Knowledge

Coulomb blockade

Source đź“ť

22: 485: 473: 79: 497: 933:
Ionic Coulomb blockade (ICB) is the special case of CB, appearing in the electro-diffusive transport of charged ions through sub-nanometer artificial nanopores or biological ion channels. ICB is widely similar to its electronic counterpart in quantum dots, but presents some specific features defined
545:
When a positive voltage is applied to the gate electrode the energy levels of the island electrode are lowered. The electron (green 1.) can tunnel onto the island (2.), occupying a previously vacant energy level. From there it can tunnel onto the drain electrode (3.) where it inelastically scatters
410:
In order for the Coulomb blockade to be observable, the temperature has to be low enough so that the characteristic charging energy (the energy that is required to charge the junction with one elementary charge) is larger than the thermal energy of the charge carriers. In the past, for capacitances
1556:
Prati, E.; De Michielis, M.; Belli, M.; Cocco, S.; Fanciulli, M.; Kotekar-Patil, D.; Ruoff, M.; Kern, D. P.; Wharam, D. A.; Verduijn, J.; Tettamanzi, G. C.; Rogge, S.; Roche, B.; Wacquez, R.; Jehl, X.; Vinet, M.; Sanquer, M. (2012). "Few electron limit of n-type metal oxide semiconductor single
880:
A typical Coulomb blockade thermometer (CBT) is made from an array of metallic islands, connected to each other through a thin insulating layer. A tunnel junction forms between the islands, and as voltage is applied, electrons may tunnel across this junction. The tunneling rates and hence the
397:
is the capacitance of the junction. If the capacitance is very small, the voltage build up can be large enough to prevent another electron from tunnelling. The electric current is then suppressed at low bias voltages and the resistance of the device is no longer constant. The increase of the
458:. The integration of quantum dot fabrication with standard industrial technology has been achieved for silicon. CMOS process for obtaining massive production of single electron quantum dot transistors with channel size down to 20 nm x 20 nm has been implemented. 300:
is applied, this means that there will be a current, and, neglecting additional effects, the tunnelling current will be proportional to the bias voltage. In electrical terms, the tunnel junction behaves as a
339:) through the tunnel barrier (we neglect cotunneling, in which two electrons tunnel simultaneously). The tunnel junction capacitor is charged with one elementary charge by the tunnelling electron, causing a 1495:
Shin, S. J.; Lee, J. J.; Kang, H. J.; Choi, J. B.; Yang, S. -R. E.; Takahashi, Y.; Hasko, D. G. (2011). "Room-Temperature Charge Stability Modulated by Quantum Effects in a Nanoscale Silicon Island".
542:
In the blocking state no accessible energy levels are within tunneling range of an electron (in red) on the source contact. All energy levels on the island electrode with lower energies are occupied.
793: 1022: 695: 644: 1096: 865: 1224: 1154: 733: 1189: 828: 427:
refrigerators. Thanks to small sized quantum dots of only few nanometers, Coulomb blockade has been observed next above liquid helium temperature, up to room temperature.
1253: 573: 962: 1122: 125:. Because of the CB, the conductance of a device may not be constant at low bias voltages, but disappear for biases under a certain threshold, i.e. no current flows. 1045: 375: 224: 263: 593: 395: 1825:
Kaufman, Igor Kh.; Fedorenko, Olena A.; Luchinsky, Dmitri G.; Gibby, William A.T.; Roberts, Stephen K.; McClintock, Peter V.E.; Eisenberg, Robert S. (2017).
938:
of charge carriers (permeating ions vs electrons) and by the different origin of transport engine (classical electrodiffusion vs quantum tunnelling).
442:, one has to create electrodes with dimensions of approximately 100 by 100 nanometers. This range of dimensions is routinely reached for example by 1294:
Averin, D. V.; Likharev, K. K. (1986-02-01). "Coulomb blockade of single-electron tunneling, and coherent oscillations in small tunnel junctions".
164: 273:
The following section is for the case of tunnel junctions with an insulating barrier between two normal conducting electrodes (NIN junctions).
335:
Due to the discreteness of electrical charge, current through a tunnel junction is a series of events in which exactly one electron passes (
967: 1827:"Ionic Coulomb blockade and anomalous mole fraction effect in the NaChBac bacterial ion channel and its charge-varied mutants" 111: 738: 660: 399: 65: 43: 36: 601: 320:
An arrangement of two conductors with an insulating layer in between not only has a resistance, but also a finite
1442:
Couto, ODD; Puebla, J (2011). "Charge control in InP/(Ga,In)P single quantum dots embedded in Schottky diodes".
280:
is, in its simplest form, a thin insulating barrier between two conducting electrodes. According to the laws of
1883:
Fulton, T.A.; Dolan, G.J. (1987). "Observation of single-electron charging effects in small tunnel junctions".
881:
conductance vary according to the charging energy of the islands as well as the thermal energy of the system.
1054: 1951: 455: 451: 1956: 833: 103: 1389:
Crippa A; et al. (2015). "Valley blockade and multielectron spin-valley Kondo effect in silicon".
516: 500: 489: 477: 467: 1197: 443: 281: 176: 1375: 1946: 1194:
In biological ion channels ICB typically manifests itself in such valence selectivity phenomena as
703: 30: 1127: 801: 1714:
Feng, Jiandong; Liu, Ke; Graf, Michael; Dumcenco, Dumitru; Kis, Andras; Di Ventra, Massimiliano;
1229: 1162: 1269: 1264: 928: 911:, the full width at half minimum of the measured differential conductance dip over an array of 552: 47: 944: 431: 1362: 1101: 868: 515:
The simplest device in which the effect of Coulomb blockade can be observed is the so-called
313:
on the barrier thickness. Typically, the barrier thickness is on the order of one to several
1892: 1789: 1731: 1715: 1667: 1576: 1514: 1461: 1408: 1303: 346: 310: 1027: 528: 8: 1588: 535:. The electrical potential of the island can be tuned by a third electrode, known as the 203: 152: 1896: 1802: 1793: 1777: 1735: 1679: 1671: 1619: 1580: 1518: 1465: 1412: 1307: 245: 1688: 1657: 1645: 1600: 1566: 1538: 1504: 1477: 1451: 1424: 1398: 1327: 916: 888:
based on electric conductance characteristics of tunnel junction arrays. The parameter
578: 380: 293: 91: 1908: 1848: 1807: 1755: 1747: 1693: 1604: 1592: 1530: 1481: 1428: 1331: 1319: 1274: 700:
The thermal energy in the source contact plus the thermal energy in the island, i.e.
654: 285: 231: 198: 183: 156: 148: 1900: 1838: 1797: 1739: 1683: 1675: 1584: 1542: 1522: 1469: 1416: 1350: 1311: 447: 434:
geometry with a capacitance of 1 femtofarad, using an oxide layer of electric
194: 137: 107: 1926: 1778:"Coulomb blockade model of permeation and selectivity in biological ion channels" 549:
The energy levels of the island electrode are evenly spaced with a separation of
277: 144:
and the current-voltage relation of the Coulomb blockade looks like a staircase.
122: 1904: 1473: 1420: 172: 160: 284:, no current can flow through an insulating barrier. According to the laws of 1940: 1852: 1843: 1826: 1811: 1751: 1323: 964:
is defined by dielectric self-energy of incoming ion inside the pore/channel
484: 235: 168: 1346: 795:
or else the electron will be able to pass the QD via thermal excitation; and
1912: 1759: 1719: 1697: 1596: 1534: 435: 306: 297: 141: 140:
preventing other electrons to flow. Thus, the device will no longer follow
115: 83: 1879:, eds. B.L. Altshuler, P.A. Lee, and R.A. Webb (Elsevier, Amsterdam, 1991) 885: 321: 289: 190: 129: 119: 527:, connected through tunnel junctions to one common electrode with a low 492:
for the blocking state (upper part) and transmitting state (lower part).
292:
for an electron on one side of the barrier to reach the other side (see
1315: 412: 325: 128:
Coulomb blockade can be observed by making a device very small, like a
1526: 1354: 1931: 1870:
Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures
1743: 508: 439: 329: 314: 226:) carry the current. In the case that the electrodes are metallic or 186: 1403: 1255:) and concentration-dependent divalent blockade of sodium current. 424: 302: 239: 133: 1872:, eds. H. Grabert and M. H. Devoret (Plenum Press, New York, 1992) 1662: 1571: 1509: 1456: 419:), this implied that the temperature has to be below about 1  159:. However, when few electrons are involved and an external static 504: 340: 1345:
Wang, Xufeng; Muralidharan, Bhaskaran; Klimeck, Gerhard (2006).
649:
To achieve the Coulomb blockade, three criteria have to be met:
472: 147:
Even though the Coulomb blockade can be used to demonstrate the
1776:
Kaufman, I. Kh; McClintock, P. V. E.; Eisenberg, R. S. (2015).
1159:
ICB has been recently experimentally observed in sub-nanometer
420: 78: 1824: 488:
Left to right: energy levels of source, island and drain in a
496: 423:. This temperature range is routinely reached for example by 416: 1620:"2.5 Minimum Tunnel Resistance for Single Electron Charging" 1555: 1775: 1177: 118:
of a small electronic device comprising at least one low-
1344: 163:
is applied, Coulomb blockade provides the ground for a
1347:"nanoHUB.org - Resources: Coulomb Blockade Simulation" 1057: 1030: 288:, however, there is a nonvanishing (larger than zero) 1232: 1200: 1165: 1130: 1104: 970: 947: 836: 804: 741: 706: 663: 604: 581: 555: 383: 349: 248: 206: 1720:"Observation of ionic Coulomb blockade in nanopores" 788:{\displaystyle k_{\rm {B}}T<{\frac {e^{2}}{2C}},} 1713: 1644:Krems, Matt; Di Ventra, Massimiliano (2013-01-10). 171:, which include quantum mechanical effects due to 1247: 1218: 1183: 1148: 1116: 1090: 1039: 1016: 956: 859: 822: 787: 727: 689: 638: 587: 567: 546:and reaches the drain electrode Fermi level (4.). 389: 369: 328:in this context, the tunnel junction behaves as a 257: 218: 1017:{\displaystyle \Delta E={\frac {z^{2}e^{2}}{2C}}} 690:{\displaystyle V_{\text{bias}}<{\frac {e}{C}}} 402:around zero bias is called the Coulomb blockade. 155:effect and its main description does not require 1938: 539:, which is capacitively coupled to the island. 1494: 875: 657:divided by the self-capacitance of the island: 1643: 1293: 1098:, even at the room temperature, for ions with 519:. It consists of two electrodes known as the 461: 305:with a constant resistance, also known as an 86:) of an electron tunnelling through a barrier 639:{\displaystyle C={\frac {e^{2}}{\Delta E}}.} 182:The devices can comprise either metallic or 1882: 1441: 1624:About Single-Electron Devices and Circuits 884:Coulomb blockade thermometer is a primary 1842: 1801: 1687: 1661: 1617: 1570: 1508: 1455: 1402: 922: 189:. If the electrodes are superconducting, 66:Learn how and when to remove this message 1626:(Ph.D.). Vienna University of Technology 1388: 653:The bias voltage must be lower than the 495: 483: 471: 77: 29:This article includes a list of general 1091:{\textstyle (\Delta E\gg k_{\rm {B}}T)} 268: 136:inside the device will create a strong 1939: 575:This gives rise to a self-capacitance 1927:Computational Single-Electronics book 1771: 1769: 1646:"Ionic Coulomb blockade in nanopores" 82:Schematic representation (similar to 1709: 1707: 1650:Journal of Physics: Condensed Matter 179:respectively between the electrons. 15: 867:which is derived from Heisenberg's 860:{\displaystyle {\frac {h}{e^{2}}},} 735:must be below the charging energy: 149:quantization of the electric charge 132:. When the device is small enough, 13: 1766: 1296:Journal of Low Temperature Physics 1239: 1226:conduction bands (vs fixed charge 1076: 1061: 1031: 971: 948: 919:provide the absolute temperature. 811: 748: 713: 624: 556: 35:it lacks sufficient corresponding 14: 1968: 1920: 1875:D.V. Averin and K.K Likharev, in 1704: 1287: 1831:EPJ Nonlinear Biomedical Physics 1219:{\displaystyle {\text{Ca}}^{2+}} 941:In the case of ICB, Coulomb gap 20: 1932:Coulomb blockade online lecture 1818: 324:. The insulator is also called 167:(like Pauli spin blockade) and 1877:Mesoscopic Phenomena in Solids 1637: 1611: 1589:10.1088/0957-4484/23/21/215204 1549: 1488: 1435: 1382: 1338: 1085: 1058: 934:by possibly different valence 405: 1: 1803:10.1088/1367-2630/17/8/083021 1680:10.1088/0953-8984/25/6/065101 1618:Wasshuber, Christoph (1997). 1280: 1149:{\displaystyle {\ce {Ca^2+}}} 728:{\displaystyle k_{\rm {B}}T,} 430:To make a tunnel junction in 1184:{\displaystyle {\ce {MoS2}}} 915:junctions together with the 876:Coulomb blockade thermometer 823:{\displaystyle R_{\rm {t}},} 456:shadow evaporation technique 7: 1258: 1248:{\displaystyle Q_{\rm {f}}} 104:Charles-Augustin de Coulomb 10: 1973: 1905:10.1103/PhysRevLett.59.109 1474:10.1103/PhysRevB.84.125301 1421:10.1103/PhysRevB.92.035424 926: 798:The tunneling resistance, 595:of the island, defined as 517:single-electron transistor 501:Single-electron transistor 490:single-electron transistor 478:single-electron transistor 468:Single-electron transistor 465: 462:Single-electron transistor 568:{\displaystyle \Delta E.} 444:electron beam lithography 309:. The resistance depends 282:classical electrodynamics 957:{\displaystyle \Delta E} 452:Niemeyer–Dolan technique 1557:electron transistors". 1117:{\displaystyle z>=2} 1047:depends on ion valence 830:should be greater than 450:technologies, like the 400:differential resistance 50:more precise citations. 1844:10.1051/epjnbp/2017003 1782:New Journal of Physics 1370:Cite journal requires 1270:Quantisation of charge 1265:Ionic Coulomb blockade 1249: 1220: 1185: 1150: 1118: 1092: 1041: 1018: 958: 929:Ionic Coulomb blockade 923:Ionic Coulomb blockade 861: 824: 789: 729: 691: 640: 589: 569: 512: 493: 481: 391: 371: 259: 220: 112:electrical conductance 87: 1716:Radenovic, Aleksandra 1250: 1221: 1186: 1151: 1119: 1093: 1051:. ICB appears strong 1042: 1040:{\textstyle \Delta E} 1019: 959: 869:uncertainty principle 862: 825: 790: 730: 692: 641: 590: 570: 499: 487: 475: 438:10 and thickness one 392: 372: 370:{\displaystyle U=e/C} 265:) carry the current. 260: 221: 110:, is the decrease in 81: 1230: 1198: 1163: 1128: 1102: 1055: 1028: 968: 945: 834: 802: 739: 704: 661: 602: 579: 553: 381: 347: 269:In a tunnel junction 246: 204: 177:orbital interactions 1952:Quantum electronics 1897:1987PhRvL..59..109F 1794:2015NJPh...17h3021K 1736:2016NatMa..15..850F 1672:2013JPCM...25f5101K 1581:2012Nanot..23u5204P 1519:2011NanoL..11.1591S 1466:2011PhRvB..84l5301C 1413:2015PhRvB..92c5424C 1308:1986JLTP...62..345A 1179: 219:{\displaystyle -2e} 1957:Mesoscopic physics 1316:10.1007/BF00683469 1245: 1216: 1181: 1167: 1146: 1114: 1088: 1037: 1014: 954: 917:physical constants 857: 820: 785: 725: 687: 636: 585: 565: 513: 494: 482: 387: 367: 294:quantum tunnelling 258:{\displaystyle -e} 255: 242:(with a charge of 216: 199:elementary charges 92:mesoscopic physics 88: 1527:10.1021/nl1044692 1444:Physical Review B 1391:Physical Review B 1355:10.4231/d3c24qp1w 1275:Elementary charge 1205: 1170: 1135: 1012: 852: 780: 685: 671: 655:elementary charge 631: 588:{\displaystyle C} 390:{\displaystyle C} 286:quantum mechanics 228:normal-conducting 157:quantum mechanics 138:Coulomb repulsion 76: 75: 68: 1964: 1916: 1857: 1856: 1846: 1822: 1816: 1815: 1805: 1773: 1764: 1763: 1744:10.1038/nmat4607 1724:Nature Materials 1711: 1702: 1701: 1691: 1665: 1641: 1635: 1634: 1632: 1631: 1615: 1609: 1608: 1574: 1553: 1547: 1546: 1512: 1503:(4): 1591–1597. 1492: 1486: 1485: 1459: 1439: 1433: 1432: 1406: 1386: 1380: 1379: 1373: 1368: 1366: 1358: 1342: 1336: 1335: 1302:(3–4): 345–373. 1291: 1254: 1252: 1251: 1246: 1244: 1243: 1242: 1225: 1223: 1222: 1217: 1215: 1214: 1206: 1203: 1190: 1188: 1187: 1182: 1180: 1178: 1175: 1168: 1155: 1153: 1152: 1147: 1145: 1144: 1143: 1133: 1123: 1121: 1120: 1115: 1097: 1095: 1094: 1089: 1081: 1080: 1079: 1046: 1044: 1043: 1038: 1023: 1021: 1020: 1015: 1013: 1011: 1003: 1002: 1001: 992: 991: 981: 963: 961: 960: 955: 910: 866: 864: 863: 858: 853: 851: 850: 838: 829: 827: 826: 821: 816: 815: 814: 794: 792: 791: 786: 781: 779: 771: 770: 761: 753: 752: 751: 734: 732: 731: 726: 718: 717: 716: 696: 694: 693: 688: 686: 678: 673: 672: 669: 645: 643: 642: 637: 632: 630: 622: 621: 612: 594: 592: 591: 586: 574: 572: 571: 566: 529:self-capacitance 454:, also known as 448:pattern transfer 446:and appropriate 396: 394: 393: 388: 376: 374: 373: 368: 363: 264: 262: 261: 256: 225: 223: 222: 217: 108:electrical force 96:Coulomb blockade 71: 64: 60: 57: 51: 46:this article by 37:inline citations 24: 23: 16: 1972: 1971: 1967: 1966: 1965: 1963: 1962: 1961: 1947:Nanoelectronics 1937: 1936: 1923: 1885:Phys. Rev. Lett 1861: 1860: 1823: 1819: 1774: 1767: 1712: 1705: 1642: 1638: 1629: 1627: 1616: 1612: 1554: 1550: 1493: 1489: 1440: 1436: 1387: 1383: 1371: 1369: 1360: 1359: 1343: 1339: 1292: 1288: 1283: 1261: 1238: 1237: 1233: 1231: 1228: 1227: 1207: 1202: 1201: 1199: 1196: 1195: 1176: 1171: 1166: 1164: 1161: 1160: 1136: 1132: 1131: 1129: 1126: 1125: 1103: 1100: 1099: 1075: 1074: 1070: 1056: 1053: 1052: 1029: 1026: 1025: 1004: 997: 993: 987: 983: 982: 980: 969: 966: 965: 946: 943: 942: 931: 925: 902: 895: 889: 878: 846: 842: 837: 835: 832: 831: 810: 809: 805: 803: 800: 799: 772: 766: 762: 760: 747: 746: 742: 740: 737: 736: 712: 711: 707: 705: 702: 701: 677: 668: 664: 662: 659: 658: 623: 617: 613: 611: 603: 600: 599: 580: 577: 576: 554: 551: 550: 531:, known as the 476:Schematic of a 470: 464: 432:plate condenser 408: 382: 379: 378: 359: 348: 345: 344: 278:tunnel junction 271: 247: 244: 243: 232:superconducting 230:, i.e. neither 205: 202: 201: 184:superconducting 169:valley blockade 151:, it remains a 123:tunnel junction 102:), named after 72: 61: 55: 52: 42:Please help to 41: 25: 21: 12: 11: 5: 1970: 1960: 1959: 1954: 1949: 1935: 1934: 1929: 1922: 1921:External links 1919: 1918: 1917: 1891:(1): 109–112. 1880: 1873: 1866: 1865: 1859: 1858: 1817: 1765: 1730:(8): 850–855. 1703: 1636: 1610: 1565:(21): 215204. 1559:Nanotechnology 1548: 1487: 1450:(12): 125301. 1434: 1381: 1372:|journal= 1337: 1285: 1284: 1282: 1279: 1278: 1277: 1272: 1267: 1260: 1257: 1241: 1236: 1213: 1210: 1174: 1142: 1139: 1113: 1110: 1107: 1087: 1084: 1078: 1073: 1069: 1066: 1063: 1060: 1036: 1033: 1010: 1007: 1000: 996: 990: 986: 979: 976: 973: 953: 950: 927:Main article: 924: 921: 900: 893: 877: 874: 873: 872: 856: 849: 845: 841: 819: 813: 808: 796: 784: 778: 775: 769: 765: 759: 756: 750: 745: 724: 721: 715: 710: 698: 684: 681: 676: 667: 647: 646: 635: 629: 626: 620: 616: 610: 607: 584: 564: 561: 558: 466:Main article: 463: 460: 407: 404: 386: 366: 362: 358: 355: 352: 307:ohmic resistor 270: 267: 254: 251: 236:semiconducting 215: 212: 209: 161:magnetic field 74: 73: 28: 26: 19: 9: 6: 4: 3: 2: 1969: 1958: 1955: 1953: 1950: 1948: 1945: 1944: 1942: 1933: 1930: 1928: 1925: 1924: 1914: 1910: 1906: 1902: 1898: 1894: 1890: 1886: 1881: 1878: 1874: 1871: 1868: 1867: 1863: 1862: 1854: 1850: 1845: 1840: 1836: 1832: 1828: 1821: 1813: 1809: 1804: 1799: 1795: 1791: 1788:(8): 083021. 1787: 1783: 1779: 1772: 1770: 1761: 1757: 1753: 1749: 1745: 1741: 1737: 1733: 1729: 1725: 1721: 1717: 1710: 1708: 1699: 1695: 1690: 1685: 1681: 1677: 1673: 1669: 1664: 1659: 1656:(6): 065101. 1655: 1651: 1647: 1640: 1625: 1621: 1614: 1606: 1602: 1598: 1594: 1590: 1586: 1582: 1578: 1573: 1568: 1564: 1560: 1552: 1544: 1540: 1536: 1532: 1528: 1524: 1520: 1516: 1511: 1506: 1502: 1498: 1491: 1483: 1479: 1475: 1471: 1467: 1463: 1458: 1453: 1449: 1445: 1438: 1430: 1426: 1422: 1418: 1414: 1410: 1405: 1400: 1397:(3): 035424. 1396: 1392: 1385: 1377: 1364: 1356: 1352: 1348: 1341: 1333: 1329: 1325: 1321: 1317: 1313: 1309: 1305: 1301: 1297: 1290: 1286: 1276: 1273: 1271: 1268: 1266: 1263: 1262: 1256: 1234: 1211: 1208: 1192: 1172: 1157: 1140: 1137: 1111: 1108: 1105: 1082: 1071: 1067: 1064: 1050: 1034: 1008: 1005: 998: 994: 988: 984: 977: 974: 951: 939: 937: 930: 920: 918: 914: 909: 905: 899: 892: 887: 882: 870: 854: 847: 843: 839: 817: 806: 797: 782: 776: 773: 767: 763: 757: 754: 743: 722: 719: 708: 699: 682: 679: 674: 665: 656: 652: 651: 650: 633: 627: 618: 614: 608: 605: 598: 597: 596: 582: 562: 559: 547: 543: 540: 538: 534: 530: 526: 522: 518: 510: 506: 502: 498: 491: 486: 479: 474: 469: 459: 457: 453: 449: 445: 441: 437: 433: 428: 426: 422: 418: 414: 411:above 1  403: 401: 384: 364: 360: 356: 353: 350: 342: 338: 333: 331: 327: 323: 318: 316: 312: 311:exponentially 308: 304: 299: 295: 291: 287: 283: 279: 274: 266: 252: 249: 241: 237: 233: 229: 213: 210: 207: 200: 197:of minus two 196: 192: 188: 185: 180: 178: 174: 170: 166: 165:spin blockade 162: 158: 154: 150: 145: 143: 139: 135: 131: 126: 124: 121: 117: 116:bias voltages 113: 109: 105: 101: 97: 93: 85: 80: 70: 67: 59: 49: 45: 39: 38: 32: 27: 18: 17: 1888: 1884: 1876: 1869: 1834: 1830: 1820: 1785: 1781: 1727: 1723: 1653: 1649: 1639: 1628:. Retrieved 1623: 1613: 1562: 1558: 1551: 1500: 1497:Nano Letters 1496: 1490: 1447: 1443: 1437: 1394: 1390: 1384: 1363:cite journal 1340: 1299: 1295: 1289: 1193: 1158: 1048: 940: 935: 932: 912: 907: 903: 897: 890: 883: 879: 648: 548: 544: 541: 536: 532: 524: 520: 514: 436:permittivity 429: 409: 336: 334: 319: 298:bias voltage 275: 272: 227: 191:Cooper pairs 181: 146: 127: 99: 95: 89: 84:band diagram 62: 53: 34: 1349:. nanoHUB. 1124:, e.g. for 886:thermometer 406:Observation 322:capacitance 290:probability 130:quantum dot 120:capacitance 48:introducing 1941:Categories 1630:2012-01-01 1404:1501.02665 1281:References 1024:and hence 507:leads and 413:femtofarad 326:dielectric 315:nanometers 296:). When a 187:electrodes 31:references 1853:2195-0008 1812:1367-2630 1752:1476-4660 1663:1103.2749 1605:206063658 1572:1203.4811 1510:1201.3724 1482:119215237 1457:1107.2522 1429:117310207 1332:120841063 1324:0022-2291 1068:≫ 1062:Δ 1032:Δ 972:Δ 949:Δ 625:Δ 557:Δ 509:aluminium 440:nanometer 415:(10  343:build up 330:capacitor 250:− 240:electrons 208:− 153:classical 142:Ohm's law 134:electrons 114:at small 1913:10035115 1760:27019385 1718:(2016). 1698:23307655 1597:22552118 1535:21446734 1259:See also 896:= 5.439 523:and the 425:Helium-3 377:, where 303:resistor 193:(with a 56:May 2012 1893:Bibcode 1864:General 1790:Bibcode 1732:Bibcode 1689:4324628 1668:Bibcode 1577:Bibcode 1543:7133807 1515:Bibcode 1462:Bibcode 1409:Bibcode 1304:Bibcode 1191:pores. 697: ; 511:island. 505:niobium 341:voltage 337:tunnels 44:improve 1911:  1851:  1810:  1758:  1750:  1696:  1686:  1603:  1595:  1541:  1533:  1480:  1427:  1330:  1322:  1156:ions. 533:island 525:source 421:kelvin 195:charge 33:, but 1837:: 4. 1658:arXiv 1601:S2CID 1567:arXiv 1539:S2CID 1505:arXiv 1478:S2CID 1452:arXiv 1425:S2CID 1399:arXiv 1328:S2CID 1109:>= 521:drain 503:with 417:farad 1909:PMID 1849:ISSN 1808:ISSN 1756:PMID 1748:ISSN 1694:PMID 1593:PMID 1531:PMID 1376:help 1320:ISSN 758:< 675:< 670:bias 537:gate 276:The 234:nor 175:and 173:spin 94:, a 1901:doi 1839:doi 1798:doi 1740:doi 1684:PMC 1676:doi 1585:doi 1523:doi 1470:doi 1417:doi 1351:doi 1312:doi 1169:MoS 106:'s 90:In 1943:: 1907:. 1899:. 1889:59 1887:. 1847:. 1833:. 1829:. 1806:. 1796:. 1786:17 1784:. 1780:. 1768:^ 1754:. 1746:. 1738:. 1728:15 1726:. 1722:. 1706:^ 1692:. 1682:. 1674:. 1666:. 1654:25 1652:. 1648:. 1622:. 1599:. 1591:. 1583:. 1575:. 1563:23 1561:. 1537:. 1529:. 1521:. 1513:. 1501:11 1499:. 1476:. 1468:. 1460:. 1448:84 1446:. 1423:. 1415:. 1407:. 1395:92 1393:. 1367:: 1365:}} 1361:{{ 1326:. 1318:. 1310:. 1300:62 1298:. 1204:Ca 1134:Ca 898:Nk 332:. 317:. 238:, 100:CB 1915:. 1903:: 1895:: 1855:. 1841:: 1835:5 1814:. 1800:: 1792:: 1762:. 1742:: 1734:: 1700:. 1678:: 1670:: 1660:: 1633:. 1607:. 1587:: 1579:: 1569:: 1545:. 1525:: 1517:: 1507:: 1484:. 1472:: 1464:: 1454:: 1431:. 1419:: 1411:: 1401:: 1378:) 1374:( 1357:. 1353:: 1334:. 1314:: 1306:: 1240:f 1235:Q 1212:+ 1209:2 1173:2 1141:+ 1138:2 1112:2 1106:z 1086:) 1083:T 1077:B 1072:k 1065:E 1059:( 1049:z 1035:E 1009:C 1006:2 999:2 995:e 989:2 985:z 978:= 975:E 952:E 936:z 913:N 908:e 906:/ 904:T 901:B 894:½ 891:V 871:. 855:, 848:2 844:e 840:h 818:, 812:t 807:R 783:, 777:C 774:2 768:2 764:e 755:T 749:B 744:k 723:, 720:T 714:B 709:k 683:C 680:e 666:V 634:. 628:E 619:2 615:e 609:= 606:C 583:C 563:. 560:E 480:. 385:C 365:C 361:/ 357:e 354:= 351:U 253:e 214:e 211:2 98:( 69:) 63:( 58:) 54:( 40:.

Index

references
inline citations
improve
introducing
Learn how and when to remove this message

band diagram
mesoscopic physics
Charles-Augustin de Coulomb
electrical force
electrical conductance
bias voltages
capacitance
tunnel junction
quantum dot
electrons
Coulomb repulsion
Ohm's law
quantization of the electric charge
classical
quantum mechanics
magnetic field
spin blockade
valley blockade
spin
orbital interactions
superconducting
electrodes
Cooper pairs
charge

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑