Knowledge

Cyclotron

Source 📝

2996: 1382:), cyclotrons have no longitudinal focusing mechanism which would keep the particles synchronized to the RF field. The phase difference, that the particle had at the moment of its injection into the cyclotron, is preserved throughout the acceleration process, but errors from imperfect match between the RF field frequency and the cyclotron frequency at a given radius accumulate on top of it. Failure of the particle to be injected with phase difference within about ±20° from the optimum may make its acceleration too slow and its stay in the cyclotron too long. As a consequence, half-way through the process the phase difference escapes the 0–180° range, the acceleration turns into deceleration, and the particle fails to reach the target energy. Grouping of the particles into correctly synchronized bunches before their injection into the cyclotron thus greatly increases the injection efficiency. 3488: 3257: 2862: 382: 3295: 3333: 3219: 3181: 3132: 3097: 40: 162: 193:. In these applications, Szilárd became the first person to discuss the resonance condition (what is now called the cyclotron frequency) for a circular accelerating apparatus. However, neither Steenbeck's ideas nor Szilard's patent applications were ever published and therefore did not contribute to the development of the cyclotron. Several months later, in the early summer of 1929, Ernest Lawrence independently conceived the cyclotron concept after reading a paper by 2697: 1338:
the bunch center. The second is the mutual repulsion of the beam particles due to their electrostatic charges. Keeping the particles focused for acceleration requires confining the particles to the plane of acceleration (in-plane or "vertical" focusing), preventing them from moving inward or outward from their correct orbit ("horizontal" focusing), and keeping them synchronized with the accelerating RF field cycle (longitudinal focusing).
1192: 2518: 362: 154: 1350:. A cyclotron using this focusing method is thus called an azimuthally-varying field (AVF) cyclotron. The variation in field strength is provided by shaping the steel poles of the magnet into sectors which can have a shape reminiscent of a spiral and also have a larger area towards the outer edge of the cyclotron to improve the vertical focus of the particle beam. This solution for focusing the particle beam was proposed by 3371: 349: 2684:) is the fixed-field alternating gradient accelerator (FFA). In an isochronous cyclotron, the magnetic field is shaped by using precisely machined steel magnet poles. This variation provides a focusing effect as the particles cross the edges of the poles. In an FFA, separate magnets with alternating directions are used to focus the beam using the principle of 1358:
same radius, and a particle with a slightly incorrect trajectory will simply travel in a circle with a slightly offset center. Relative to a particle with a centered orbit, such a particle will appear to undergo a horizontal oscillation relative to the centered particle. This oscillation is stable for particles with a small deviation from the reference energy.
3016:
shielding, and the enclosing building. Cyclotrons have a single electrical driver, which saves both equipment and power costs. Furthermore, cyclotrons are able to produce a continuous beam of particles at the target, so the average power passed from a particle beam into a target is relatively high compared to the pulsed beam of a synchrotron.
233:), Lawrence and his collaborators went on to construct a series of cyclotrons which were the most powerful accelerators in the world at the time; a 27 in (69 cm) 4.8 MeV machine (1932), a 37 in (94 cm) 8 MeV machine (1937), and a 60 in (152 cm) 16 MeV machine (1939). Lawrence received the 1939 2780:"Superconducting" in the cyclotron context refers to the type of magnet used to bend the particle orbits into a spiral. Superconducting magnets can produce substantially higher fields in the same area than normal conducting magnets, allowing for more compact, powerful machines. The first superconducting cyclotron was the K500 at the 2760:
create a nonuniform magnetic field stronger in peripheral regions. Most modern cyclotrons are of this type. The pole pieces can also be shaped to cause the beam to keep the particles focused in the acceleration plane as they orbit. This is known as "sector focusing" or "azimuthally-varying field focusing", and uses the principle of
2883:
research where the primary consideration is not achieving the maximum possible energy. Cyclotron based nuclear physics experiments are used to measure basic properties of isotopes (particularly short lived radioactive isotopes) including half life, mass, interaction cross sections, and decay schemes.
2381:
increases as the particle reaches relativistic velocities, acceleration of relativistic particles requires modification of the cyclotron to ensure the particle crosses the gap at the same point in each RF cycle. If the frequency of the accelerating electric field is varied while the magnetic field is
3445:
is another type of particle accelerator that uses magnets to bend particles into a circular trajectory. Unlike in a cyclotron, the particle path in a synchrotron has a fixed radius. Particles in a synchrotron pass accelerating stations at increasing frequency as they get faster. To compensate for
3027:
effects become important, the beam becomes out of phase with the oscillating electric field, and cannot receive any additional acceleration. The classical cyclotron (constant field and frequency) is therefore only capable of accelerating particles up to a few percent of the speed of light. Synchro-,
2746:
The synchrocyclotron extended the energy of the cyclotron into the relativistic regime by decreasing the frequency of the accelerating field as the orbit of the particles increased to keep it synchronized with the particle revolution frequency. Because this requires pulsed operation, the integrated
1366:
The instantaneous level of synchronization between a particle and the RF field is expressed by phase difference between the RF field and the particle. In the first harmonic mode (i.e. particles make one revolution per RF cycle) it is the difference between the instantaneous phase of the RF field and
1357:
The "horizontal" focusing happens as a natural result of cyclotron motion. Since for identical particles travelling perpendicularly to a constant magnetic field the trajectory curvature radius is only a function of their speed, all particles with the same speed will travel in circular orbits of the
1337:
As a particle bunch travels around a cyclotron, two effects tend to make its particles spread out. The first is simply the particles injected from the ion source having some initial spread of positions and velocities. This spread tends to get amplified over time, making the particles move away from
808:
is the radius at which the energy is to be determined. The limit on the beam energy which can be produced by a given cyclotron thus depends on the maximum radius which can be reached by the magnetic field and the accelerating structures, and on the maximum strength of the magnetic field which can be
335:
The first isochronous cyclotron (other than classified prototypes) was built by F. Heyn and K.T. Khoe in Delft, the Netherlands, in 1956. Early isochronous cyclotrons were limited to energies of ~50 MeV per nucleon, but as manufacturing and design techniques gradually improved, the construction
2882:
experiments. With the advent of strong focusing synchrotrons, cyclotrons were supplanted as the accelerators capable of producing the highest energies. However, due to their compactness, and therefore lower expense compared to high energy synchrotrons, cyclotrons are still used to create beams for
3559:
Only accelerators with time-independent frequency and bending field strength can operate in continuous mode, i.e. output a bunch of particles in each cycle of the accelerating field. If any of these quantities sweeps during the acceleration, the operation mode must be pulsed, i.e. the machine will
2823:
Beams of particles heavier than hydrogen are referred to as heavy ion beams, and can range from deuterium nuclei (one proton and one neutron) up to uranium nuclei. The increase in energy required to accelerate heavier particles is balanced by stripping more electrons from the atom to increase the
2814:
Accelerating negative hydrogen ions simplifies extracting the beam from the machine. At the radius corresponding to the desired beam energy, a metal foil is used to strip the electrons from the H ions, transforming them into positively charged H ions. The change in polarity causes the beam to be
2759:
These cyclotrons extend output energy into the relativistic regime by altering the magnetic field to compensate for the change in cyclotron frequency as the particles reached relativistic speed. They use specially shaped magnet pole pieces that are wider near the outer diameter of the cyclotron to
1390:
In the non-relativistic approximation, the cyclotron frequency does not depend upon the particle's speed or the radius of the particle's orbit. As the beam spirals outward, the rotation frequency stays constant, and the beam continues to accelerate as it travels a greater distance in the same time
331:
Lawrence's team built one of the first synchrocyclotrons in 1946. This 184 in (4.7 m) machine eventually achieved a maximum beam energy of 350 MeV for protons. However, synchrocyclotrons suffer from low beam intensities (< 1 μA), and must be operated in a "pulsed" mode,
1202:
While the trajectory followed by a particle in the cyclotron is conventionally referred to as a "spiral", it is more accurately described as a series of arcs of constant radius. The particle speed, and therefore orbital radius, only increases at the accelerating gaps. Away from those regions, the
519:
A cyclotron, by contrast, uses a magnetic field to bend the particle trajectories into a spiral, thus allowing the same gap to be used many times to accelerate a single bunch. As the bunch spirals outward, the increasing distance between transits of the gap is exactly balanced by the increase in
3006:
in front of Lawrence's 69 cm (27 in) cyclotron at the Lawrence Radiation Laboratory. The curving metal frame is the magnet's core, the large cylindrical boxes contain the coils of wire that generate the magnetic field. The vacuum chamber containing the "dee" electrodes is in the center
3015:
is that because the same accelerating gap is used many times, it is both more space efficient and more cost efficient; particles can be brought to higher energies in less space, and with less equipment. The compactness of the cyclotron reduces other costs as well, such as foundations, radiation
2842:
The simplest way to strike a target with a cyclotron beam is to insert it directly into the path of the beam in the cyclotron. Internal targets have the disadvantage that they must be compact enough to fit within the cyclotron beam chamber, making them impractical for many medical and research
385:
Vacuum chamber of Lawrence 69 cm (27 in) 1932 cyclotron with cover removed, showing the dees. The 13,000 V RF accelerating potential at about 27 MHz is applied to the dees by the two feedlines visible at top right. The beam emerges from the dees and strikes the target in the
2665:
Keeping the frequency constant allows isochronous cyclotrons to operate in a continuous mode, which makes them capable of producing much greater beam current than synchrocyclotrons. On the other hand, as precise matching of the orbital frequency to the accelerating field frequency is the
601:
Each time a particle crosses the accelerating gap in a cyclotron, it is given an accelerating force by the electric field across the gap, and the total particle energy gain can be calculated by multiplying the increase per crossing by the number of times the particle crosses the gap.
2986:
As of 2020, there were approximately 80 facilities worldwide for radiotherapy using beams of protons and heavy ions, consisting of a mixture of cyclotrons and synchrotrons. Cyclotrons are primarily used for proton beams, while synchrotrons are used to produce heavier ions.
1532: 953: 2851:
While extracting a beam from a cyclotron to impinge on an external target is more complicated than using an internal target, it allows for greater control of the placement and focus of the beam, and much more flexibility in the types of targets to which the beam can be
1815: 1968: 2123: 2661: 2505: 324:. As particles reach relativistic speeds, their effective mass increases, which causes the resonant frequency for a given magnetic field to change. To address this issue and reach higher beam energies using cyclotrons, two primary approaches were taken, 1696: 508:) electric fields for acceleration. Since an alternating field across a gap only provides an acceleration in the forward direction for a portion of its cycle, particles in RF accelerators travel in bunches, rather than a continuous stream. In a 3429:
in the magnetic field to accelerate electrons in a circular path. While static magnetic fields cannot provide acceleration, as the force always acts perpendicularly to the direction of particle motion, changing fields can be used to induce an
497:. It is not possible to accelerate particles using only a static magnetic field, as the magnetic force always acts perpendicularly to the direction of motion, and therefore can only change the direction of the particle, not the speed. 3875: 2688:. The field of the focusing and bending magnets in an FFA is not varied over time, so the beam chamber must still be wide enough to accommodate a changing beam radius within the field of the focusing magnets as the beam accelerates. 273: 258: 3546:
The terms "horizontal" and "vertical" do not refer to the physical orientation of the cyclotron, but are relative to the plane of acceleration. Vertical is perpendicular to the plane of acceleration, and horizontal is parallel to
125:
to a few million volts. In a cyclotron, by contrast, the particles encounter the accelerating region many times by following a spiral path, so the output energy can be many times the energy gained in a single accelerating step.
4012: 1411: 822: 1711: 800: 1826: 2010: 1323: 2550: 2394: 1716: 1171: 1206:
Assuming a uniform energy gain per orbit (which is only valid in the non-relativistic case), the average orbit may be approximated by a simple spiral. If the energy gain per turn is given by
5128: 352:
Diagram of a cyclotron. The magnet's pole pieces are shown smaller than in reality; they must actually be at least as wide as the accelerating electrodes ("dees") to create a uniform field.
328:(which hold the magnetic field constant, but decrease the accelerating frequency) and isochronous cyclotrons (which hold the accelerating frequency constant, but alter the magnetic field). 2995: 3446:
this frequency increase, both the frequency of the applied accelerating electric field and the magnetic field must be increased in tandem, leading to the "synchro" portion of the name.
593:
is the particle mass. The property that the frequency is independent of particle velocity is what allows a single, fixed gap to be used to accelerate a particle travelling in a spiral.
173:, Berkeley, California, constructed in 1939. The magnet is on the left, with the vacuum chamber between its pole pieces, and the beamline which analyzed the particles is on the right. 1610: 573: 1603: 654: 2747:
total beam current was low compared to the classical cyclotron. In terms of beam energy, these were the most powerful accelerators during the 1950s, before the development of the
1175:
is known as the "K-factor", and is used to characterize the maximum kinetic beam energy of protons (quoted in MeV). It represents the theoretical maximum energy of protons (with
699: 218:. Their first working cyclotron became operational in January 1931. This machine had a diameter of 4.5 inches (11 cm), and accelerated protons to an energy up to 80  320:
By the late 1930s it had become clear that there was a practical limit on the beam energy that could be achieved with the traditional cyclotron design, due to the effects of
1256: 455: 512:, in order for a bunch to "see" a forward voltage every time it crosses a gap, the gaps must be placed further and further apart, in order to compensate for the increasing 1371:
360°). Poor synchronization, i.e. phase difference far from this value, leads to the particle being accelerated slowly or even decelerated (outside of the 0–180° range).
2005: 1022: 2932:
imaging. While cyclotron produced radioisotopes are widely used for diagnostic purposes, therapeutic uses are still largely in development. Proposed isotopes include
203:
in 1930 (the first published description of the cyclotron concept), after a student of his built a crude model in April of that year. He patented the device in 1932.
2379: 1564: 1049: 390:
In a particle accelerator, charged particles are accelerated by applying an electric field across a gap. The force on a particle crossing this gap is given by the
5825:– Home of coupled K500 and K1200 superconducting cyclotrons; the K500, the first superconducting cyclotron, and the K1200, formerly the most powerful in the world. 181:
was the first to formulate the concept of the cyclotron, but he was discouraged from pursuing the idea further. In late 1928 and early 1929, Hungarian physicist
1093: 1073: 995: 975: 5793:
built a 30 cm (12 in) 1 MeV cyclotron as an undergraduate project, which is now used for a senior-level undergraduate and a graduate lab course.
3569:
Moderate variation of the field strength with radius does not matter in synchrocyclotrons, because the frequency variation compensates for it automatically.
712: 3035:
effects – the mutual repulsion of the particles in the beam. As the amount of particles (beam current) in a cyclotron beam is increased, the effects of
5505: 1261: 4222: 2730:
The earliest and simplest cyclotron. Classical cyclotrons have uniform magnetic fields and a constant accelerating frequency. They are limited to
268: 3019:
However, as discussed above, a constant frequency acceleration method is only possible when the accelerated particles are approximately obeying
336:
of "spiral-sector" cyclotrons allowed the acceleration and control of more powerful beams. Later developments included the use of more powerful
5480: 5425: 4843: 4047: 3516:– an accelerator concept similar to the cyclotron which uses a linear accelerator type accelerating structure with a constant magnetic field. 86:
outwards from the center of a flat cylindrical vacuum chamber along a spiral path. The particles are held to a spiral trajectory by a static
5220: 2675: 2265: 1374:
As the time taken by a particle to complete an orbit depends only on particle's type, magnetic field (which may vary with the radius), and
1103: 2929: 2541:
If instead the magnetic field is varied with radius while the frequency of the accelerating field is held constant, this leads to the
5773: 5076: 605:
However, given the typically high number of revolutions, it is usually simpler to estimate the energy by combining the equation for
527:, and depends, in the non-relativistic case, solely on the charge and mass of the particle, and the strength of the magnetic field: 5745:
An experiment done by Fred M. Niell, III his senior year of high school (1994–95) with which he won the overall grand prize in the
3039:
grow stronger until they disrupt the orbits of neighboring particles. This puts a functional limit on the beam intensity, or the
1527:{\displaystyle m={\frac {m_{0}}{\sqrt {1-\left({\frac {v}{c}}\right)^{2}}}}={\frac {m_{0}}{\sqrt {1-\beta ^{2}}}}=\gamma {m_{0}},} 948:{\displaystyle {\frac {T}{A}}={\frac {(eBr_{\max })^{2}}{2m_{a}}}\left({\frac {Q}{A}}\right)^{2}=K\left({\frac {Q}{A}}\right)^{2}} 4379: 5813: 5768: 5230: 5156: 4950: 4767: 4354: 4155: 3771: 3210: 3028:
isochronous, and other types of cyclotrons can overcome this limitation, with the tradeoff of increased complexity and cost.
2896:
Cyclotron beams can be used to bombard other atoms to produce short-lived isotopes with a variety of medical uses, including
1810:{\displaystyle {\begin{aligned}f&={\frac {qB}{2\pi \gamma m_{0}}}\\\omega &={\frac {qB}{\gamma m_{0}}}\end{aligned}}} 500:
In practice, the magnitude of an unchanging electric field which can be applied across a gap is limited by the need to avoid
230: 5101: 5042:. 13th International Conference on Cyclotrons and their Applications. Vancouver, Canada: World Scientific. pp. 115–118. 532: 618: 332:
further decreasing the available total beam. As such, they were quickly overtaken in popularity by isochronous cyclotrons.
3963: 3917: 2680:
An approach which combines static magnetic fields (as in the synchrocyclotron) and alternating gradient focusing (as in a
1963:{\displaystyle r={\frac {\gamma \beta m_{0}c}{qB}}={\frac {\gamma m_{0}v}{qB}}={\frac {m_{0}}{qB{\sqrt {v^{-2}-c^{-2}}}}}} 101:
The cyclotron was the first "cyclical" accelerator. The primary accelerators before the development of the cyclotron were
4314: 2118:{\displaystyle \left({\frac {1}{2\pi f}}\right)^{2}=\left({\frac {m_{0}}{qB}}\right)^{2}+\left({\frac {r}{c}}\right)^{2}} 4288: 663: 5796: 226: 79: 3406:
The spiraling of electrons in a cylindrical vacuum chamber within a transverse magnetic field is also employed in the
2772:
Separated sector cyclotrons are machines in which the magnet is in separate sections, separated by gaps without field.
5643: 5259: 4922: 4826: 4592: 4554: 4529: 4250: 3825: 3787: 3414:). In the magnetron, electrons are bent into a circular path by a magnetic field, and their motion is used to excite 2656:{\displaystyle B(r)={\frac {m_{0}}{q{\sqrt {\left({\frac {1}{2\pi f}}\right)^{2}-\left({\frac {r}{c}}\right)^{2}}}}}} 2500:{\displaystyle f(r)={\frac {1}{2\pi {\sqrt {\left({\frac {m_{0}}{qB}}\right)^{2}+\left({\frac {r}{c}}\right)^{2}}}}}} 1346:
The in-plane or "vertical" focusing is typically achieved by varying the magnetic field around the orbit, i.e. with
1220: 817:
In the nonrelativistic approximation, the maximum kinetic energy per atomic mass for a given cyclotron is given by:
399: 5729: 3638: 2389:
In this type of cyclotron, the accelerating frequency is varied as a function of particle orbit radius such that:
589:
is the magnitude of the magnetic field that is perpendicular to the plane in which the particle is travelling, and
129:
Cyclotrons were the most powerful particle accelerator technology until the 1950s, when they were surpassed by the
3487: 2815:
deflected in the opposite direction by the magnetic field, allowing the beam to be transported out of the machine.
1367:
the instantaneous azimuth of the particle. Fastest acceleration is achieved when the phase difference equals 90° (
3455: 1691:{\displaystyle \gamma ={\frac {1}{\sqrt {1-\beta ^{2}}}}={\frac {1}{\sqrt {1-\left({\frac {v}{c}}\right)^{2}}}}} 5858: 4729:
Proceedings of the 52nd ICFA Advanced Beam Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams
3815: 3172: 1975: 106: 2509:
The decrease in accelerating frequency is tuned to match the increase in gamma for a constant magnetic field.
5516: 4912: 4197: 2761: 2328: 1258:
Combining this with the non-relativistic equation for the kinetic energy of a particle in a cyclotron gives:
245: 166: 5848: 5843: 2961: 1575: 3462:
comic strip to be pulled in April 1945 for having Superman bombarded with the radiation from a cyclotron.
5838: 509: 4171:
Mann, F. J. (December 1946). "Federal Telephone and Radio Corporation, A Historical Review: 1909–1946".
4218: 3020: 1396: 31: 17: 5406: 340:
magnets and the separation of the magnets into discrete sectors, as opposed to a single large magnet.
137:
and basic research. As of 2020, close to 1,500 cyclotrons were in use worldwide for the production of
5853: 5822: 5783:
at the RIKEN Nishina Center for Accelerator Based Science – the highest energy cyclotron in the world
3324: 2781: 211: 102: 4978:. 9th International Conference on Cyclotrons and their Applications. Caen, France. pp. 231–240. 5065:. 15th International Conference on Cyclotrons and their Applications. Caen, France. pp. 90–93. 4784: 4446: 3519: 2666:
responsibility of the magnetic field variation with radius, the variation must be precisely tuned.
170: 5540: 4478:
Heyn, F.; Khoe, Kong Tat (1958). "Operation of a Radial Sector Fixed-Frequency Proton Cyclotron".
4397:
Bethe, H. A.; Rose, M. E. (15 December 1937). "The Maximum Energy Obtainable from the Cyclotron".
4059: 3727: 3438:. The betatron was developed in 1940, although the idea had been proposed substantially earlier. 5809: 5451: 4612: 3248: 2917: 2806:
The simplest type of cyclotron beam, proton beams are typically created by ionizing hydrogen gas.
110: 5248:
Regulatory control of the safety of ion radiotherapy facilities : a guide for best practice
5246: 3614: 5459:
Cyclotrons and their applications 2004. Proceedings of the seventeenth international conference
2956:
The first suggestion that energetic protons could be an effective treatment method was made by
1000: 523:
The frequency at which a particle will orbit in a perpendicular magnetic field is known as the
290: 234: 95: 301:
to increase the voltage to 2.8 MV and 3 mA current. A second cyclotron was built in
206:
To construct the first such device, Lawrence used large electromagnets recycled from obsolete
4753: 4245: 3753: 2364: 494: 298: 215: 121:
that could be achieved across the accelerating region. This potential was in turn limited by
365:
Diagram of cyclotron operation from Lawrence's 1934 patent. The hollow, open-faced D-shaped
5678: 5343: 5002: 4877: 4487: 4406: 4259: 3975: 3929: 3857:. CAS-CERN Accelerator School: 5th general accelerator physics course. Jyvaskyla, Finland: 3759: 3698: 3507: 1542: 1027: 501: 122: 118: 71: 4721: 4641: 1706:
Substituting this into the equations for cyclotron frequency and angular frequency gives:
8: 3501: 3431: 2980: 2189: 524: 5709: 5682: 5347: 5006: 4881: 4491: 4410: 4263: 3979: 3933: 3763: 3702: 5790: 5696: 5565: 5311: 5286: 5133: 5129:"In a breakthrough, Canadian researchers develop a new way to produce medical isotopes" 4276:
State Institute of Radium, founded in 1922, now known as V. G. Khlopin Radium Institute
4120: 4029: 3024: 3012: 3000: 2861: 1368: 1326: 1196: 1078: 1058: 980: 960: 381: 321: 294: 186: 4193: 3901:
Lawrence and His Laboratory: A History of the Lawrence Berkeley Laboratory', Volume I.
5721: 5700: 5639: 5513:
Proceedings of the 19th International Conference on Cyclotrons and their Applications
5334:
Reiser, Martin (1966). "Space Charge Effects and Current Limitations in Cyclotrons".
5316: 5255: 5226: 5201: 5193: 5152: 5020: 4970: 4946: 4918: 4893: 4868: 4822: 4763: 4588: 4550: 4525: 4383: 4360: 4350: 4151: 4112: 4033: 3821: 3767: 2866: 2738:), and have no active focusing to keep the beam aligned in the plane of acceleration. 2304: 237:
for the invention and development of the cyclotron and for results obtained with it.
199: 5591: 5057: 4684: 4124: 4082:
Proceedings of the 7th International Conference on Cyclotrons and their Applications
4074: 5780: 5714: 5686: 5351: 5306: 5298: 5185: 5010: 4885: 4792: 4759: 4695: 4495: 4414: 4271: 4267: 4104: 4051: 4021: 3983: 3937: 3847: 3706: 3504:– radiation produced by non-relativistic charged particles bent by a magnetic field 3415: 3162: 3036: 2968: 2957: 2356: 2233: 1351: 1052: 520:
speed, so a bunch will reach the gap at the same point in the RF cycle every time.
325: 310: 142: 134: 83: 5370:"88-Inch Cyclotron, the oldest continuously operated large cyclotron in existence" 5077:"About Rare-Isotope Research | TRIUMF : Canada's particle accelerator centre" 4095:
E. O. Lawrence; N. E. Edlefsen (1930). "On the Production of High Speed Protons".
3043:
of particles which can be accelerated at one time, as distinct from their energy.
2007:
yields the connection between the magnetic field strength, frequency, and radius:
5616: 4889: 2909: 2897: 2879: 2731: 2685: 610: 505: 464: 374: 337: 314: 75: 5388: 4796: 4108: 4010:
Widerøe, R. (1928). "Ueber Ein Neues Prinzip Zur Herstellung Hoher Spannungen".
194: 117:
only once. Thus, the energy gained by the particles was limited by the maximum
4147: 4048:"Breaking Through: A Century of Physics at Berkeley 1886–1968 2. The Cyclotron" 3493: 3145: 2976: 2921: 1699: 1400: 1392: 1375: 474: 370: 253: 114: 91: 87: 4699: 4418: 4318: 3892: 3662: 2878:
For several decades, cyclotrons were the best source of high-energy beams for
182: 39: 5832: 5812:
A history of cyclotron development at the Berkeley Radiation Laboratory, now
5669: 5355: 5197: 4364: 4292: 3332: 3218: 3131: 3096: 391: 306: 207: 178: 161: 5786: 4140: 5572:. Grainger College of Engineering, University of Illinois, Urbana-Champaign 5481:"MSU to refurbish world's first superconducting cyclotron for chip testing" 5426:"MSU to refurbish world's first superconducting cyclotron for chip testing" 5320: 5302: 5205: 5024: 4897: 4116: 3467: 3032: 2901: 1195:
The trajectory followed by a particle in the cyclotron approximated with a
282: 264: 241: 219: 138: 4344: 3711: 3687:"The Production of High Speed Light Ions Without the Use of High Voltages" 3686: 2824:
electric charge of the particles, thus increasing acceleration efficiency.
1354:
in 1938 and almost all modern cyclotrons use azimuthally-varying fields.
62:) exiting the machine and ionizing the surrounding air causing a blue glow 4943:
Up from nothing : the Michigan State University Cyclotron Laboratory
4855:. CERN Accelerator School – Introductory Course. High Tatras. p. 36. 4340: 4055: 3473: 3442: 3435: 3256: 3180: 2925: 2913: 2748: 2735: 2681: 2290: 130: 5733: 2960:
in a paper published in 1946 while he was involved in the design of the
2734:
particle velocities (the output energy small compared to the particle's
2696: 2133:
Characteristic properties of cyclotrons and other circular accelerators
133:. Nonetheless, they are still widely used to produce particle beams for 4025: 3411: 2794: 1972:
Expressing the speed in this equation in terms of frequency and radius
1820: 302: 5691: 5664: 5393:
SciPost Physics Proceedings issue 5, Review of Particle Physics at PSI
5173: 5015: 4990: 4499: 3988: 3941: 3876:"MEDraysintell identifies close to 1,500 medical cyclotrons worldwide" 5189: 3513: 3407: 3149: 2937: 2669: 1567: 1391:
period. In contrast to this approximation, as particles approach the
606: 366: 286: 249: 4346:
Serving the Reich: the Struggle for the Soul of Physics Under Hitler
2833:
To make use of the cyclotron beam, it must be directed to a target.
2701: 795:{\displaystyle E={\frac {1}{2}}mv^{2}={\frac {q^{2}B^{2}r^{2}}{2m}}} 348: 5040:
The Operation of Cyclotrons Used for Radiopharmaceutical Production
3422: 2933: 2905: 2320: 1823:
for a particle moving in a static magnetic field is then given by:
484: 361: 190: 153: 59: 1203:
particle will orbit (to a first approximation) at a fixed radius.
1191: 3752:
Close, F. E.; Close, Frank; Marten, Michael; et al. (2004).
2945: 2941: 2517: 1347: 3510:– a type of beam therapy that may use accelerator produced beams 113:. In these accelerators, particles would cross an accelerating 5621:
Superheroes!:Capes cowls and the creation of comic book culture
5149:
Cyclotron produced radionuclides : principles and practice
4524:(2nd ed.). Hackensack, N.J.: World Scientific. p. 1. 3294: 3286: 2983:, while minimizing damage to healthy tissue along their path. 2972: 1318:{\displaystyle r(n)={{\sqrt {2m\Delta E}} \over qB}{\sqrt {n}}} 55: 4821:(Third ed.). Newark: John WIley & Sons. p. 178. 3685:
Lawrence, Earnest O.; Livingston, M. Stanley (April 1, 1932).
3593:
Not applicable, because the particle orbit radius is constant.
2704:, Switzerland in 1937. The vacuum chamber containing the dees 141:
for nuclear medicine. In addition, cyclotrons can be used for
3370: 3362: 513: 197:
describing a drift tube accelerator. He published a paper in
5369: 4991:"A review of ion sources for medical accelerators (invited)" 4094: 3522:– a braking force on beams that are bent in a magnetic field 5746: 4851: 4619: 3858: 5764: 4722:"Space Charge Effects in Isochronous FFAGs and Cyclotrons" 4720:
Planche, T.; Rao, Y-N; Baartman, R. (September 17, 2012).
4547:
An introduction to the physics of high energy accelerators
3730:. Dept. of Physics and Astronomy, Georgia State University 3560:
output a bunch of particles only at the end of each sweep.
3241:
Oldest continuously operated large cyclotron in existence
263:. This Leningrad instrument was first proposed in 1932 by 5615: 1395:, the cyclotron frequency decreases due to the change in 504:. As such, modern particle accelerators use alternating ( 145:, where particle beams are directly applied to patients. 51: 5818: 5102:"Cyclotrons – What are They and Where Can you Find Them" 2127: 1095:
is the atomic mass of the beam particles. The value of
4522:
An introduction to the physics of particle accelerators
2753: 2521:
In isochronous cyclotrons, the magnetic field strength
3755:
The Particle Odyssey: A Journey to the Heart of Matter
5634:
Aykroyd, Dan; Ramis, Harold (1985). Shay, Don (ed.).
5108:. International Atomic Energy Agency. 27 January 2021 4866:
Daniel Clery (4 January 2010). "The Next Big Beam?".
3670:, filed: January 26, 1932, granted: February 20, 1934 3410:, a device for producing high frequency radio waves ( 3317:
Largest normal conducting cyclotron ever constructed
3165:
and largest single-magnet cyclotron ever constructed
2553: 2397: 2367: 2013: 1978: 1829: 1714: 1613: 1578: 1545: 1414: 1264: 1223: 1166:{\displaystyle K={\frac {(eBr_{\max })^{2}}{2m_{a}}}} 1106: 1081: 1061: 1030: 1003: 983: 963: 825: 715: 666: 621: 535: 402: 5254:. Vienna: International Atomic Energy Agency. 2020. 5222:
A Brief History of the Harvard University Cyclotrons
5151:. Vienna: International Atomic Energy Agency. 2008. 3817:
Principles of Physics: A Calculus-Based Text, Vol. 2
3483: 1341: 240:
The first European cyclotron was constructed in the
5799:– the largest single-magnet cyclotron in the world. 4819:
Practical radiotherapy : physics and equipment
373:which is installed in a narrow gap between the two 177:In 1927, while a student at Kiel, German physicist 157:
Lawrence's original 4.5-inch (11 cm) cyclotron
5776:– the highest beam current cyclotron in the world. 5452:"30 Years of Superconducting Cyclotron Technology" 5037: 4719: 4139: 3684: 2793:The particles for cyclotron beams are produced in 2670:Fixed-field alternating gradient accelerator (FFA) 2655: 2499: 2373: 2117: 1999: 1962: 1809: 1690: 1597: 1558: 1526: 1317: 1250: 1165: 1087: 1067: 1043: 1016: 989: 969: 947: 794: 693: 648: 567: 449: 4988: 4587:. Oxford: Oxford University Press. pp. 6–9. 3903:(Berkeley: University of California Press, 2000) 3668:Method and apparatus for the acceleration of ions 3031:An additional limitation of cyclotrons is due to 3011:The most obvious advantage of a cyclotron over a 225:At the Radiation Laboratory on the campus of the 5830: 5389:"The High Intensity Proton Accelerator Facility" 5284: 5055: 4731:. HB2012. Beijing, China: CERN. pp. 231–234 3751: 2721:There are a number of basic types of cyclotron: 1399:. This change is proportional to the particle's 1379: 1130: 1009: 856: 658:with the cyclotron frequency equation to yield: 278:and was installed and became operative by 1937. 82:, and patented in 1932. A cyclotron accelerates 5285:Peach, K; Wilson, P; Jones, B (December 2011). 4914:Handbook of Accelerator Physics and Engineering 4785:"Cyclotrons: Magnetic Design and Beam Dynamics" 4377: 4291:. V.G. Khlopin Radium Institute. Archived from 3899:81-82 in Heilbron, J. L., and Robert W. Seidel 3232:Protons, Alpha Particles, Neutrons, Heavy Ions 2975:. Ion beams from cyclotrons can be used, as in 5038:Grey-Morgan, T.; Hubbard, RE (November 1992). 4783:Zaremba, Simon; Kleeven, Wiel (22 June 2017). 4782: 4544: 1385: 369:(left), known as dees, are enclosed in a flat 165:Lawrence's 60-inch (150 cm) cyclotron at 5819:National Superconducting Cyclotron Laboratory 5386: 5056:Gelbart, W.Z.; Stevenson, N. R. (June 1998). 4989:Muramatsu, M.; Kitagawa, A. (February 2012). 4816: 4188: 4186: 4013:Archiv für Elektronik und Übertragungstechnik 3820:(5 ed.). Cengage Learning. p. 753. 2990: 2766: 185:filed patent applications in Germany for the 5633: 4865: 4073:Livingston, M. Stanley (19–22 August 1975). 3964:"Szilard as Inventor: Accelerators and More" 3870: 3868: 3848:"A Brief History and Review of Accelerators" 3814:Serway, Raymond A.; Jewett, John W. (2012). 3813: 3655: 3542: 3540: 3538: 3536: 3054: 2774: 2676:Fixed-field alternating gradient accelerator 1183:equal to 1) accelerated in a given machine. 703:The kinetic energy for particles with speed 43:Lawrence's 60-inch (152 cm) cyclotron, 4841: 4817:Cherry, Pam; Duxbury, Angela, eds. (2020). 4747: 4745: 4678: 4676: 4674: 4672: 4670: 4668: 4666: 4519: 4440: 4438: 4436: 4434: 4432: 4430: 4428: 3758:. Oxford University Press. pp. 84–87. 3023:. If the particles become fast enough that 2979:, to penetrate the body and kill tumors by 5051: 5049: 4183: 4137: 4072: 3680: 3678: 3676: 3555: 3553: 2891: 2145: 2142: 5690: 5636:Making Ghostbusters : the screenplay 5503: 5310: 5014: 4936: 4934: 4606: 4604: 4578: 4576: 4574: 4572: 4570: 4568: 4566: 4396: 4243: 3987: 3865: 3710: 3533: 3393:K-value of 2600 is highest ever achieved 2529:has the same shape as the Lorentz factor 1406:The relativistic mass can be written as: 1361: 1332: 1075:is the charge of the beam particles, and 343: 214:. He was assisted by a graduate student, 5287:"Accelerator science in medical physics" 5280: 5278: 4964: 4962: 4742: 4682: 4663: 4585:An introduction to particle accelerators 4515: 4513: 4511: 4509: 4477: 4444: 4425: 4349:. London: The Bodley Head. p. 190. 4084:. Zurich, Switzerland. pp. 635–638. 3841: 3839: 3837: 3809: 3807: 3472:a miniature cyclotron forms part of the 2994: 2860: 2695: 2516: 2512: 1190: 380: 360: 347: 285:. The first was constructed in 1937, in 160: 152: 38: 5449: 5387:Grillenberger, J.; et al. (2021). 5225:. Harvard University Press. p. 9. 5059:Solid Targetry Systems: A Brief History 5046: 4789:CERN Yellow Reports: School Proceedings 4651:. Fermi National Accelerator Laboratory 4538: 4473: 4471: 4131: 4009: 3961: 3747: 3745: 3697:(1). American Physical Society: 19–35. 3673: 3550: 3418:, producing electromagnetic radiation. 3401: 14: 5831: 5803: 5707: 5665:"Building a Cyclotron on a Shoestring" 5333: 5218: 5171: 4940: 4931: 4610: 4601: 4582: 4563: 4545:Edwards, D. A.; Syphers, M.J. (1993). 4520:Conte, Mario; MacKay, William (2008). 3962:Telegdi, Valentine L. (October 2000). 3918:"Szilard's Inventions Patently Halted" 3915: 3845: 3065: 2724: 1186: 568:{\displaystyle f={\frac {qB}{2\pi m}}} 356: 5814:Lawrence Berkeley National Laboratory 5769:Lawrence Berkeley National Laboratory 5758: 5730:"Resonance Mapping and the Cyclotron" 5727: 5662: 5275: 4968: 4959: 4506: 4445:Craddock, M.K. (September 10, 2010). 3911: 3909: 3834: 3804: 3589: 3587: 3577: 3575: 3211:Lawrence Berkeley National Laboratory 2967:Beams from cyclotrons can be used in 2150: 2139: 2128:Approaches to relativistic cyclotrons 1598:{\displaystyle \beta ={\frac {v}{c}}} 649:{\displaystyle f={\frac {v}{2\pi r}}} 231:Lawrence Berkeley National Laboratory 90:and accelerated by a rapidly varying 5485:MSUToday | Michigan State University 5430:MSUToday | Michigan State University 5336:IEEE Transactions on Nuclear Science 5126: 4917:. World Scientific. pp. 13–15. 4910: 4904: 4639: 4468: 4339: 4246:"Nuclear Energy in the Soviet Union" 4225:from the original on 24 October 2008 4170: 3742: 3725: 3279:Highest beam power of any cyclotron 2755:Isochronous cyclotron (isocyclotron) 297:. It was the first cyclotron with a 5638:. New York, NY: New York Zoetrope. 5506:"Status of RIBF accelerators RIKEN" 5504:Kamigaito, O.; et al. (2010). 4751: 4613:Cyclotrons for high-intensity beams 3719: 3046: 2845: 2836: 2740: 2350: 1024:is the maximum radius of the beam, 24: 5720:About a neighborhood cyclotron in 5710:"The Cyclotron Comes to the 'Hood" 5656: 5174:"Radiological Use of Fast Protons" 3906: 3584: 3572: 3458:famously asked for dailies of the 2817: 2716: 2691: 1380:§ Relativistic considerations 1290: 1242: 694:{\displaystyle v={\frac {qBr}{m}}} 596: 227:University of California, Berkeley 80:University of California, Berkeley 50:, showing the beam of accelerated 25: 5870: 5753: 4251:Bulletin of the Atomic Scientists 4219:"The Nobel Prize in Physics 1939" 4058:. 8 December 2008. Archived from 3607: 3084: 3070: 2873: 2708:has been removed from the magnet 2382:held constant, this leads to the 1342:Transverse stability and focusing 244:in the physics department of the 5461:. Tokyo, Japan. pp. 531–534 5423: 5291:The British Journal of Radiology 4995:Review of Scientific Instruments 4692:CERN Particle Accelerator School 4649:U.S. Particle Accelerator School 4480:Review of Scientific Instruments 3639:"Ernest Lawrence – Biographical" 3486: 3369: 3355:First superconducting cyclotron 3331: 3293: 3255: 3217: 3179: 3130: 3095: 2700:A French cyclotron, produced in 437: 429: 418: 404: 317:, and became operative in 1943. 293:in Berlin, and was also used by 94:. Lawrence was awarded the 1939 5627: 5609: 5584: 5558: 5533: 5497: 5473: 5443: 5417: 5399: 5380: 5362: 5327: 5239: 5212: 5165: 5141: 5120: 5094: 5069: 5031: 4982: 4969:Clark, David (September 1981). 4945:. : Michigan State University. 4859: 4835: 4810: 4776: 4713: 4642:"Cyclotrons: Old but Still New" 4633: 4390: 4371: 4333: 4307: 4281: 4237: 4211: 4164: 4088: 4066: 4040: 4003: 3955: 3886: 3846:Bryant, P.J. (September 1992). 3563: 3456:United States Department of War 3365:Superconducting Ring Cyclotron 2951: 2886: 2869:. The magnet is painted yellow. 2828: 2800: 997:is the strength of the magnet, 585:is the charge of the particle, 5781:Superconducting Ring Cyclotron 4685:"Beam dynamics for cyclotrons" 4454:Proceedings of Cyclotrons 2010 4272:10.1080/00963402.1971.11455411 4075:"The History of the Cyclotron" 3780: 3631: 2563: 2557: 2407: 2401: 1274: 1268: 1251:{\displaystyle E(n)=n\Delta E} 1233: 1227: 1136: 1116: 862: 842: 450:{\displaystyle \mathbf {F} =q} 444: 441: 425: 414: 13: 1: 5545:hyperphysics.phy-astr.gsu.edu 5127:Hume, M. (21 February 2012). 4198:American Institute of Physics 4138:Alonso, M.; Finn, E. (1992). 3615:"Ernest Lawrence's Cyclotron" 3600: 3449: 2788: 2762:alternating-gradient focusing 1605:is the relative velocity, and 281:Two cyclotrons were built in 246:V.G. Khlopin Radium Institute 167:Lawrence Radiation Laboratory 44: 4890:10.1126/science.327.5962.142 4447:"Eighty Years of Cyclotrons" 4380:"Wolfgang Gentner 1906–1980" 3897:II — A Million Volts or Bust 3203:First isochronous cyclotron 3126:Lawrence 184-inch Cyclotron 3091:Lawrence 4.5-inch Cyclotron 2962:Harvard Cyclotron Laboratory 2865:A modern cyclotron used for 2784:, which came online in 1981. 2525:as a function of the radius 1213:, the particle energy after 27:Type of particle accelerator 7: 5810:Ernest Lawrence's Cyclotron 5297:(special_issue_1): S4–S10. 4844:"Cyclotrons – II & FFA" 4797:10.23730/CYRSP-2017-001.177 4382:(in German). Archived from 4109:10.1126/science.72.1867.372 3916:Dannen, Gene (March 2001). 3893:Lawrence and His Laboratory 3880:ITN Imaging Technology News 3479: 3434:in the same manner as in a 3007:between the magnet's poles. 2912:emitting isotopes, such as 2808: 2533:as a function of the speed 2259:Other circular accelerators 1386:Relativistic considerations 812: 581:is the (linear) frequency, 510:linear particle accelerator 10: 5875: 5708:Jardin, X. (12 Jan 2005). 5172:Wilson, Robert R. (1946). 4972:Ion Sources for Cyclotrons 4842:Mike Seidel (2019-09-19). 3476:used for catching ghosts. 2999:M. Stanley Livingston and 2991:Advantages and limitations 2768:Separated sector cyclotron 2673: 2354: 1325:This is the equation of a 977:is the elementary charge, 377:of a large magnet (right). 148: 107:Cockcroft–Walton generator 103:electrostatic accelerators 32:Cyclotron (disambiguation) 29: 5823:Michigan State University 4700:10.5170/CERN-2006-012.209 4583:Wilson, E. J. N. (2001). 4419:10.1103/PhysRev.52.1254.2 4244:Emelyanov, V. S. (1971). 3788:"Ernest Lawrence – Facts" 3361: 3325:Michigan State University 3323: 3285: 3247: 3209: 3171: 3125: 3113:4.5 inches (0.11 m) 3090: 3083: 3080: 3077: 3074: 3069: 3064: 3061: 3058: 3053: 2782:Michigan State University 2776:Superconducting cyclotron 2319: 2289: 2264: 2257: 2232: 2207: 2182: 2175: 2170: 2167: 2162: 2159: 2137: 2000:{\displaystyle v=2\pi fr} 1017:{\displaystyle r_{\max }} 305:under the supervision of 212:Federal Telegraph Company 5411:guinnessworldrecords.com 5356:10.1109/TNS.1966.4324198 5219:Wilson, Richard (2004). 4173:Electrical Communication 3526: 3520:Radiation reaction force 3155:184 inches (4.7 m) 3119:First working cyclotron 2856: 313:, with support from the 291:Kaiser Wilhelm Institute 171:University of California 4941:Austin, Sam M. (2015). 3349:52 inches (1.3 m) 3235:88 inches (2.2 m) 3037:electrostatic repulsion 3021:Newton's laws of motion 2892:Radioisotope production 2374:{\displaystyle \gamma } 707:is therefore given by: 502:electrostatic breakdown 123:electrostatic breakdown 111:Van de Graaff generator 5774:PSI Proton Accelerator 4315:"History / Chronology" 4194:"The First Cyclotrons" 3175:Isochronous Cyclotron 3008: 2870: 2713: 2657: 2538: 2501: 2375: 2119: 2001: 1964: 1811: 1692: 1599: 1560: 1528: 1362:Longitudinal stability 1333:Stability and focusing 1319: 1252: 1199: 1167: 1089: 1069: 1045: 1018: 991: 971: 949: 796: 695: 650: 569: 451: 387: 378: 353: 344:Principle of operation 235:Nobel Prize in Physics 174: 158: 96:Nobel Prize in Physics 63: 5859:Particle accelerators 5765:The 88-Inch Cyclotron 5728:Niell, F. M. (2005). 5541:"Magnetron Operation" 4611:Seidel, Mike (2013). 4378:Ulrich Schmidt-Rohr. 3712:10.1103/PhysRev.40.19 3663:U.S. patent 1,948,384 2998: 2864: 2699: 2658: 2543:isochronous cyclotron 2520: 2513:Isochronous cyclotron 2502: 2376: 2120: 2002: 1965: 1812: 1693: 1600: 1561: 1559:{\displaystyle m_{0}} 1529: 1320: 1253: 1194: 1168: 1090: 1070: 1046: 1044:{\displaystyle m_{a}} 1019: 992: 972: 950: 797: 696: 651: 570: 495:magnetic flux density 452: 384: 364: 351: 299:Greinacher multiplier 289:'s laboratory at the 216:M. Stanley Livingston 164: 156: 42: 5570:physics.illinois.edu 5450:Blosser, H. (2004). 5303:10.1259/bjr/16022594 4683:Chautard, F (2006). 4289:"History / Memorial" 4221:. Nobel Foundation. 3726:Nave, C. R. (2012). 3666:Lawrence, Ernest O. 3508:Fast neutron therapy 3402:Related technologies 3311:56 feet (17 m) 2551: 2395: 2365: 2183:Classical cyclotron 2011: 1976: 1827: 1712: 1611: 1576: 1543: 1412: 1262: 1221: 1104: 1079: 1059: 1028: 1001: 981: 961: 823: 713: 664: 619: 533: 400: 119:electrical potential 98:for this invention. 78:in 1929–1930 at the 72:particle accelerator 30:For other uses, see 5849:American inventions 5844:Accelerator physics 5804:Historic cyclotrons 5683:2004PhT....57k..30F 5407:"Largest cyclotron" 5348:1966ITNS...13..171R 5007:2012RScI...83bB909M 4911:Chao, Alex (1999). 4882:2010Sci...327..142C 4755:Accelerator physics 4752:Lee, S.-Y. (1999). 4640:Barletta, William. 4549:. New York: Wiley. 4492:1958RScI...29..662H 4411:1937PhRv...52.1254B 4264:1971BuAtS..27i..38E 3980:2000PhT....53j..25T 3934:2001PhT....54c.102D 3855:Proceedings, Vol. 2 3764:2002pojh.book.....C 3703:1932PhRv...40...19L 3502:Cyclotron radiation 3432:electromotive force 2948:-77, among others. 2726:Classical cyclotron 2143:Accelerating field 2134: 1187:Particle trajectory 525:cyclotron frequency 357:Cyclotron principle 5839:1932 introductions 5791:Rutgers University 5759:Current facilities 5663:Feder, T. (2004). 5619:; Michael Kantor. 5134:The Globe and Mail 4026:10.1007/BF01656341 3213:88-inch Cyclotron 3013:linear accelerator 3009: 3001:Ernest O. Lawrence 2871: 2797:of various types. 2714: 2653: 2539: 2497: 2371: 2132: 2115: 1997: 1960: 1807: 1805: 1688: 1595: 1556: 1524: 1315: 1248: 1200: 1163: 1085: 1065: 1041: 1014: 987: 967: 945: 792: 691: 646: 565: 447: 388: 386:chamber at bottom. 379: 354: 322:special relativity 295:Rudolf Fleischmann 187:linear accelerator 175: 159: 64: 5787:Rutgers Cyclotron 5722:Anchorage, Alaska 5692:10.1063/1.1839371 5596:Britannica Online 5374:cyclotron.lbl.gov 5232:978-0-674-01460-2 5158:978-92-0-100208-2 5016:10.1063/1.3671744 4952:978-0-99672-521-7 4876:(5962): 142–143. 4769:978-981-02-3709-7 4500:10.1063/1.1716293 4405:(12): 1254–1255. 4356:978-1-84792-248-9 4157:978-0-201-56518-8 4103:(1867): 376–377. 3989:10.1063/1.1325189 3942:10.1063/1.1366083 3882:. March 10, 2020. 3773:978-0-19-860943-8 3465:In the 1984 film 3416:resonant cavities 3399: 3398: 2867:radiation therapy 2651: 2648: 2636: 2608: 2495: 2492: 2480: 2452: 2348: 2347: 2103: 2075: 2035: 1958: 1955: 1900: 1867: 1801: 1760: 1686: 1685: 1673: 1643: 1642: 1593: 1501: 1500: 1466: 1465: 1453: 1397:relativistic mass 1313: 1306: 1296: 1161: 1088:{\displaystyle A} 1068:{\displaystyle Q} 990:{\displaystyle B} 970:{\displaystyle e} 933: 902: 887: 834: 790: 730: 689: 644: 563: 516:of the particle. 467:on the particle, 392:Lorentz force law 326:synchrocyclotrons 189:, cyclotron, and 84:charged particles 16:(Redirected from 5866: 5854:Nuclear medicine 5744: 5742: 5741: 5732:. Archived from 5719: 5704: 5694: 5650: 5649: 5631: 5625: 5624: 5613: 5607: 5606: 5604: 5602: 5588: 5582: 5581: 5579: 5577: 5562: 5556: 5555: 5553: 5551: 5537: 5531: 5530: 5528: 5527: 5521: 5515:. Archived from 5510: 5501: 5495: 5494: 5492: 5491: 5477: 5471: 5470: 5468: 5466: 5456: 5447: 5441: 5440: 5438: 5436: 5421: 5415: 5414: 5403: 5397: 5396: 5384: 5378: 5377: 5366: 5360: 5359: 5331: 5325: 5324: 5314: 5282: 5273: 5272: 5270: 5268: 5253: 5243: 5237: 5236: 5216: 5210: 5209: 5190:10.1148/47.5.487 5169: 5163: 5162: 5145: 5139: 5138: 5124: 5118: 5117: 5115: 5113: 5098: 5092: 5091: 5089: 5087: 5073: 5067: 5066: 5064: 5053: 5044: 5043: 5035: 5029: 5028: 5018: 4986: 4980: 4979: 4977: 4966: 4957: 4956: 4938: 4929: 4928: 4908: 4902: 4901: 4863: 4857: 4856: 4848: 4839: 4833: 4832: 4814: 4808: 4807: 4805: 4803: 4780: 4774: 4773: 4760:World Scientific 4749: 4740: 4739: 4737: 4736: 4726: 4717: 4711: 4710: 4708: 4706: 4689: 4680: 4661: 4660: 4658: 4656: 4646: 4637: 4631: 4630: 4628: 4626: 4617: 4608: 4599: 4598: 4580: 4561: 4560: 4542: 4536: 4535: 4517: 4504: 4503: 4475: 4466: 4465: 4463: 4461: 4456:. Lanzhou, China 4451: 4442: 4423: 4422: 4394: 4388: 4387: 4375: 4369: 4368: 4337: 4331: 4330: 4328: 4326: 4317:. Archived from 4311: 4305: 4304: 4302: 4300: 4285: 4279: 4278: 4241: 4235: 4234: 4232: 4230: 4215: 4209: 4208: 4206: 4204: 4190: 4181: 4180: 4168: 4162: 4161: 4145: 4135: 4129: 4128: 4092: 4086: 4085: 4079: 4070: 4064: 4063: 4052:Bancroft Library 4044: 4038: 4037: 4007: 4001: 4000: 3998: 3996: 3991: 3959: 3953: 3952: 3950: 3948: 3913: 3904: 3890: 3884: 3883: 3872: 3863: 3862: 3852: 3843: 3832: 3831: 3811: 3802: 3801: 3799: 3798: 3784: 3778: 3777: 3749: 3740: 3739: 3737: 3735: 3723: 3717: 3716: 3714: 3682: 3671: 3665: 3659: 3653: 3652: 3650: 3649: 3635: 3629: 3628: 3626: 3625: 3611: 3594: 3591: 3582: 3581:Design-dependent 3579: 3570: 3567: 3561: 3557: 3548: 3544: 3496: 3491: 3490: 3374: 3373: 3336: 3335: 3298: 3297: 3260: 3259: 3222: 3221: 3184: 3183: 3163:synchrocyclotron 3135: 3134: 3100: 3099: 3086: 3072: 3067: 3056: 3051: 3050: 3047:Notable examples 2981:radiation damage 2969:particle therapy 2958:Robert R. Wilson 2847:External targets 2838:Internal targets 2742:Synchrocyclotron 2662: 2660: 2659: 2654: 2652: 2650: 2649: 2647: 2646: 2641: 2637: 2629: 2619: 2618: 2613: 2609: 2607: 2593: 2586: 2580: 2579: 2570: 2536: 2532: 2528: 2524: 2506: 2504: 2503: 2498: 2496: 2494: 2493: 2491: 2490: 2485: 2481: 2473: 2463: 2462: 2457: 2453: 2451: 2443: 2442: 2433: 2426: 2414: 2384:synchrocyclotron 2380: 2378: 2377: 2372: 2357:Synchrocyclotron 2351:Synchrocyclotron 2260: 2234:Synchrocyclotron 2178: 2146:Bending magnetic 2135: 2131: 2124: 2122: 2121: 2116: 2114: 2113: 2108: 2104: 2096: 2086: 2085: 2080: 2076: 2074: 2066: 2065: 2056: 2046: 2045: 2040: 2036: 2034: 2020: 2006: 2004: 2003: 1998: 1969: 1967: 1966: 1961: 1959: 1957: 1956: 1954: 1953: 1938: 1937: 1925: 1916: 1915: 1906: 1901: 1899: 1891: 1887: 1886: 1873: 1868: 1866: 1858: 1854: 1853: 1837: 1816: 1814: 1813: 1808: 1806: 1802: 1800: 1799: 1798: 1785: 1777: 1761: 1759: 1758: 1757: 1738: 1730: 1697: 1695: 1694: 1689: 1687: 1684: 1683: 1678: 1674: 1666: 1653: 1649: 1644: 1641: 1640: 1625: 1621: 1604: 1602: 1601: 1596: 1594: 1586: 1566:is the particle 1565: 1563: 1562: 1557: 1555: 1554: 1533: 1531: 1530: 1525: 1520: 1519: 1518: 1502: 1499: 1498: 1483: 1482: 1481: 1472: 1467: 1464: 1463: 1458: 1454: 1446: 1433: 1432: 1431: 1422: 1324: 1322: 1321: 1316: 1314: 1309: 1307: 1305: 1297: 1283: 1281: 1257: 1255: 1254: 1249: 1216: 1212: 1172: 1170: 1169: 1164: 1162: 1160: 1159: 1158: 1145: 1144: 1143: 1134: 1133: 1114: 1094: 1092: 1091: 1086: 1074: 1072: 1071: 1066: 1053:atomic mass unit 1050: 1048: 1047: 1042: 1040: 1039: 1023: 1021: 1020: 1015: 1013: 1012: 996: 994: 993: 988: 976: 974: 973: 968: 954: 952: 951: 946: 944: 943: 938: 934: 926: 913: 912: 907: 903: 895: 888: 886: 885: 884: 871: 870: 869: 860: 859: 840: 835: 827: 807: 801: 799: 798: 793: 791: 789: 781: 780: 779: 770: 769: 760: 759: 749: 744: 743: 731: 723: 706: 700: 698: 697: 692: 690: 685: 674: 655: 653: 652: 647: 645: 643: 629: 592: 588: 584: 580: 574: 572: 571: 566: 564: 562: 551: 543: 492: 483:is the particle 482: 472: 462: 456: 454: 453: 448: 440: 432: 421: 407: 311:Wolfgang Gentner 277: 262: 210:provided by the 143:particle therapy 135:nuclear medicine 49: 46: 21: 5874: 5873: 5869: 5868: 5867: 5865: 5864: 5863: 5829: 5828: 5806: 5761: 5756: 5739: 5737: 5659: 5657:Further reading 5654: 5653: 5646: 5632: 5628: 5617:Laurence Maslon 5614: 5610: 5600: 5598: 5590: 5589: 5585: 5575: 5573: 5564: 5563: 5559: 5549: 5547: 5539: 5538: 5534: 5525: 5523: 5519: 5508: 5502: 5498: 5489: 5487: 5479: 5478: 5474: 5464: 5462: 5454: 5448: 5444: 5434: 5432: 5422: 5418: 5405: 5404: 5400: 5385: 5381: 5368: 5367: 5363: 5332: 5328: 5283: 5276: 5266: 5264: 5262: 5251: 5245: 5244: 5240: 5233: 5217: 5213: 5170: 5166: 5159: 5147: 5146: 5142: 5125: 5121: 5111: 5109: 5100: 5099: 5095: 5085: 5083: 5075: 5074: 5070: 5062: 5054: 5047: 5036: 5032: 4987: 4983: 4975: 4967: 4960: 4953: 4939: 4932: 4925: 4909: 4905: 4864: 4860: 4846: 4840: 4836: 4829: 4815: 4811: 4801: 4799: 4781: 4777: 4770: 4750: 4743: 4734: 4732: 4724: 4718: 4714: 4704: 4702: 4687: 4681: 4664: 4654: 4652: 4644: 4638: 4634: 4624: 4622: 4615: 4609: 4602: 4595: 4581: 4564: 4557: 4543: 4539: 4532: 4518: 4507: 4476: 4469: 4459: 4457: 4449: 4443: 4426: 4399:Physical Review 4395: 4391: 4386:on 6 July 2007. 4376: 4372: 4357: 4338: 4334: 4324: 4322: 4313: 4312: 4308: 4298: 4296: 4287: 4286: 4282: 4242: 4238: 4228: 4226: 4217: 4216: 4212: 4202: 4200: 4192: 4191: 4184: 4169: 4165: 4158: 4136: 4132: 4093: 4089: 4077: 4071: 4067: 4046: 4045: 4041: 4008: 4004: 3994: 3992: 3960: 3956: 3946: 3944: 3914: 3907: 3891: 3887: 3874: 3873: 3866: 3850: 3844: 3835: 3828: 3812: 3805: 3796: 3794: 3786: 3785: 3781: 3774: 3750: 3743: 3733: 3731: 3724: 3720: 3691:Physical Review 3683: 3674: 3661: 3660: 3656: 3647: 3645: 3637: 3636: 3632: 3623: 3621: 3613: 3612: 3608: 3603: 3598: 3597: 3592: 3585: 3580: 3573: 3568: 3564: 3558: 3551: 3545: 3534: 3529: 3492: 3485: 3482: 3452: 3404: 3368: 3330: 3292: 3254: 3251:Ring Cyclotron 3216: 3178: 3146:Alpha particles 3129: 3094: 3049: 2993: 2954: 2898:medical imaging 2894: 2889: 2880:nuclear physics 2876: 2859: 2848: 2839: 2831: 2820: 2819:Heavy ion beams 2811: 2803: 2791: 2777: 2769: 2756: 2743: 2732:nonrelativistic 2727: 2719: 2717:Cyclotron types 2710:(red, at right) 2694: 2692:Classifications 2686:strong focusing 2678: 2672: 2642: 2628: 2624: 2623: 2614: 2597: 2592: 2588: 2587: 2585: 2581: 2575: 2571: 2569: 2552: 2549: 2548: 2534: 2530: 2526: 2522: 2515: 2486: 2472: 2468: 2467: 2458: 2444: 2438: 2434: 2432: 2428: 2427: 2425: 2418: 2413: 2396: 2393: 2392: 2366: 2363: 2362: 2359: 2353: 2334: 2302: 2258: 2209: 2176: 2164: 2154: 2152: 2148:field strength 2147: 2130: 2109: 2095: 2091: 2090: 2081: 2067: 2061: 2057: 2055: 2051: 2050: 2041: 2024: 2019: 2015: 2014: 2012: 2009: 2008: 1977: 1974: 1973: 1946: 1942: 1930: 1926: 1924: 1917: 1911: 1907: 1905: 1892: 1882: 1878: 1874: 1872: 1859: 1849: 1845: 1838: 1836: 1828: 1825: 1824: 1804: 1803: 1794: 1790: 1786: 1778: 1776: 1769: 1763: 1762: 1753: 1749: 1739: 1731: 1729: 1722: 1715: 1713: 1710: 1709: 1679: 1665: 1661: 1660: 1648: 1636: 1632: 1620: 1612: 1609: 1608: 1585: 1577: 1574: 1573: 1550: 1546: 1544: 1541: 1540: 1514: 1510: 1509: 1494: 1490: 1477: 1473: 1471: 1459: 1445: 1441: 1440: 1427: 1423: 1421: 1413: 1410: 1409: 1388: 1364: 1344: 1335: 1308: 1298: 1282: 1280: 1263: 1260: 1259: 1222: 1219: 1218: 1217:turns will be: 1214: 1211: 1207: 1197:Fermat's spiral 1189: 1154: 1150: 1146: 1139: 1135: 1129: 1125: 1115: 1113: 1105: 1102: 1101: 1080: 1077: 1076: 1060: 1057: 1056: 1035: 1031: 1029: 1026: 1025: 1008: 1004: 1002: 999: 998: 982: 979: 978: 962: 959: 958: 939: 925: 921: 920: 908: 894: 890: 889: 880: 876: 872: 865: 861: 855: 851: 841: 839: 826: 824: 821: 820: 815: 805: 782: 775: 771: 765: 761: 755: 751: 750: 748: 739: 735: 722: 714: 711: 710: 704: 675: 673: 665: 662: 661: 633: 628: 620: 617: 616: 611:circular motion 599: 597:Particle energy 590: 586: 582: 578: 552: 544: 542: 534: 531: 530: 506:radio frequency 488: 478: 468: 460: 436: 428: 417: 403: 401: 398: 397: 359: 346: 338:superconducting 315:Heereswaffenamt 271: 256: 151: 76:Ernest Lawrence 47: 35: 28: 23: 22: 15: 12: 11: 5: 5872: 5862: 5861: 5856: 5851: 5846: 5841: 5827: 5826: 5816: 5805: 5802: 5801: 5800: 5794: 5789:– Students at 5784: 5777: 5771: 5760: 5757: 5755: 5754:External links 5752: 5751: 5750: 5725: 5705: 5658: 5655: 5652: 5651: 5644: 5626: 5608: 5583: 5557: 5532: 5496: 5472: 5442: 5416: 5398: 5379: 5361: 5342:(4): 171–177. 5326: 5274: 5260: 5238: 5231: 5211: 5184:(5): 487–491. 5164: 5157: 5140: 5119: 5093: 5068: 5045: 5030: 4981: 4958: 4951: 4930: 4923: 4903: 4858: 4834: 4827: 4809: 4775: 4768: 4762:. p. 14. 4741: 4712: 4662: 4632: 4600: 4593: 4562: 4555: 4537: 4530: 4505: 4467: 4424: 4389: 4370: 4355: 4332: 4306: 4280: 4236: 4210: 4182: 4163: 4156: 4148:Addison Wesley 4130: 4087: 4065: 4062:on 2012-05-27. 4039: 4020:(4): 387–406. 4002: 3954: 3928:(3): 102–104. 3905: 3885: 3864: 3833: 3826: 3803: 3792:nobelprize.org 3779: 3772: 3741: 3718: 3672: 3654: 3643:nobelprize.org 3630: 3605: 3604: 3602: 3599: 3596: 3595: 3583: 3571: 3562: 3549: 3531: 3530: 3528: 3525: 3524: 3523: 3517: 3511: 3505: 3498: 3497: 3494:Physics portal 3481: 3478: 3451: 3448: 3403: 3400: 3397: 3396: 3394: 3391: 3388: 3385: 3382: 3379: 3376: 3366: 3359: 3358: 3356: 3353: 3350: 3347: 3344: 3341: 3338: 3337:United States 3328: 3321: 3320: 3318: 3315: 3312: 3309: 3306: 3303: 3300: 3290: 3283: 3282: 3280: 3277: 3274: 3271: 3268: 3265: 3262: 3252: 3245: 3244: 3242: 3239: 3236: 3233: 3230: 3227: 3224: 3223:United States 3214: 3207: 3206: 3204: 3201: 3198: 3195: 3192: 3189: 3186: 3176: 3169: 3168: 3166: 3159: 3156: 3153: 3143: 3140: 3137: 3136:United States 3127: 3123: 3122: 3120: 3117: 3114: 3111: 3108: 3105: 3102: 3101:United States 3092: 3088: 3087: 3082: 3079: 3076: 3073: 3068: 3063: 3060: 3057: 3048: 3045: 2992: 2989: 2977:proton therapy 2953: 2950: 2922:technetium-99m 2893: 2890: 2888: 2885: 2875: 2874:Basic research 2872: 2858: 2855: 2854: 2853: 2849: 2846: 2844: 2840: 2837: 2830: 2827: 2826: 2825: 2821: 2818: 2816: 2812: 2809: 2807: 2804: 2801: 2790: 2787: 2786: 2785: 2778: 2775: 2773: 2770: 2767: 2765: 2757: 2754: 2752: 2744: 2741: 2739: 2728: 2725: 2718: 2715: 2693: 2690: 2674:Main article: 2671: 2668: 2645: 2640: 2635: 2632: 2627: 2622: 2617: 2612: 2606: 2603: 2600: 2596: 2591: 2584: 2578: 2574: 2568: 2565: 2562: 2559: 2556: 2514: 2511: 2489: 2484: 2479: 2476: 2471: 2466: 2461: 2456: 2450: 2447: 2441: 2437: 2431: 2424: 2421: 2417: 2412: 2409: 2406: 2403: 2400: 2370: 2355:Main article: 2352: 2349: 2346: 2345: 2342: 2339: 2336: 2331: 2326: 2323: 2317: 2316: 2313: 2310: 2307: 2299: 2298:Electrostatic 2296: 2293: 2287: 2286: 2283: 2280: 2277: 2274: 2273:Electrostatic 2271: 2268: 2262: 2261: 2255: 2254: 2251: 2248: 2245: 2242: 2241:Electrostatic 2239: 2236: 2230: 2229: 2226: 2223: 2220: 2217: 2216:Electrostatic 2214: 2211: 2205: 2204: 2201: 2198: 2195: 2192: 2187: 2184: 2180: 2179: 2173: 2172: 2169: 2166: 2161: 2157: 2156: 2149: 2144: 2141: 2138: 2129: 2126: 2112: 2107: 2102: 2099: 2094: 2089: 2084: 2079: 2073: 2070: 2064: 2060: 2054: 2049: 2044: 2039: 2033: 2030: 2027: 2023: 2018: 1996: 1993: 1990: 1987: 1984: 1981: 1952: 1949: 1945: 1941: 1936: 1933: 1929: 1923: 1920: 1914: 1910: 1904: 1898: 1895: 1890: 1885: 1881: 1877: 1871: 1865: 1862: 1857: 1852: 1848: 1844: 1841: 1835: 1832: 1797: 1793: 1789: 1784: 1781: 1775: 1772: 1770: 1768: 1765: 1764: 1756: 1752: 1748: 1745: 1742: 1737: 1734: 1728: 1725: 1723: 1721: 1718: 1717: 1704: 1703: 1700:Lorentz factor 1682: 1677: 1672: 1669: 1664: 1659: 1656: 1652: 1647: 1639: 1635: 1631: 1628: 1624: 1619: 1616: 1606: 1592: 1589: 1584: 1581: 1571: 1553: 1549: 1523: 1517: 1513: 1508: 1505: 1497: 1493: 1489: 1486: 1480: 1476: 1470: 1462: 1457: 1452: 1449: 1444: 1439: 1436: 1430: 1426: 1420: 1417: 1401:Lorentz factor 1393:speed of light 1387: 1384: 1376:Lorentz factor 1363: 1360: 1343: 1340: 1334: 1331: 1312: 1304: 1301: 1295: 1292: 1289: 1286: 1279: 1276: 1273: 1270: 1267: 1247: 1244: 1241: 1238: 1235: 1232: 1229: 1226: 1209: 1188: 1185: 1157: 1153: 1149: 1142: 1138: 1132: 1128: 1124: 1121: 1118: 1112: 1109: 1084: 1064: 1038: 1034: 1011: 1007: 986: 966: 942: 937: 932: 929: 924: 919: 916: 911: 906: 901: 898: 893: 883: 879: 875: 868: 864: 858: 854: 850: 847: 844: 838: 833: 830: 814: 811: 788: 785: 778: 774: 768: 764: 758: 754: 747: 742: 738: 734: 729: 726: 721: 718: 688: 684: 681: 678: 672: 669: 642: 639: 636: 632: 627: 624: 598: 595: 561: 558: 555: 550: 547: 541: 538: 475:electric field 446: 443: 439: 435: 431: 427: 424: 420: 416: 413: 410: 406: 371:vacuum chamber 358: 355: 345: 342: 254:Vitaly Khlopin 208:arc converters 150: 147: 115:electric field 105:, such as the 92:electric field 88:magnetic field 26: 9: 6: 4: 3: 2: 5871: 5860: 5857: 5855: 5852: 5850: 5847: 5845: 5842: 5840: 5837: 5836: 5834: 5824: 5820: 5817: 5815: 5811: 5808: 5807: 5798: 5795: 5792: 5788: 5785: 5782: 5778: 5775: 5772: 5770: 5766: 5763: 5762: 5748: 5736:on 2009-05-05 5735: 5731: 5726: 5723: 5717: 5716: 5711: 5706: 5702: 5698: 5693: 5688: 5684: 5680: 5677:(11): 30–31. 5676: 5672: 5671: 5670:Physics Today 5666: 5661: 5660: 5647: 5645:0-918432-68-5 5641: 5637: 5630: 5623:. p. 91. 5622: 5618: 5612: 5597: 5593: 5592:"Synchrotron" 5587: 5571: 5567: 5561: 5546: 5542: 5536: 5522:on 2012-07-10 5518: 5514: 5507: 5500: 5486: 5482: 5476: 5460: 5453: 5446: 5431: 5427: 5424:Koch, Geoff. 5420: 5412: 5408: 5402: 5394: 5390: 5383: 5375: 5371: 5365: 5357: 5353: 5349: 5345: 5341: 5337: 5330: 5322: 5318: 5313: 5308: 5304: 5300: 5296: 5292: 5288: 5281: 5279: 5263: 5261:9789201631190 5257: 5250: 5249: 5242: 5234: 5228: 5224: 5223: 5215: 5207: 5203: 5199: 5195: 5191: 5187: 5183: 5179: 5175: 5168: 5160: 5154: 5150: 5144: 5136: 5135: 5130: 5123: 5107: 5103: 5097: 5082: 5081:www.triumf.ca 5078: 5072: 5061: 5060: 5052: 5050: 5041: 5034: 5026: 5022: 5017: 5012: 5008: 5004: 5001:(2): 02B909. 5000: 4996: 4992: 4985: 4974: 4973: 4965: 4963: 4954: 4948: 4944: 4937: 4935: 4926: 4924:9789810235000 4920: 4916: 4915: 4907: 4899: 4895: 4891: 4887: 4883: 4879: 4875: 4871: 4870: 4862: 4854: 4853: 4845: 4838: 4830: 4828:9781119512721 4824: 4820: 4813: 4798: 4794: 4791:: 177 Pages. 4790: 4786: 4779: 4771: 4765: 4761: 4757: 4756: 4748: 4746: 4730: 4723: 4716: 4701: 4697: 4693: 4686: 4679: 4677: 4675: 4673: 4671: 4669: 4667: 4650: 4643: 4636: 4621: 4614: 4607: 4605: 4596: 4594:9780198508298 4590: 4586: 4579: 4577: 4575: 4573: 4571: 4569: 4567: 4558: 4556:9780471551638 4552: 4548: 4541: 4533: 4531:9789812779601 4527: 4523: 4516: 4514: 4512: 4510: 4501: 4497: 4493: 4489: 4485: 4481: 4474: 4472: 4455: 4448: 4441: 4439: 4437: 4435: 4433: 4431: 4429: 4420: 4416: 4412: 4408: 4404: 4400: 4393: 4385: 4381: 4374: 4366: 4362: 4358: 4352: 4348: 4347: 4342: 4336: 4321:on 2011-04-26 4320: 4316: 4310: 4295:on 2011-04-26 4294: 4290: 4284: 4277: 4273: 4269: 4265: 4261: 4257: 4253: 4252: 4247: 4240: 4224: 4220: 4214: 4199: 4195: 4189: 4187: 4179:(4): 397–398. 4178: 4174: 4167: 4159: 4153: 4149: 4144: 4143: 4134: 4126: 4122: 4118: 4114: 4110: 4106: 4102: 4098: 4091: 4083: 4076: 4069: 4061: 4057: 4053: 4049: 4043: 4035: 4031: 4027: 4023: 4019: 4016:(in German). 4015: 4014: 4006: 3990: 3985: 3981: 3977: 3974:(10): 25–28. 3973: 3969: 3968:Physics Today 3965: 3958: 3943: 3939: 3935: 3931: 3927: 3923: 3922:Physics Today 3919: 3912: 3910: 3902: 3898: 3894: 3889: 3881: 3877: 3871: 3869: 3861:. p. 12. 3860: 3856: 3849: 3842: 3840: 3838: 3829: 3827:9781133712749 3823: 3819: 3818: 3810: 3808: 3793: 3789: 3783: 3775: 3769: 3765: 3761: 3757: 3756: 3748: 3746: 3729: 3722: 3713: 3708: 3704: 3700: 3696: 3692: 3688: 3681: 3679: 3677: 3669: 3664: 3658: 3644: 3640: 3634: 3620: 3616: 3610: 3606: 3590: 3588: 3578: 3576: 3566: 3556: 3554: 3543: 3541: 3539: 3537: 3532: 3521: 3518: 3515: 3512: 3509: 3506: 3503: 3500: 3499: 3495: 3489: 3484: 3477: 3475: 3471: 3469: 3463: 3461: 3457: 3447: 3444: 3439: 3437: 3433: 3428: 3424: 3419: 3417: 3413: 3409: 3395: 3392: 3389: 3386: 3383: 3380: 3377: 3372: 3367: 3364: 3360: 3357: 3354: 3351: 3348: 3345: 3342: 3339: 3334: 3329: 3326: 3322: 3319: 3316: 3313: 3310: 3307: 3304: 3301: 3296: 3291: 3288: 3284: 3281: 3278: 3275: 3272: 3269: 3266: 3263: 3258: 3253: 3250: 3246: 3243: 3240: 3237: 3234: 3231: 3228: 3225: 3220: 3215: 3212: 3208: 3205: 3202: 3199: 3196: 3193: 3190: 3187: 3182: 3177: 3174: 3170: 3167: 3164: 3160: 3157: 3154: 3151: 3147: 3144: 3141: 3138: 3133: 3128: 3124: 3121: 3118: 3115: 3112: 3109: 3106: 3103: 3098: 3093: 3089: 3052: 3044: 3042: 3038: 3034: 3029: 3026: 3022: 3017: 3014: 3005: 3002: 2997: 2988: 2984: 2982: 2978: 2974: 2970: 2965: 2963: 2959: 2949: 2947: 2943: 2939: 2935: 2931: 2927: 2924:are used for 2923: 2919: 2915: 2911: 2907: 2903: 2899: 2884: 2881: 2868: 2863: 2850: 2841: 2835: 2834: 2822: 2813: 2805: 2799: 2798: 2796: 2783: 2779: 2771: 2763: 2758: 2750: 2745: 2737: 2733: 2729: 2723: 2722: 2711: 2707: 2703: 2698: 2689: 2687: 2683: 2677: 2667: 2663: 2643: 2638: 2633: 2630: 2625: 2620: 2615: 2610: 2604: 2601: 2598: 2594: 2589: 2582: 2576: 2572: 2566: 2560: 2554: 2546: 2544: 2519: 2510: 2507: 2487: 2482: 2477: 2474: 2469: 2464: 2459: 2454: 2448: 2445: 2439: 2435: 2429: 2422: 2419: 2415: 2410: 2404: 2398: 2390: 2387: 2385: 2368: 2358: 2343: 2340: 2337: 2335:finite limit 2332: 2330: 2327: 2324: 2322: 2318: 2314: 2311: 2308: 2306: 2300: 2297: 2294: 2292: 2288: 2284: 2281: 2278: 2275: 2272: 2269: 2267: 2263: 2256: 2252: 2249: 2246: 2243: 2240: 2237: 2235: 2231: 2227: 2224: 2221: 2218: 2215: 2212: 2206: 2202: 2199: 2196: 2193: 2191: 2190:Electrostatic 2188: 2185: 2181: 2174: 2158: 2140:Relativistic 2136: 2125: 2110: 2105: 2100: 2097: 2092: 2087: 2082: 2077: 2071: 2068: 2062: 2058: 2052: 2047: 2042: 2037: 2031: 2028: 2025: 2021: 2016: 1994: 1991: 1988: 1985: 1982: 1979: 1970: 1950: 1947: 1943: 1939: 1934: 1931: 1927: 1921: 1918: 1912: 1908: 1902: 1896: 1893: 1888: 1883: 1879: 1875: 1869: 1863: 1860: 1855: 1850: 1846: 1842: 1839: 1833: 1830: 1822: 1817: 1795: 1791: 1787: 1782: 1779: 1773: 1771: 1766: 1754: 1750: 1746: 1743: 1740: 1735: 1732: 1726: 1724: 1719: 1707: 1701: 1680: 1675: 1670: 1667: 1662: 1657: 1654: 1650: 1645: 1637: 1633: 1629: 1626: 1622: 1617: 1614: 1607: 1590: 1587: 1582: 1579: 1572: 1569: 1551: 1547: 1539: 1538: 1537: 1534: 1521: 1515: 1511: 1506: 1503: 1495: 1491: 1487: 1484: 1478: 1474: 1468: 1460: 1455: 1450: 1447: 1442: 1437: 1434: 1428: 1424: 1418: 1415: 1407: 1404: 1402: 1398: 1394: 1383: 1381: 1377: 1372: 1370: 1359: 1355: 1353: 1349: 1339: 1330: 1328: 1327:Fermat spiral 1310: 1302: 1299: 1293: 1287: 1284: 1277: 1271: 1265: 1245: 1239: 1236: 1230: 1224: 1204: 1198: 1193: 1184: 1182: 1178: 1173: 1155: 1151: 1147: 1140: 1126: 1122: 1119: 1110: 1107: 1099: 1098: 1082: 1062: 1054: 1036: 1032: 1005: 984: 964: 955: 940: 935: 930: 927: 922: 917: 914: 909: 904: 899: 896: 891: 881: 877: 873: 866: 852: 848: 845: 836: 831: 828: 818: 810: 802: 786: 783: 776: 772: 766: 762: 756: 752: 745: 740: 736: 732: 727: 724: 719: 716: 708: 701: 686: 682: 679: 676: 670: 667: 659: 656: 640: 637: 634: 630: 625: 622: 614: 612: 608: 603: 594: 575: 559: 556: 553: 548: 545: 539: 536: 528: 526: 521: 517: 515: 511: 507: 503: 498: 496: 491: 486: 481: 476: 471: 466: 457: 433: 422: 411: 408: 395: 393: 383: 376: 372: 368: 363: 350: 341: 339: 333: 329: 327: 323: 318: 316: 312: 308: 307:Walther Bothe 304: 300: 296: 292: 288: 284: 279: 275: 270: 269:Lev Mysovskii 266: 260: 255: 251: 247: 243: 238: 236: 232: 228: 223: 221: 217: 213: 209: 204: 202: 201: 196: 192: 188: 184: 180: 179:Max Steenbeck 172: 168: 163: 155: 146: 144: 140: 139:radionuclides 136: 132: 127: 124: 120: 116: 112: 108: 104: 99: 97: 93: 89: 85: 81: 77: 73: 70:is a type of 69: 61: 57: 53: 41: 37: 33: 19: 5738:. Retrieved 5734:the original 5713: 5674: 5668: 5635: 5629: 5620: 5611: 5599:. Retrieved 5595: 5586: 5574:. Retrieved 5569: 5560: 5548:. Retrieved 5544: 5535: 5524:. Retrieved 5517:the original 5512: 5499: 5488:. Retrieved 5484: 5475: 5463:. Retrieved 5458: 5445: 5433:. Retrieved 5429: 5419: 5410: 5401: 5392: 5382: 5373: 5364: 5339: 5335: 5329: 5294: 5290: 5265:. Retrieved 5247: 5241: 5221: 5214: 5181: 5177: 5167: 5148: 5143: 5137:. Vancouver. 5132: 5122: 5110:. Retrieved 5106:www.iaea.org 5105: 5096: 5084:. Retrieved 5080: 5071: 5058: 5039: 5033: 4998: 4994: 4984: 4971: 4942: 4913: 4906: 4873: 4867: 4861: 4850: 4837: 4818: 4812: 4800:. Retrieved 4788: 4778: 4754: 4733:. Retrieved 4728: 4715: 4703:. Retrieved 4691: 4653:. Retrieved 4648: 4635: 4623:. Retrieved 4584: 4546: 4540: 4521: 4483: 4479: 4458:. Retrieved 4453: 4402: 4398: 4392: 4384:the original 4373: 4345: 4341:Ball, Philip 4335: 4325:February 25, 4323:. Retrieved 4319:the original 4309: 4299:February 25, 4297:. Retrieved 4293:the original 4283: 4275: 4255: 4249: 4239: 4227:. Retrieved 4213: 4201:. Retrieved 4176: 4172: 4166: 4141: 4133: 4100: 4096: 4090: 4081: 4068: 4060:the original 4042: 4017: 4011: 4005: 3993:. Retrieved 3971: 3967: 3957: 3945:. Retrieved 3925: 3921: 3900: 3896: 3888: 3879: 3854: 3816: 3795:. Retrieved 3791: 3782: 3754: 3732:. Retrieved 3721: 3694: 3690: 3667: 3657: 3646:. Retrieved 3642: 3633: 3622:. Retrieved 3619:www2.lbl.gov 3618: 3609: 3565: 3468:Ghostbusters 3466: 3464: 3459: 3453: 3440: 3426: 3420: 3405: 3387:18.4 m 3261:Switzerland 3197:0.36 m 3185:Netherlands 3107:80 keV 3040: 3033:space charge 3030: 3025:relativistic 3018: 3010: 3003: 2985: 2966: 2955: 2952:Beam therapy 2902:radiotherapy 2895: 2887:Medical uses 2877: 2832: 2829:Target types 2802:Proton beams 2792: 2720: 2709: 2705: 2679: 2664: 2547: 2542: 2540: 2508: 2391: 2388: 2383: 2360: 1971: 1818: 1708: 1705: 1535: 1408: 1405: 1389: 1373: 1365: 1356: 1352:L. H. Thomas 1345: 1336: 1205: 1201: 1180: 1176: 1174: 1100: 1096: 956: 819: 816: 803: 709: 702: 660: 657: 615: 604: 600: 576: 529: 522: 518: 499: 489: 479: 469: 458: 396: 389: 334: 330: 319: 283:Nazi Germany 280: 265:George Gamow 252:, headed by 242:Soviet Union 239: 224: 205: 198: 195:Rolf Widerøe 176: 128: 100: 74:invented by 67: 65: 36: 5465:January 24, 4694:: 209–229. 4460:January 24, 4056:UC Berkeley 3734:October 26, 3728:"Cyclotron" 3474:proton pack 3443:synchrotron 3436:transformer 2914:fluorine-18 2795:ion sources 2749:synchrotron 2736:rest energy 2682:synchrotron 2338:Increasing 2333:Increasing, 2309:Increasing 2301:Increasing, 2291:Synchrotron 2244:Decreasing 2225:Increasing 2208:Isochronous 272: [ 257: [ 183:Leo Szilárd 131:synchrotron 48: 1939 5833:Categories 5740:2005-05-27 5601:31 January 5576:31 January 5566:"Betatron" 5550:31 January 5526:2012-06-19 5490:2023-06-19 5435:10 January 5267:27 January 5112:27 January 5086:27 January 4735:2022-07-19 4655:27 January 4618:(Report). 4486:(7): 662. 3995:31 January 3947:31 January 3797:2018-04-06 3648:2018-04-06 3624:2018-04-06 3601:References 3450:In fiction 3412:microwaves 3384:Heavy Ion 3381:400 MeV/u 3346:Heavy Ion 3343:500 MeV/u 3273:15 m 3152:, protons 2944:-186, and 2789:Beam types 2210:cyclotron 2177:Cyclotrons 2171:vs radius 2155:variation 1821:gyroradius 809:achieved. 367:electrodes 303:Heidelberg 18:Cyclotrons 5701:109712952 5198:0033-8419 5178:Radiology 4365:855705703 4258:(9): 39. 4229:9 October 4034:109942448 3514:Microtron 3425:uses the 3408:magnetron 3150:deuterium 3081:Comments 3075:Diameter 2971:to treat 2938:palladium 2918:carbon-11 2852:directed. 2706:(at left) 2621:− 2602:π 2423:π 2369:γ 2329:Induction 2279:Constant 2250:Constant 2247:Constant 2222:Constant 2219:Constant 2200:Constant 2197:Constant 2194:Constant 2163:Frequency 2029:π 1989:π 1948:− 1940:− 1932:− 1876:γ 1843:β 1840:γ 1788:γ 1767:ω 1747:γ 1744:π 1658:− 1634:β 1630:− 1615:γ 1580:β 1568:rest mass 1507:γ 1492:β 1488:− 1438:− 1291:Δ 1243:Δ 638:π 607:frequency 557:π 434:× 287:Otto Hahn 250:Leningrad 229:(now the 68:cyclotron 60:deuterons 5321:22374548 5206:20274616 5025:22380341 4898:20056871 4802:30 March 4625:June 12, 4343:(2013). 4223:Archived 4125:56202243 4117:17808988 3480:See also 3460:Superman 3423:betatron 3305:520 MeV 3289:520 MeV 3270:Protons 3267:590 MeV 3194:Protons 3173:TU Delft 3142:380 MeV 3110:Protons 3078:In use? 3059:Country 2934:astatine 2906:Positron 2321:Betatron 2168:vs time 2165:vs time 813:K-factor 485:velocity 191:betatron 109:and the 54:(likely 5821:of the 5679:Bibcode 5344:Bibcode 5312:3473892 5003:Bibcode 4878:Bibcode 4869:Science 4488:Bibcode 4407:Bibcode 4260:Bibcode 4142:Physics 4097:Science 3976:Bibcode 3930:Bibcode 3760:Bibcode 3699:Bibcode 3299:Canada 3229:60 MeV 3191:12 MeV 3004:(right) 2946:bromine 2942:rhenium 2810:H beams 2303:finite 2160:Origin 1698:is the 1536:where: 1348:azimuth 493:is the 473:is the 463:is the 200:Science 149:History 56:protons 5797:TRIUMF 5699:  5642:  5319:  5309:  5258:  5229:  5204:  5196:  5155:  5023:  4949:  4921:  4896:  4825:  4766:  4705:4 July 4591:  4553:  4528:  4363:  4353:  4203:7 June 4154:  4123:  4115:  4032:  3824:  3770:  3427:change 3375:Japan 3287:TRIUMF 3161:First 3066:Energy 3041:number 2973:cancer 2940:-103, 2936:-211, 2920:, and 2702:Zürich 2361:Since 2285:Small 2253:Large 2228:Large 2203:Large 2153:radius 1369:modulo 1208:Δ 1051:is an 957:where 804:where 577:where 487:, and 465:charge 459:where 5715:Wired 5697:S2CID 5520:(PDF) 5509:(PDF) 5455:(PDF) 5252:(PDF) 5063:(PDF) 4976:(PDF) 4847:(PDF) 4725:(PDF) 4688:(PDF) 4645:(PDF) 4616:(PDF) 4450:(PDF) 4121:S2CID 4078:(PDF) 4030:S2CID 3851:(PDF) 3527:Notes 3378:2006 3363:RIKEN 3340:1982 3327:K500 3302:1976 3264:1974 3226:1961 3188:1958 3139:1946 3104:1931 3062:Date 2930:SPECT 2910:gamma 2857:Usage 2843:uses. 2344:None 2315:None 2305:limit 2151:Orbit 1378:(see 514:speed 375:poles 276:] 261:] 5779:The 5747:ISEF 5640:ISBN 5603:2022 5578:2022 5552:2022 5467:2022 5437:2024 5317:PMID 5269:2022 5256:ISBN 5227:ISBN 5202:PMID 5194:ISSN 5153:ISBN 5114:2022 5088:2022 5021:PMID 4947:ISBN 4919:ISBN 4894:PMID 4852:CERN 4823:ISBN 4804:2024 4764:ISBN 4707:2022 4657:2022 4627:2022 4620:CERN 4589:ISBN 4551:ISBN 4526:ISBN 4462:2022 4361:OCLC 4351:ISBN 4327:2012 4301:2012 4231:2008 4205:2022 4152:ISBN 4113:PMID 3997:2022 3949:2022 3859:CERN 3822:ISBN 3768:ISBN 3736:2014 3454:The 3390:Yes 3352:Yes 3314:Yes 3276:Yes 3238:Yes 3071:Beam 3055:Name 2928:and 2908:and 2900:and 2341:N/A 2325:Yes 2312:N/A 2295:Yes 2270:Yes 2238:Yes 2213:Yes 1819:The 1179:and 309:and 267:and 52:ions 5767:at 5687:doi 5352:doi 5307:PMC 5299:doi 5186:doi 5011:doi 4886:doi 4874:327 4793:doi 4696:doi 4496:doi 4415:doi 4268:doi 4105:doi 4022:doi 3984:doi 3938:doi 3707:doi 3547:it. 3249:PSI 3200:No 3158:No 3116:No 3085:Ref 2926:PET 2904:. 2386:. 2282:DD 2276:DD 2266:FFA 2186:No 1131:max 1010:max 857:max 609:in 248:in 220:keV 58:or 5835:: 5712:. 5695:. 5685:. 5675:57 5673:. 5667:. 5594:. 5568:. 5543:. 5511:. 5483:. 5457:. 5428:. 5409:. 5391:. 5372:. 5350:. 5340:13 5338:. 5315:. 5305:. 5295:84 5293:. 5289:. 5277:^ 5200:. 5192:. 5182:47 5180:. 5176:. 5131:. 5104:. 5079:. 5048:^ 5019:. 5009:. 4999:83 4997:. 4993:. 4961:^ 4933:^ 4892:. 4884:. 4872:. 4849:. 4787:. 4758:. 4744:^ 4727:. 4690:. 4665:^ 4647:. 4603:^ 4565:^ 4508:^ 4494:. 4484:29 4482:. 4470:^ 4452:. 4427:^ 4413:. 4403:52 4401:. 4359:. 4274:. 4266:. 4256:27 4254:. 4248:. 4196:. 4185:^ 4177:23 4175:. 4150:. 4146:. 4119:. 4111:. 4101:72 4099:. 4080:. 4054:, 4050:. 4028:. 4018:21 3982:. 3972:53 3970:. 3966:. 3936:. 3926:54 3924:. 3920:. 3908:^ 3895:- 3878:. 3867:^ 3853:. 3836:^ 3806:^ 3790:. 3766:. 3744:^ 3705:. 3695:40 3693:. 3689:. 3675:^ 3641:. 3617:. 3586:^ 3574:^ 3552:^ 3535:^ 3441:A 3421:A 3308:H 3148:, 2964:. 2916:, 2545:. 1403:. 1329:. 1055:, 613:: 477:, 394:: 274:ru 259:ru 222:. 169:, 66:A 45:c. 5749:. 5743:. 5724:. 5718:. 5703:. 5689:: 5681:: 5648:. 5605:. 5580:. 5554:. 5529:. 5493:. 5469:. 5439:. 5413:. 5395:. 5376:. 5358:. 5354:: 5346:: 5323:. 5301:: 5271:. 5235:. 5208:. 5188:: 5161:. 5116:. 5090:. 5027:. 5013:: 5005:: 4955:. 4927:. 4900:. 4888:: 4880:: 4831:. 4806:. 4795:: 4772:. 4738:. 4709:. 4698:: 4659:. 4629:. 4597:. 4559:. 4534:. 4502:. 4498:: 4490:: 4464:. 4421:. 4417:: 4409:: 4367:. 4329:. 4303:. 4270:: 4262:: 4233:. 4207:. 4160:. 4127:. 4107:: 4036:. 4024:: 3999:. 3986:: 3978:: 3951:. 3940:: 3932:: 3830:. 3800:. 3776:. 3762:: 3738:. 3715:. 3709:: 3701:: 3651:. 3627:. 3470:, 2764:. 2751:. 2712:. 2644:2 2639:) 2634:c 2631:r 2626:( 2616:2 2611:) 2605:f 2599:2 2595:1 2590:( 2583:q 2577:0 2573:m 2567:= 2564:) 2561:r 2558:( 2555:B 2537:. 2535:v 2531:γ 2527:r 2523:B 2488:2 2483:) 2478:c 2475:r 2470:( 2465:+ 2460:2 2455:) 2449:B 2446:q 2440:0 2436:m 2430:( 2420:2 2416:1 2411:= 2408:) 2405:r 2402:( 2399:f 2111:2 2106:) 2101:c 2098:r 2093:( 2088:+ 2083:2 2078:) 2072:B 2069:q 2063:0 2059:m 2053:( 2048:= 2043:2 2038:) 2032:f 2026:2 2022:1 2017:( 1995:r 1992:f 1986:2 1983:= 1980:v 1951:2 1944:c 1935:2 1928:v 1922:B 1919:q 1913:0 1909:m 1903:= 1897:B 1894:q 1889:v 1884:0 1880:m 1870:= 1864:B 1861:q 1856:c 1851:0 1847:m 1834:= 1831:r 1796:0 1792:m 1783:B 1780:q 1774:= 1755:0 1751:m 1741:2 1736:B 1733:q 1727:= 1720:f 1702:. 1681:2 1676:) 1671:c 1668:v 1663:( 1655:1 1651:1 1646:= 1638:2 1627:1 1623:1 1618:= 1591:c 1588:v 1583:= 1570:, 1552:0 1548:m 1522:, 1516:0 1512:m 1504:= 1496:2 1485:1 1479:0 1475:m 1469:= 1461:2 1456:) 1451:c 1448:v 1443:( 1435:1 1429:0 1425:m 1419:= 1416:m 1311:n 1303:B 1300:q 1294:E 1288:m 1285:2 1278:= 1275:) 1272:n 1269:( 1266:r 1246:E 1240:n 1237:= 1234:) 1231:n 1228:( 1225:E 1215:n 1210:E 1181:A 1177:Q 1156:a 1152:m 1148:2 1141:2 1137:) 1127:r 1123:B 1120:e 1117:( 1111:= 1108:K 1097:K 1083:A 1063:Q 1037:a 1033:m 1006:r 985:B 965:e 941:2 936:) 931:A 928:Q 923:( 918:K 915:= 910:2 905:) 900:A 897:Q 892:( 882:a 878:m 874:2 867:2 863:) 853:r 849:B 846:e 843:( 837:= 832:A 829:T 806:r 787:m 784:2 777:2 773:r 767:2 763:B 757:2 753:q 746:= 741:2 737:v 733:m 728:2 725:1 720:= 717:E 705:v 687:m 683:r 680:B 677:q 671:= 668:v 641:r 635:2 631:v 626:= 623:f 591:m 587:B 583:q 579:f 560:m 554:2 549:B 546:q 540:= 537:f 490:B 480:v 470:E 461:q 445:] 442:) 438:B 430:v 426:( 423:+ 419:E 415:[ 412:q 409:= 405:F 34:. 20:)

Index

Cyclotrons
Cyclotron (disambiguation)

ions
protons
deuterons
particle accelerator
Ernest Lawrence
University of California, Berkeley
charged particles
magnetic field
electric field
Nobel Prize in Physics
electrostatic accelerators
Cockcroft–Walton generator
Van de Graaff generator
electric field
electrical potential
electrostatic breakdown
synchrotron
nuclear medicine
radionuclides
particle therapy


Lawrence Radiation Laboratory
University of California
Max Steenbeck
Leo Szilárd
linear accelerator

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.