 1089: 1086: 1085: 1051: 1048: 1047: 1021: 1017: 1011: 988: 982: 979: 978: 956: 953: 952: 926: 922: 920: 917: 916: 893: 889: 880: 876: 871: 868: 867: 841: 837: 828: 824: 818: 795: 785: 774: 768: 765: 764: 741: 740: 735: 733: 727: 726: 718: 710: 708: 698: 697: 685: 681: 679: 676: 675: 656: 653: 652: 636: 633: 632: 606: 602: 600: 597: 596: 568: 565: 564: 554: 527:distance matrix 520: 497:printed circuit 450: 426: 386: 381: 330:Richard M. Karp 285:John Hammersley 226:Hassler Whitney 163: 49:, important in 17: 12: 11: 5: 10766: 10765: 10754: 10753: 10748: 10743: 10738: 10733: 10728: 10723: 10718: 10704: 10703: 10698: 10690: 10681: 10666: 10665:External links 10663: 10661: 10660: 10649: 10640: 10611: 10606:10.1.1.51.8676 10592: 10565: 10520: 10493:(4): 527–539, 10482: 10476: 10461: 10448:Lenstra, J. K. 10444:Johnson, D. S. 10440: 10434: 10419: 10399:(1–3): 81–86. 10384: 10379: 10358: 10352: 10337: 10312:(4): 393–410, 10298:Johnson, S. M. 10290:Dantzig, G. B. 10286: 10280: 10246: 10237:(3): 356–365, 10223: 10217: 10199: 10187:10.1.1.89.9953 10173: 10145:10.1.1.54.2565 10108: 10106: 10103: 10101: 10100: 10087: 10040: 10026: 10013:G.L. Nemhauser 10001: 9974: 9954:(3): 237–244, 9940: 9911: 9897: 9880: 9870: 9840: 9830: 9820:(1): 196–210, 9802: 9789:10.1.1.35.7209 9782:(4): 181–186, 9771: 9761: 9739: 9702: 9671: 9661: 9627:(4): 299–327, 9612: 9586:(5): 753–782, 9567:Arora, Sanjeev 9563: 9523: 9517: 9499: 9497: 9494: 9491: 9490: 9476: 9450: 9425: 9386: 9351:(3): 379–391. 9335: 9320: 9284: 9248: 9209:(11): e00461. 9189: 9138: 9110: 9081:(2): 260–270. 9061: 9020: 8982:10.1.1.12.6117 8975:(2): 215–220. 8959: 8914: 8893:(4): 527–539, 8877: 8865: 8853: 8841: 8829: 8814: 8771: 8756: 8726: 8714: 8707:(in Russian), 8687: 8675: 8663: 8648: 8630: 8612: 8576: 8549: 8537: 8524:(3): 243–267. 8504: 8493:(2): 141–144. 8475: 8427: 8398: 8386: 8374: 8362: 8350: 8323:(9): 977–980. 8305: 8275:10.1.1.54.7734 8244: 8194: 8183:(6): 499–509. 8167: 8145:10.1.1.151.132 8138:(3): 183–195. 8122: 8099: 8093: 8076:10.1.1.24.2386 8057: 8043:(1–3): 81–86. 8023: 8014:Lenstra, J. K. 8003:Johnson, D. S. 7991: 7969: 7948: 7936: 7921: 7891: 7879: 7872:Bellman (1962) 7868:Bellman (1960) 7860: 7849:(4): 393–410. 7833: 7817: 7806:(3): 820–832. 7790: 7761:(4): 323–324. 7745: 7724: 7715: 7699: 7685: 7664: 7637:(3): 427–441, 7616: 7602: 7568:Khuller, Samir 7555: 7526: 7500: 7450: 7433: 7420: 7392: 7385: 7350: 7333: 7318: 7302: 7291: 7272:(3): 177–189. 7255: 7254: 7252: 7249: 7248: 7247: 7242: 7237: 7232: 7227: 7222: 7217: 7215:Tube Challenge 7212: 7207: 7202: 7197: 7192: 7186: 7181: 7174: 7171: 7170: 7169: 7162: 7148: 7145: 7135: 7132: 7118: 7115: 7085: 7082: 7069: 7065: 7061: 7058: 7055: 7052: 7049: 7022: 7019: 7016: 6966: 6963: 6918: 6915: 6914: 6913: 6912: 6911: 6899: 6896: 6891: 6886: 6883: 6878: 6873: 6869: 6848: 6847: 6846: 6845: 6834: 6831: 6828: 6823: 6818: 6815: 6810: 6805: 6801: 6787: 6786: 6774: 6769: 6763: 6757: 6752: 6748: 6744: 6741: 6738: 6716: 6711: 6707: 6694: 6693: 6692: 6691: 6680: 6675: 6668: 6660: 6657: 6651: 6645: 6642: 6634: 6629: 6626: 6621: 6616: 6612: 6608: 6604: 6590: 6589: 6585: 6584: 6583: 6582: 6571: 6566: 6558: 6555: 6549: 6544: 6537: 6529: 6526: 6520: 6514: 6511: 6503: 6498: 6495: 6490: 6485: 6481: 6477: 6473: 6459: 6458: 6444: 6440: 6436: 6431: 6427: 6423: 6418: 6414: 6391: 6387: 6366: 6362: 6358: 6338: 6333: 6328: 6324: 6320: 6316: 6303: 6302: 6301: 6300: 6289: 6284: 6276: 6273: 6267: 6264: 6259: 6254: 6250: 6246: 6242: 6228: 6227: 6213: 6209: 6205: 6200: 6196: 6173: 6169: 6148: 6128: 6123: 6118: 6114: 6110: 6106: 6092: 6089: 6088: 6087: 6075: 6072: 6069: 6066: 6055: 6041: 6036: 6033: 6030: 6008: 6003: 6000: 5980: 5977: 5972: 5969: 5964: 5959: 5954: 5950: 5938: 5937:in the square. 5924: 5918: 5914: 5892: 5870: 5867: 5864: 5844: 5841: 5836: 5831: 5828: 5823: 5819: 5805: 5802: 5787: 5783: 5779: 5776: 5773: 5768: 5764: 5743: 5740: 5737: 5717: 5714: 5708: 5702: 5697: 5693: 5663: 5658: 5653: 5649: 5645: 5641: 5620: 5598: 5592: 5588: 5583: 5578: 5574: 5570: 5566: 5560: 5557: 5554: 5550: 5546: 5543: 5519: 5516: 5511: 5506: 5503: 5498: 5493: 5489: 5468: 5457: 5456: 5455: 5454: 5443: 5440: 5437: 5434: 5425: 5422: 5416: 5410: 5405: 5401: 5367: 5362: 5358: 5335: 5331: 5327: 5324: 5321: 5318: 5298: 5276: 5272: 5268: 5265: 5262: 5257: 5253: 5240: 5237: 5208: 5205: 5191: 5188: 5185: 5182: 5179: 5176: 5173: 5151: 5148: 5144: 5141: 5137: 5134: 5131: 5127: 5124: 5120: 5117: 5114: 5110: 5107: 5103: 5100: 5080: 5079: 5076: 5075: 5073: 5071: 5069: 5063: 5060: 5057: 5051: 5050: 5048: 5046: 5044: 5041: 5035: 5032: 5026: 5025: 5023: 5021: 5019: 5016: 5013: 5007: 5001: 5000: 4994: 4991: 4988: 4986: 4984: 4982: 4976: 4975: 4972: 4966: 4963: 4961: 4959: 4957: 4951: 4950: 4947: 4944: 4938: 4936: 4934: 4932: 4926: 4925: 4920: 4915: 4910: 4905: 4900: 4895: 4870: 4869: 4866: 4865: 4863: 4860: 4857: 4851: 4850: 4847: 4845: 4842: 4836: 4835: 4832: 4829: 4827: 4821: 4820: 4815: 4810: 4805: 4771: 4768: 4747: 4744: 4721: 4720: 4707: 4699: 4696: 4693: 4689: 4683: 4678: 4675: 4672: 4668: 4664: 4661: 4658: 4655: 4652: 4648: 4643: 4623:> 0, where 4570:simple polygon 4561: 4558: 4531: 4528: 4524: 4504: 4503: 4492:maximum metric 4488: 4473: 4451: 4450: 4436: 4433: 4429: 4425: 4420: 4417: 4413: 4409: 4404: 4401: 4397: 4346: 4343: 4341: 4338: 4275:Main article: 4272: 4269: 4260: 4257: 4217: 4214: 4164: 4163:-opt heuristic 4158: 4145: 4144: 4133: âˆ’ 2 4125: 4121: 4101: 4095: 4076: 4073: 4070: 4067: 4064: 4061: 4058: 4055: 4052: 4028: 4025: 4022: 4019: 3968: 3965: 3964: 3963: 3960: 3957: 3954: 3934: 3929: 3925: 3921: 3918: 3902: 3901: 3898: 3895: 3892: 3870: 3867: 3864: 3861: 3844:Eulerian graph 3803: 3800: 3760: 3756: 3752: 3748: 3744: 3741: 3738: 3735: 3702: 3699: 3679: 3676: 3634:George Dantzig 3626: 3625: 3618:branch-and-cut 3610: 3594: 3593: 3570: 3565: 3561: 3557: 3554: 3530: 3525: 3521: 3517: 3514: 3479: 3474: 3470: 3464: 3460: 3456: 3453: 3418: 3415: 3412: 3409: 3406: 3386: 3383: 3382: 3381: 3378: 3371: 3359: 3356: 3352:row generation 3343: 3342: 3327: 3324: 3320: 3316: 3312: 3308: 3305: 3302: 3299: 3296: 3293: 3290: 3287: 3284: 3281: 3278: 3275: 3272: 3269: 3265: 3261: 3257: 3253: 3246: 3243: 3239: 3232: 3229: 3226: 3223: 3220: 3217: 3214: 3210: 3203: 3200: 3197: 3193: 3189: 3187: 3185: 3182: 3179: 3176: 3173: 3170: 3167: 3164: 3161: 3158: 3155: 3152: 3147: 3144: 3140: 3134: 3129: 3126: 3123: 3120: 3117: 3114: 3111: 3107: 3103: 3101: 3099: 3096: 3093: 3090: 3087: 3084: 3081: 3078: 3075: 3072: 3069: 3066: 3061: 3058: 3054: 3048: 3043: 3040: 3037: 3034: 3031: 3028: 3025: 3021: 3017: 3015: 3013: 3008: 3003: 3000: 2996: 2990: 2987: 2983: 2977: 2972: 2969: 2966: 2963: 2960: 2957: 2954: 2950: 2944: 2939: 2936: 2933: 2929: 2925: 2923: 2921: 2918: 2917: 2886: 2883: 2878: 2875: 2871: 2859: 2858: 2845: 2835: 2833: 2830: 2829: 2826: 2818: 2810: 2808: 2805: 2804: 2802: 2797: 2792: 2789: 2785: 2765: 2762: 2757: 2756: 2741: 2738: 2735: 2732: 2729: 2726: 2723: 2720: 2717: 2713: 2708: 2704: 2700: 2697: 2694: 2693: 2690: 2687: 2684: 2681: 2678: 2675: 2672: 2669: 2666: 2663: 2658: 2655: 2651: 2647: 2644: 2641: 2638: 2635: 2632: 2629: 2626: 2623: 2621: 2617: 2614: 2611: 2606: 2602: 2598: 2593: 2589: 2585: 2584: 2581: 2578: 2575: 2572: 2569: 2566: 2563: 2560: 2557: 2554: 2551: 2547: 2542: 2539: 2535: 2529: 2524: 2521: 2518: 2515: 2512: 2509: 2506: 2502: 2498: 2497: 2494: 2491: 2488: 2485: 2482: 2479: 2476: 2473: 2470: 2467: 2464: 2460: 2455: 2452: 2448: 2442: 2437: 2434: 2431: 2428: 2425: 2422: 2419: 2415: 2411: 2410: 2407: 2404: 2401: 2398: 2395: 2392: 2389: 2386: 2383: 2380: 2377: 2374: 2371: 2368: 2365: 2362: 2359: 2357: 2353: 2348: 2345: 2341: 2337: 2336: 2331: 2328: 2326: 2322: 2319: 2315: 2309: 2306: 2302: 2296: 2291: 2288: 2285: 2282: 2279: 2276: 2273: 2269: 2263: 2258: 2255: 2252: 2248: 2244: 2241: 2240: 2214: 2194: 2191: 2171: 2151: 2129: 2125: 2102: 2097: 2093: 2070: 2066: 2045: 2042: 2037: 2034: 2030: 2009: 2006: 2003: 1992: 1991: 1980: 1977: 1974: 1971: 1968: 1965: 1962: 1959: 1956: 1953: 1950: 1947: 1927: 1922: 1919: 1915: 1911: 1908: 1905: 1902: 1899: 1896: 1893: 1890: 1887: 1884: 1881: 1876: 1872: 1868: 1863: 1859: 1835: 1832: 1829: 1826: 1823: 1820: 1800: 1797: 1794: 1789: 1786: 1782: 1759: 1755: 1751: 1746: 1742: 1715: 1712: 1708: 1704: 1699: 1695: 1691: 1686: 1682: 1670: 1669: 1658: 1655: 1650: 1647: 1643: 1622: 1619: 1614: 1610: 1606: 1601: 1597: 1571: 1560:) over strict 1549: 1527: 1524: 1504: 1482: 1478: 1455: 1451: 1428: 1425: 1421: 1400: 1397: 1377: 1355: 1351: 1347: 1342: 1338: 1315: 1292: 1288: 1267: 1264: 1261: 1258: 1255: 1252: 1249: 1227: 1224: 1220: 1207: 1204: 1195: 1194: 1183: 1180: 1177: 1174: 1171: 1168: 1165: 1162: 1142: 1139: 1134: 1131: 1127: 1121: 1116: 1113: 1110: 1107: 1104: 1101: 1098: 1094: 1073: 1070: 1067: 1064: 1061: 1058: 1055: 1035: 1032: 1027: 1024: 1020: 1014: 1009: 1006: 1003: 1000: 997: 994: 991: 987: 963: 960: 940: 937: 932: 929: 925: 902: 899: 896: 892: 886: 883: 879: 875: 864: 863: 852: 847: 844: 840: 834: 831: 827: 821: 816: 813: 810: 807: 804: 801: 798: 794: 788: 783: 780: 777: 773: 758: 757: 744: 734: 732: 729: 728: 725: 717: 709: 707: 704: 703: 701: 696: 691: 688: 684: 660: 640: 620: 617: 612: 609: 605: 584: 581: 578: 575: 572: 553: 550: 549: 548: 540: 533: 530: 505: 489:weighted graph 481: 470: 449: 446: 442:directed graph 438:asymmetric TSP 425: 422: 418:complete graph 385: 382: 380: 377: 354:In the 1990s, 253:George Dantzig 238:Julia Robinson 190:Thomas Kirkman 162: 159: 138:DNA sequencing 15: 9: 6: 4: 3: 2: 10764: 10763: 10752: 10749: 10747: 10744: 10742: 10739: 10737: 10734: 10732: 10729: 10727: 10724: 10722: 10719: 10717: 10714: 10713: 10711: 10702: 10699: 10696: 10695: 10691: 10689: 10685: 10682: 10680: 10676: 10672: 10669: 10668: 10657: 10656: 10650: 10646: 10641: 10637: 10633: 10629: 10625: 10621: 10617: 10612: 10607: 10602: 10598: 10593: 10590: 10586: 10582: 10578: 10574: 10570: 10566: 10562: 10558: 10554: 10550: 10546: 10542: 10538: 10534: 10530: 10526: 10521: 10518: 10514: 10510: 10506: 10501: 10496: 10492: 10488: 10483: 10479: 10473: 10469: 10468: 10462: 10455: 10454: 10449: 10445: 10441: 10437: 10431: 10427: 10426: 10420: 10416: 10412: 10407: 10402: 10398: 10394: 10390: 10385: 10382: 10376: 10372: 10368: 10364: 10359: 10355: 10349: 10345: 10344: 10338: 10335: 10331: 10327: 10323: 10319: 10315: 10311: 10307: 10303: 10299: 10295: 10294:Fulkerson, R. 10291: 10287: 10283: 10277: 10273: 10272: 10267: 10263: 10259: 10255: 10251: 10247: 10244: 10240: 10236: 10232: 10228: 10227:Cook, William 10224: 10220: 10214: 10210: 10209: 10204: 10203:Cook, William 10200: 10197: 10193: 10188: 10183: 10179: 10174: 10167: 10163: 10159: 10155: 10151: 10146: 10141: 10137: 10133: 10129: 10125: 10118: 10114: 10110: 10109: 10096: 10092: 10088: 10084: 10080: 10076: 10072: 10068: 10064: 10059: 10054: 10050: 10046: 10041: 10036: 10032: 10027: 10020: 10019: 10014: 10010: 10006: 10002: 9998: 9994: 9990: 9986: 9985: 9980: 9975: 9971: 9967: 9962: 9957: 9953: 9949: 9945: 9941: 9937: 9933: 9929: 9925: 9921: 9917: 9912: 9908: 9904: 9900: 9894: 9890: 9886: 9881: 9876: 9871: 9868: 9864: 9859: 9854: 9850: 9846: 9841: 9836: 9831: 9827: 9823: 9819: 9815: 9811: 9807: 9803: 9799: 9795: 9790: 9785: 9781: 9777: 9772: 9767: 9762: 9758: 9754: 9750: 9746: 9742: 9736: 9732: 9728: 9723: 9718: 9714: 9713: 9708: 9703: 9699: 9695: 9690: 9685: 9681: 9677: 9672: 9667: 9662: 9658: 9654: 9650: 9646: 9642: 9638: 9634: 9630: 9626: 9622: 9618: 9613: 9609: 9605: 9601: 9597: 9593: 9589: 9585: 9581: 9580: 9572: 9568: 9564: 9560: 9556: 9551: 9546: 9542: 9538: 9537: 9529: 9524: 9520: 9514: 9510: 9506: 9501: 9500: 9487: 9486: 9480: 9465: 9461: 9454: 9439: 9435: 9429: 9422: 9418: 9413: 9408: 9404: 9397: 9390: 9382: 9378: 9374: 9370: 9366: 9362: 9358: 9354: 9350: 9346: 9339: 9332: 9330: 9324: 9315: 9310: 9306: 9302: 9298: 9291: 9289: 9280: 9276: 9272: 9268: 9264: 9260: 9252: 9244: 9240: 9235: 9230: 9225: 9220: 9216: 9212: 9208: 9204: 9200: 9193: 9185: 9181: 9177: 9173: 9169: 9165: 9161: 9157: 9153: 9149: 9142: 9134: 9130: 9126: 9122: 9114: 9106: 9102: 9098: 9094: 9089: 9084: 9080: 9076: 9072: 9065: 9057: 9053: 9048: 9043: 9039: 9035: 9031: 9024: 9016: 9012: 9008: 9004: 9000: 8996: 8992: 8988: 8983: 8978: 8974: 8970: 8963: 8955: 8951: 8947: 8943: 8938: 8933: 8929: 8925: 8918: 8910: 8906: 8901: 8896: 8892: 8888: 8881: 8874: 8869: 8862: 8857: 8850: 8845: 8838: 8833: 8825: 8821: 8817: 8811: 8807: 8803: 8798: 8793: 8789: 8785: 8781: 8775: 8767: 8763: 8759: 8753: 8749: 8745: 8741: 8737: 8730: 8723: 8718: 8710: 8706: 8698: 8691: 8684: 8679: 8672: 8667: 8659: 8656:Orponen, P.; 8652: 8646: 8642: 8639: 8634: 8626: 8625:about.att.com 8622: 8616: 8608: 8604: 8600: 8596: 8595: 8590: 8586: 8580: 8572: 8568: 8564: 8560: 8553: 8546: 8541: 8532: 8527: 8523: 8519: 8515: 8508: 8500: 8496: 8492: 8488: 8487: 8479: 8472: 8468: 8464: 8460: 8455: 8450: 8446: 8442: 8438: 8431: 8423: 8419: 8415: 8411: 8410: 8402: 8395: 8390: 8383: 8378: 8371: 8366: 8359: 8354: 8346: 8342: 8338: 8334: 8330: 8326: 8322: 8318: 8317: 8309: 8301: 8297: 8293: 8289: 8285: 8281: 8276: 8271: 8267: 8263: 8259: 8255: 8248: 8240: 8236: 8232: 8228: 8224: 8220: 8216: 8212: 8205: 8198: 8190: 8186: 8182: 8178: 8171: 8163: 8159: 8155: 8151: 8146: 8141: 8137: 8133: 8126: 8118: 8114: 8110: 8103: 8096: 8090: 8086: 8082: 8077: 8072: 8068: 8061: 8051: 8046: 8042: 8038: 8034: 8027: 8019: 8015: 8008: 8004: 7998: 7996: 7980: 7973: 7967: 7963: 7959: 7952: 7945: 7940: 7932: 7928: 7924: 7918: 7914: 7910: 7906: 7902: 7895: 7888: 7883: 7877: 7873: 7869: 7864: 7856: 7852: 7848: 7844: 7837: 7831: 7827: 7821: 7813: 7809: 7805: 7801: 7794: 7786: 7782: 7778: 7774: 7769: 7764: 7760: 7756: 7749: 7742: 7741:0-691-08000-3 7738: 7734: 7728: 7719: 7713:, pp.308-309. 7710: 7703: 7696: 7689: 7678: 7676: 7668: 7660: 7656: 7652: 7648: 7644: 7640: 7636: 7632: 7631: 7623: 7621: 7613: 7609: 7605: 7599: 7595: 7591: 7586: 7581: 7577: 7573: 7569: 7565: 7559: 7544: 7540: 7536: 7530: 7515: 7511: 7504: 7496: 7492: 7488: 7484: 7479: 7474: 7470: 7466: 7459: 7457: 7455: 7447: 7442: 7440: 7438: 7430: 7424: 7405: 7404: 7396: 7388: 7382: 7378: 7377: 7369: 7367: 7365: 7363: 7361: 7359: 7357: 7355: 7347: 7343: 7337: 7330: 7329: 7322: 7315: 7311: 7306: 7300: 7295: 7287: 7283: 7279: 7275: 7271: 7267: 7260: 7256: 7246: 7243: 7241: 7238: 7236: 7233: 7231: 7228: 7226: 7223: 7221: 7218: 7216: 7213: 7211: 7208: 7206: 7203: 7201: 7198: 7196: 7193: 7190: 7187: 7185: 7182: 7180: 7177: 7176: 7167: 7163: 7160: 7156: 7155: 7151: 7150: 7144: 7142: 7131: 7129: 7128: 7124: 7114: 7112: 7111: 7106: 7101: 7099: 7095: 7091: 7081: 7067: 7063: 7056: 7053: 7050: 7039: 7034: 7020: 7017: 7014: 7004: 6999: 6995: 6991: 6986: 6984: 6980: 6976: 6972: 6962: 6960: 6956: 6952: 6948: 6944: 6940: 6936: 6932: 6928: 6924: 6897: 6894: 6889: 6884: 6881: 6876: 6871: 6867: 6859: 6858: 6857: 6856: 6855: 6853: 6832: 6829: 6826: 6821: 6816: 6813: 6808: 6803: 6799: 6791: 6790: 6789: 6788: 6767: 6761: 6755: 6750: 6746: 6742: 6736: 6714: 6709: 6705: 6696: 6695: 6678: 6673: 6658: 6655: 6649: 6643: 6640: 6627: 6619: 6614: 6610: 6594: 6593: 6592: 6591: 6587: 6586: 6569: 6564: 6556: 6553: 6547: 6542: 6527: 6524: 6518: 6512: 6509: 6496: 6488: 6483: 6479: 6463: 6462: 6461: 6460: 6457:, which gives 6442: 6438: 6434: 6429: 6425: 6421: 6416: 6412: 6389: 6385: 6364: 6360: 6356: 6331: 6326: 6322: 6305: 6304: 6287: 6282: 6274: 6271: 6265: 6257: 6252: 6248: 6232: 6231: 6230: 6229: 6211: 6207: 6203: 6198: 6194: 6171: 6167: 6146: 6121: 6116: 6112: 6095: 6094: 6073: 6070: 6067: 6064: 6056: 6039: 6034: 6031: 6028: 6006: 6001: 5998: 5978: 5975: 5970: 5967: 5962: 5957: 5952: 5948: 5939: 5922: 5916: 5912: 5890: 5868: 5865: 5862: 5842: 5839: 5834: 5829: 5826: 5821: 5817: 5808: 5807: 5801: 5785: 5781: 5777: 5774: 5771: 5766: 5762: 5735: 5715: 5706: 5700: 5695: 5691: 5680: 5675: 5656: 5651: 5647: 5618: 5596: 5590: 5581: 5576: 5572: 5552: 5544: 5541: 5533: 5517: 5514: 5509: 5504: 5501: 5496: 5491: 5487: 5466: 5441: 5432: 5423: 5414: 5408: 5403: 5399: 5389: 5388: 5387: 5386: 5385: 5383: 5365: 5360: 5356: 5333: 5325: 5322: 5319: 5296: 5274: 5270: 5266: 5263: 5260: 5255: 5251: 5236: 5234: 5230: 5226: 5222: 5218: 5214: 5204: 5142: 5125: 5108: 5089: 5085: 5074: 5072: 5070: 5068: 5064: 5061: 5058: 5056: 5053: 5052: 5049: 5047: 5045: 5042: 5040: 5036: 5033: 5031: 5028: 5027: 5024: 5022: 5020: 5017: 5014: 5012: 5008: 5006: 5003: 5002: 4999: 4995: 4992: 4989: 4987: 4985: 4983: 4981: 4978: 4977: 4973: 4971: 4967: 4964: 4962: 4960: 4958: 4956: 4953: 4952: 4948: 4945: 4943: 4939: 4937: 4935: 4933: 4931: 4928: 4927: 4924: 4921: 4919: 4916: 4914: 4911: 4909: 4906: 4904: 4901: 4899: 4896: 4894: 4893: 4887: 4886: 4885: 4883: 4879: 4875: 4864: 4861: 4858: 4856: 4853: 4852: 4848: 4846: 4843: 4841: 4838: 4837: 4833: 4830: 4828: 4826: 4823: 4822: 4819: 4816: 4814: 4811: 4809: 4806: 4804: 4803: 4797: 4796: 4795: 4793: 4789: 4785: 4781: 4777: 4767: 4765: 4761: 4757: 4753: 4743: 4740: 4738: 4734: 4730: 4729:Sanjeev Arora 4726: 4705: 4697: 4694: 4691: 4681: 4676: 4670: 4662: 4659: 4656: 4650: 4646: 4641: 4634: 4633: 4632: 4630: 4626: 4622: 4617: 4615: 4611: 4607: 4603: 4599: 4593: 4591: 4587: 4583: 4579: 4575: 4571: 4567: 4557: 4555: 4551: 4547: 4546:shortest path 4529: 4526: 4522: 4511: 4509: 4502:-coordinates. 4501: 4497: 4493: 4489: 4486: 4482: 4478: 4474: 4471: 4467: 4466: 4465: 4462: 4460: 4456: 4434: 4431: 4427: 4423: 4418: 4415: 4411: 4407: 4402: 4399: 4395: 4387: 4386: 4385: 4383: 4379: 4375: 4371: 4367: 4362: 4360: 4356: 4352: 4340:Special cases 4333: 4326: 4321: 4317: 4315: 4309: 4307: 4303: 4299: 4295: 4291: 4287: 4283: 4278: 4268: 4266: 4256: 4254: 4250: 4246: 4242: 4238: 4234: 4230: 4225: 4223: 4213: 4211: 4207: 4206:local minimum 4203: 4199: 4195: 4191: 4186: 4182: 4178: 4174: 4170: 4162: 4157: 4154: 4150: 4142: 4138: 4132: 4126: 4122: 4119: 4115: 4114: 4113: 4111: 4107: 4099: 4094: 4092: 4068: 4062: 4059: 4056: 4050: 4023: 4017: 4007: 4002: 4001:-opt method. 4000: 3996: 3995:Lin–Kernighan 3992: 3988: 3984: 3983: 3973: 3961: 3958: 3955: 3952: 3951: 3950: 3946: 3927: 3923: 3916: 3908: 3899: 3896: 3893: 3890: 3889: 3888: 3886: 3865: 3859: 3849: 3848:Eulerian tour 3845: 3839: 3837: 3833: 3829: 3825: 3816: 3808: 3799: 3797: 3793: 3788: 3786: 3782: 3778: 3773: 3750: 3742: 3739: 3724: 3720: 3716: 3707: 3698: 3695: 3693: 3689: 3685: 3675: 3673: 3669: 3665: 3664: 3659: 3655: 3651: 3647: 3643: 3639: 3638:Ray Fulkerson 3635: 3631: 3623: 3619: 3615: 3611: 3608: 3604: 3603: 3598: 3591: 3587: 3586: 3585: 3582: 3563: 3559: 3552: 3544: 3523: 3519: 3512: 3504: 3495: 3491: 3472: 3468: 3462: 3458: 3451: 3443: 3439: 3434: 3432: 3413: 3410: 3404: 3396: 3392: 3379: 3376: 3372: 3369: 3365: 3364: 3363: 3355: 3353: 3348: 3325: 3322: 3314: 3306: 3300: 3297: 3294: 3291: 3288: 3282: 3279: 3270: 3267: 3259: 3251: 3244: 3241: 3237: 3230: 3227: 3224: 3221: 3218: 3215: 3212: 3208: 3201: 3198: 3195: 3191: 3188: 3180: 3177: 3174: 3171: 3168: 3165: 3162: 3159: 3153: 3150: 3145: 3142: 3138: 3132: 3127: 3124: 3121: 3118: 3115: 3112: 3109: 3105: 3102: 3094: 3091: 3088: 3085: 3082: 3079: 3076: 3073: 3067: 3064: 3059: 3056: 3052: 3046: 3041: 3038: 3035: 3032: 3029: 3026: 3023: 3019: 3016: 3006: 3001: 2998: 2994: 2988: 2985: 2981: 2975: 2970: 2967: 2964: 2961: 2958: 2955: 2952: 2948: 2942: 2937: 2934: 2931: 2927: 2924: 2908: 2907: 2906: 2904: 2900: 2884: 2881: 2876: 2873: 2869: 2831: 2824: 2816: 2806: 2800: 2795: 2790: 2787: 2783: 2775: 2774: 2773: 2771: 2761: 2739: 2736: 2733: 2730: 2727: 2724: 2718: 2711: 2706: 2702: 2698: 2695: 2688: 2685: 2682: 2679: 2676: 2673: 2670: 2667: 2656: 2653: 2649: 2645: 2642: 2633: 2630: 2627: 2622: 2615: 2612: 2609: 2604: 2600: 2596: 2591: 2587: 2579: 2576: 2573: 2570: 2567: 2564: 2561: 2558: 2552: 2545: 2540: 2537: 2533: 2527: 2522: 2519: 2516: 2513: 2510: 2507: 2504: 2500: 2492: 2489: 2486: 2483: 2480: 2477: 2474: 2471: 2465: 2458: 2453: 2450: 2446: 2440: 2435: 2432: 2429: 2426: 2423: 2420: 2417: 2413: 2405: 2402: 2399: 2396: 2393: 2390: 2387: 2384: 2381: 2378: 2369: 2366: 2363: 2358: 2351: 2346: 2343: 2339: 2329: 2327: 2320: 2317: 2313: 2307: 2304: 2300: 2294: 2289: 2286: 2283: 2280: 2277: 2274: 2271: 2267: 2261: 2256: 2253: 2250: 2246: 2231: 2230: 2229: 2226: 2212: 2192: 2189: 2169: 2149: 2127: 2123: 2113: 2100: 2095: 2091: 2068: 2064: 2043: 2040: 2035: 2032: 2028: 2007: 2004: 2001: 1978: 1972: 1969: 1966: 1963: 1960: 1954: 1951: 1948: 1945: 1920: 1917: 1913: 1909: 1906: 1897: 1894: 1891: 1885: 1882: 1879: 1874: 1870: 1866: 1861: 1857: 1849: 1848: 1847: 1830: 1827: 1824: 1818: 1798: 1795: 1792: 1787: 1784: 1780: 1757: 1753: 1749: 1744: 1740: 1731: 1713: 1710: 1706: 1702: 1697: 1693: 1689: 1684: 1680: 1656: 1653: 1648: 1645: 1641: 1620: 1617: 1612: 1608: 1604: 1599: 1595: 1587: 1586: 1585: 1569: 1547: 1538: 1525: 1522: 1502: 1480: 1476: 1453: 1449: 1426: 1423: 1419: 1398: 1395: 1375: 1368:implies city 1353: 1349: 1345: 1340: 1336: 1313: 1290: 1286: 1265: 1262: 1259: 1256: 1253: 1250: 1247: 1225: 1222: 1218: 1203: 1200: 1181: 1178: 1175: 1172: 1169: 1166: 1163: 1160: 1140: 1137: 1132: 1129: 1125: 1119: 1114: 1111: 1108: 1105: 1102: 1099: 1096: 1092: 1071: 1068: 1065: 1062: 1059: 1056: 1053: 1033: 1030: 1025: 1022: 1018: 1012: 1007: 1004: 1001: 998: 995: 992: 989: 985: 977: 976: 975: 961: 958: 938: 935: 930: 927: 923: 900: 897: 894: 884: 881: 877: 850: 845: 842: 838: 832: 829: 825: 819: 814: 811: 808: 805: 802: 799: 796: 792: 786: 781: 778: 775: 771: 763: 762: 761: 730: 723: 715: 705: 699: 694: 689: 686: 682: 674: 673: 672: 658: 638: 618: 615: 610: 607: 603: 582: 579: 576: 573: 570: 561: 559: 545: 541: 538: 534: 531: 528: 523: 518: 517:semiconductor 514: 510: 506: 502: 498: 494: 490: 486: 482: 479: 475: 471: 468: 464: 460: 456: 452: 451: 445: 443: 439: 435: 431: 430:symmetric TSP 421: 419: 415: 411: 407: 403: 399: 390: 376: 373: 369: 365: 361: 357: 352: 350: 345: 343: 339: 335: 331: 327: 324: 320: 315: 313: 309: 305: 301: 297: 292: 290: 286: 282: 277: 275: 270: 269:cutting plane 266: 262: 258: 254: 250: 246: 241: 239: 235: 231: 227: 223: 217: 215: 212:We denote by 209: 207: 204:, notably by 203: 199: 195: 192:. Hamilton's 191: 187: 178: 174: 172: 168: 158: 156: 151: 147: 143: 139: 135: 131: 127: 122: 120: 116: 112: 107: 105: 104:exponentially 101: 97: 94: 90: 86: 82: 78: 73: 71: 67: 63: 58: 56: 52: 48: 44: 40: 36: 32: 23: 19: 10692: 10654: 10644: 10619: 10615: 10596: 10580: 10576: 10572: 10531:(1): 34–45. 10528: 10524: 10490: 10486: 10466: 10452: 10424: 10396: 10392: 10362: 10342: 10309: 10305: 10270: 10234: 10230: 10207: 10177: 10166:the original 10127: 10123: 10094: 10051:(1): 27–36, 10048: 10044: 10034: 10030: 10017: 9988: 9982: 9951: 9947: 9919: 9915: 9888: 9874: 9848: 9844: 9834: 9817: 9813: 9779: 9775: 9765: 9711: 9679: 9675: 9665: 9624: 9620: 9583: 9577: 9540: 9534: 9508: 9483: 9479: 9467:. Retrieved 9463: 9453: 9441:. Retrieved 9437: 9428: 9402: 9389: 9348: 9344: 9338: 9328: 9323: 9304: 9300: 9262: 9258: 9251: 9206: 9202: 9192: 9151: 9147: 9141: 9124: 9120: 9113: 9078: 9074: 9064: 9037: 9033: 9023: 8972: 8968: 8962: 8927: 8923: 8917: 8890: 8886: 8880: 8868: 8856: 8844: 8832: 8787: 8774: 8739: 8729: 8717: 8708: 8704: 8690: 8678: 8666: 8651: 8633: 8624: 8615: 8601:(1): 72–89. 8598: 8592: 8579: 8562: 8558: 8552: 8540: 8521: 8517: 8507: 8490: 8484: 8478: 8444: 8440: 8430: 8413: 8407: 8401: 8394:Arora (1998) 8389: 8377: 8365: 8353: 8320: 8314: 8308: 8260:(2): 73–81. 8257: 8253: 8247: 8214: 8210: 8197: 8180: 8176: 8170: 8135: 8131: 8125: 8108: 8102: 8066: 8060: 8040: 8036: 8026: 8017: 7982:. Retrieved 7972: 7951: 7939: 7904: 7894: 7882: 7863: 7846: 7842: 7836: 7825: 7820: 7803: 7799: 7793: 7758: 7754: 7748: 7732: 7727: 7718: 7708: 7702: 7694: 7688: 7674: 7667: 7634: 7628: 7575: 7558: 7546:. Retrieved 7542: 7529: 7517:. Retrieved 7513: 7503: 7468: 7464: 7423: 7411:. Retrieved 7402: 7395: 7375: 7346:Botenproblem 7345: 7336: 7326: 7321: 7313: 7305: 7294: 7269: 7265: 7259: 7152: 7137: 7125: 7120: 7108: 7102: 7097: 7087: 7037: 7035: 6987: 6968: 6942: 6938: 6920: 6849: 5676: 5458: 5242: 5228: 5216: 5210: 5087: 5083: 5082:The weight − 5081: 5066: 5054: 5038: 5029: 5010: 5004: 4997: 4979: 4969: 4954: 4941: 4929: 4922: 4917: 4912: 4907: 4902: 4897: 4881: 4877: 4873: 4871: 4854: 4839: 4824: 4817: 4812: 4807: 4791: 4787: 4783: 4779: 4775: 4773: 4763: 4759: 4755: 4751: 4749: 4741: 4722: 4628: 4624: 4620: 4618: 4613: 4609: 4605: 4601: 4594: 4582:square roots 4563: 4553: 4549: 4512: 4505: 4499: 4495: 4480: 4476: 4463: 4452: 4381: 4377: 4373: 4363: 4354: 4350: 4348: 4313: 4310: 4297: 4293: 4286:Marco Dorigo 4280: 4262: 4226: 4222:Markov chain 4219: 4209: 4201: 4176: 4172: 4168: 4166: 4160: 4148: 4146: 4140: 4136: 4130: 4117: 4109: 4103: 4097: 4003: 3998: 3994: 3990: 3980: 3978: 3947: 3903: 3840: 3821: 3789: 3777:bitonic tour 3774: 3722: 3712: 3696: 3681: 3667: 3661: 3632:proposed by 3627: 3583: 3500: 3435: 3391:permutations 3388: 3361: 3346: 3344: 2902: 2898: 2860: 2772:and define: 2769: 2767: 2758: 2227: 2114: 1993: 1729: 1671: 1539: 1209: 1198: 1196: 865: 759: 562: 555: 457:is: Given a 455:graph theory 437: 429: 427: 395: 371: 353: 346: 336:problem was 328: 319:Christofides 316: 293: 278: 249:Santa Monica 242: 219: 213: 211: 194:icosian game 183: 164: 145: 141: 123: 108: 96:running time 84: 80: 74: 59: 38: 34: 30: 28: 18: 10658:, CMS Press 10647:, CMS Press 9916:SIAM Review 9810:Karp, R. M. 9505:Cook, W. J. 9265:: 387–399. 8780:Traub, Vera 8658:Mannila, H. 8486:Mathematika 7984:11 November 7471:: 118–127. 7245:Monge array 7235:Arc routing 7001: [ 6947:NP-complete 6933:), and the 6091:Lower bound 5940:Few proved 5804:Upper bound 5679:almost-sure 4737:Gödel Prize 4612:) time for 4284:researcher 4265:convex hull 4251:), and the 4237:tabu search 4194:tabu search 379:Description 342:NP-hardness 338:NP-complete 296:mathematics 206:Karl Menger 171:Switzerland 89:NP-complete 45:problem in 10710:Categories 9922:: 60–100, 9496:References 9443:10 October 8797:1912.00670 8254:Biosystems 7768:1805.06997 7585:2007.01409 7548:13 October 7478:2004.02437 7134:Benchmarks 6998:Jens Vygen 6994:Vera Traub 5429:when  5348:, and let 4874:ghost node 4746:Asymmetric 4351:metric TSP 4220:Optimized 3684:heuristics 2838:otherwise. 737:otherwise. 595:and takes 236:report by 134:microchips 115:heuristics 93:worst-case 10601:CiteSeerX 10545:1430-2772 10415:0166-218X 10182:CiteSeerX 10140:CiteSeerX 10083:119293287 10058:1311.6338 10009:K. Aardal 9858:1303.6437 9784:CiteSeerX 9717:CiteSeerX 9682:: 61–63, 9657:122062088 9649:0305-0041 9545:CiteSeerX 9412:1303.4969 9405:: 2, 13, 9365:1435-9456 9168:0340-0727 9097:0090-502X 9056:1932-6246 8999:0090-502X 8977:CiteSeerX 8954:1932-6246 8932:CiteSeerX 8824:208527125 8454:1307.0221 8270:CiteSeerX 8231:2334-0843 8140:CiteSeerX 8071:CiteSeerX 7612:220347561 7495:214803097 7286:0028-3045 7090:Euclidean 7057:ε 7021:ε 6882:≳ 6877:∗ 6814:≳ 6809:∗ 6756:∗ 6743:≃ 6737:β 6715:∗ 6628:≥ 6620:∗ 6497:≥ 6489:∗ 6435:≠ 6332:∗ 6266:≥ 6258:∗ 6204:≠ 6122:∗ 6074:… 6068:≤ 6065:β 6032:≤ 6029:β 6002:≤ 5999:β 5963:≤ 5958:∗ 5866:≤ 5863:β 5827:≤ 5822:∗ 5775:… 5742:∞ 5739:→ 5716:β 5713:→ 5701:∗ 5657:∗ 5619:β 5582:∗ 5559:∞ 5556:→ 5542:β 5502:≤ 5497:∗ 5467:β 5439:∞ 5436:→ 5424:β 5421:→ 5409:∗ 5366:∗ 5264:… 5187:→ 5181:→ 5175:→ 5147:→ 5136:→ 5130:→ 5119:→ 5113:→ 5102:→ 4695:− 4660:⁡ 4560:Euclidean 4408:≤ 4355:delta-TSP 4153:Bell Labs 4063:⁡ 3796:matchings 3743:⁡ 3734:Θ 3431:factorial 3366:Devising 3323:≥ 3295:… 3283:⊊ 3277:∀ 3268:− 3252:≤ 3228:∈ 3216:≠ 3209:∑ 3199:∈ 3192:∑ 3172:… 3125:≠ 3106:∑ 3086:… 3039:≠ 3020:∑ 3007:: 2956:≠ 2949:∑ 2928:∑ 2734:≤ 2728:≤ 2712:≤ 2699:≤ 2683:≤ 2677:≠ 2671:≤ 2646:− 2631:− 2616:≤ 2597:− 2571:… 2520:≠ 2501:∑ 2484:… 2433:≠ 2414:∑ 2397:… 2352:∈ 2330:: 2275:≠ 2268:∑ 2247:∑ 2005:− 1967:… 1955:∈ 1910:− 1895:− 1886:≤ 1867:− 1828:− 1750:≥ 1690:≥ 1605:≥ 1548:≥ 1260:… 1173:… 1112:≠ 1093:∑ 1066:… 1005:≠ 986:∑ 800:≠ 793:∑ 772:∑ 577:… 504:problem). 356:Applegate 317:In 1976, 304:chemistry 279:In 1959, 130:logistics 111:benchmark 10636:14764079 10553:11505612 10517:38355042 10450:(eds.), 10334:44960960 10300:(1954), 10205:(2012). 10115:(1994), 9991:: 1–11, 9936:18516138 9806:Held, M. 9757:TR05-069 9698:15649582 9569:(1998), 9507:(2006), 9469:26 April 9464:Wired UK 9434:"TSPLIB" 9381:14994429 9373:21965161 9279:53761995 9243:29264418 9176:28608230 9105:15190718 9015:18989303 9007:12749463 8766:12391033 8641:Archived 8239:18691261 8217:: 2–10. 8016:(eds.). 7931:49743824 7574:(eds.), 7266:Networks 7173:See also 7159:P vs. NP 7123:amoeboid 6929:FP; see 5991:, hence 5809:One has 5243:Suppose 5143:′ 5126:′ 5109:′ 5055:C′ 5030:B′ 5005:A′ 4923:C′ 4918:B′ 4913:A′ 4727:(PTAS). 4302:emergent 4181:Shen Lin 4124:problem. 3907:matching 3790:Another 3682:Various 3588:Various 2901:to city 1515:to city 651:to city 402:vertices 372:Concorde 146:distance 126:planning 68:and the 10686:at the 10673:at the 10561:8986203 10509:8934685 10367:Bibcode 10196:4622707 10162:7973651 10132:Bibcode 10124:Science 10063:Bibcode 10037:: 80–86 9970:0455550 9907:6331426 9749:9054176 9629:Bibcode 9608:3023351 9600:1668147 9417:Bibcode 9234:5727545 9211:Bibcode 9203:Heliyon 9184:3959429 8909:8934685 8711:: 76–79 8621:"error" 8471:8904077 8345:0188872 8337:2313333 8300:8243011 8292:9231906 8262:Bibcode 8162:8130854 7962:YouTube 7785:6941484 7659:2856898 7651:2774420 7519:14 June 7038:longest 6923:NP-hard 4490:In the 4349:In the 4292:called 4087:⁠ 4043:⁠ 4039:⁠ 4010:⁠ 3905:weight 3881:⁠ 3852:⁠ 3440:is the 428:In the 364:ChvĂĄtal 308:physics 202:Harvard 167:Germany 161:History 75:In the 43:NP-hard 10634:  10603:  10559:  10551:  10543:  10515:  10507:  10474:  10432:  10413:  10377:  10350:  10332:  10326:166695 10324:  10278:  10215:  10194:  10184:  10160:  10142:  10081:  9968:  9934:  9905:  9895:  9786:  9755:  9747:  9737:  9719:  9696:  9655:  9647:  9606:  9598:  9547:  9515:  9379:  9371:  9363:  9277:  9241:  9231:  9182:  9174:  9166:  9103:  9095:  9054:  9013:  9005:  8997:  8979:  8952:  8934:  8907:  8822:  8812:  8764:  8754:  8469:  8343:  8335:  8298:  8290:  8272:  8237:  8229:  8160:  8142:  8091:  8073:  7929:  7919:  7826:J. ACM 7783:  7739:  7657:  7649:  7610:  7600:  7493:  7383:  7284:  6975:metric 6949:. The 6945:") is 6885:0.7078 6817:0.7080 5681:limit 5459:where 4498:- and 4479:- and 4455:metric 4366:metric 4345:Metric 3640:, and 3520:1.9999 3429:, the 1728:would 537:Google 414:vertex 410:vertex 366:, and 259:, and 64:, the 10632:S2CID 10557:S2CID 10513:S2CID 10457:(PDF) 10330:S2CID 10322:JSTOR 10192:JSTOR 10169:(PDF) 10120:(PDF) 10079:S2CID 10053:arXiv 10022:(PDF) 9932:S2CID 9853:arXiv 9745:S2CID 9694:S2CID 9653:S2CID 9604:S2CID 9574:(PDF) 9531:(PDF) 9407:arXiv 9399:(PDF) 9377:S2CID 9307:(2), 9275:S2CID 9180:S2CID 9040:(2). 9011:S2CID 8930:(1). 8820:S2CID 8792:arXiv 8762:S2CID 8701:(PDF) 8467:S2CID 8449:arXiv 8333:JSTOR 8296:S2CID 8235:S2CID 8207:(PDF) 8158:S2CID 8010:(PDF) 7927:S2CID 7781:S2CID 7763:arXiv 7680:(PDF) 7655:S2CID 7608:S2CID 7580:arXiv 7514:WIRED 7491:S2CID 7473:arXiv 7413:2 May 7407:(PDF) 7251:Notes 7005:] 6898:0.551 6830:0.522 6035:0.984 5534:that 4247:(see 3987:3-opt 3982:2-opt 3560:1.728 2861:Take 1772:when 501:drill 406:edges 360:Bixby 10549:PMID 10541:ISSN 10505:PMID 10472:ISBN 10430:ISBN 10411:ISSN 10375:ISBN 10348:ISBN 10276:ISBN 10213:ISBN 10158:PMID 9903:OCLC 9893:ISBN 9753:ECCC 9735:ISBN 9645:ISSN 9513:ISBN 9471:2012 9445:2020 9369:PMID 9361:ISSN 9331:1(1) 9239:PMID 9172:PMID 9164:ISSN 9101:PMID 9093:ISSN 9052:ISSN 9003:PMID 8995:ISSN 8950:ISSN 8905:PMID 8810:ISBN 8752:ISBN 8288:PMID 8227:ISSN 8089:ISBN 8055:> 7986:2020 7917:ISBN 7737:ISBN 7598:ISBN 7550:2020 7521:2015 7415:2020 7381:ISBN 7282:ISSN 6996:and 6659:5184 6071:0.73 5979:1.75 5677:The 5289:are 4782:and 4731:and 4608:log 4552:and 4196:and 4183:and 4104:The 3822:The 3775:The 3713:The 3686:and 3652:and 2882:> 2083:and 1570:> 1346:< 1153:for 1084:and 1046:for 616:> 542:The 507:The 493:edge 368:Cook 169:and 142:city 117:and 60:The 53:and 29:The 10624:doi 10585:doi 10533:doi 10495:doi 10401:doi 10397:117 10314:doi 10239:doi 10150:doi 10128:266 10071:doi 9993:doi 9956:doi 9924:doi 9863:doi 9822:doi 9794:doi 9727:doi 9684:doi 9637:doi 9588:doi 9555:doi 9353:doi 9309:doi 9267:doi 9229:PMC 9219:doi 9156:doi 9129:doi 9083:doi 9042:doi 8987:doi 8942:doi 8895:doi 8802:doi 8744:doi 8603:doi 8567:doi 8526:doi 8495:doi 8459:doi 8418:doi 8325:doi 8280:doi 8219:doi 8185:doi 8150:doi 8113:doi 8081:doi 8045:doi 8041:117 7960:on 7909:doi 7851:doi 7808:doi 7804:236 7773:doi 7639:doi 7635:211 7590:doi 7483:doi 7274:doi 6979:APX 6971:NPO 5728:as 5549:lim 5219:of 5203:). 4762:to 4754:to 4657:log 4376:to 4294:ACS 4060:log 3850:in 3740:log 3717:(a 2920:min 2243:min 1730:not 1633:if 1199:one 247:in 228:at 39:TSP 10712:: 10630:. 10618:. 10581:28 10579:, 10555:. 10547:. 10539:. 10529:65 10527:. 10511:, 10503:, 10491:58 10489:, 10409:. 10395:. 10391:. 10373:, 10328:, 10320:, 10308:, 10304:, 10296:; 10292:; 10268:. 10260:; 10256:; 10252:; 10235:19 10233:, 10190:, 10156:, 10148:, 10138:, 10126:, 10122:, 10077:, 10069:, 10061:, 10049:47 10047:, 10035:25 10033:, 10011:; 9989:18 9987:, 9966:MR 9964:, 9950:, 9930:, 9920:33 9918:, 9901:, 9887:, 9861:, 9849:81 9847:, 9818:10 9816:, 9808:; 9792:, 9780:75 9778:, 9751:, 9743:, 9733:, 9725:, 9692:, 9678:, 9651:, 9643:, 9635:, 9625:55 9623:, 9619:, 9602:, 9596:MR 9594:, 9584:45 9582:, 9576:, 9553:, 9541:38 9539:, 9533:, 9462:. 9436:. 9415:, 9401:, 9375:. 9367:. 9359:. 9349:15 9347:. 9303:, 9299:, 9287:^ 9273:. 9263:52 9261:. 9237:. 9227:. 9217:. 9205:. 9201:. 9178:. 9170:. 9162:. 9152:82 9150:. 9125:36 9123:. 9099:. 9091:. 9079:32 9077:. 9073:. 9050:. 9036:. 9032:. 9009:. 9001:. 8993:. 8985:. 8973:31 8971:. 8948:. 8940:. 8926:. 8903:, 8891:58 8889:, 8818:. 8808:. 8800:. 8786:. 8760:. 8750:. 8738:. 8709:17 8703:, 8623:. 8599:16 8597:. 8587:; 8563:18 8561:. 8522:51 8520:. 8516:. 8489:. 8465:, 8457:, 8445:26 8443:, 8412:. 8341:MR 8339:. 8331:. 8321:72 8319:. 8294:. 8286:. 8278:. 8268:. 8258:43 8256:. 8233:. 8225:. 8215:23 8213:. 8209:. 8181:32 8179:. 8156:. 8148:. 8136:26 8134:. 8087:, 8079:, 8039:. 8035:. 7994:^ 7925:. 7915:. 7903:. 7874:, 7870:, 7845:. 7802:. 7779:. 7771:. 7759:45 7757:. 7653:, 7647:MR 7645:, 7633:, 7619:^ 7606:, 7596:, 7588:, 7570:; 7541:. 7512:. 7489:. 7481:. 7469:53 7467:. 7453:^ 7436:^ 7353:^ 7280:. 7270:43 7268:. 7143:. 7068:25 7051:33 7015:22 7003:de 6656:19 5674:. 5235:. 4974:4 4949:5 4849:3 4834:2 4794:. 4778:, 4384:: 4361:. 4255:. 4243:, 4239:, 4235:, 4231:, 3945:. 3787:. 3674:. 3636:, 3581:. 3354:. 3326:2. 2170:1. 1657:1. 1582:), 362:, 358:, 351:. 306:, 302:, 298:, 255:, 128:, 57:. 10638:. 10626:: 10620:6 10609:. 10587:: 10573:k 10563:. 10535:: 10497:: 10480:. 10438:. 10417:. 10403:: 10369:: 10356:. 10316:: 10310:2 10284:. 10241:: 10221:. 10152:: 10134:: 10099:. 10086:. 10073:: 10065:: 10055:: 10039:. 10000:. 9995:: 9973:. 9958:: 9952:4 9939:. 9926:: 9910:. 9879:. 9865:: 9855:: 9839:. 9829:. 9824:: 9801:. 9796:: 9770:. 9760:. 9729:: 9701:. 9686:: 9680:9 9670:. 9660:. 9639:: 9631:: 9611:. 9590:: 9562:. 9557:: 9522:. 9473:. 9447:. 9419:: 9409:: 9383:. 9355:: 9318:. 9311:: 9305:3 9281:. 9269:: 9245:. 9221:: 9213:: 9207:3 9186:. 9158:: 9135:. 9131:: 9107:. 9085:: 9058:. 9044:: 9038:3 9017:. 8989:: 8956:. 8944:: 8928:1 8912:. 8897:: 8875:. 8863:. 8851:. 8839:. 8826:. 8804:: 8794:: 8768:. 8746:: 8724:. 8685:. 8673:. 8627:. 8609:. 8605:: 8573:. 8569:: 8547:. 8534:. 8528:: 8501:. 8497:: 8491:2 8461:: 8451:: 8424:. 8420:: 8414:2 8396:. 8384:. 8372:. 8360:. 8347:. 8327:: 8302:. 8282:: 8264:: 8241:. 8221:: 8191:. 8187:: 8164:. 8152:: 8119:. 8115:: 8083:: 8053:. 8047:: 7988:. 7946:. 7933:. 7911:: 7889:. 7857:. 7853:: 7847:2 7814:. 7810:: 7787:. 7775:: 7765:: 7682:. 7673:" 7662:. 7641:: 7592:: 7582:: 7552:. 7523:. 7497:. 7485:: 7475:: 7448:. 7431:. 7389:. 7316:) 7288:. 7276:: 7161:. 7064:/ 7060:) 7054:+ 7048:( 7018:+ 6943:x 6939:x 6910:. 6895:+ 6890:n 6872:n 6868:L 6833:, 6827:+ 6822:n 6804:n 6800:L 6773:) 6768:n 6762:/ 6751:n 6747:L 6740:( 6710:n 6706:L 6679:, 6674:n 6667:) 6650:+ 6644:8 6641:5 6633:( 6625:] 6615:n 6611:L 6607:[ 6603:E 6570:, 6565:n 6557:8 6554:5 6548:= 6543:n 6536:) 6528:8 6525:3 6519:+ 6513:4 6510:1 6502:( 6494:] 6484:n 6480:L 6476:[ 6472:E 6443:0 6439:X 6430:j 6426:X 6422:, 6417:i 6413:X 6390:0 6386:X 6365:2 6361:/ 6357:n 6337:] 6327:n 6323:L 6319:[ 6315:E 6288:. 6283:n 6275:2 6272:1 6263:] 6253:n 6249:L 6245:[ 6241:E 6212:0 6208:X 6199:i 6195:X 6172:0 6168:X 6147:n 6127:] 6117:n 6113:L 6109:[ 6105:E 6086:. 6054:. 6040:2 6007:2 5976:+ 5971:n 5968:2 5953:n 5949:L 5923:n 5917:/ 5913:1 5891:n 5869:2 5843:2 5840:+ 5835:n 5830:2 5818:L 5786:n 5782:X 5778:, 5772:, 5767:1 5763:X 5736:n 5707:n 5696:n 5692:L 5662:] 5652:n 5648:L 5644:[ 5640:E 5597:n 5591:/ 5587:] 5577:n 5573:L 5569:[ 5565:E 5553:n 5545:= 5518:2 5515:+ 5510:n 5505:2 5492:n 5488:L 5442:, 5433:n 5415:n 5404:n 5400:L 5361:n 5357:L 5334:2 5330:] 5326:1 5323:, 5320:0 5317:[ 5297:n 5275:n 5271:X 5267:, 5261:, 5256:1 5252:X 5229:E 5217:E 5190:A 5184:B 5178:C 5172:A 5150:A 5140:B 5133:B 5123:C 5116:C 5106:A 5099:A 5088:w 5084:w 5067:w 5065:− 5062:4 5059:5 5043:3 5039:w 5037:− 5034:6 5018:2 5015:1 5011:w 5009:− 4998:w 4996:− 4993:3 4990:2 4980:C 4970:w 4968:− 4965:1 4955:B 4946:6 4942:w 4940:− 4930:A 4908:C 4903:B 4898:A 4882:w 4878:w 4862:4 4859:5 4855:C 4844:6 4840:B 4831:1 4825:A 4818:C 4813:B 4808:A 4792:N 4788:N 4784:C 4780:B 4776:A 4764:A 4760:B 4756:B 4752:A 4706:) 4698:1 4692:d 4688:) 4682:d 4677:c 4674:( 4671:O 4667:) 4663:n 4654:( 4651:n 4647:( 4642:O 4629:c 4625:d 4621:c 4614:n 4610:n 4606:n 4604:( 4602:O 4554:B 4550:A 4530:B 4527:A 4523:d 4500:y 4496:x 4481:y 4477:x 4449:. 4435:B 4432:C 4428:d 4424:+ 4419:C 4416:A 4412:d 4403:B 4400:A 4396:d 4382:C 4378:B 4374:A 4327:. 4296:( 4210:V 4202:V 4177:k 4173:k 4169:k 4161:V 4149:k 4141:k 4137:k 4131:k 4129:2 4118:k 4110:V 4098:k 4075:) 4072:) 4069:n 4066:( 4057:n 4054:( 4051:O 4027:) 4024:n 4021:( 4018:O 3999:k 3991:k 3933:) 3928:3 3924:n 3920:( 3917:O 3869:) 3866:n 3863:( 3860:O 3759:) 3755:| 3751:V 3747:| 3737:( 3723:N 3624:. 3569:) 3564:n 3556:( 3553:O 3529:) 3524:n 3516:( 3513:O 3478:) 3473:n 3469:2 3463:2 3459:n 3455:( 3452:O 3417:) 3414:! 3411:n 3408:( 3405:O 3319:| 3315:Q 3311:| 3307:, 3304:} 3301:n 3298:, 3292:, 3289:1 3286:{ 3280:Q 3271:1 3264:| 3260:Q 3256:| 3245:j 3242:i 3238:x 3231:Q 3225:j 3222:, 3219:i 3213:j 3202:Q 3196:i 3181:; 3178:n 3175:, 3169:, 3166:1 3163:= 3160:i 3154:1 3151:= 3146:j 3143:i 3139:x 3133:n 3128:i 3122:j 3119:, 3116:1 3113:= 3110:j 3095:; 3092:n 3089:, 3083:, 3080:1 3077:= 3074:j 3068:1 3065:= 3060:j 3057:i 3053:x 3047:n 3042:j 3036:i 3033:, 3030:1 3027:= 3024:i 3002:j 2999:i 2995:x 2989:j 2986:i 2982:c 2976:n 2971:1 2968:= 2965:j 2962:, 2959:i 2953:j 2943:n 2938:1 2935:= 2932:i 2903:j 2899:i 2885:0 2877:j 2874:i 2870:c 2832:0 2825:j 2817:i 2807:1 2801:{ 2796:= 2791:j 2788:i 2784:x 2770:n 2740:. 2737:n 2731:i 2725:2 2719:n 2707:i 2703:u 2696:2 2689:; 2686:n 2680:j 2674:i 2668:2 2662:) 2657:j 2654:i 2650:x 2643:1 2640:( 2637:) 2634:1 2628:n 2625:( 2613:1 2610:+ 2605:j 2601:u 2592:i 2588:u 2580:; 2577:n 2574:, 2568:, 2565:1 2562:= 2559:i 2553:1 2546:= 2541:j 2538:i 2534:x 2528:n 2523:i 2517:j 2514:, 2511:1 2508:= 2505:j 2493:; 2490:n 2487:, 2481:, 2478:1 2475:= 2472:j 2466:1 2459:= 2454:j 2451:i 2447:x 2441:n 2436:j 2430:i 2427:, 2424:1 2421:= 2418:i 2406:; 2403:n 2400:, 2394:, 2391:1 2388:= 2385:j 2382:, 2379:i 2373:} 2370:1 2367:, 2364:0 2361:{ 2347:j 2344:i 2340:x 2321:j 2318:i 2314:x 2308:j 2305:i 2301:c 2295:n 2290:1 2287:= 2284:j 2281:, 2278:i 2272:j 2262:n 2257:1 2254:= 2251:i 2213:1 2193:, 2190:1 2150:1 2128:i 2124:u 2101:. 2096:i 2092:u 2069:j 2065:u 2044:0 2041:= 2036:j 2033:i 2029:x 2008:1 2002:n 1979:, 1976:} 1973:n 1970:, 1964:, 1961:2 1958:{ 1952:j 1949:, 1946:i 1926:) 1921:j 1918:i 1914:x 1907:1 1904:( 1901:) 1898:1 1892:n 1889:( 1883:1 1880:+ 1875:j 1871:u 1862:i 1858:u 1834:) 1831:1 1825:n 1822:( 1819:n 1799:, 1796:0 1793:= 1788:j 1785:i 1781:x 1758:i 1754:u 1745:j 1741:u 1714:j 1711:i 1707:x 1703:+ 1698:i 1694:u 1685:j 1681:u 1654:= 1649:j 1646:i 1642:x 1621:1 1618:+ 1613:i 1609:u 1600:j 1596:u 1562:( 1526:. 1523:i 1503:1 1481:i 1477:u 1454:i 1450:u 1427:j 1424:i 1420:x 1399:. 1396:j 1376:i 1354:j 1350:u 1341:i 1337:u 1326:; 1314:1 1291:i 1287:u 1266:n 1263:, 1257:, 1254:1 1251:= 1248:i 1226:j 1223:i 1219:x 1182:. 1179:n 1176:, 1170:, 1167:1 1164:= 1161:i 1141:1 1138:= 1133:j 1130:i 1126:x 1120:n 1115:i 1109:j 1106:, 1103:1 1100:= 1097:j 1072:n 1069:, 1063:, 1060:1 1057:= 1054:j 1034:1 1031:= 1026:j 1023:i 1019:x 1013:n 1008:j 1002:i 999:, 996:1 993:= 990:i 962:n 959:2 939:0 936:= 931:j 928:i 924:x 901:j 898:, 895:i 891:} 885:j 882:i 878:x 874:{ 851:. 846:j 843:i 839:x 833:j 830:i 826:c 820:n 815:1 812:= 809:j 806:, 803:i 797:j 787:n 782:1 779:= 776:i 731:0 724:j 716:i 706:1 700:{ 695:= 690:j 687:i 683:x 659:j 639:i 619:0 611:j 608:i 604:c 583:n 580:, 574:, 571:1 529:. 480:. 85:L 81:L 37:(

Index


NP-hard
combinatorial optimization
theoretical computer science
operations research
travelling purchaser problem
vehicle routing problem
ring star problem
theory of computational complexity
NP-complete
worst-case
running time
superpolynomially
exponentially
benchmark
heuristics
exact algorithms
planning
logistics
microchips
DNA sequencing
similarity measure
optimal control problem
Germany
Switzerland

William Rowan Hamilton
Thomas Kirkman
icosian game
Hamiltonian cycle

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑