Knowledge

Chronology of the universe

Source 📝

5998:—a scalar field that exists throughout space. Unlike gravity, the effects of such a field do not diminish (or only diminish slowly) as the universe grows. While matter and gravity have a greater effect initially, their effect quickly diminishes as the universe continues to expand. Objects in the universe, which are initially seen to be moving apart as the universe expands, continue to move apart, but their outward motion gradually slows down. This slowing effect becomes smaller as the universe becomes more spread out. Eventually, the outward and repulsive effect of dark energy begins to dominate over the inward pull of gravity. Instead of slowing down and perhaps beginning to move inward under the influence of gravity, from about 9.8 billion years of cosmic time, the expansion of space starts to slowly accelerate 5799: 5896: 5233:
of every 16 nucleons), and this is the amount we find today, and far more than can be easily explained by other processes. Similarly, deuterium fuses extremely easily; any alternative explanation must also explain how conditions existed for deuterium to form, but also left some of that deuterium unfused and not immediately fused again into helium. Any alternative must also explain the proportions of the various light elements and their isotopes. A few isotopes, such as lithium-7, were found to be present in amounts that differed from theory, but over time, these differences have been resolved by better observations.
5666:(BAO) which became embedded into the distribution of matter when photons decoupled. Unlike dark matter, ordinary matter can lose energy by many routes, which means that as it collapses, it can lose the energy which would otherwise hold it apart, and collapse more quickly, and into denser forms. Ordinary matter gathers where dark matter is denser, and in those places it collapses into clouds of mainly hydrogen gas. The first stars and galaxies form from these clouds. Where numerous galaxies have formed, galaxy clusters and superclusters will eventually arise. Large 1863: 5642: 1500: 5539:, formed within a few hundred million years after the Big Bang. These stars were the first source of visible light in the universe after recombination. Structures may have begun to emerge from around 150 million years, and early galaxies emerged from around 180 to 700 million years. As they emerged, the Dark Ages gradually ended. Because this process was gradual, the Dark Ages only ended fully at around 1 billion years, as the universe took on its present appearance. 5654: 3585:, once the rate of expansion had greatly slowed). The inflationary period marks a specific period when a very rapid change in scale occurred, but does not mean that it stayed the same at other times. More precisely, during inflation, the expansion accelerated. After inflation, and for about 9.8 billion years, the expansion was much slower and became slower yet over time (although it never reversed). About 4 billion years ago, it began slightly speeding up again. 5543: 692: 169: 11458: 6137: 6040: 2480: 56: 12152: 1757: 12176: 12128: 12102: 704: 5983:
since about 370,000 years of cosmic time, its behavior had been dominated by matter. During its matter-dominated era, the expansion of the universe had begun to slow down, as gravity reined in the initial outward expansion. But from about 9.8 billion years of cosmic time, observations show that the expansion of the universe slowly stops decelerating, and gradually begins to accelerate again, instead.
12164: 5338: 2334: 12140: 5301:. This amplifies the tiny inhomogeneities (irregularities) in the density of the universe which was left by cosmic inflation. Over time, slightly denser regions become denser and slightly rarefied (emptier) regions become more rarefied. Ordinary matter eventually gathers together faster than it would otherwise do, because of the presence of these concentrations of dark matter. 5866:
constraints, it is expected that quasars and first generation stars and galaxies were the main sources of energy. The current leading candidates from most to least significant are currently believed to be Population III stars (the earliest stars) (possibly 70%), dwarf galaxies (very early small high-energy galaxies) (possibly 30%), and a contribution from quasars (a class of
5263: = 3600), the universe's large-scale behavior becomes dominated by matter instead. This occurs because the energy density of matter begins to exceed both the energy density of radiation and the vacuum energy density. Around or shortly after 47,000 years, the densities of non-relativistic matter (atomic nuclei) and relativistic radiation (photons) become equal, the 3855:. As this field settled into its lowest energy state throughout the universe, it generated an enormous repulsive force that led to a rapid expansion of universe. Inflation explains several observed properties of the current universe that are otherwise difficult to account for, including explaining how today's universe has ended up so exceedingly 2770:, and B vector bosons (electroweak interactions) and H, H, H, H scalar bosons (Higgs interaction). In this picture, the vacuum expectation value of the Higgs field is zero (therefore, all fermions are massless), all electroweak bosons are massless (they had not yet subsumed a component of the Higgs field to become massive), and photons ( 2092: 5014:, due to the high densities and inhomogeneous conditions within the first second of cosmic time. Random fluctuations could lead to some regions becoming dense enough to undergo gravitational collapse, forming black holes. Current understandings and theories place tight limits on the abundance and mass of these objects. 5824:
structures existing during reionization, any absorption by neutral hydrogen is redshifted by various amounts, rather than by one specific amount, indicating when the absorption of then-ultraviolet light happened. These features make it possible to study the state of ionization at many different times in the past.
2102: 6748:≈ 350,000 yr in the Benchmark Model. (...) The relevant times of various events around the time of recombination are shown in Table 9.1. (...) Note that all these times are approximate, and are dependent on the cosmological model you choose. (I have chosen the Benchmark Model in calculating these numbers.)" 5479:—became embedded in the distribution of matter as it condensed, giving rise to a very slight preference in distribution of large-scale objects. Therefore, the cosmic microwave background is a picture of the universe at the end of this epoch including the tiny fluctuations generated during inflation (see 2483: 6343:
may also occur that are extremely unlikely to be seen on a timescale smaller than trillions of years. These may also lead to unpredictable changes to the state of the universe which would not be likely to be significant on any smaller timescale. For example, on a timescale of millions of trillions of
5827:
Reionization began as "bubbles" of ionized hydrogen which became larger over time until the entire intergalactic medium was ionized, when the absorption lines by neutral hydrogen become rare. The absorption was due to the general state of the universe (the intergalactic medium) and not due to passing
5692:
Structure formation in the Big Bang model proceeds hierarchically, due to gravitational collapse, with smaller structures forming before larger ones. The earliest structures to form are the first stars (known as Population III stars), dwarf galaxies, and quasars (which are thought to be bright, early
3563:
may allow a more correct description of that event, but no such theory has yet been developed. After that moment, all distances throughout the universe began to increase from (perhaps) zero because the FLRW metric itself changed over time, affecting distances between all non-bound objects everywhere.
2482: 5519:
After recombination and decoupling, the universe was transparent and had cooled enough to allow light to travel long distances, but there were no light-producing structures such as stars and galaxies. Stars and galaxies are formed when dense regions of gas form due to the action of gravity, and this
5406:
Directly combining in a low energy state (ground state) is less efficient, so these hydrogen atoms generally form with the electrons still in a high-energy state, and once combined, the electrons quickly release energy in the form of one or more photons as they transition to a low energy state. This
5368:
in the universe was at a temperature where it formed a hot ionized plasma. Most of the photons in the universe interacted with electrons and protons, and could not travel significant distances without interacting with ionized particles. As a result, the universe was opaque or "foggy". Although there
4953:
At approximately 1 second after the Big Bang neutrinos decouple and begin travelling freely through space. As neutrinos rarely interact with matter, these neutrinos still exist today, analogous to the much later cosmic microwave background emitted during recombination, around 370,000 years after the
4765:
and photon) now begin to manifest differently in the present universe. Before electroweak symmetry breaking these bosons were all massless particles and interacted over long distances, but at this point the W and Z bosons abruptly become massive particles only interacting over distances smaller than
3547:
If the FLRW metric equations are assumed to be valid all the way back to the beginning of the universe, they can be followed back in time, to a point where the equations suggest all distances between objects in the universe were zero or infinitesimally small. (This does not necessarily mean that the
2487: 2486: 2481: 6269:
For any value of the dark energy content of the universe where the negative pressure ratio is less than -1, the expansion rate of the universe will continue to increase without limit. Gravitationally bound systems, such as clusters of galaxies, galaxies, and ultimately the Solar System will be torn
5982:
From about 9.8 billion years of cosmic time, the universe's large-scale behavior is believed to have gradually changed for the third time in its history. Its behavior had originally been dominated by radiation (relativistic constituents such as photons and neutrinos) for the first 47,000 years, and
5935:
of the California Institute of Technology at Pasadena and his team found six star forming galaxies about 13.2 billion light-years away and therefore created when the universe was only 500 million years old. Only about 10 of these extremely early objects are currently known. More recent observations
5661:
The matter in the universe is around 84.5% cold dark matter and 15.5% "ordinary" matter. Since the start of the matter-dominated era, dark matter has gradually been gathering in huge spread-out (diffuse) filaments under the effects of gravity. Ordinary matter eventually gathers together faster than
5407:
release of photons is known as photon decoupling. Some of these decoupled photons are captured by other hydrogen atoms, the remainder remain free. By the end of recombination, most of the protons in the universe have formed neutral atoms. This change from charged to neutral particles means that the
5232:
The amounts of each light element in the early universe can be estimated from old galaxies, and is strong evidence for the Big Bang. For example, the Big Bang should produce about 1 neutron for every 7 protons, allowing for 25% of all nucleons to be fused into helium-4 (2 protons and 2 neutrons out
4770:
After electroweak symmetry breaking, the fundamental interactions we know of—gravitation, electromagnetic, weak and strong interactions—have all taken their present forms, and fundamental particles have their expected masses, but the temperature of the universe is still too high to allow the stable
3722:
In everyday terms, as the universe cools, it becomes possible for the quantum fields that create the forces and particles around us, to settle at lower energy levels and with higher levels of stability. In doing so, they completely shift how they interact. Forces and interactions arise due to these
3576:
theories propose that inflation lasts forever throughout most of the universe, making the notion of "N seconds since Big Bang" ill-defined. Therefore, the earliest stages are an active area of research and based on ideas that are still speculative and subject to modification as scientific knowledge
2856:
The forces of the Standard Model have reorganized into the "low-temperature" form: Higgs and electroweak interactions rearranged into massive Higgs boson H, weak force carried by massive W, W, and Z bosons, and electromagnetism carried by massless photons. Higgs field has nonzero vacuum expectation
5467:
as the universe expanded over billions of years, so that they gradually changed from visible light to radio waves. These same photons can still be detected as radio waves today. They form the cosmic microwave background, and they provide crucial evidence of the early universe and how it developed.
5387:
atoms. Neutral helium nuclei then start to form at around 100,000 years, with neutral hydrogen formation peaking around 260,000 years. This process is known as recombination. The name is slightly inaccurate and is given for historical reasons: in fact the electrons and atomic nuclei were combining
5126:
The lepton epoch follows a similar path to the earlier hadron epoch. Initially leptons and antileptons are produced in pairs. About 10 seconds after the Big Bang the temperature of the universe falls to the point at which new lepton–antilepton pairs are no longer created and most remaining leptons
4800:
began approximately 10 seconds after the Big Bang. This was the period in the evolution of the early universe immediately after electroweak symmetry breaking, when the fundamental interactions of gravitation, electromagnetism, the strong interaction and the weak interaction had taken their present
3866:
remaining from the grand unification epoch were now distributed very thinly across the universe. However, the huge potential energy of the inflaton field was released at the end of the inflationary epoch, as the inflaton field decayed into other particles, known as "reheating". This heating effect
3707:
which define the universe's fundamental forces and particles also completely change their behaviors and structures when the temperature/energy falls below a certain point. This is not apparent in everyday life, because it only happens at far higher temperatures than usually seen in the present-day
3646:
In inflationary models of cosmology, times before the end of inflation (roughly 10 seconds after the Big Bang) do not follow the same timeline as in traditional big bang cosmology. Models that aim to describe the universe and physics during the Planck epoch are generally speculative and fall under
10444:
Hinshaw, G.; Weiland, J. L.; Hill, R. S.; Odegard, N.; Larson, D.; Bennett, C. L.; Dunkley, J.; Gold, B.; Greason, M. R.; Jarosik, N.; Komatsu, E.; Nolta, M. R.; Page, L.; Spergel, D. N.; Wollack, E.; Halpern, M.; Kogut, A.; Limon, M.; Meyer, S. S.; Tucker, G. S.; Wright, E. L. (1 February 2009).
4965:
predictions of the helium abundance, and from anisotropies in the cosmic microwave background (CMB). One of these predictions is that neutrinos will have left a subtle imprint on the CMB. It is well known that the CMB has irregularities. Some of the CMB fluctuations were roughly regularly spaced,
4877:
would have formed in equal numbers. However, this does not seem to be what happened—as far as we know, the universe was left with far more baryons than antibaryons. In fact, almost no antibaryons are observed in nature. It is not clear how this came about. Any explanation for this phenomenon must
2903:
are in thermal equilibrium, and outnumber baryons by about 10:1. Close to the end of this epoch, only light stable baryons (protons and neutrons) remain. Due to sufficiently high density of leptons, protons and neutrons rapidly change into one another under the action of weak force. Due to higher
2455:
about five or six billion years ago, when the universe entered the modern "dark-energy-dominated era" where the universe's expansion is now accelerating rather than decelerating. The present-day universe is understood quite well, but beyond about 100 billion years of cosmic time (about 86 billion
5956:
The universe has appeared much the same as it does now, for many billions of years. It will continue to look similar for many more billions of years into the future. The Galactic disk of the Milky Way is estimated to have been formed 8.8 ± 1.7 billion years ago but only the age of the Sun, 4.567
5723:
These Population III stars are also responsible for turning the few light elements that were formed in the Big Bang (hydrogen, helium and small amounts of lithium) into many heavier elements. They can be huge as well as perhaps small—and non-metallic (no elements except hydrogen and helium). The
1893:
that commences gradually between about 250–500 million years and finishes by about 1 billion years (exact timings still being researched). The Dark Ages only fully came to an end at about 1 billion years as the universe gradually transitioned into the universe we see around us today, but denser,
7253:"A version of this article appears in print on March 18, 2014, Section A, Page 1 of the New York edition with the headline: Space Ripples Reveal Big Bang’s Smoking Gun." The online version of this article was originally titled "Detection of Waves in Space Buttresses Landmark Theory of Big Bang". 5823:
as it did before recombination, but the expansion of the universe and clumping of gas into galaxies resulted in a concentration too low to make the universe fully opaque by the time of reionization. Because of the immense distance travelled by light (billions of light years) to reach Earth from
3614:
is an era in traditional (non-inflationary) Big Bang cosmology immediately after the event which began the known universe. During this epoch, the temperature and average energies within the universe were so high that subatomic particles could not form. The four fundamental forces that shape the
3035:
also form. At the end of this epoch, the spherical volume of space which will become the observable universe is about 300 light-years in radius, baryonic matter density is on the order of 4 grams per m (about 0.3% of sea level air density)—however, most energy at this time is in electromagnetic
5873:
However, by this time, matter had become far more spread out due to the ongoing expansion of the universe. Although the neutral hydrogen atoms were again ionized, the plasma was much more thin and diffuse, and photons were much less likely to be scattered. Despite being reionized, the universe
5185:
Atomic nuclei will easily unbind (break apart) above a certain temperature, related to their binding energy. From about 2 minutes, the falling temperature means that deuterium no longer unbinds, and is stable, and starting from about 3 minutes, helium and other elements formed by the fusion of
3580:
Although a specific "inflationary epoch" is highlighted at around 10 seconds, observations and theories both suggest that distances between objects in space have been increasing at all times since the moment of the Big Bang, and are still increasing (with the exception of gravitationally bound
2488: 6331:
The effect would be that the quantum fields that underpin all forces, particles and structures, would undergo a transition to a more stable form. New forces and particles would replace the present ones we know of, with the side effect that all current particles, forces and structures would be
5865:
or shorter, implying that the sources must have produced significant amount of ultraviolet and higher energy. Protons and electrons will recombine if energy is not continuously provided to keep them apart, which also sets limits on how numerous the sources were and their longevity. With these
5986:
While the precise cause is not known, the observation is accepted as correct by the cosmologist community. By far the most accepted understanding is that this is due to an unknown form of energy which has been given the name "dark energy". "Dark" in this context means that it is not directly
3890:
After inflation ended, the universe continued to expand, but at a decelerating rate. About 4 billion years ago the expansion gradually began to speed up again. This is believed to be due to dark energy becoming dominant in the universe's large-scale behavior. It is still expanding today.
5810:
Reionization is evidenced from observations of quasars. Quasars are a form of active galaxy, and the most luminous objects observed in the universe. Electrons in neutral hydrogen have specific patterns of absorbing ultraviolet photons, related to electron energy levels and called the
5523:
This period, known as the Dark Ages, began around 370,000 years after the Big Bang. During the Dark Ages, the temperature of the universe cooled from some 4000 K to about 60 K (3727 °C to about −213 °C), and only two sources of photons existed: the photons released during
5156:
particles.) Therefore, the energy of the universe, and its overall behavior, is dominated by its photons. These photons continue to interact frequently with charged particles, i.e., electrons, protons and (eventually) nuclei. They continue to do so for about the next 370,000 years.
3882:
imply that the inflationary era lasted less than 10 seconds. To explain the observed homogeneity of the universe, the duration in these models must be longer than 10 seconds. Therefore, in inflationary cosmology, the earliest meaningful time "after the Big Bang" is the time of the
5987:
observed, but its existence can be deduced by examining the gravitational effect it has on the universe. Research is ongoing to understand this dark energy. Dark energy is now believed to be the single largest component of the universe, as it constitutes about 68.3% of the entire
5806:
As the first stars, dwarf galaxies and quasars gradually form, the intense radiation they emit reionizes much of the surrounding universe; splitting the neutral hydrogen atoms back into a plasma of free electrons and protons for the first time since recombination and decoupling.
5258:
Until now, the universe's large-scale dynamics and behavior have been determined mainly by radiation—meaning, those constituents that move relativistically (at or near the speed of light), such as photons and neutrinos. As the universe cools, from around 47,000 years (redshift
3723:
fields, so the universe can behave very differently above and below a phase transition. For example, in a later epoch, a side effect of one phase transition is that suddenly, many particles that had no mass at all acquire a mass (they begin to interact differently with the
6238:, proton decay after at least 10 years will convert the remaining interstellar gas and stellar remnants into leptons (such as positrons and electrons) and photons. Some positrons and electrons will then recombine into photons. In this case, the universe has reached a high- 2485: 5874:
remained largely transparent during reionization due how sparse the intergalactic medium was. Reionization gradually ended as the intergalactic medium became virtually completely ionized, although some regions of neutral hydrogen do exist, creating Lyman-alpha forests.
4492: 1585:
Tiny ripples in the universe at this stage are believed to be the basis of large-scale structures that formed much later. Different stages of the very early universe are understood to different extents. The earlier parts are beyond the grasp of practical experiments in
3909:
which was interpreted as clear experimental evidence for the theory of inflation. However, on 19 June 2014, lowered confidence in confirming the cosmic inflation findings was reported and finally, on 2 February 2015, a joint analysis of data from BICEP2/Keck and the
3548:
universe was physically small at the Big Bang, although that is one of the possibilities.) This provides a model of the universe which matches all current physical observations extremely closely. This initial period of the universe's chronology is called the "
8238:
Kusakabe, Motohiko; Kim, K. S.; Cheoun, Myung-Ki; et al. (September 2014). "Revised Big Bang Nucleosynthesis with Long-lived, Negatively Charged Massive Particles: Updated Recombination Rates, Primordial Be Nucleosynthesis, and Impact of New Li Limits".
5308:
energy by radiation either. Losing energy is necessary for particles to collapse into dense structures beyond a certain point. Therefore, dark matter collapses into huge but diffuse filaments and haloes, and not into stars or planets. Ordinary matter, which
3782:
may be considered to start before or after the inflationary epoch. In some models it is described as including the inflationary epoch. In other models, the electroweak epoch is said to begin after the inflationary epoch ended, at roughly 10 seconds.
5759:
to be even older, at a time some 480 million years after the Big Bang or about halfway through the Dark Ages 13.2 billion years ago. In December 2012 the first candidate galaxies dating to before reionization were discovered, when UDFy-38135539,
1927: 2329:{\displaystyle ={}_{2}F_{1}\left({\frac {1}{2}},{\frac {1}{2}};{\frac {3}{2}};-{\frac {\Omega _{\Lambda }}{\Omega _{m}\cdot (1+z)^{3}}}\right)\cdot {\frac {2\cdot 977.8}{3\cdot {\sqrt {\Omega _{m}}}\cdot (1+z)^{3/2}\cdot H_{0}}}\,{\text{Gyr}}.} 6468:
12 gauge bosons, 2 Higgs-sector scalars, 3 left-handed quarks x 2 SU(2) states x 3 SU(3) states and 3 left-handed leptons x 2 SU(2) states, 6 right-handed quarks x 3 SU(3) states and 6 right-handed leptons, all but the scalar having 2 spin
6289:
In the opposite of the "Big Rip" scenario, the expansion of the universe would at some point be reversed and the universe would contract towards a hot, dense state. This is a required element of oscillatory universe scenarios, such as the
6174:
If the expansion of the universe continues and it stays in its present form, eventually all but the nearest galaxies will be carried away from us by the expansion of space at such a velocity that the observable universe will be limited to
9521:"JWST Spots Giant Black Holes All Over the Early Universe – Giant black holes were supposed to be bit players in the early cosmic story. But recent James Webb Space Telescope observations are finding an unexpected abundance of the beasts" 5852:
These observations have narrowed down the period of time during which reionization took place, but the source of the photons that caused reionization is still not completely certain. To ionize neutral hydrogen, an energy larger than 13.6
5936:
have shown these ages to be shorter than previously indicated. The most distant galaxy observed as of October 2016, GN-z11, has been reported to be 32 billion light-years away, a vast distance made possible through spacetime expansion (
3823:
At this point of the very early universe, the universe is thought to have expanded by a factor of at least 10 in volume. This is equivalent to a linear increase of at least 10 times in every spatial dimension—equivalent to an object 1
2410: 6274:—the smallest size for which the notion of "space" currently has a meaning—will no longer be able to occur as the fabric of spacetime itself is pulled apart and the universe as we know it will end in an unusual kind of singularity. 3105:. Photons are no longer in thermal equilibrium with matter and the universe first becomes transparent. Recombination lasts for about 100 ka, during which universe is becoming more and more transparent to photons. The photons of the 3109:
radiation originate at this time. The spherical volume of space which will become the observable universe is 42 million light-years in radius at this time. The baryonic matter density at this time is about 500 million hydrogen and
5189:
The short duration and falling temperature means that only the simplest and fastest fusion processes can occur. Only tiny amounts of nuclei beyond helium are formed, because nucleosynthesis of heavier elements is difficult and
4919:
Theory predicts that about 1 neutron remained for every 6 protons, with the ratio falling to 1:7 over time due to neutron decay. This is believed to be correct because, at a later stage, the neutrons and some of the protons
4339: 4707: 7802: 5844:
that show the presence of large amounts of neutral hydrogen disappear. The intergalactic medium remains predominantly ionized to the present day, the exception being some remaining neutral hydrogen clouds, which cause
3281:
Farthest observable photons at this moment are CMB photons. They arrive from a sphere with the radius of 46 billion light-years. The spherical volume inside it is commonly referred to as the observable universe.
6294:, although a Big Crunch does not necessarily imply an oscillatory universe. Current observations suggest that this model of the universe is unlikely to be correct, and the expansion will continue or even accelerate. 5361:. Recombination describes the ionized particles combining to form the first neutral atoms, and decoupling refers to the photons released ("decoupled") as the newly formed atoms settle into more stable energy states. 2635:
is the physical scale beyond which current physical theories may not apply and cannot be used to reliably predict any events. During the Planck epoch, cosmology and physics are assumed to have been dominated by the
6270:
apart. Eventually the expansion will be so rapid as to overcome the electromagnetic forces holding molecules and atoms together. Even atomic nuclei will be torn apart. Finally, forces and interactions even on the
5705:: that is, all structures could be understood as small deviations from a perfect homogeneous universe. This is computationally relatively easy to study. At this point non-linear structures begin to form, and the 1854:
after mere millions of years. Other theories suggest that they may have included small stars, some perhaps still burning today. In either case, these early generations of supernovae created most of the everyday
1819:
At some point around 200 to 500 million years, the earliest generations of stars and galaxies form (exact timings are still being researched), and early large structures gradually emerge, drawn to the foam-like
5775:
and oxygen. This is evidence that by the time quasars formed, a massive phase of star formation had already taken place, including sufficient generations of Population III stars to give rise to these elements.
4907:
The quark–gluon plasma that composes the universe cools until hadrons, including baryons such as protons and neutrons, can form. Initially, hadron/anti-hadron pairs could form, so matter and antimatter were in
10040: 5524:
recombination/decoupling (as neutral hydrogen atoms formed), which we can still detect today as the cosmic microwave background (CMB), and photons occasionally released by neutral hydrogen atoms, known as the
4886:. Current particle physics suggests asymmetries under which these conditions would be met, but these asymmetries appear to be too small to account for the observed baryon-antibaryon asymmetry of the universe. 5923:
observations has identified a number of small galaxies merging to form larger ones, at 800 million years of cosmic time (13 billion years ago). (This age estimate is now believed to be slightly overstated).
1796:, so there were no new sources of light. The only photons (electromagnetic radiation, or "light") in the universe were those released during decoupling (visible today as the cosmic microwave background) and 5296:
in the universe. In the early universe, dark matter gradually gathers in huge filaments under the effects of gravity, collapsing faster than ordinary (baryonic) matter because its collapse is not slowed by
4131: 5735:
of their formation and evolution. Fortunately, observations of the cosmic microwave background radiation can be used to date when star formation began in earnest. Analysis of such observations made by the
4021:
also happened at this stage, creating an imbalance between matter and anti-matter (though in extensions to this model this may have happened earlier). Little is known about the details of these processes.
3920:
microwave space telescope concluded that the statistical "significance is too low to be interpreted as a detection of primordial B-modes" and can be attributed mainly to polarized dust in the Milky Way.
5657:
Another Hubble image shows an infant galaxy forming nearby, which means this happened very recently on the cosmological timescale. This shows that new galaxy formation in the universe is still occurring.
5815:. Ionized hydrogen does not have electron energy levels of this kind. Therefore, light travelling through ionized hydrogen and neutral hydrogen shows different absorption lines. Ionized hydrogen in the 3572:
During the earliest moments of cosmic time, the energies and conditions were so extreme that current knowledge can only suggest possibilities, which may turn out to be incorrect. To give one example,
3559:
from the FLRW metric is interpreted to mean that current theories are inadequate to describe what actually happened at the start of the Big Bang itself. It is widely believed that a correct theory of
7240: 5267:, which determines the smallest structures that can form (due to competition between gravitational attraction and pressure effects), begins to fall and perturbations, instead of being wiped out by 4359: 9320:; Barlow, Thomas A.; et al. (13 February 1998). "The Metal Contents of Very Low Column Density Lyman-alpha Clouds: Implications for the Origin of Heavy Elements in the Intergalactic Medium". 7404:"A version of this article appears in print on June 20, 2014, Section A, Page 16 of the New York edition with the headline: Astronomers Stand by Their Big Bang Finding, but Leave Room for Debate." 3746:. There is no hard evidence yet that such a combined force existed, but many physicists believe it did. The physics of this electrostrong interaction would be described by a Grand Unified Theory. 5182:
beyond hydrogen ("Big Bang nucleosynthesis"). About 25% of the protons, and all the neutrons fuse to form deuterium, a hydrogen isotope, and most of the deuterium quickly fuses to form helium-4.
2484: 2420:
From 1 billion years, and for about 12.8 billion years, the universe has looked much as it does today and it will continue to appear very similar for many billions of years into the future. The
5764:
and GN-z11 galaxies were found to be around 380–550 million years after the Big Bang, 13.4 billion years ago and at a distance of around 32 billion light-years (9.8 billion parsecs).
5459:. This would have been visible to the eye as a pale yellow/orange tinted, or "soft", white color. Over billions of years since decoupling, as the universe has expanded, the photons have been 5520:
takes a long time within a near-uniform density of gas and on the scale required, so it is estimated that stars did not exist for perhaps hundreds of millions of years after recombination.
4977:
In 2015, it was reported that such shifts had been detected in the CMB. Moreover, the fluctuations corresponded to neutrinos of almost exactly the temperature predicted by Big Bang theory (
9799: 5052: 3703:
of ordinary matter. At certain temperatures/energies, water molecules change their behavior and structure, and they will behave completely differently. Like steam turning to water, the
5689:, and of other changes to the light from ancient objects, allow the timing for reionization and its eventual end to be narrowed down. But these are all still areas of active research. 3878:
In non-traditional versions of Big Bang theory (known as "inflationary" models), inflation ended at a temperature corresponding to roughly 10 seconds after the Big Bang, but this does
5463:
from visible light to radio waves (microwave radiation corresponding to a temperature of about 2.7 K). Red shifting describes the photons acquiring longer wavelengths and lower
7592:"A version of this article appears in print on Jan. 31, 2015, Section A, Page 11 of the New York edition with the headline: Speck of Interstellar Dust Obscures Glimpse of Big Bang." 3847:
The mechanism that drove inflation remains unknown, although many models have been put forward. In several of the more prominent models, it is thought to have been triggered by the
3749:
The grand unification epoch ended with a second phase transition, as the electrostrong interaction in turn separated, and began to manifest as two separate interactions, called the
5600:
underway to detect the faint 21 cm spin line radiation, as it is in principle an even more powerful tool than the cosmic microwave background for studying the early universe.
4596:. Going back in time and higher in energy, and assuming no new physics at these energies, a careful estimate gives that thermalization was first possible when the temperature was: 1708:. At around 47,000 years, as the universe cools, its behavior begins to be dominated by matter rather than radiation. At around 100,000 years, after the neutral helium atoms form, 6998: 4189: 7819:
Follin, Brent; Knox, Lloyd; Millea, Marius; et al. (26 August 2015). "First Detection of the Acoustic Oscillation Phase Shift Expected from the Cosmic Neutrino Background".
7391: 5086:
calculated in 1971 that primordial black holes could have a mass as small as 10 g. But they can have any size, so they could also be large, and may have contributed to the
4954:
Big Bang. The neutrinos from this event have a very low energy, around 10 times the amount of those observable with present-day direct detection. Even high-energy neutrinos are
5289:
exists and dominates the universe, but since the exact nature of dark matter is still not understood, the Big Bang theory does not presently cover any stages in its formation.
3862:
It is not known exactly when the inflationary epoch ended, but it is thought to have been between 10 and 10 seconds after the Big Bang. The rapid expansion of space meant that
4928:
called deuterium, helium and other elements, which can be measured. A 1:7 ratio of hadrons would indeed produce the observed element ratios in the early and current universe.
2087:{\displaystyle {\text{ageAtRedshift}}(z)=\int _{z}^{\infty }{\frac {1}{(1+z')\cdot {\sqrt {\Omega _{\Lambda }+\Omega _{m}\cdot (1+z')^{3}}}}}\,dz'\cdot {\frac {977.8}{H_{0}}}} 7579: 3463:
will end as stars eventually die and fewer are born to replace them, leading to a darkening universe. Various theories suggest a number of subsequent possibilities. Assuming
4912:. However, as the temperature of the universe continued to fall, new hadron/anti-hadron pairs were no longer produced, and most of the newly formed hadrons and anti-hadrons 9560: 3851:
of the strong and electroweak interactions which ended the grand unification epoch. One of the theoretical products of this phase transition was a scalar field called the
3786:
According to traditional Big Bang cosmology, the electroweak epoch began 10 seconds after the Big Bang, when the temperature of the universe was low enough (10 K) for the
8966: 6862: 9530: 4835:
The quark epoch ended when the universe was about 10 seconds old, when the average energy of particle interactions had fallen below the mass of the lightest hadron, the
3790:
to begin to manifest as two separate interactions, the strong and the electroweak interactions. (The electroweak interaction will also separate later, dividing into the
9675: 5209:. By mass, the resulting matter is about 75% hydrogen nuclei, 25% helium nuclei, and perhaps 10 by mass of lithium-7. The next most common stable isotopes produced are 4247: 9916: 5178:
Between about 2 and 20 minutes after the Big Bang, the temperature and pressure of the universe allowed nuclear fusion to occur, giving rise to nuclei of a few light
4209: 4594: 4540: 11903: 10247:
Stone, Michael (15 December 1976). "Lifetime and decay of 'excited vacuum' states of a field theory associated with nonabsolute minima of its effective potential".
6661: 5205:
Therefore, the only stable nuclides created by the end of Big Bang nucleosynthesis are protium (single proton/hydrogen nucleus), deuterium, helium-3, helium-4, and
5072: 4916:
each other, giving rise to pairs of high-energy photons. A comparatively small residue of hadrons remained at about 1 second of cosmic time, when this epoch ended.
3525: 2758:
Before temperature falls below 150 GeV, the average energy of particle interactions is high enough that it's more succinct to describe them as an exchange of W
293: 7777: 6250:(Lord Kelvin), who extrapolated the classical theory of heat and irreversibility (as embodied in the first two laws of thermodynamics) to the universe as a whole. 9344:; Illingworth, Garth D.; Oesch, Pascal A.; et al. (10 June 2012). "Lower-luminosity Galaxies Could Reionize the Universe: Very Steep Faint-end Slopes to the 6183:. In the very long term (after many trillions—thousands of billions—of years, cosmic time), the Stelliferous Era will end, as stars cease to be born and even the 2350: 6222:
In the case of indefinitely continuing cosmic expansion, the energy density in the universe will decrease until, after an estimated time of 10 years, it reaches
1894:
hotter, more intense in star formation, and more rich in smaller (particularly unbarred) spiral and irregular galaxies, as opposed to giant elliptical galaxies.
8110: 4560: 6219:
As expansion continues, the universe becomes larger, colder, and more dilute; in time, all structures eventually decompose to subatomic particles and photons.
5532:; from that time until the first stars, there were no visible light photons. Other than perhaps some rare statistical anomalies, the universe was truly dark. 5411:
photons can travel before capture in effect becomes infinite, so any decoupled photons that have not been captured can travel freely over long distances (see
5074:
is the average density of the universe. Several mechanisms could produce dense regions meeting this criterion during the early universe, including reheating,
9820: 9087: 6234:. The universe in this scenario will cease to be able to support life much earlier than this, after some 10 years or so, when star formation ceases. In some 5724:
larger stars have very short lifetimes compared to most Main Sequence stars we see today, so they commonly finish burning their hydrogen fuel and explode as
6348:
phenomena would appear to be common, and quantum (or other) phenomena so unlikely that they might occur just once in a trillion years may occur many times.
9644: 8996: 7221: 3080:; temperature is too low to create electron-positron pairs (or any other pairs of massive particles), but too high for the binding of electrons to nuclei. 8909: 6226:
and no more structure will be possible. This will happen only after an extremely long time because first, some (less than 0.1%) matter will collapse into
8614: 5202:-7 and -8 are formed, but these are unstable and are quickly lost again. A small amount of deuterium is left unfused because of the very short duration. 3798:
interactions.) The exact point where electrostrong symmetry was broken is not certain, owing to speculative and as yet incomplete theoretical knowledge.
10036:"On the Dynamical Theory of Heat, with numerical results deduced from Mr. Joule's equivalent of a Thermal Unit, and M. Regnault's Observations on Steam" 5662:
it would otherwise do, because of the presence of these concentrations of dark matter. It is also slightly more dense at regular distances due to early
11836: 10963: 6151:
There are several competing scenarios for the long-term evolution of the universe. Which of them will happen, if any, depends on the precise values of
664: 6286:
Expansion eventually slows and halts, then reverses as all matter accelerates towards its common centre. Currently considered to be likely incorrect.
5585:, launched December 2021, is designed to detect objects up to 100 times fainter than Hubble, and much earlier in the history of the universe, back to 5528:. The hydrogen spin line is in the microwave range of frequencies, and within 3 million years, the CMB photons had redshifted out of visible light to 5399:, a planetary nebula within this galaxy. (Much later, atomic hydrogen reacted with helium hydride to create molecular hydrogen, the fuel required for 4259: 11041: 10391: 8350:
Coc, Alain; Uzan, Jean-Philippe; Vangioni, Elisabeth (October 2014). "Standard big bang nucleosynthesis and primordial CNO Abundances after Planck".
8017: 5127:
and antileptons quickly annihilated each other, giving rise to pairs of high-energy photons, and leaving a small residue of non-annihilated leptons.
4509:
is orders of magnitude lower than the rate of collisions per particle species. This means there was plenty of time for thermalization at this stage.
3544:
are assumed to be true. The FLRW metric very closely matches overwhelming other evidence, showing that the universe has expanded since the Big Bang.
9552: 11846: 9015: 4602: 3836:) in length, expanding to one approximately 10.6 light-years (100 trillion kilometres) long in a tiny fraction of a second. This phase of the 1800:
occasionally emitted by hydrogen atoms. The decoupled photons would have filled the universe with a brilliant pale orange glow at first, gradually
11120: 6980: 3959:, the remains of reheating. From this point onwards the physics of the early universe is much better understood, and the energies involved in the 1905:
observed with a redshift of z=13.2, from 13.4 billion years ago. The JWST was designed to observe as far as z≈20 (180 million years cosmic time).
10959: 8106: 5740:
microwave space telescope in 2016 concluded that the first generation of stars may have formed from around 300 million years after the Big Bang.
5728:
after mere millions of years, seeding the universe with heavier elements over repeated generations. They mark the start of the Stelliferous Era.
5449:. The entire universe would have appeared as a brilliantly glowing fog of a color similar to this and a temperature of 4000 K, at the time. 10425: 8069: 5483:), and the spread of objects such as galaxies in the universe is an indication of the scale and size of the universe as it developed over time. 11180: 10066: 9929:"A version of this article appears in print on Feb. 21, 2017, Section D, Page 1 of the New York edition with the headline: A Runaway Universe." 8352: 8204: 8143: 6401: 5685:) date from around 380–400 million years, suggesting surprisingly fast gas cloud condensation and stellar birth rates; and observations of the 2545: 31: 6543:
in 2015 published the estimate of 13.799 ± 0.021 billion years ago (68% confidence interval). See PDF: page 32, Table 4, Age/Gyr, last column.
2451:
throughout the visible universe) is a constant factor tending to accelerate the expansion of the universe. The universe's expansion passed an
10144: 7744: 5564: 5503: 3251: 4961:
However, Big Bang cosmology makes many predictions about the CνB, and there is very strong indirect evidence that the CνB exists, both from
4775:, or molecules. (More exactly, any composite particles that form by chance, almost immediately break up again due to the extreme energies.) 11718: 7266:
Ade, Peter A.R.; et al. (BICEP2 Collaboration) (20 June 2014). "Detection of B-Mode Polarization at Degree Angular Scales by BICEP2".
5229:("CNO"), but these have predicted abundances of between 5 and 30 parts in 10 by mass, making them essentially undetectable and negligible. 3404: 2527: 2437: 1458: 734: 10222: 10013: 5681:, are still being actively researched, with new findings published periodically. As of 2019: the earliest confirmed galaxies (for example 11302: 9768: 9060: 8443: 6945: 6840: 6727:, pp. 194–195. "Without going into the details of the non-equilibrium physics, let's content ourselves by saying, in round numbers, 6104: 6057: 3631:—comprised a single fundamental force. Little is understood about physics in this environment. Traditional big bang cosmology predicts a 3400: 2433: 1257: 120: 73: 11775: 10387: 7372: 6413: 6076: 3460: 2549: 92: 11209: 3734:(GUT), the grand unification epoch began with a phase transition of this kind, when gravitation separated from the universal combined 3412: 2465: 11095: 7194: 4046: 807: 9520: 7533: 7104: 6566: 3947:
would then no longer be equal. This very high energy could explain why no superpartners of known particles have ever been observed.
1381: 10395: 9695:; Richard, Johan; et al. (1 July 2007). "A Keck Survey for Gravitationally Lensed Lyα Emitters in the Redshift Range 8.5 < 9460:> 5.8 Quasars in the Sloan Digital Sky Survey. I. Discovery of Three New Quasars and the Spatial Density of Luminous Quasars at 9261:
Gnedin, Nickolay Y.; Ostriker, Jeremiah P. (10 September 1997). "Reionization of the Universe and the Early Production of Metals".
8677: 7560: 7425: 7345: 11265: 7601:
Enqvist, K., & Sirkka, J. (1993). Chemical equilibrium in QCD gas in the early universe. Physics Letters B, 314(3–4), 298–302.
6083: 5636: 4742:
happened. So far as we know, it was the penultimate symmetry breaking event in the formation of the universe, the final one being
99: 6191:) gradually decompose back to their constituent particles and then into subatomic particles and very low-level photons and other 3119: 1813: 17: 5395:, the first molecule, to form. In April 2019, this molecule was first announced to have been observed in interstellar space, in 5017:
Typically, primordial black hole formation requires density contrasts (regional variations in the universe's density) of around
1908:
To derive the age of the universe from redshift, numeric integration or its closed-form solution involving the special Gaussian
11923: 4487:{\displaystyle H\approx {\sqrt {8\pi G\rho /3}}\approx {\sqrt {{\frac {8\pi G}{3c^{2}}}xnk_{B}T}}\approx ~3\cdot 10^{10}s^{-1}} 3396: 994: 5903:
Matter continues to draw together under the influence of gravity, to form galaxies. The stars from this time period, known as
5767:
Quasars provide some additional evidence of early structure formation. Their light shows evidence of elements such as carbon,
3611: 11496: 11261: 11233: 10887: 10848: 10725: 10677: 10643: 10608: 10566: 10524: 10403: 9667: 8296: 8177: 8065: 7100: 6380: 3375: 3328: 2557: 6090: 3185:
The earliest known galaxies existed by about 380 Ma. Galaxies coalesce into "proto-clusters" from about 1 Ga (redshift
1728:. At about 370,000 years, neutral hydrogen atoms finish forming ("recombination"), and as a result the universe also became 106: 12087: 9897: 8765: 7149: 6430: 5152:
in the universe is left in the form of photons. (Much of the rest of its mass–energy is in the form of neutrinos and other
5011: 3292: 3114:
atoms per m, approximately a billion times higher than today. This density corresponds to pressure on the order of 10 atm.
468: 2443:
The thinning of matter over time reduces the ability of gravity to decelerate the expansion of the universe; in contrast,
12016: 11164: 11045: 10935: 8724: 8181: 6242:
state consisting of a bath of particles and low-energy radiation. It is not known however whether it eventually achieves
4754:, all elementary particles interacting with the Higgs field become massive, having been massless at higher energy levels. 3990:, at a temperature of around 10 K, approximately 10 seconds after the Big Bang. The electromagnetic and weak interaction 3688:
As the universe expanded and cooled, it crossed transition temperatures at which forces separated from each other. These
6424: 5249: 3871:. In other models, reheating is often considered to mark the start of the electroweak epoch, and some theories, such as 3552:". The Standard Model of cosmology attempts to explain how the universe physically developed once that moment happened. 3336: 981: 11462: 9671: 8761: 6407: 6072: 4014: 3837: 3217: 2541: 2537: 88: 9586: 5798: 4879: 3903: 1897:
While early stars have not been observed, galaxies have been observed from 329 million years since the Big Bang, with
11851: 11011: 10991: 10057: 10031: 9600: 9354: 9019: 8098: 7953:
Harada, Tomohiro; Yoo, Chul-Moon; Khori, Kazunori (15 October 2013). "Threshold of primordial black hole formation".
6247: 6198:
Ultimately, in the extreme future, the following scenarios have been proposed for the ultimate fate of the universe:
6168: 6123: 5816: 5304:
The properties of dark matter that allow it to collapse quickly without radiation pressure, also mean that it cannot
4771:
formation of many particles we now see in the universe, so there are no protons or neutrons, and therefore no atoms,
3648: 677: 139: 6262:
Expansion of space accelerates and at some point becomes so extreme that even subatomic particles and the fabric of
5078:
and (in so-called "hybrid inflation models") axion inflation. Since primordial black holes didn't form from stellar
727: 5899:
Computer simulated view of the large-scale structure of a part of the universe about 50 million light-years across
3660: 11944: 11295: 6386: 6025: 5717: 752: 310: 9630: 6325:
implies that the universe at any point in spacetime might spontaneously collapse into a lower-energy state (see
5020: 12006: 11841: 11768: 8788: 6436: 6061: 5890: 5628: 5087: 5075: 4010: 3689: 3158: 2515: 672: 396: 386: 77: 42: 11201:(See: "Energy time line from the Big Bang to the present" (1984) and "History of the Universe Poster" (1989).) 8600: 5895: 5372:
Starting around 18,000 years, the universe has cooled to a point where free electrons can combine with helium
11949: 11877: 11415: 9764: 7891:(January–February 1967). "The Hypothesis of Cores Retarded During Expansion and the Hot Cosmological Model". 7447:
Ade, Peter A.R.; et al. (BICEP2/Keck, Planck Collaborations) (13 March 2015). "Joint Analysis of BICEP2/
6447: 6015: 5941: 4958:, so this cosmic neutrino background (CνB) may not be directly observed in detail for many years, if at all. 4006: 3445: 2473: 1729: 800: 315: 238: 11237: 11099: 10955: 9147:(1 April 1999). "Radiative Transfer in a Clumpy Universe. III. The Nature of Cosmological Ionizing Source". 6329:), a more stable or "true vacuum", which would then expand outward from that point with the speed of light. 5536: 3142: 1828: 1760:
The age of the universe by redshift z=5 to 20. For early objects, this relationship is calculated using the
1086: 12196: 10447:"Five-year Wilkinson microwave anisotropy probe observations: data processing, sky maps, and basic results" 10095: 9591: 6540: 5904: 5663: 5624: 5476: 4967: 3507: 1317: 1297: 5908: 5701:
of gas). Before this epoch, the evolution of the universe could be understood through linear cosmological
4140: 3711:
These phase transitions in the universe's fundamental forces are believed to be caused by a phenomenon of
3259: 762:
Research published in 2015 estimates the earliest stages of the universe's existence as taking place 13.8
12201: 11867: 11708: 9807: 6902: 6495: 5597: 5446: 5346: 5149: 3106: 2519: 1745: 1634: 1508: 1025: 720: 696: 243: 9844: 9023: 7922:(July–August 1966). "The Hypothesis of Cores Retarded During Expansion and the Hot Cosmological Model". 6097: 5911:
formed later. Gravitational attraction also gradually pulls galaxies towards each other to form groups,
3859:(spatially uniform) on a very large scale, even though it was highly disordered in its earliest stages. 113: 12211: 12118: 12062: 12047: 11872: 11423: 11350: 11288: 10822: 10717: 10600: 10558: 10516: 9692: 8749: 8636: 6441: 6213: 6029: 6019: 5932: 5878: 5582: 5560: 5357:
About 370,000 years after the Big Bang, two connected events occurred: the ending of recombination and
5292:
From this point on, and for several billion years to come, the presence of dark matter accelerates the
5264: 5111:
The majority of hadrons and anti-hadrons annihilate each other at the end of the hadron epoch, leaving
4948: 4512:
At this epoch, the collision rate is proportional to the third root of the number density, and thus to
3635:— a condition in which spacetime breaks down —before this time, but the theory relies on the theory of 3472: 2932: 2531: 1902: 1848: 1792:, the universe was transparent but the clouds of hydrogen only collapsed very slowly to form stars and 1626: 656: 462: 442: 250: 10103: 6784:; et al. (1 September 2014). "Pair Instability Supernovae of Very Massive Population III Stars". 11918: 11761: 11489: 11387: 11007: 10446: 10376: 9948: 9701: 9556: 9466: 9416: 9263: 9149: 8853: 8474: 8241: 8058: 7919: 7888: 7611:
D'Onofrio, Michela; Rummukainen, Kari (15 January 2016). "Standard model cross-over on the lattice".
7524: 7185: 7039: 6893:
del Peloso, Eduardo F.; da Silva, Licio; Porto de Mello, Gustavo F.; et al. (5 September 2005).
6786: 6243: 6223: 5424: 5326: 3818: 3632: 3367: 3085: 2716: 1690: 1575: 1515:
For the purposes of this summary, it is convenient to divide the chronology of the universe since it
1277: 288: 11188: 8216: 8135: 12082: 11887: 11379: 7157: 5977: 5210: 5206: 5173: 4962: 4743: 4037: 3973:
Starting anywhere between 10 and 10 seconds after the Big Bang, until 10 seconds after the Big Bang
3652: 3533: 3032: 2981: 1653: 1590:
but can be explored through the extrapolation of known physical laws to extreme high temperatures.
793: 457: 222: 9757:"Hobby-Eberly Telescope Helps Astronomers Learn Secrets of One of Universe's Most Distant Objects" 9699:< 10.4: New Constraints on the Contribution of Low-Luminosity Sources to Cosmic Reionization". 9206:(July 2001). "In the Beginning: The First Sources of Light and the Reionization of the Universe". 7719: 6608: 5649:
often showcase galaxies from an ancient era that tell us what the early Stelliferous Era was like.
5593:). This is believed to be earlier than the first galaxies, and around the era of the first stars. 12072: 11740: 11589: 11337: 10513:
The Very Early Universe: Proceedings of the Nuffield Workshop, Cambridge, 21 June to 9 July, 1982
10289: 8948: 7821: 7790: 7457: 7268: 6392: 6050: 5920: 5867: 5694: 5674: 5646: 3987: 3754: 3683: 3656: 3363: 3221: 2732: 2645: 2497: 2468:
will end as stars are no longer being born, and the expansion of the universe will mean that the
1909: 1844: 1548: 1132: 425: 305: 66: 11980: 10173: 10061: 7037:(1 April 1997). "A dying universe: The long-term fate and evolution of astrophysical objects". 5928: 5578: 5556: 5358: 5330: 5148:
After most leptons and antileptons are annihilated at the end of the lepton epoch, most of the
5079: 4883: 4861: 4813: 4766:
the size of an atom, while the photon remains massless and remains a long-distance interaction.
3956: 3930: 3868: 3254:
observable with telescopes date to this period; as of 2016, the most remote galaxy observed is
2862: 2774:) do not yet exist (they will exist after a phase transition as a linear combination of B and W 2493: 1789: 1741: 1544: 1034: 9756: 9046: 8429: 7689: 6894: 5569:
At present, the oldest observations of stars and galaxies are from shortly after the start of
5320: 4214: 2935:. Neutron:proton ratio freezes at approximately 1:6. The sphere of space that will become the 1761: 12026: 11882: 9317: 8974: 8212: 7674: 6332:
destroyed and subsequently (if able) reform into different particles, forces and structures.
6326: 6176: 5995: 5828:
through galaxies or other dense areas. Reionization might have started to happen as early as
5706: 5199: 5001: 4346: 4194: 3911: 3841: 3814: 3532:
provides a measure of distance between objects, and the FLRW metric is the exact solution of
2891:
Quarks are bound into hadrons. A slight matter-antimatter asymmetry from the earlier phases (
2815: 2719:
by a factor of the order of 10 over a time of the order of 10 to 10 seconds. The universe is
2713: 2590: 1788:
This period measures from 370,000 years until about 1 billion years. After recombination and
1630: 1579: 1572: 630: 432: 374: 37:
For the academic discipline which examines history from the Big Bang to the present day, see
10035: 6925: 6518: 4981:
compared to a prediction of 1.95K), and exactly three types of neutrino, the same number of
4569: 4515: 2476:. More exact knowledge of the present day universe may allow these to be better understood. 2405:{\displaystyle {\text{lookBackTime}}(z)={\text{ageAtRedshift}}(0)-{\text{ageAtRedshift}}(z)} 12057: 11698: 11646: 11539: 11482: 11213: 10836: 10770: 10592: 10468: 10338: 10298: 10258: 10190: 10120: 9967: 9720: 9485: 9425: 9373: 9282: 9227: 9168: 9106: 8872: 8493: 8371: 8315: 8260: 8026: 7974: 7933: 7902: 7840: 7632: 7476: 7287: 7058: 6921: 6895:"The age of the Galactic thin disk from Th/Eu nucleocosmochronology – III. Extended sample" 6805: 6639: 6562: 6514: 6322: 6307: 6235: 6164: 5877:
In August 2023, images of black holes and related matter in the very early universe by the
5841: 5191: 5057: 3939:
is a property of the universe, then it must be broken at an energy that is no lower than 1
3895: 3787: 3743: 3731: 3712: 3529: 3324: 2675: 1824: 1016: 643: 615: 437: 10181: 7180: 5836:= 9 or 10 (500 million years), with the remaining neutral hydrogen becoming fully ionized 5731:
As yet, no Population III stars have been found, so the understanding of them is based on
8: 12180: 12077: 12031: 11908: 11818: 11798: 11534: 11160: 10879: 10752: 10372: 8711: 8340:
Conference: "Nuclear Physics in Astrophysics VI (NPA6) 19–24 May 2013, Lisbon, Portugal".
8327: 8054: 7519: 7341: 7092: 7034: 6781: 6554: 6368: 6358: 6192: 5732: 5702: 5632: 5369:
was light, it was not possible to see, nor can we observe that light through telescopes.
5293: 5253: 4944: 4909: 4757:
As a side-effect, the weak nuclear force and electromagnetic force, and their respective
3983: 3916: 3863: 3556: 3432:
The time between the first formation of Population III stars until the cessation of
3267: 2973: 2936: 2909: 2819: 2523: 2501: 2469: 1618: 1337: 1066: 767: 535: 505: 452: 408: 300: 190: 10840: 10774: 10472: 10342: 10302: 10262: 10194: 10124: 9971: 9870: 9724: 9489: 9429: 9377: 9286: 9231: 9172: 9110: 8876: 8663: 8497: 8383: 8375: 8319: 8264: 8030: 7978: 7937: 7906: 7844: 7636: 7480: 7415: 7333: 7291: 7062: 6809: 6271: 5670:
with few stars will develop between them, marking where dark matter became less common.
3605: 3480: 575: 12168: 12156: 12011: 11603: 11524: 11346: 11257: 11126: 11031: 10826: 10492: 10458: 10214: 10136: 9983: 9957: 9903: 9856: 9736: 9710: 9582: 9501: 9475: 9389: 9363: 9321: 9298: 9272: 9243: 9217: 9184: 9158: 9122: 9096: 8890: 8862: 8552: 8509: 8483: 8465: 8387: 8361: 8331: 8305: 8276: 8250: 7990: 7964: 7864: 7830: 7648: 7622: 7566: 7500: 7466: 7378: 7311: 7277: 7227: 7153: 7074: 7048: 6937: 6911: 6873: 6821: 6795: 6767: 6530: 6504: 6345: 5846: 5820: 5686: 5581:, 2016) at about z≈11.1 (about 400 million years cosmic time). Hubble's successor, the 5412: 5314: 5298: 5153: 4545: 3899: 3750: 3664: 3636: 3628: 3316: 3149:. Freely propagating CMB photons quickly (within about 3 million years) red-shifted to 2728: 2683: 1614:, so most of it quickly annihilates, leaving a small excess of matter in the universe. 1599: 1568: 1401: 1357: 595: 565: 530: 500: 447: 391: 160: 10480: 9239: 9085:
Dijkstra, Mark (22 October 2014). "Lyα Emitting Galaxies as a Probe of Reionization".
8910:"Hubble Has Looked Back in Time as Far as It Can And Still Can't Find The First Stars" 8885: 8840: 8720: 3287:
Alternative subdivisions of the chronology (overlapping several of the above periods)
2904:
mass of neutron the neutron:proton ratio, which is initially 1:1, starts to decrease.
2472:
becomes limited to local galaxies. There are various scenarios for the far future and
12206: 12067: 12052: 11593: 11342: 11131: 10901: 10893: 10883: 10862: 10854: 10844: 10798: 10761: 10739: 10731: 10721: 10691: 10683: 10673: 10649: 10639: 10622: 10614: 10604: 10580: 10572: 10562: 10538: 10530: 10520: 10417: 10409: 10399: 10329: 10249: 10206: 9987: 9908: 9874: 9811: 9740: 9505: 9393: 9385: 9247: 9126: 8990: 8894: 8513: 8505: 8391: 8335: 8280: 7994: 7955: 7924: 7893: 7856: 7794: 7652: 7613: 7571: 7504: 7492: 7383: 7303: 7232: 6825: 6817: 6534: 6418: 6340: 6231: 6152: 5710: 5472: 5456: 5434: 4955: 3991: 3779: 3773: 3716: 3700: 3640: 3573: 2827: 2740: 2690: 2608: 1732:
for the first time. The newly formed atoms—mainly hydrogen and helium with traces of
1540: 625: 9456:; Narayanan, Vijay K.; Lupton, Robert H.; et al. (December 2001). "A Survey of 9188: 8272: 7868: 7315: 7078: 6941: 5677:, and quasars, and the start and end timings and progression of the period known as 3145:. During this time, the only source of photons was hydrogen emitting radio waves at 12132: 12106: 11985: 11579: 11253: 11061:
Lucas, Tom (Director, Writer); Grupper, Jonathan (Director, Writer) (18 May 2007).
10931: 10810: 10788: 10778: 10496: 10484: 10476: 10346: 10306: 10266: 10218: 10198: 10140: 10128: 10111: 9975: 9866: 9728: 9626: 9493: 9433: 9381: 9302: 9290: 9235: 9176: 9114: 8880: 8716: 8562: 8501: 8379: 8323: 8268: 8165: 8034: 7982: 7852: 7848: 7734: 7640: 7488: 7484: 7299: 7295: 7066: 6929: 6813: 6633: 6629: 6522: 5667: 5282: 5278: 5179: 4982: 4350: 3848: 3795: 3791: 3624: 3620: 3069: 2892: 2452: 1856: 1777: 1683: 1680: 1603: 1587: 1564: 1560: 1173: 708: 510: 346: 215: 6526: 4824:. Collisions between particles were too energetic to allow quarks to combine into 4031: 2857:
value, making fermions massive. Energies are too high for quarks to coalesce into
520: 495: 12001: 11913: 11628: 11076: 11068: 10921: 10508: 9525: 9407: 9341: 9208: 8792: 8008: 7915: 7884: 6933: 6616: 6364: 5988: 5755:
and Garth D. Illingworth from UC Observatories/Lick Observatory found the galaxy
5752: 5365: 5083: 4970:. In theory, the decoupled neutrinos should have had a very slight effect on the 4869:
are subatomic particles such as protons and neutrons, that are composed of three
4751: 4739: 4729: 4563: 3995: 3704: 3560: 2637: 1646: 635: 570: 555: 540: 525: 515: 379: 276: 10310: 8753: 7141: 6187:
gradually die. Beyond this, all objects in the universe will cool and (with the
4334:{\displaystyle \sigma \cdot n\cdot c\approx n^{1/3}\cdot c\approx 10^{26}s^{-1}} 1748:(CMB). This is the oldest direct observation we currently have of the universe. 11693: 11656: 11115: 10814: 10783: 10756: 10669: 10169: 10041:
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science
9892: 9412:"Cosmological H II Regions and the Photoionization of the Intergalactic Medium" 8813: 7986: 7644: 7555: 7367: 7216: 6685: = 1100 is in agreement with Olive and Peacock (about 370,000 years). 6395: – Use of the second law of thermodynamics to distinguish past from future 6180: 5912: 5698: 5616: 5408: 5400: 5392: 5373: 5268: 4921: 4772: 4762: 4250: 3979: 3906: 3872: 3582: 3513: 3433: 3359: 3320: 3312: 3193: 3012: 2811: 2671: 2344:
is the age of the observation subtracted from the present age of the universe:
1898: 1874: 1709: 1668: 1650: 1233: 1193: 1153: 620: 580: 11154: 11035: 10925: 10743: 10695: 9979: 8703: 8169: 7070: 4249:. The rate of collisions per particle species can thus be calculated from the 3767:
Between 10 seconds (or the end of inflation) and 10 seconds after the Big Bang
1881:
emerge over time. At some point, high-energy photons from the earliest stars,
12190: 11723: 11703: 11205: 11135: 10951: 10905: 10866: 10813:(2004). "Theoretical Overview of Cosmic Microwave Background Anisotropy". In 10661: 10653: 10626: 10584: 10413: 10350: 10327:(15 May 1977). "Consequences of Vacuum Instability in Quantum Field Theory". 10324: 10284: 10270: 10202: 10099: 9912: 9878: 9815: 8930: 8094: 8039: 8012: 7798: 7575: 7387: 7236: 6314: 5756: 5751:
epoch, gives us a window into these times. Subsequently, Leiden University's
5744: 5525: 5514: 5499: 5123:
and certain neutrinos) and antileptons, dominating the mass of the universe.
4971: 4882:
related to baryogenesis to have been satisfied at some time after the end of
4702:{\displaystyle T_{thermalization}\approx 2.5\cdot 10^{14}GeV\approx 10^{27}K} 3963:
are directly accessible in particle physics experiments and other detectors.
3936: 3392: 3146: 2724: 2561: 2429: 1862: 1840: 1797: 1519:, into five parts. It is generally considered meaningless or unclear whether 1478: 763: 605: 590: 490: 10421: 7778:"Cosmic Neutrinos Detected, Confirming The Big Bang's Last Great Prediction" 5546:
Artist's impression of the first stars, 400 million years after the Big Bang
2976:—energy of photons is still high enough to produce electron-positron pairs. 1831:
have not yet been observed astronomically. They may have been huge (100–300
12144: 12021: 11405: 11375: 11370: 11365: 11354: 11332: 11280: 11062: 10802: 10793: 10542: 10504: 10382:. In García-Segura, G.; Tenorio-Tagle, G.; Franco, J.; et al. (eds.). 9943: 9640: 9604: 8567: 8540: 8468:; Larson, Davin; Weiland, Janet L.; et al. (October 2013). "Nine-Year 7860: 7773: 7496: 7307: 6892: 6374: 6318: 6300: 6291: 6188: 6160: 6156: 5916: 5854: 5812: 5789: 5785: 5748: 5678: 5620: 5570: 5321:
Recombination, photon decoupling, and the cosmic microwave background (CMB)
5143: 5106: 4931: 4913: 4902: 4855: 4821: 4018: 3944: 3735: 3693: 3464: 3437: 3229: 3205: 3041: 2948: 2870: 2823: 2720: 2632: 2448: 1890: 1882: 1878: 1737: 1377: 1106: 970: 610: 585: 560: 545: 401: 10979: 10821:. Carnegie Observatories Astrophysics Series. Vol. 2. Cambridge, UK: 8059:"Thermal history of the universe and early growth of density fluctuations" 5832:= 16 (250 million years of cosmic time) and was mostly complete by around 5641: 5455:
The photons released by these newly formed hydrogen atoms initially had a
4036:
The number density of each particle species was, by a similar analysis to
2456:
years in the future), we are less sure which path the universe will take.
1499: 11975: 11965: 11672: 11613: 11505: 11360: 10831: 10550: 9962: 9939: 9795: 9715: 9480: 9453: 9326: 9277: 9222: 9163: 9144: 9118: 7739: 7053: 6916: 6612: 6404: – Visual representation of the universe's past, present, and future 6310:
that underpin all forces, particles and structures, to a different form.
6246:. The hypothesis of a universal heat death stems from the 1850s ideas of 5973: 5945: 5858: 5653: 5590: 5286: 4797: 4791: 3994:, and the gauge bosons and fermions have not yet gained mass through the 3986:. The earliest stage that we are confident about is some time before the 3960: 3856: 3724: 3596: 3537: 2835: 2444: 2436:
formed at about 9.2 billion years (4.6 Gya), with the earliest traces of
2341: 1867: 1836: 1821: 1769: 1536: 1253: 358: 351: 38: 9022:. Office of Public Outreach. 3 March 2016. STScI-2016-07. Archived from 6377: – Cosmological models involving indefinite, self-sustaining cycles 6344:
years, black holes might appear to evaporate almost instantly, uncommon
5697:
containing a supermassive black hole surrounded by an inward-spiralling
5542: 3319:
components such as photons and neutrinos, which move at or close to the
11970: 11713: 11677: 11634: 11438: 11433: 11150: 10368: 9056: 8610: 8439: 7329: 7030: 6280: 6227: 6064: in this section. Unsourced material may be challenged and removed. 5420: 5007: 4874: 4801:
forms, but the temperature of the universe was still too high to allow
3778:
Depending on how epochs are defined, and the model being followed, the
3476: 2940: 1832: 1805: 1611: 1532: 1503:
Diagram of evolution of the (observable part) of the universe from the
1045: 600: 11457: 10488: 10210: 8601:"Astronomers Finally Spot Universe's First Molecule in Distant Nebula" 7007:, pp. 171–204, "Phase transitions in the very early Universe" by 6981:"The Beginning to the End of the Universe: The mystery of dark energy" 5486: 3801: 1005: 11784: 11617: 11569: 11544: 11529: 11443: 10132: 9051: 9016:"Hubble Team Breaks Cosmic Distance Record (03/03/2016) – Fast Facts" 8839:
Oesch, P. A.; Brammer, G.; van Dokkum, P.; et al. (March 2016).
8605: 8434: 7008: 6697:. See PDF: p. 242, Table 7, Age at decoupling, last column. Based on 6263: 6184: 6141: 6136: 5862: 5768: 5725: 5464: 5460: 5271: 4734:
As the universe's temperature continued to fall below 159.5±1.5 
3999: 3825: 3564:
For this reason, it is said that the Big Bang "happened everywhere".
3521: 3517: 3503: 3024: 2425: 2421: 1851: 1657: 1598:
This period lasted around 370,000 years. Initially, various kinds of
1516: 550: 11121:"Astronomers Find the Earliest Signs Yet of a Violent Baby Universe" 6039: 4211:
was approximately the particle wavelength squared, which is roughly
1751: 55: 11928: 11813: 11803: 11565: 11327: 10392:
Revista Mexicana de Astronomía y Astrofísica, Serie de Conferencias
10062:"On the Dynamical Theory of Heat. Part V. Thermo-electric Currents" 9732: 9497: 9438: 9411: 9294: 9203: 9180: 8867: 8699: 8668: 8310: 7835: 7627: 7471: 7420: 6878: 6509: 6410: – Logarithmic chronology of the event that began the Universe 5586: 5529: 5442: 5396: 5350: 5222: 5116: 3867:
led to the universe being repopulated with a dense, hot mixture of
3852: 3697: 3549: 3541: 3499: 3468: 3150: 3073: 3028: 3020: 3016: 2928: 2573: 1827:
which have already begun to draw together throughout the universe.
1801: 1717: 1713: 1661: 1622: 1504: 756: 283: 185: 178: 10858: 10735: 10687: 10618: 10576: 10463: 9861: 9368: 9101: 8557: 8488: 8366: 8255: 7969: 7282: 6800: 6763: 6681:
parameters, the calculated age of the universe with a redshift of
6668: 2895:) results in an elimination of anti-baryons. Up until 0.1 s, 1756: 11428: 11229: 11091: 11034:(Speaker); Cornwell, R. Elisabeth (Producer) (21 October 2009). 6841:"NASA's Webb Reaches New Milestone in Quest for Distant Galaxies" 6611:, chpt. 21.4.1: "Big-Bang Cosmology" (Revised September 2017) by 6256: 6239: 5761: 5747:, the first observed galaxy to have existed during the following 5285:
and 15.5% "ordinary" matter. There is overwhelming evidence that
5195: 4925: 4873:. It would be expected that both baryons, and particles known as 4812:
During the quark epoch the universe was filled with a dense, hot
3739: 3727:), and a single force begins to manifest as two separate forces. 3616: 3484: 3008: 2969: 2556:
Note: The radiation temperature in the table below refers to the
1733: 1642: 1556: 1213: 10897: 10534: 10390:
held in Ensenada, Baja California, Mexico, December 8–12, 2003.
10287:(22 November 1976). "Vacuum Instability and Higgs Scalar Mass". 1633:
exist, they are also formed at about one second of cosmic time.
1547:
may not have applied; the emergence in stages of the four known
8977:. 31 August 2016. Archived from the original on 29 January 2020 7785: 5793: 5682: 5574: 5438: 5226: 5218: 5112: 4988: 4866: 4829: 4817: 4806: 4126:{\displaystyle n=2\sigma _{B}T^{3}/ck_{B}\approx 10^{53}m^{-3}} 3955:
After cosmic inflation ends, the universe is filled with a hot
3255: 3111: 3101:
Electrons and atomic nuclei first become bound to form neutral
3077: 3004: 2858: 1886: 1793: 1694: 1693:
begins at around 18,000 years, as electrons are combining with
1676: 1638: 1607: 1421: 1128: 11474: 10878:. Saunders Golden Sunburst Series (4th ed.). Fresno, CA: 9946:(22 April 2003). "The cosmological constant and dark energy". 9898:"Cosmos Controversy: The Universe Is Expanding, but How Fast?" 6863:"Spectroscopy of four metal-poor galaxies beyond redshift ten" 5082:, their masses can be far below stellar mass (~2×10 g). 3978:
Some time after inflation, the created particles went through
10555:
A Journey Through the Universe: Gresham Lectures on Astronomy
5416: 5214: 4870: 4825: 4802: 4758: 3966: 3829: 3399:. This time happens to correspond roughly to the time of the 2900: 2896: 2814:). These are the highest energies directly observable in the 1809: 1552: 1445: 11753: 10927:
Cosmology and the arrow of time: Sean Carroll at TEDxCaltech
10277: 8409: 6367: – Method to visualize the chronology of the universe ( 5550: 5391:
At around 100,000 years, the universe had cooled enough for
5337: 5281:, by this stage, the matter in the universe is around 84.5% 5010:
proposed in 1966, that may have formed during the so-called
168: 9668:"Astronomers Claim to Find the Most Distant Known Galaxies" 9596: 7529: 7190: 5772: 5342: 5120: 4836: 3943:, the electroweak scale. The masses of particles and their 3102: 1870:
of extragalactic observations by their redshift up to z=20.
1859:
we see around us today, and seeded the universe with them.
1725: 1672: 1520: 12139: 11015: 9010: 9008: 9006: 7416:"Cosmic inflation: Confidence lowered for Big Bang signal" 4995:
May have occurred within about 1 second after the Big Bang
2674:
are still unified (assuming that nature is described by a
11260:. Los Angeles: Division of Astronomy & Astrophysics, 11181:"Press Pass - Photo Gallery - Graphics and Illustrations" 11072: 10987: 10443: 9800:"Astronomers Spot Most Distant Galaxy – At Least For Now" 9635: 9553:"Illuminating illumination: what lights up the universe?" 8673: 8176:. Los Angeles: Division of Astronomy & Astrophysics, 7561:"Speck of Interstellar Dust Obscures Glimpse of Big Bang" 6694: 6313:
Cosmology traditionally has assumed a stable or at least
6145: 4735: 3940: 3833: 3050: 2440:
on Earth emerging by about 10.3 billion years (3.5 Gya).
1744:"), and these photons can still be detected today as the 1441: 11067:(Television documentary miniseries). Silver Spring, MD: 7610: 7520:"Gravitational Waves from Early Universe Remain Elusive" 5907:, are formed early on in this process, with more recent 5610:
Around 150 million to 1 billion years after the Big Bang
5493:
370 thousand to about 1 billion years after the Big Bang
4932:
Neutrino decoupling and cosmic neutrino background (CνB)
1667:
By 20 minutes, the universe is no longer hot enough for
770:
of around 21 million years at the 68% confidence level.
10240: 9340: 9003: 8575: 6779: 6444: – Scientific projections regarding the far future 6397:
Pages displaying short descriptions of redirect targets
5884: 5603: 5313:
lose energy by radiation, forms dense objects and also
5137:
Between 10 seconds and 370,000 years after the Big Bang
3924: 3639:, which is thought to break down for this epoch due to 1645:—and from about 2 minutes, conditions are suitable for 11037:'A Universe From Nothing' by Lawrence Krauss, AAI 2009 10394:. Vol. 22. Mexico City: Instituto de Astronomía, 9690: 8838: 8664:"Quasars illustrate dark energy's roller coaster ride" 8541:"Signals From the Epoch of Cosmological Recombination" 7914: 7883: 6155:
such as the cosmological constant, the possibility of
4191:. Since the interaction was strong, the cross section 3898:
collaboration announced the detection of inflationary
1720:
and helium hydride react to form molecular hydrogen (H
12116: 10384:
Gravitational Collapse: From Massive Stars to Planets
9452: 9088:
Publications of the Astronomical Society of Australia
8205:"Astronomy 162 – Lecture 44: The First Three Minutes" 6642: 6009: 5709:
becomes much more difficult, involving, for example,
5433:
The background of this box approximates the original
5060: 5023: 4605: 4572: 4548: 4518: 4362: 4262: 4217: 4197: 4143: 4049: 2353: 2105: 1930: 10503: 9315: 8464: 8013:"Gravitationally Collapsed Objects of Very Low Mass" 7004: 6770:
upon which the citing charts and formulae are based.
6488: 5160: 4785:
Between 10 seconds and 10 seconds after the Big Bang
4566:. The Hubble parameter, however, is proportional to 3677:
Between 10 seconds and 10 seconds after the Big Bang
3141:
The time between recombination and the formation of
10367: 10162: 10000: 8789:"Shattering the cosmic distance record, once again" 7818: 6962: 6960: 6958: 6701:+BAO+SN parameters, the age of decoupling occurred 5819:(particularly electrons) can scatter light through 5167:
Between 2 minutes and 20 minutes after the Big Bang
4746:in the quark sector. This has two related effects: 4502:~ 10 was the number of available particle species. 3802:
Inflationary epoch and the rapid expansion of space
2459: 2415: 772: 80:. Unsourced material may be challenged and removed. 11210:"The History of the Universe in 200 Words or Less" 11119: 9896: 9819: 7768: 7766: 7764: 7762: 7559: 7371: 7220: 6655: 6588: 6586: 6584: 6339:In this kind of extreme timescale, extremely rare 5415:). The universe has become transparent to visible 5100:Between 1 second and 10 seconds after the Big Bang 5066: 5046: 5006:Primordial black holes are a hypothetical type of 4701: 4588: 4554: 4534: 4486: 4333: 4241: 4203: 4183: 4125: 2404: 2328: 2086: 11042:Richard Dawkins Foundation for Reason and Science 10014:"No, Black Holes Will Never Consume The Universe" 8754:"Searching for First Light in the Early Universe" 8294:Coc, Alain (2017). "Primordial Nucleosynthesis". 8237: 8047: 8018:Monthly Notices of the Royal Astronomical Society 6230:, which will then evaporate extremely slowly via 5487:The Dark Ages and large-scale structure emergence 4896:Between 10 second and 1 second after the Big Bang 3998:. However exotic massive particle-like entities, 3730:Assuming that nature is described by a so-called 3526:Friedmann–Lemaître–Robertson–Walker (FLRW) metric 2931:cease interacting with baryonic matter, and form 1752:The Dark Ages and large-scale structure emergence 1649:: around 25% of the protons and all the neutrons 12188: 10930:(Video). New York; Vancouver, British Columbia: 10168: 9195: 8995:: CS1 maint: bot: original URL status unknown ( 6955: 6861:Curtis-Lake, Emma; et al. (December 2022). 6598: 5673:The exact timings of the first stars, galaxies, 5471:Around the same time as recombination, existing 5186:deuterium also no longer unbind and are stable. 4716: 3475:). Alternatively the universe may collapse in a 3391:Matter density falls below dark energy density ( 3258:, at a redshift of 11.09. The earliest "modern" 3153:, and the universe was devoid of visible light. 1808:after about 3 million years, leaving it without 9581: 9142: 8967:"First stars formed even later than we thought" 8349: 7759: 7446: 7373:"Astronomers Hedge on Big Bang Detection Claim" 7265: 7261: 7259: 6854: 6581: 5967:From about 9.8 billion years after the Big Bang 5441:released during decoupling, before they became 10956:"Cosmic Evolution: From Big Bang to Humankind" 10174:"Gravitational effects on and of vacuum decay" 10067:Transactions of the Royal Society of Edinburgh 9260: 9138: 9136: 9047:"Ancient Galaxy May Be Most Distant Ever Seen" 9038: 8941: 8458: 8421: 8353:Journal of Cosmology and Astroparticle Physics 7952: 7440: 6832: 6493:2015 results. XIII. Cosmological parameters". 6450: – Theories about the end of the universe 6402:Graphical timeline from Big Bang to Heat Death 6144:star plotted against its mass relative to the 3536:(EFE) if some key properties of space such as 3165:Earliest galaxies: from about 300–400 Ma? 2546:Graphical timeline from Big Bang to Heat Death 1602:are formed in stages. These particles include 32:Graphical timeline from Big Bang to Heat Death 11769: 11490: 11296: 11187:. Batavia, IL. 1 January 2004. Archived from 10874:Zeilik, Michael; Gregory, Stephen A. (1998). 10873: 10750: 10377:"Red Dwarfs and the End of the Main Sequence" 10094: 10088: 9836: 9631:"Scientists confirm most distant galaxy ever" 9406: 9352:≥ 5–8 from the HUDF09 WFC3/IR Observations". 8715:. Vol. 295, no. 5. pp. 46–53. 8538: 8415: 8130: 8128: 7713: 7711: 7709: 7707: 7705: 7703: 7701: 7699: 7697: 7666: 7664: 7662: 7511: 7340:(Blog). New York: Department of Mathematics, 7222:"Space Ripples Reveal Big Bang's Smoking Gun" 7209: 7181:"NASA Technology Views Birth of the Universe" 7172: 7142:"BICEP2 March 2014 Results and Data Products" 7029: 6636:(last modified 23 July 2018). With a default 6604: 6546: 5565:List of the most distant astronomical objects 5504:List of the most distant astronomical objects 4713:approximately 10 seconds after the Big Bang. 801: 728: 11310: 11014:'s Office of Public Outreach. Archived from 9938: 9885: 9790: 9788: 9786: 8925: 8923: 8780: 7720:"The Foreground of Big Bang Nucleosynthesis" 7548: 7407: 7360: 7256: 7124: 7122: 6389: – Hypothetical concept in astrophysics 5960: 5720:is a high precision simulation of this era. 4989:Possible formation of primordial black holes 3567: 3366:and dark energy, resulting in a decelerated 2528:Timeline of the evolutionary history of life 2428:began to form at about 5 billion years (8.8 1494: 10960:Harvard–Smithsonian Center for Astrophysics 10451:The Astrophysical Journal Supplement Series 10375:; Graves, Genevieve J. M. (December 2004). 9849:Annual Review of Astronomy and Astrophysics 9512: 9446: 9400: 9334: 9201: 9133: 9080: 9078: 8475:The Astrophysical Journal Supplement Series 8470:Wilkinson Microwave Anisotropy Probe (WMAP) 8242:The Astrophysical Journal Supplement Series 8107:Harvard–Smithsonian Center for Astrophysics 7679: 7134: 6860: 6758: 6756: 6754: 6741:≈ 3000 K, when the age of the universe was 6433: – Expansion of the universe parameter 6427: – Expansion of the universe parameter 6383: – Expansion of the universe parameter 5475:within the electron-baryon plasma—known as 2818:. The sphere of space that will become the 11776: 11762: 11497: 11483: 11303: 11289: 9254: 8594: 8592: 8590: 8539:Sunyaev, R. A.; Chluba, J. (August 2009). 8125: 7694: 7659: 6886: 6764:"Paper-and-pencil cosmological calculator" 6482: 6414:Graphical timeline of the Stelliferous Era 6140:The predicted main-sequence lifetime of a 5457:temperature/energy of around ~ 4000 K 5429: 5047:{\displaystyle \delta \rho /\rho \sim 0.1} 3967:Electroweak epoch and early thermalization 3670: 2550:Graphical timeline of the Stelliferous Era 1736:—quickly reach their lowest energy state ( 1526: 808: 794: 735: 721: 167: 11847:Religious interpretations of the Big Bang 11258:"Frequently Asked Questions in Cosmology" 11096:Science and Technology Facilities Council 10876:Introductory Astronomy & Astrophysics 10830: 10792: 10782: 10636:Basic Knowledge of Astrophysic: A New Way 10462: 9994: 9961: 9860: 9842: 9783: 9714: 9479: 9437: 9367: 9325: 9276: 9221: 9162: 9100: 8920: 8884: 8866: 8598: 8566: 8556: 8487: 8430:"New 'Baby Picture' of Universe Unveiled" 8398: 8365: 8309: 8254: 8211:. Columbus, OH: Department of Astronomy, 8038: 7968: 7834: 7738: 7626: 7470: 7281: 7119: 7052: 6915: 6877: 6799: 6508: 6124:Learn how and when to remove this message 5551:Oldest observations of stars and galaxies 3894:On 17 March 2014, astrophysicists of the 3467:, matter may eventually evaporate into a 2317: 2052: 140:Learn how and when to remove this message 11837:Discovery of cosmic microwave background 11204: 10950: 10591: 10323: 10283: 9084: 9075: 8949:"FAQ for Scientists Webb Telescope/NASA" 8931:"A Deeper Sky | by Brian Koberlein" 8806: 8581: 8093: 8087: 7146:The BICEP and Keck Array CMB Experiments 7025: 7023: 7021: 7019: 7017: 6751: 6135: 5894: 5797: 5652: 5640: 5541: 5535:The first generation of stars, known as 5526:21 cm spin line of neutral hydrogen 5336: 3832:, about half the width of a molecule of 2478: 1861: 1843:, so they commonly finish burning their 1839:, with very short lifetimes compared to 1755: 1498: 11114: 10549: 10396:Universidad Nacional Autónoma de México 10056: 10030: 9932: 9891: 9619: 9585:; Bonnell, Jerry, eds. (9 March 2004). 9559:. UCL Media Relations. 27 August 2014. 8786: 8587: 8472:Observations: Final Maps and Results". 8287: 8007: 7685: 7554: 7366: 7215: 6734:≈ 1100, corresponding to a temperature 6361: – Time elapsed since the Big Bang 3950: 3808:Before c. 10 seconds after the Big Bang 3738:. This caused two forces to now exist: 1660:which itself quickly fuses into mainly 14: 12189: 11383: 11252: 10809: 10703:Ryden, Barbara Sue (13 January 2006). 10633: 9771:from the original on 22 September 2018 9625: 8814:"Hubble breaks cosmic distance record" 8760:. Pasadena, CA: Astronomy Department, 8526: 8427: 8164: 7805:from the original on 10 September 2016 7772: 7747:from the original on 21 September 2018 7670: 7517: 7178: 6838: 6489:Planck Collaboration (October 2016). " 6266:are pulled apart and unable to exist. 6195:, by a variety of possible processes. 5994:Dark energy is believed to act like a 5480: 1474: 11757: 11478: 11284: 11268:from the original on 10 December 2019 11262:University of California, Los Angeles 11234:Lawrence Berkeley National Laboratory 11156:Deep Time: Crash Course Astronomy #45 11048:from the original on 21 December 2019 10938:from the original on 20 December 2019 10711: 10702: 10660: 10511:; Siklos, Stephen T.C., eds. (1983). 10246: 10228:from the original on 13 December 2019 10150:from the original on 13 December 2019 9919:from the original on 12 November 2019 9794: 9665: 9410:; Giroux, Mark L. (15 October 1987). 9309: 8768:from the original on 12 December 2001 8680:from the original on 21 December 2019 8617:from the original on 17 November 2019 8599:Mathewson, Samantha (18 April 2019). 8404: 8297:Journal of Physics: Conference Series 8184:from the original on 5 September 2019 8178:University of California, Los Angeles 8066:Max Planck Institute for Astrophysics 8053: 7717: 7128: 7101:Lawrence Berkeley National Laboratory 7014: 6978: 6966: 6724: 6592: 6569:from the original on 28 November 2018 6552: 5951: 2558:cosmic microwave background radiation 1812:. This period is known as the cosmic 1637:subatomic particles emerge—including 1593: 1543:, during which currently established 786: 11398: 11167:from the original on 15 January 2016 10386:. First Astrophysics meeting of the 9647:from the original on 24 October 2013 9518: 9063:from the original on 15 October 2019 9044: 8907: 8698: 8661: 8446:from the original on 29 October 2019 8203:Ryden, Barbara Sue (12 March 2003). 7413: 7328: 7197:from the original on 10 October 2019 6839:Cesari, Thaddeus (9 December 2022). 6421: – Computer-simulated universes 6062:adding citations to reliable sources 6033: 5885:Galaxies, clusters and superclusters 5604:Earliest structures and stars emerge 5236: 4184:{\displaystyle (k_{B}T/\hbar c)^{3}} 3982:, where mutual interactions lead to 3925:Supersymmetry breaking (speculative) 3875:, avoid a reheating phase entirely. 3760: 1511:-reference afterglow, to the present 1430: 1410: 1390: 1366: 1346: 1326: 1306: 1286: 1266: 1242: 1222: 1202: 1182: 1162: 1142: 1115: 1095: 1075: 1055: 775: 78:adding citations to reliable sources 49: 10966:from the original on 27 August 2019 10819:Measuring and Modeling the Universe 10172:; De Luccia, Frank (15 June 1980). 9871:10.1146/annurev-astro-081309-130806 9563:from the original on 5 October 2016 9533:from the original on 15 August 2023 8662:Amos, Jonathan (13 November 2012). 8293: 8075:from the original on 11 August 2019 7518:Clavin, Whitney (30 January 2015). 7348:from the original on 8 October 2019 6979:Bruce, Dorminey (1 February 2021). 6317:universe, but the possibility of a 5957:billion years, is known precisely. 5427:for the first time in its history. 5349:radiation (2012). The radiation is 3436:, leaving all stars in the form of 41:. For chronology as timeline, see 24: 11463:Graphical timeline of the Big Bang 10980:"History of the Universe Timeline" 10011: 9843:Soderblom, David R. (2010-08-01). 9672:California Institute of Technology 9595:. Washington, D.C.; Houghton, MI: 8762:California Institute of Technology 8730:from the original on 26 March 2019 8428:Gannon, Megan (21 December 2012). 7243:from the original on 17 March 2014 7160:from the original on 18 March 2014 7005:Gibbons, Hawking & Siklos 1983 6408:Graphical timeline of the Big Bang 5861:photons with a wavelength of 91.2 5857:is required, which corresponds to 5274:, can begin to grow in amplitude. 4938:Around 1 second after the Big Bang 4778: 4349:was negligible at this stage, the 4015:Standard Model of particle physics 3581:objects such as galaxies and most 3487:as possible ends to the universe. 3218:list of galaxy groups and clusters 2542:Graphical timeline of the Big Bang 2538:Graphical timeline of the universe 2509: 2504:zoom out (video 00:50; 2 May 2019) 2257: 2189: 2182: 2178: 2008: 1999: 1995: 1958: 1776:, in addition to redshift and the 1679:to travel far. It is therefore an 463:2dF Galaxy Redshift Survey ("2dF") 27:History and future of the universe 25: 12223: 11852:Timeline of cosmological theories 11240:from the original on 22 June 2019 11012:Space Telescope Science Institute 10914: 10597:Physical Foundations of Cosmology 10431:from the original on 11 July 2019 10388:Observatorio Astronómico Nacional 10001:Adams, Laughlin & Graves 2004 9678:from the original on 9 March 2019 9601:Michigan Technological University 9355:The Astrophysical Journal Letters 9143:Madau, Piero; Haardt, Francesco; 9020:Space Telescope Science Institute 8841:"A Remarkably Luminous Galaxy at 8748: 8721:10.1038/scientificamerican1106-46 8146:from the original on 22 July 2019 7582:from the original on 16 July 2019 7428:from the original on 20 June 2014 7394:from the original on 14 July 2019 7179:Clavin, Whitney (17 March 2014). 6780:Chen, Ke-Jung; Heger, Alexander; 5840:= 5 or 6 (1 billion years), when 5161:Nucleosynthesis of light elements 4985:predicted by the Standard Model. 4974:of the various CMB fluctuations. 4165: 4025: 3479:. Other suggested ends include a 3252:most distant astronomical objects 3239:(Exact timings being researched) 3176:(Exact timings being researched) 3167:(first stars: similar or earlier) 1829:The earliest generations of stars 678:Timeline of cosmological theories 443:Cosmic Background Explorer (COBE) 12174: 12162: 12150: 12138: 12126: 12100: 11456: 10994:from the original on 1 July 2019 9519:Wood, Charlie (14 August 2023). 9018:(Press release). Baltimore, MD: 8113:from the original on 2 July 2019 7107:from the original on 5 July 2019 6951:from the original on 2 May 2019. 6038: 6010:The far future and ultimate fate 5716:with billions of particles. The 5194:even in stars. Small amounts of 3692:can be visualized as similar to 3606:Planck units § In cosmology 3128:(Only fully ends by about 1 Ga) 2460:The far future and ultimate fate 2416:The universe as it appears today 1847:and explode as highly energetic 1724:) the fuel needed for the first 1523:existed before this chronology: 702: 691: 690: 54: 11945:Future of an expanding universe 11504: 11102:from the original on 9 May 2019 10360: 10317: 10024: 10005: 9749: 9670:(Press release). Pasadena, CA: 9659: 9575: 9545: 9045:Wall, Mike (12 December 2012). 8959: 8901: 8832: 8742: 8704:"The Dark Ages of the Universe" 8692: 8655: 8629: 8532: 8520: 8343: 8231: 8196: 8174:Ned Wright's Cosmology Tutorial 8158: 8001: 7946: 7877: 7604: 7595: 7536:from the original on 3 May 2019 7414:Amos, Jonathan (19 June 2014). 7322: 7085: 6972: 6634:Javascript Cosmology Calculator 6462: 6049:needs additional citations for 6026:Future of an expanding universe 5779: 5718:Bolshoi Cosmological Simulation 5364:Just before recombination, the 5353:to roughly one part in 100,000. 5243:47,000 years after the Big Bang 5198:(another hydrogen isotope) and 5130: 5093: 4956:notoriously difficult to detect 4924:, leaving hydrogen, a hydrogen 4889: 4842: 4002:, are thought to have existed. 3595:Times shorter than 10 seconds ( 3588: 3508:"Why is there anything at all?" 3493: 458:Sloan Digital Sky Survey (SDSS) 311:Future of an expanding universe 65:needs additional citations for 11842:History of the Big Bang theory 11393: 8787:Shelton, Jim (March 3, 2016). 8643:. Te Awamutu: Wavelength Media 8328:10.1088/1742-6596/665/1/012001 7853:10.1103/PhysRevLett.115.091301 7489:10.1103/PhysRevLett.114.101301 7300:10.1103/PhysRevLett.112.241101 6773: 6718: 6688: 6622: 6437:Timeline of the early universe 6167:itself), and the natural laws 5891:Galaxy formation and evolution 5743:The October 2010 discovery of 5589:z≈20 (about 180 million years 5076:cosmological phase transitions 4968:baryonic acoustic oscillations 4172: 4144: 4032:Big Bang § Thermalization 3869:quarks, anti-quarks and gluons 3690:cosmological phase transitions 3315:of massless and near-massless 2723:from about 10 down to 10  2516:Timeline of the early universe 2399: 2393: 2382: 2376: 2365: 2359: 2284: 2271: 2214: 2201: 2038: 2020: 1986: 1969: 1942: 1936: 1671:, but far too hot for neutral 1054: 959: 673:History of the Big Bang theory 469:Wilkinson Microwave Anisotropy 43:timeline of the early universe 30:For a graphical timeline, see 13: 1: 11950:Ultimate fate of the universe 11878:Gravitational wave background 11783: 11590:creation of chemical elements 11069:Twin Cities Public Television 10044:. IV (Fourth Series). §§ 1–14 9765:University of Texas at Austin 9587:"The Hubble Ultra Deep Field" 9240:10.1016/S0370-1573(01)00019-9 8666:. Science & Environment. 8384:10.1088/1475-7516/2014/10/050 7418:. Science & Environment. 6476: 6448:Ultimate fate of the universe 6189:possible exception of protons 6016:Ultimate fate of the universe 5881:were reported and discussed. 4740:electroweak symmetry breaking 4730:Electroweak symmetry breaking 4723:10 seconds after the Big Bang 4717:Electroweak symmetry breaking 4007:electroweak symmetry breaking 3988:electroweak symmetry breaking 3401:formation of the Solar System 2492: 2474:ultimate fate of the universe 665:Discovery of cosmic microwave 316:Ultimate fate of the universe 10757:"Review of Particle Physics" 10751:Tanabashi, M.; et al. ( 9666:Perry, Jill (10 July 2007). 9592:Astronomy Picture of the Day 8971:ESA Science & Technology 8209:Barbara S. Ryden's Home Page 7817:Coverage of original paper: 6903:Astronomy & Astrophysics 6496:Astronomy & Astrophysics 6387:Dyson's eternal intelligence 6179:gravitationally bound local 6073:"Chronology of the universe" 5664:baryon acoustic oscillations 5625:Baryon acoustic oscillations 5508: 5477:baryon acoustic oscillations 4013:. In some extensions of the 3653:Hartle–Hawking initial state 3405:evolutionary history of life 89:"Chronology of the universe" 7: 11868:Cosmic microwave background 11040:(Video). Washington, D.C.: 10712:Ryden, Barbara Sue (2017). 10515:. Cambridge, UK; New York: 10481:10.1088/0067-0049/180/2/225 10311:10.1103/PhysRevLett.37.1378 10104:"Is our vacuum metastable?" 9808:National Geographic Society 9804:Phenomena – A Science Salon 9674:. Caltech Media Relations. 8886:10.3847/0004-637X/819/2/129 8140:The Physics of the Universe 6766:arxiv:1303.5961, including 6762:S.V. Pilipenko (2013–2021) 6527:10.1051/0004-6361/201525830 6351: 5944:of 32 billion light-years; 5447:cosmic microwave background 5347:cosmic microwave background 5192:requires thousands of years 3262:are formed in this period. 3107:cosmic microwave background 3068:The universe consists of a 2560:and is given by 2.725  2520:Timeline of natural history 2447:(believed to be a constant 1746:cosmic microwave background 1489: 1475: 955: 433:Black Hole Initiative (BHI) 10: 12228: 11873:Cosmic neutrino background 11809:Chronology of the universe 11520:Chronology of the universe 11424:Heat death of the universe 11320:Chronology of the universe 10823:Cambridge University Press 10784:10.1103/PhysRevD.98.030001 10718:Cambridge University Press 10716:(2nd ed.). New York: 10601:Cambridge University Press 10559:Cambridge University Press 10517:Cambridge University Press 9806:(Blog). Washington, D.C.: 9386:10.1088/2041-8205/752/1/L5 8506:10.1088/0067-0049/208/2/20 8170:"Big Bang Nucleosynthesis" 8136:"Timeline of the Big Bang" 7987:10.1103/PhysRevD.88.084051 7645:10.1103/PhysRevD.93.025003 6934:10.1051/0004-6361:20053307 6818:10.1088/0004-637X/792/1/44 6672:9+SPT+ACT+6dFGS+BOSS/DR11+ 6442:Timeline of the far future 6030:Heat death of the universe 6023: 6020:Timeline of the far future 6013: 5991:of the physical universe. 5971: 5888: 5879:James Webb Space Telescope 5802:Phases of the reionization 5783: 5614: 5583:James Webb Space Telescope 5561:James Webb Space Telescope 5554: 5512: 5497: 5324: 5247: 5171: 5141: 5104: 4999: 4949:Cosmic neutrino background 4942: 4900: 4859: 4853: 4789: 4727: 4345:For comparison, since the 4029: 3928: 3812: 3771: 3681: 3603: 3497: 3395:), and expansion of space 3011:are bound into primordial 2972:and antileptons remain in 2933:cosmic neutrino background 2830:) in radius at this time. 2731:becomes distinct from the 2638:quantum effects of gravity 2535: 2532:Timeline of the far future 2513: 1903:James Webb Space Telescope 1627:cosmic neutrino background 751:describes the history and 749:chronology of the universe 196:Chronology of the universe 36: 29: 12096: 12040: 11994: 11958: 11937: 11919:Expansion of the universe 11896: 11860: 11827: 11791: 11732: 11686: 11665: 11553: 11512: 11452: 11414: 11318: 10714:Introduction to Cosmology 10705:Introduction to Cosmology 10666:Introduction to Cosmology 9980:10.1103/RevModPhys.75.559 9949:Reviews of Modern Physics 9702:The Astrophysical Journal 9557:University College London 9555:(Press release). London: 9467:The Astrophysical Journal 9417:The Astrophysical Journal 9264:The Astrophysical Journal 9150:The Astrophysical Journal 8916:– via ScienceAlert. 8854:The Astrophysical Journal 8820:. March 3, 2016. heic1604 8637:"Color Temperature Chart" 8416:Zeilik & Gregory 1998 8273:10.1088/0067-0049/214/1/5 7525:Jet Propulsion Laboratory 7186:Jet Propulsion Laboratory 7071:10.1103/RevModPhys.69.337 7040:Reviews of Modern Physics 6787:The Astrophysical Journal 6715:years after the Big Bang. 6381:Dark-energy-dominated era 6244:thermodynamic equilibrium 6224:thermodynamic equilibrium 6203: 6169:beyond the Standard Model 5961:Dark energy–dominated era 5425:electromagnetic radiation 5327:Recombination (cosmology) 4966:because of the effect of 4805:to bind together to form 3819:Expansion of the universe 3744:electrostrong interaction 3633:gravitational singularity 3368:expansion of the universe 3362:of matter dominates both 3286: 3159:Star and galaxy formation 2678:, gravity not included). 1740:) by releasing photons (" 1576:expansion of the universe 1495:Chronology in five stages 289:Expansion of the universe 11380:Big Bang nucleosynthesis 11312:Timeline of the Big Bang 11230:"The Universe Adventure" 11071:, Red Hill Studios, and 10634:Petter, Patrick (2013). 10351:10.1103/PhysRevD.15.2922 10271:10.1103/PhysRevD.14.3568 10203:10.1103/PhysRevD.21.3305 9348:Luminosity Functions at 8758:Richard Ellis's Homepage 7925:Astronomicheskii Zhurnal 7718:Karki, Ravi (May 2010). 6455: 6371:scaled to a single year) 6163:(meaning, the energy of 5978:Scale factor (cosmology) 5948:of 13.4 billion years). 5931:telescope on Mauna Kea, 5675:supermassive black holes 5647:Hubble Ultra Deep Fields 5573:, with galaxies such as 5174:Big Bang nucleosynthesis 4963:Big Bang nucleosynthesis 4744:chiral symmetry breaking 4253:, giving approximately: 4242:{\displaystyle n^{-2/3}} 4009:, potentially through a 3838:cosmic expansion history 3651:". Examples include the 3534:Einstein field equations 3481:false vacuum catastrophe 2943:in radius at this time. 2670:The three forces of the 1549:fundamental interactions 818: 453:Planck space observatory 239:Gravitational wave (GWB) 12073:Observational cosmology 11647:Agricultural Revolution 11338:Grand unification epoch 10984:Mysteries of Deep Space 10638:. Berlin: epubli GmbH. 10290:Physical Review Letters 7822:Physical Review Letters 7458:Physical Review Letters 7269:Physical Review Letters 6926:2005A&A...440.1153D 6900:. Stellar atmospheres. 6555:"Birth of the Universe" 6519:2016A&A...594A..13P 6431:Radiation-dominated era 6393:Entropy (arrow of time) 5921:Hubble Ultra Deep Field 5515:21 centimeter radiation 5012:radiation-dominated era 4204:{\displaystyle \sigma } 3684:Grand unification epoch 3671:Grand unification epoch 3657:string theory landscape 3568:The very early universe 3520:is based on a model of 3260:Population I stars 2733:electroweak interaction 1910:hypergeometric function 1841:most stars we see today 1762:cosmological parameters 1527:The very early universe 306:Inhomogeneous cosmology 18:Cosmological time scale 11924:Accelerating expansion 11092:"Once Upon a Universe" 9802:. No Place Like Home. 9318:Sargent, Wallace L. W. 8847:Hubble Space Telescope 8568:10.1002/asna.200911237 8040:10.1093/mnras/152.1.75 7376:. Space & Cosmos. 7225:. Space & Cosmos. 7150:FAS Research Computing 7097:The Universe Adventure 6657: 6236:Grand Unified Theories 6148: 5900: 5868:active galactic nuclei 5849:to appear in spectra. 5803: 5658: 5650: 5579:Hubble Space Telescope 5557:Hubble Space Telescope 5547: 5354: 5331:decoupling (cosmology) 5294:formation of structure 5080:gravitational collapse 5068: 5048: 4884:cosmological inflation 4862:Leptogenesis (physics) 4703: 4590: 4589:{\displaystyle a^{-2}} 4556: 4536: 4535:{\displaystyle a^{-1}} 4488: 4335: 4243: 4205: 4185: 4137:which is roughly just 4127: 4005:This epoch ended with 3992:have not yet separated 3931:Supersymmetry breaking 3504:Origin of the universe 3358:During this time, the 3311:During this time, the 2506: 2494:Hubble Space Telescope 2406: 2330: 2088: 1871: 1785: 1631:primordial black holes 1571:interactions; and the 1535: (10 seconds) of 1512: 851:−10 — 841:−11 — 831:−12 — 821:−13 — 753:future of the universe 12027:Shape of the universe 12017:Large-scale structure 11830:cosmological theories 10593:Mukhanov, Viatcheslav 8975:European Space Agency 8304:(1): Article 012001. 8213:Ohio State University 8168:(26 September 2012). 8064:(Lecture). Garching: 7916:Zel'dovitch, Yakov B. 7885:Zel'dovitch, Yakov B. 7727:The Himalayan Physics 7156:. 16 December 2014 . 6658: 6656:{\displaystyle H_{0}} 6193:fundamental particles 6139: 6024:Further information: 5996:cosmological constant 5898: 5842:Gunn-Peterson troughs 5801: 5707:computational problem 5656: 5644: 5629:Large-scale structure 5545: 5340: 5088:formation of galaxies 5069: 5067:{\displaystyle \rho } 5049: 5002:Primordial black hole 4860:Further information: 4849:Perhaps by 10 seconds 4816:, containing quarks, 4704: 4591: 4557: 4537: 4489: 4347:cosmological constant 4336: 4244: 4206: 4186: 4128: 3912:European Space Agency 3815:Inflation (cosmology) 3222:list of superclusters 3208:from about 5 Ga 2822:is approximately 300 2816:Large Hadron Collider 2536:Further information: 2514:Further information: 2491: 2407: 2331: 2089: 1889:leads to a period of 1865: 1798:21 cm radio emissions 1759: 1654:into heavier elements 1617:At about one second, 1502: 996:Accelerated expansion 941:−1 — 931:−2 — 921:−3 — 911:−4 — 901:−5 — 891:−6 — 881:−7 — 871:−8 — 861:−9 — 397:Large-scale structure 375:Shape of the universe 12107:astronomy portal 11699:Cynthia Stokes Brown 11604:formation of planets 11540:Goldilocks principle 11416:Fate of the universe 9895:(20 February 2017). 9761:McDonald Observatory 9629:(25 October 2013) . 9119:10.1017/pasa.2014.33 8845:=11.1 Measured with 8055:Kauffmann, Guinevere 7776:(9 September 2016). 7740:10.3126/hj.v1i0.5186 7528:. Washington, D.C.: 7189:. Washington, D.C.: 6640: 6563:University of Oregon 6541:Planck Collaboration 6425:Matter-dominated era 6323:quantum field theory 6161:energy of the vacuum 6058:improve this article 5817:intergalactic medium 5733:computational models 5598:observational effort 5537:Population III stars 5388:for the first time. 5250:Matter-dominated era 5058: 5021: 4603: 4570: 4546: 4516: 4360: 4260: 4215: 4195: 4141: 4047: 4038:Stefan–Boltzmann law 3864:elementary particles 3788:electronuclear force 3732:Grand Unified Theory 3661:string gas cosmology 3629:strong nuclear force 3397:begins to accelerate 2939:is approximately 10 2861:, instead forming a 2676:Grand Unified Theory 2351: 2103: 1928: 1604:almost equal amounts 1214:NGC 188 star cluster 709:Astronomy portal 667:background radiation 644:List of cosmologists 74:improve this article 12197:Astronomy timelines 12032:Structure formation 11995:Structure formation 11909:Friedmann equations 11819:Observable universe 11799:Age of the universe 11673:Big History Project 11666:Web-based education 11513:Themes and subjects 11216:on 24 November 2005 11191:on 27 December 2005 11161:PBS Digital Studios 11153:(14 January 2016). 11077:The Science Channel 11032:Krauss, Lawrence M. 10932:TED Conferences LLC 10924:(14 January 2011). 10841:2004mmu..symp..291W 10775:2018PhRvD..98c0001T 10753:Particle Data Group 10509:Hawking, Stephen W. 10473:2009ApJS..180..225H 10343:1977PhRvD..15.2922F 10303:1976PhRvL..37.1378F 10263:1976PhRvD..14.3568S 10195:1980PhRvD..21.3305C 10125:1982Natur.298..633T 9972:2003RvMP...75..559P 9845:"The Ages of Stars" 9725:2007ApJ...663...10S 9583:Nemiroff, Robert J. 9490:2001AJ....122.2833F 9430:1987ApJ...321L.107S 9378:2012ApJ...752L...5B 9342:Bouwens, Rychard J. 9287:1997ApJ...486..581G 9232:2001PhR...349..125B 9173:1999ApJ...514..648M 9111:2014PASA...31...40D 8877:2016ApJ...819..129O 8849:Grism Spectroscopy" 8712:Scientific American 8498:2013ApJS..208...20B 8466:Bennett, Charles L. 8376:2014JCAP...10..050C 8360:(10): Article 050. 8320:2016JPhCS.665a2001C 8265:2014ApJS..214....5K 8099:"First Few Minutes" 8031:1971MNRAS.152...75H 7979:2013PhRvD..88h4051H 7938:1966AZh....43..758Z 7907:1967SvA....10..602Z 7845:2015PhRvL.115i1301F 7637:2016PhRvD..93b5003D 7558:(30 January 2015). 7481:2015PhRvL.114j1301B 7342:Columbia University 7292:2014PhRvL.112x1101B 7063:1997RvMP...69..337A 6810:2014ApJ...792...44C 6695:Hinshaw et al. 2009 6369:age of the universe 6359:Age of the universe 6185:longest-lived stars 5940: = 11.1; 5927:Using the 10-metre 5905:Population II stars 5847:Lyman-alpha forests 5703:perturbation theory 5633:Structure formation 5317:when it collapses. 5254:Structure formation 5054: (10%), where 4945:Neutrino decoupling 4910:thermal equilibrium 4880:Sakharov conditions 3984:thermal equilibrium 3900:gravitational waves 3438:degenerate remnants 3293:Radiation-dominated 3023:. Trace amounts of 2974:thermal equilibrium 2937:observable universe 2852:(150 GeV ~ 150 MeV) 2820:observable universe 2524:Geologic time scale 2470:observable universe 1962: 1691:recombination epoch 1600:subatomic particles 1338:Sexual reproduction 1278:Earliest known life 409:Structure formation 301:Friedmann equations 191:Age of the universe 155:Part of a series on 12202:Physical cosmology 12012:Large quasar group 11347:Inflationary epoch 11127:The New York Times 11018:on 18 January 2020 10815:Freedman, Wendy L. 10662:Ryden, Barbara Sue 10398:. pp. 46–49. 10102:(12 August 1982). 10096:Turner, Michael S. 9904:The New York Times 9691:Stark, Daniel P.; 8935:briankoberlein.com 8818:SpaceTelescope.org 8545:Astronomical Notes 7567:The New York Times 7379:The New York Times 7228:The New York Times 7154:Harvard University 7093:"The Planck Epoch" 6653: 6605:Tanabashi, M. 2018 6553:Schombert, James. 6346:quantum tunnelling 6301:Vacuum instability 6153:physical constants 6149: 5952:Present and future 5909:Population I stars 5901: 5821:Thomson scattering 5804: 5753:Rychard J. Bouwens 5687:Lyman-alpha forest 5659: 5651: 5548: 5413:Thomson scattering 5355: 5299:radiation pressure 5064: 5044: 4814:quark–gluon plasma 4699: 4586: 4552: 4532: 4484: 4331: 4239: 4201: 4181: 4123: 3957:quark–gluon plasma 3951:The early universe 3665:ekpyrotic universe 3637:general relativity 3625:weak nuclear force 3299:From inflation (~ 3196:beginning at 3 Ga 3064:(100 keV ~ 0.4 eV) 2863:quark–gluon plasma 2729:strong interaction 2507: 2464:At some time, the 2402: 2326: 2084: 1948: 1872: 1786: 1619:neutrinos decouple 1594:The early universe 1513: 1402:Cambrian explosion 1318:Atmospheric oxygen 1017:Single-celled life 448:Dark Energy Survey 392:Large quasar group 161:Physical cosmology 12212:Physics timelines 12114: 12113: 12068:Illustris project 11751: 11750: 11626:- development of 11618:evolution of life 11580:creation of stars 11472: 11471: 11384:Matter domination 11343:Electroweak epoch 11254:Wright, Edward L. 11118:(17 March 2006). 11098:. 26 March 2013. 11010:. Baltimore, MD: 10986:. Arlington, VA: 10958:. Cambridge, MA: 10952:Chaisson, Eric J. 10889:978-0-03-006228-5 10850:978-0-521-75576-4 10811:Wright, Edward L. 10762:Physical Review D 10727:978-1-107-15483-4 10679:978-0-8053-8912-8 10668:. San Francisco: 10645:978-3-8442-7203-1 10610:978-0-511-79055-3 10599:. Cambridge, UK: 10568:978-1-107-07346-3 10557:. Cambridge, UK: 10526:978-0-521-25349-9 10405:978-9-703-21160-9 10373:Laughlin, Gregory 10337:(10): 2922–2928. 10330:Physical Review D 10325:Frampton, Paul H. 10297:(21): 1378–1380. 10285:Frampton, Paul H. 10257:(12): 3568–3573. 10250:Physical Review D 10189:(12): 3305–3315. 10182:Physical Review D 10119:(5875): 633–634. 9940:Peebles, P. J. E. 9693:Ellis, Richard S. 9641:Warner Media, LLC 9627:Landau, Elizabeth 9607:on 7 October 2019 9362:(1): Article L5. 9202:Barkana, Rennan; 8908:Atkinson, Nancy. 8702:(November 2006). 8482:(2): Article 20. 8166:Wright, Edward L. 8105:. Cambridge, MA: 8095:Chaisson, Eric J. 7956:Physical Review D 7913:Translated from: 7614:Physical Review D 7219:(17 March 2014). 7148:. Cambridge, MA: 7103:. 7 August 2007. 7035:Laughlin, Gregory 6794:(1): Article 44. 6559:HC 441: Cosmology 6419:Illustris project 6341:quantum phenomena 6337: 6336: 6327:Bubble nucleation 6232:Hawking radiation 6134: 6133: 6126: 6108: 5942:comoving distance 5714:-body simulations 5617:Stellar formation 5596:There is also an 5481:9-year WMAP image 5453: 5452: 5359:photon decoupling 5277:According to the 5237:Matter domination 4555:{\displaystyle a} 4454: 4447: 4426: 4391: 3780:electroweak epoch 3774:Electroweak epoch 3761:Electroweak epoch 3717:symmetry breaking 3701:phase transitions 3647:the umbrella of " 3574:eternal inflation 3491: 3490: 3450:> 100 Ta 3382:> 9.8 Ga 3364:radiation density 3323:, dominates both 3170:Modern galaxies: 3000:(100 keV ~ 1 keV) 2965:(1 MeV ~ 100 keV) 2887:(150 MeV ~ 1 MeV) 2489: 2391: 2374: 2357: 2321: 2315: 2266: 2224: 2167: 2154: 2141: 2082: 2050: 2047: 1934: 1742:photon decoupling 1487: 1486: 1479:billion years ago 1453: 1452: 1429: 1428: 1409: 1408: 1389: 1388: 1365: 1364: 1345: 1344: 1325: 1324: 1305: 1304: 1285: 1284: 1265: 1264: 1241: 1240: 1221: 1220: 1201: 1200: 1194:Milky Way spirals 1181: 1180: 1161: 1160: 1141: 1140: 1114: 1113: 1094: 1093: 1074: 1073: 1067:Earliest Universe 745: 744: 416: 415: 258: 257: 150: 149: 142: 124: 16:(Redirected from 12219: 12179: 12178: 12177: 12167: 12166: 12165: 12155: 12154: 12153: 12143: 12142: 12131: 12130: 12129: 12122: 12105: 12104: 12103: 12007:Galaxy formation 11986:Lambda-CDM model 11897:Present universe 11778: 11771: 11764: 11755: 11754: 11554:Eight thresholds 11525:Cosmic evolution 11499: 11492: 11485: 11476: 11475: 11460: 11305: 11298: 11291: 11282: 11281: 11277: 11275: 11273: 11249: 11247: 11245: 11232:. Berkeley, CA: 11225: 11223: 11221: 11212:. Archived from 11200: 11198: 11196: 11176: 11174: 11172: 11146: 11144: 11142: 11123: 11111: 11109: 11107: 11087: 11085: 11083: 11057: 11055: 11053: 11027: 11025: 11023: 11003: 11001: 10999: 10975: 10973: 10971: 10947: 10945: 10943: 10922:Carroll, Sean M. 10909: 10880:Thomson Learning 10870: 10834: 10832:astro-ph/0305591 10806: 10796: 10786: 10747: 10708: 10699: 10657: 10630: 10588: 10546: 10505:Gibbons, Gary W. 10500: 10466: 10440: 10438: 10436: 10430: 10381: 10355: 10354: 10321: 10315: 10314: 10281: 10275: 10274: 10244: 10238: 10237: 10235: 10233: 10227: 10178: 10166: 10160: 10159: 10157: 10155: 10149: 10133:10.1038/298633a0 10108: 10092: 10086: 10083: 10081: 10079: 10058:Thomson, William 10053: 10051: 10049: 10032:Thomson, William 10028: 10022: 10021: 10009: 10003: 9998: 9992: 9991: 9965: 9963:astro-ph/0207347 9936: 9930: 9928: 9926: 9924: 9900: 9889: 9883: 9882: 9864: 9840: 9834: 9833: 9831: 9829: 9823: 9818:. Archived from 9798:(3 March 2016). 9792: 9781: 9780: 9778: 9776: 9753: 9747: 9744: 9718: 9716:astro-ph/0701279 9687: 9685: 9683: 9663: 9657: 9656: 9654: 9652: 9623: 9617: 9616: 9614: 9612: 9603:. Archived from 9579: 9573: 9572: 9570: 9568: 9549: 9543: 9542: 9540: 9538: 9516: 9510: 9509: 9483: 9481:astro-ph/0108063 9474:(6): 2833–2849. 9450: 9444: 9443: 9441: 9408:Shapiro, Paul R. 9404: 9398: 9397: 9371: 9338: 9332: 9331: 9329: 9327:astro-ph/9802189 9313: 9307: 9306: 9280: 9278:astro-ph/9612127 9258: 9252: 9251: 9225: 9223:astro-ph/0010468 9199: 9193: 9192: 9166: 9164:astro-ph/9809058 9140: 9131: 9130: 9104: 9082: 9073: 9072: 9070: 9068: 9042: 9036: 9035: 9033: 9031: 9012: 9001: 9000: 8994: 8986: 8984: 8982: 8963: 8957: 8956: 8945: 8939: 8938: 8927: 8918: 8917: 8905: 8899: 8898: 8888: 8870: 8836: 8830: 8829: 8827: 8825: 8810: 8804: 8803: 8801: 8799: 8784: 8778: 8777: 8775: 8773: 8746: 8740: 8739: 8737: 8735: 8729: 8708: 8696: 8690: 8689: 8687: 8685: 8659: 8653: 8652: 8650: 8648: 8641:MediaCollege.com 8633: 8627: 8626: 8624: 8622: 8596: 8585: 8579: 8573: 8572: 8570: 8560: 8536: 8530: 8524: 8518: 8517: 8491: 8462: 8456: 8455: 8453: 8451: 8425: 8419: 8413: 8407: 8402: 8396: 8395: 8369: 8347: 8341: 8339: 8313: 8291: 8285: 8284: 8258: 8249:(1): Article 5. 8235: 8229: 8228: 8226: 8224: 8215:. Archived from 8200: 8194: 8193: 8191: 8189: 8162: 8156: 8155: 8153: 8151: 8132: 8123: 8122: 8120: 8118: 8103:Cosmic Evolution 8091: 8085: 8084: 8082: 8080: 8074: 8063: 8051: 8045: 8044: 8042: 8009:Hawking, Stephen 8005: 7999: 7998: 7972: 7950: 7944: 7941: 7920:Novikov, Igor D. 7910: 7894:Soviet Astronomy 7889:Novikov, Igor D. 7881: 7875: 7872: 7838: 7814: 7812: 7810: 7782: 7770: 7757: 7756: 7754: 7752: 7742: 7724: 7715: 7692: 7683: 7677: 7668: 7657: 7656: 7630: 7608: 7602: 7599: 7593: 7591: 7589: 7587: 7563: 7552: 7546: 7545: 7543: 7541: 7515: 7509: 7508: 7474: 7444: 7438: 7437: 7435: 7433: 7411: 7405: 7403: 7401: 7399: 7375: 7370:(19 June 2014). 7364: 7358: 7357: 7355: 7353: 7326: 7320: 7319: 7285: 7263: 7254: 7252: 7250: 7248: 7224: 7213: 7207: 7206: 7204: 7202: 7176: 7170: 7169: 7167: 7165: 7138: 7132: 7126: 7117: 7116: 7114: 7112: 7099:. Berkeley, CA: 7089: 7083: 7082: 7056: 7054:astro-ph/9701131 7027: 7012: 7002: 6996: 6995: 6993: 6991: 6976: 6970: 6964: 6953: 6952: 6950: 6919: 6917:astro-ph/0506458 6910:(3): 1153–1159. 6899: 6890: 6884: 6883: 6881: 6867: 6858: 6852: 6851: 6849: 6847: 6836: 6830: 6829: 6803: 6777: 6771: 6760: 6749: 6722: 6716: 6714: 6713: 6712: 6706: 6692: 6686: 6666: 6662: 6660: 6659: 6654: 6652: 6651: 6630:Edward L. Wright 6626: 6620: 6602: 6596: 6590: 6579: 6578: 6576: 6574: 6550: 6544: 6538: 6512: 6486: 6470: 6466: 6398: 6306:Collapse of the 6201: 6200: 6129: 6122: 6118: 6115: 6109: 6107: 6066: 6042: 6034: 5637:Stelliferous Era 5430: 5386: 5385: 5384: 5283:cold dark matter 5279:Lambda-CDM model 5073: 5071: 5070: 5065: 5053: 5051: 5050: 5045: 5034: 4983:neutrino flavors 4980: 4708: 4706: 4705: 4700: 4695: 4694: 4673: 4672: 4654: 4653: 4595: 4593: 4592: 4587: 4585: 4584: 4561: 4559: 4558: 4553: 4541: 4539: 4538: 4533: 4531: 4530: 4493: 4491: 4490: 4485: 4483: 4482: 4470: 4469: 4452: 4448: 4443: 4442: 4427: 4425: 4424: 4423: 4410: 4399: 4397: 4392: 4387: 4370: 4351:Hubble parameter 4340: 4338: 4337: 4332: 4330: 4329: 4317: 4316: 4298: 4297: 4293: 4248: 4246: 4245: 4240: 4238: 4237: 4233: 4210: 4208: 4207: 4202: 4190: 4188: 4187: 4182: 4180: 4179: 4164: 4156: 4155: 4132: 4130: 4129: 4124: 4122: 4121: 4109: 4108: 4096: 4095: 4083: 4078: 4077: 4068: 4067: 4011:phase transition 3621:electromagnetism 3461:Stelliferous Era 3456:< 0.1 K 3429: 3424: 3419: 3413:Stelliferous Era 3355: 3350: 3345: 3337:Matter-dominated 3302: 3247: 3236: 3215: 3213: 3203: 3201: 3191: 3189: 3182:From about 60 K 3173: 3138: 3133: 3126: 3125:370 ka ~ 150 Ma? 3065: 3061: 3054: 3053: 3001: 2997: 2990: 2966: 2962: 2955: 2923: 2893:baryon asymmetry 2888: 2884: 2877: 2853: 2849: 2842: 2802: 2797: 2786: 2782: 2773: 2714:Cosmic inflation 2710: 2706: 2699: 2667: 2663: 2656: 2628: 2624: 2617: 2581: 2580: 2571: 2567: 2564:·(1 +  2498:Ultra Deep Field 2490: 2466:Stelliferous Era 2453:inflection point 2411: 2409: 2408: 2403: 2392: 2389: 2375: 2372: 2358: 2355: 2335: 2333: 2332: 2327: 2322: 2319: 2316: 2314: 2313: 2312: 2300: 2299: 2295: 2267: 2265: 2264: 2255: 2246: 2235: 2230: 2226: 2225: 2223: 2222: 2221: 2197: 2196: 2186: 2185: 2176: 2168: 2160: 2155: 2147: 2142: 2134: 2127: 2126: 2117: 2116: 2111: 2093: 2091: 2090: 2085: 2083: 2081: 2080: 2068: 2063: 2051: 2049: 2048: 2046: 2045: 2036: 2016: 2015: 2003: 2002: 1993: 1985: 1964: 1961: 1956: 1935: 1932: 1849:pair-instability 1778:Hubble parameter 1707: 1706: 1705: 1588:particle physics 1580:cosmic inflation 1559:, and later the 1467: 1436: 1431: 1422:Earliest mammals 1416: 1411: 1396: 1391: 1378:Earliest animals 1372: 1367: 1352: 1347: 1332: 1327: 1312: 1307: 1292: 1287: 1272: 1267: 1248: 1243: 1228: 1223: 1208: 1203: 1188: 1183: 1174:Andromeda Galaxy 1168: 1163: 1148: 1143: 1135: 1121: 1116: 1101: 1096: 1081: 1076: 1061: 1056: 1048: 1008: 997: 986: 983:Matter-dominated 973: 962: 952: 947: 942: 937: 932: 927: 922: 917: 912: 907: 902: 897: 892: 887: 882: 877: 872: 867: 862: 857: 852: 847: 842: 837: 832: 827: 822: 810: 803: 796: 790: 780: 773: 737: 730: 723: 707: 706: 705: 694: 693: 387:Galaxy formation 347:Lambda-CDM model 336: 335: 328:Components  210: 209: 171: 152: 151: 145: 138: 134: 131: 125: 123: 82: 58: 50: 21: 12227: 12226: 12222: 12221: 12220: 12218: 12217: 12216: 12187: 12186: 12185: 12175: 12173: 12163: 12161: 12151: 12149: 12137: 12127: 12125: 12117: 12115: 12110: 12101: 12099: 12092: 12036: 12002:Galaxy filament 11990: 11954: 11938:Future universe 11933: 11892: 11888:Nucleosynthesis 11856: 11829: 11823: 11787: 11782: 11752: 11747: 11728: 11709:David Christian 11682: 11661: 11549: 11508: 11503: 11473: 11468: 11448: 11410: 11399:Habitable epoch 11314: 11309: 11271: 11269: 11256:(24 May 2013). 11243: 11241: 11228: 11219: 11217: 11194: 11192: 11179: 11170: 11168: 11149: 11140: 11138: 11116:Overbye, Dennis 11105: 11103: 11094:. Swindon, UK: 11090: 11081: 11079: 11060: 11051: 11049: 11030: 11021: 11019: 11006: 10997: 10995: 10978: 10969: 10967: 10941: 10939: 10920: 10917: 10912: 10890: 10851: 10825:. p. 291. 10728: 10680: 10646: 10611: 10569: 10527: 10434: 10432: 10428: 10406: 10379: 10363: 10358: 10322: 10318: 10282: 10278: 10245: 10241: 10231: 10229: 10225: 10176: 10170:Coleman, Sidney 10167: 10163: 10153: 10151: 10147: 10106: 10093: 10089: 10077: 10075: 10047: 10045: 10029: 10025: 10012:Siegel, Ethan. 10010: 10006: 9999: 9995: 9937: 9933: 9922: 9920: 9893:Overbye, Dennis 9890: 9886: 9841: 9837: 9827: 9825: 9824:on 4 March 2016 9793: 9784: 9774: 9772: 9767:. 8 July 2007. 9755: 9754: 9750: 9681: 9679: 9664: 9660: 9650: 9648: 9624: 9620: 9610: 9608: 9580: 9576: 9566: 9564: 9551: 9550: 9546: 9536: 9534: 9526:Quanta Magazine 9517: 9513: 9451: 9447: 9405: 9401: 9339: 9335: 9314: 9310: 9259: 9255: 9209:Physics Reports 9200: 9196: 9145:Rees, Martin J. 9141: 9134: 9083: 9076: 9066: 9064: 9043: 9039: 9029: 9027: 9026:on 8 March 2016 9014: 9013: 9004: 8988: 8987: 8980: 8978: 8965: 8964: 8960: 8947: 8946: 8942: 8929: 8928: 8921: 8906: 8902: 8837: 8833: 8823: 8821: 8812: 8811: 8807: 8797: 8795: 8793:Yale University 8785: 8781: 8771: 8769: 8747: 8743: 8733: 8731: 8727: 8706: 8697: 8693: 8683: 8681: 8660: 8656: 8646: 8644: 8635: 8634: 8630: 8620: 8618: 8597: 8588: 8580: 8576: 8537: 8533: 8525: 8521: 8463: 8459: 8449: 8447: 8426: 8422: 8414: 8410: 8403: 8399: 8348: 8344: 8292: 8288: 8236: 8232: 8222: 8220: 8202: 8201: 8197: 8187: 8185: 8163: 8159: 8149: 8147: 8134: 8133: 8126: 8116: 8114: 8092: 8088: 8078: 8076: 8072: 8061: 8052: 8048: 8006: 8002: 7951: 7947: 7882: 7878: 7808: 7806: 7791:Jersey City, NJ 7780: 7771: 7760: 7750: 7748: 7722: 7716: 7695: 7684: 7680: 7669: 7660: 7609: 7605: 7600: 7596: 7585: 7583: 7556:Overbye, Dennis 7553: 7549: 7539: 7537: 7516: 7512: 7445: 7441: 7431: 7429: 7412: 7408: 7397: 7395: 7368:Overbye, Dennis 7365: 7361: 7351: 7349: 7332:(13 May 2014). 7327: 7323: 7264: 7257: 7246: 7244: 7217:Overbye, Dennis 7214: 7210: 7200: 7198: 7177: 7173: 7163: 7161: 7140: 7139: 7135: 7127: 7120: 7110: 7108: 7091: 7090: 7086: 7028: 7015: 7003: 6999: 6989: 6987: 6977: 6973: 6965: 6956: 6948: 6897: 6891: 6887: 6865: 6859: 6855: 6845: 6843: 6837: 6833: 6778: 6774: 6768:Fortran-90 code 6761: 6752: 6747: 6740: 6733: 6723: 6719: 6710: 6708: 6707: 6704: 6702: 6693: 6689: 6678: 6664: 6647: 6643: 6641: 6638: 6637: 6627: 6623: 6617:John A. Peacock 6603: 6599: 6591: 6582: 6572: 6570: 6551: 6547: 6503:: Article A13. 6487: 6483: 6479: 6474: 6473: 6467: 6463: 6458: 6453: 6396: 6365:Cosmic Calendar 6354: 6248:William Thomson 6130: 6119: 6113: 6110: 6067: 6065: 6055: 6043: 6032: 6022: 6014:Main articles: 6012: 6002:at a gradually 5980: 5972:Main articles: 5963: 5954: 5893: 5887: 5796: 5782: 5695:active galaxies 5639: 5606: 5567: 5555:Main articles: 5553: 5517: 5511: 5506: 5489: 5383: 5381: 5380: 5379: 5377: 5366:baryonic matter 5333: 5325:Main articles: 5323: 5256: 5248:Main articles: 5239: 5213:, beryllium-9, 5176: 5163: 5146: 5133: 5109: 5096: 5084:Stephen Hawking 5059: 5056: 5055: 5030: 5022: 5019: 5018: 5004: 4991: 4978: 4951: 4943:Main articles: 4934: 4905: 4892: 4864: 4858: 4845: 4794: 4781: 4779:The quark epoch 4752:Higgs mechanism 4732: 4719: 4690: 4686: 4668: 4664: 4610: 4606: 4604: 4601: 4600: 4577: 4573: 4571: 4568: 4567: 4564:scale parameter 4547: 4544: 4543: 4523: 4519: 4517: 4514: 4513: 4475: 4471: 4465: 4461: 4438: 4434: 4419: 4415: 4411: 4400: 4398: 4396: 4383: 4369: 4361: 4358: 4357: 4322: 4318: 4312: 4308: 4289: 4285: 4281: 4261: 4258: 4257: 4229: 4222: 4218: 4216: 4213: 4212: 4196: 4193: 4192: 4175: 4171: 4160: 4151: 4147: 4142: 4139: 4138: 4114: 4110: 4104: 4100: 4091: 4087: 4079: 4073: 4069: 4063: 4059: 4048: 4045: 4044: 4034: 4028: 3996:Higgs mechanism 3969: 3953: 3933: 3927: 3821: 3813:Main articles: 3804: 3792:electromagnetic 3776: 3763: 3686: 3673: 3641:quantum effects 3608: 3591: 3570: 3561:quantum gravity 3510: 3498:Main articles: 3496: 3427: 3422: 3418:150 Ma ~ 100 Ta 3417: 3377: 3353: 3348: 3343: 3338: 3301:10 sec) ~ 47 ka 3300: 3294: 3245: 3238: 3237: 3234: 3211: 3209: 3199: 3197: 3194:galaxy clusters 3187: 3186: 3175: 3174: 3171: 3169: 3168: 3166: 3160: 3143:the first stars 3136: 3131: 3127: 3124: 3097: 3090:18 ka ~ 370 ka 3063: 3062: 3059: 3048: 3046: 2999: 2998: 2995: 2988: 2984:nucleosynthesis 2983: 2964: 2963: 2960: 2953: 2924: 2921: 2911: 2886: 2885: 2882: 2875: 2851: 2850: 2847: 2840: 2809: 2800: 2795: 2793: 2789: 2784: 2780: 2779: 2777: 2771: 2769: 2765: 2761: 2755:(150 GeV) 2754: 2742: 2708: 2707: 2704: 2697: 2692: 2689: 2688: 2685: 2665: 2664: 2661: 2654: 2649: 2647: 2626: 2625: 2622: 2615: 2610: 2600: 2598: 2596: 2569: 2565: 2552: 2534: 2512: 2510:Tabular summary 2505: 2479: 2462: 2418: 2388: 2371: 2354: 2352: 2349: 2348: 2318: 2308: 2304: 2291: 2287: 2283: 2260: 2256: 2254: 2247: 2236: 2234: 2217: 2213: 2192: 2188: 2187: 2181: 2177: 2175: 2159: 2146: 2133: 2132: 2128: 2122: 2118: 2112: 2110: 2109: 2104: 2101: 2100: 2076: 2072: 2067: 2056: 2041: 2037: 2029: 2011: 2007: 1998: 1994: 1992: 1978: 1968: 1963: 1957: 1952: 1931: 1929: 1926: 1925: 1920: 1914: 1875:Galaxy clusters 1804:to non-visible 1783: 1775: 1767: 1754: 1723: 1704: 1702: 1701: 1700: 1698: 1697:nuclei to form 1647:nucleosynthesis 1596: 1561:electromagnetic 1545:laws of physics 1529: 1497: 1492: 1483: 1482: 1470: 1469: 1468: 1464: 1462: 1460: 1457: 1449: 1448: 1434: 1425: 1424: 1414: 1405: 1404: 1394: 1385: 1384: 1370: 1361: 1360: 1350: 1341: 1340: 1330: 1321: 1320: 1310: 1301: 1300: 1298:Earliest oxygen 1290: 1281: 1280: 1270: 1261: 1260: 1246: 1237: 1236: 1226: 1217: 1216: 1206: 1197: 1196: 1186: 1177: 1176: 1166: 1157: 1156: 1146: 1137: 1136: 1126: 1119: 1110: 1109: 1107:Earliest galaxy 1099: 1090: 1089: 1079: 1070: 1069: 1059: 1052: 1051: 1050: 1046: 1041: 1040: 1039: 1036: 1030: 1029: 1028: 1021: 1020: 1019: 1012: 1011: 1010: 1006: 1001: 1000: 999: 995: 990: 989: 988: 984: 982: 977: 976: 975: 971: 966: 965: 964: 960: 953: 950: 948: 945: 943: 940: 938: 935: 933: 930: 928: 925: 923: 920: 918: 915: 913: 910: 908: 905: 903: 900: 898: 895: 893: 890: 888: 885: 883: 880: 878: 875: 873: 870: 868: 865: 863: 860: 858: 855: 853: 850: 848: 845: 843: 840: 838: 835: 833: 830: 828: 825: 823: 820: 814: 788: 782: 779:Nature timeline 778: 741: 703: 701: 683: 682: 669: 666: 659: 657:Subject history 649: 648: 640: 485: 477: 476: 473: 470: 428: 418: 417: 380:Galaxy filament 333: 321: 320: 272: 267:Expansion  260: 259: 244:Microwave (CMB) 223:Nucleosynthesis 207: 146: 135: 129: 126: 83: 81: 71: 59: 46: 35: 28: 23: 22: 15: 12: 11: 5: 12225: 12215: 12214: 12209: 12204: 12199: 12184: 12183: 12171: 12159: 12147: 12135: 12112: 12111: 12097: 12094: 12093: 12091: 12090: 12085: 12080: 12075: 12070: 12065: 12060: 12055: 12050: 12044: 12042: 12038: 12037: 12035: 12034: 12029: 12024: 12019: 12014: 12009: 12004: 11998: 11996: 11992: 11991: 11989: 11988: 11983: 11978: 11973: 11968: 11962: 11960: 11956: 11955: 11953: 11952: 11947: 11941: 11939: 11935: 11934: 11932: 11931: 11926: 11921: 11916: 11911: 11906: 11900: 11898: 11894: 11893: 11891: 11890: 11885: 11880: 11875: 11870: 11864: 11862: 11858: 11857: 11855: 11854: 11849: 11844: 11839: 11833: 11831: 11825: 11824: 11822: 11821: 11816: 11811: 11806: 11801: 11795: 11793: 11789: 11788: 11781: 11780: 11773: 11766: 11758: 11749: 11748: 11746: 11745: 11736: 11734: 11730: 11729: 11727: 11726: 11721: 11716: 11711: 11706: 11701: 11696: 11694:Walter Alvarez 11690: 11688: 11687:Notable people 11684: 11683: 11681: 11680: 11675: 11669: 11667: 11663: 11662: 11660: 11659: 11649: 11639: 11638: 11637: 11620: 11606: 11596: 11582: 11572: 11557: 11555: 11551: 11550: 11548: 11547: 11542: 11537: 11532: 11527: 11522: 11516: 11514: 11510: 11509: 11502: 11501: 11494: 11487: 11479: 11470: 11469: 11467: 11466: 11453: 11450: 11449: 11447: 11446: 11441: 11436: 11431: 11426: 11420: 11418: 11412: 11411: 11409: 11408: 11403: 11402: 11401: 11391: 11373: 11368: 11363: 11358: 11340: 11335: 11330: 11324: 11322: 11316: 11315: 11308: 11307: 11300: 11293: 11285: 11279: 11278: 11250: 11226: 11206:Schulman, Eric 11202: 11177: 11147: 11112: 11088: 11064:Exploring Time 11058: 11028: 11004: 10976: 10948: 10916: 10915:External links 10913: 10911: 10910: 10888: 10871: 10849: 10807: 10748: 10726: 10709: 10700: 10678: 10670:Addison-Wesley 10658: 10644: 10631: 10609: 10589: 10567: 10547: 10525: 10501: 10457:(2): 225–245. 10441: 10404: 10369:Adams, Fred C. 10364: 10362: 10359: 10357: 10356: 10316: 10276: 10239: 10161: 10100:Wilczek, Frank 10087: 10085: 10084: 10023: 10004: 9993: 9956:(2): 559–606. 9931: 9884: 9855:(1): 581–629. 9835: 9782: 9763:. Austin, TX: 9748: 9746: 9745: 9733:10.1086/518098 9658: 9618: 9574: 9544: 9511: 9498:10.1086/324111 9445: 9439:10.1086/185015 9399: 9333: 9308: 9295:10.1086/304548 9271:(2): 581–598. 9253: 9216:(2): 125–238. 9194: 9181:10.1086/306975 9157:(2): 648–659. 9132: 9074: 9037: 9002: 8958: 8940: 8919: 8914:Universe Today 8900: 8831: 8805: 8779: 8750:Ellis, Richard 8741: 8691: 8654: 8628: 8586: 8584:, p. 120. 8574: 8551:(7): 657–674. 8531: 8519: 8457: 8420: 8418:, p. 497. 8408: 8397: 8342: 8286: 8230: 8219:on 16 May 2019 8195: 8157: 8124: 8086: 8046: 8011:(April 1971). 8000: 7945: 7943: 7942: 7932:(4): 758–760. 7901:(4): 602–603. 7876: 7874: 7873: 7758: 7693: 7678: 7658: 7603: 7594: 7547: 7510: 7465:(10): 101301. 7439: 7406: 7359: 7338:Not Even Wrong 7321: 7276:(24): 241101. 7255: 7208: 7171: 7133: 7118: 7084: 7047:(2): 337–372. 7031:Adams, Fred C. 7013: 6997: 6971: 6954: 6885: 6853: 6831: 6772: 6750: 6745: 6738: 6731: 6717: 6687: 6676: 6650: 6646: 6621: 6613:Keith A. Olive 6597: 6580: 6545: 6480: 6478: 6475: 6472: 6471: 6460: 6459: 6457: 6454: 6452: 6451: 6445: 6439: 6434: 6428: 6422: 6416: 6411: 6405: 6399: 6390: 6384: 6378: 6372: 6362: 6355: 6353: 6350: 6335: 6334: 6311: 6308:quantum fields 6304: 6296: 6295: 6287: 6284: 6276: 6275: 6267: 6260: 6252: 6251: 6220: 6217: 6209: 6208: 6205: 6181:galaxy cluster 6132: 6131: 6046: 6044: 6037: 6011: 6008: 5970: 5969: 5962: 5959: 5953: 5950: 5886: 5883: 5781: 5778: 5699:accretion disk 5613: 5612: 5605: 5602: 5552: 5549: 5510: 5507: 5496: 5495: 5488: 5485: 5473:pressure waves 5451: 5450: 5409:mean free path 5401:star formation 5393:helium hydride 5382: 5322: 5319: 5269:free streaming 5246: 5245: 5238: 5235: 5172:Main article: 5170: 5169: 5162: 5159: 5142:Main article: 5140: 5139: 5132: 5129: 5105:Main article: 5103: 5102: 5095: 5092: 5063: 5043: 5040: 5037: 5033: 5029: 5026: 5000:Main article: 4998: 4997: 4990: 4987: 4941: 4940: 4933: 4930: 4901:Main article: 4899: 4898: 4891: 4888: 4854:Main article: 4852: 4851: 4844: 4841: 4790:Main article: 4788: 4787: 4780: 4777: 4768: 4767: 4763:W and Z bosons 4755: 4728:Main article: 4726: 4725: 4718: 4715: 4711: 4710: 4698: 4693: 4689: 4685: 4682: 4679: 4676: 4671: 4667: 4663: 4660: 4657: 4652: 4649: 4646: 4643: 4640: 4637: 4634: 4631: 4628: 4625: 4622: 4619: 4616: 4613: 4609: 4583: 4580: 4576: 4551: 4529: 4526: 4522: 4496: 4495: 4481: 4478: 4474: 4468: 4464: 4460: 4457: 4451: 4446: 4441: 4437: 4433: 4430: 4422: 4418: 4414: 4409: 4406: 4403: 4395: 4390: 4386: 4382: 4379: 4376: 4373: 4368: 4365: 4343: 4342: 4328: 4325: 4321: 4315: 4311: 4307: 4304: 4301: 4296: 4292: 4288: 4284: 4280: 4277: 4274: 4271: 4268: 4265: 4251:mean free path 4236: 4232: 4228: 4225: 4221: 4200: 4178: 4174: 4170: 4167: 4163: 4159: 4154: 4150: 4146: 4135: 4134: 4120: 4117: 4113: 4107: 4103: 4099: 4094: 4090: 4086: 4082: 4076: 4072: 4066: 4062: 4058: 4055: 4052: 4027: 4026:Thermalization 4024: 3980:thermalization 3976: 3975: 3968: 3965: 3952: 3949: 3929:Main article: 3926: 3923: 3907:power spectrum 3887:of inflation. 3873:warm inflation 3853:inflaton field 3811: 3810: 3803: 3800: 3772:Main article: 3770: 3769: 3762: 3759: 3757:interactions. 3713:quantum fields 3682:Main article: 3680: 3679: 3672: 3669: 3602: 3601: 3590: 3587: 3569: 3566: 3514:Standard Model 3495: 3492: 3489: 3488: 3457: 3454: 3451: 3448: 3442: 3441: 3434:star formation 3430: 3425: 3420: 3415: 3409: 3408: 3389: 3388:< 4 K 3386: 3383: 3380: 3372: 3371: 3360:energy density 3356: 3351: 3346: 3344:47 ka ~ 9.8 Ga 3341: 3333: 3332: 3325:matter density 3321:speed of light 3313:energy density 3309: 3306: 3303: 3297: 3289: 3288: 3284: 3283: 3279: 3276: 3273: 3270: 3264: 3263: 3248: 3243: 3240: 3232: 3226: 3225: 3183: 3180: 3179:From about 20 3177: 3163: 3155: 3154: 3139: 3134: 3129: 3122: 3116: 3115: 3099: 3094: 3091: 3088: 3082: 3081: 3066: 3057: 3055: 3044: 3038: 3037: 3002: 2993: 2991: 2986: 2978: 2977: 2967: 2958: 2956: 2951: 2945: 2944: 2926: 2919: 2917: 2914: 2906: 2905: 2889: 2880: 2878: 2873: 2867: 2866: 2854: 2845: 2843: 2838: 2832: 2831: 2812:Weinberg angle 2807: 2798: 2791: 2787: 2778: bosons, 2775: 2767: 2763: 2759: 2756: 2751: 2749: 2746: 2737: 2736: 2711: 2702: 2700: 2695: 2680: 2679: 2672:Standard Model 2668: 2666:( > 10 GeV) 2659: 2657: 2652: 2642: 2641: 2629: 2627:( > 10 GeV) 2620: 2618: 2613: 2605: 2604: 2601: 2593: 2588: 2585: 2579: 2578: 2511: 2508: 2461: 2458: 2417: 2414: 2413: 2412: 2401: 2398: 2395: 2387: 2384: 2381: 2378: 2370: 2367: 2364: 2361: 2339: 2338: 2337: 2336: 2325: 2311: 2307: 2303: 2298: 2294: 2290: 2286: 2282: 2279: 2276: 2273: 2270: 2263: 2259: 2253: 2250: 2245: 2242: 2239: 2233: 2229: 2220: 2216: 2212: 2209: 2206: 2203: 2200: 2195: 2191: 2184: 2180: 2174: 2171: 2166: 2163: 2158: 2153: 2150: 2145: 2140: 2137: 2131: 2125: 2121: 2115: 2108: 2095: 2094: 2079: 2075: 2071: 2066: 2062: 2059: 2055: 2044: 2040: 2035: 2032: 2028: 2025: 2022: 2019: 2014: 2010: 2006: 2001: 1997: 1991: 1988: 1984: 1981: 1977: 1974: 1971: 1967: 1960: 1955: 1951: 1947: 1944: 1941: 1938: 1918: 1912: 1899:JADES-GS-z13-0 1883:dwarf galaxies 1781: 1773: 1765: 1753: 1750: 1721: 1716:. Much later, 1710:helium hydride 1703: 1669:nuclear fusion 1595: 1592: 1528: 1525: 1496: 1493: 1491: 1488: 1485: 1484: 1476: 1472: 1471: 1456: 1455: 1454: 1451: 1450: 1440: 1439: 1437: 1427: 1426: 1420: 1419: 1417: 1407: 1406: 1400: 1399: 1397: 1387: 1386: 1376: 1375: 1373: 1363: 1362: 1358:Earliest fungi 1356: 1355: 1353: 1343: 1342: 1336: 1335: 1333: 1323: 1322: 1316: 1315: 1313: 1303: 1302: 1296: 1295: 1293: 1283: 1282: 1276: 1275: 1273: 1263: 1262: 1252: 1251: 1249: 1239: 1238: 1234:Alpha Centauri 1232: 1231: 1229: 1219: 1218: 1212: 1211: 1209: 1199: 1198: 1192: 1191: 1189: 1179: 1178: 1172: 1171: 1169: 1159: 1158: 1154:Omega Centauri 1152: 1151: 1149: 1139: 1138: 1125: 1124: 1122: 1112: 1111: 1105: 1104: 1102: 1092: 1091: 1087:Earliest stars 1085: 1084: 1082: 1072: 1071: 1065: 1064: 1062: 1053: 1044: 1043: 1042: 1033: 1032: 1031: 1026:Photosynthesis 1024: 1023: 1022: 1015: 1014: 1013: 1007:Water on Earth 1004: 1003: 1002: 993: 992: 991: 980: 979: 978: 969: 968: 967: 958: 957: 956: 954: 951:0 — 949: 944: 939: 934: 929: 924: 919: 914: 909: 904: 899: 894: 889: 884: 879: 874: 869: 864: 859: 854: 849: 844: 839: 834: 829: 824: 819: 816: 815: 813: 812: 805: 798: 787: 784: 783: 776: 743: 742: 740: 739: 732: 725: 717: 714: 713: 712: 711: 699: 685: 684: 681: 680: 675: 670: 663: 660: 655: 654: 651: 650: 647: 646: 639: 638: 633: 628: 623: 618: 613: 608: 603: 598: 593: 588: 583: 578: 573: 568: 563: 558: 553: 548: 543: 538: 533: 528: 523: 518: 513: 508: 503: 498: 493: 487: 486: 483: 482: 479: 478: 475: 474: 467: 465: 460: 455: 450: 445: 440: 435: 429: 424: 423: 420: 419: 414: 413: 412: 411: 399: 394: 389: 377: 369: 368: 364: 363: 362: 361: 349: 341: 340: 334: 327: 326: 323: 322: 319: 318: 313: 308: 303: 291: 286: 273: 266: 265: 262: 261: 256: 255: 254: 253: 251:Neutrino (CNB) 241: 233: 232: 228: 227: 226: 225: 208: 206:Early universe 205: 204: 201: 200: 199: 198: 193: 188: 173: 172: 164: 163: 157: 156: 148: 147: 62: 60: 53: 26: 9: 6: 4: 3: 2: 12224: 12213: 12210: 12208: 12205: 12203: 12200: 12198: 12195: 12194: 12192: 12182: 12172: 12170: 12160: 12158: 12148: 12146: 12141: 12136: 12134: 12124: 12123: 12120: 12109: 12108: 12095: 12089: 12086: 12084: 12081: 12079: 12076: 12074: 12071: 12069: 12066: 12064: 12061: 12059: 12056: 12054: 12051: 12049: 12046: 12045: 12043: 12039: 12033: 12030: 12028: 12025: 12023: 12020: 12018: 12015: 12013: 12010: 12008: 12005: 12003: 12000: 11999: 11997: 11993: 11987: 11984: 11982: 11979: 11977: 11974: 11972: 11969: 11967: 11964: 11963: 11961: 11957: 11951: 11948: 11946: 11943: 11942: 11940: 11936: 11930: 11927: 11925: 11922: 11920: 11917: 11915: 11912: 11910: 11907: 11905: 11902: 11901: 11899: 11895: 11889: 11886: 11884: 11881: 11879: 11876: 11874: 11871: 11869: 11866: 11865: 11863: 11861:Past universe 11859: 11853: 11850: 11848: 11845: 11843: 11840: 11838: 11835: 11834: 11832: 11826: 11820: 11817: 11815: 11812: 11810: 11807: 11805: 11802: 11800: 11797: 11796: 11794: 11790: 11786: 11779: 11774: 11772: 11767: 11765: 11760: 11759: 11756: 11744:(2013 series) 11743: 11742: 11738: 11737: 11735: 11731: 11725: 11724:Graeme Snooks 11722: 11720: 11717: 11715: 11712: 11710: 11707: 11705: 11704:Eric Chaisson 11702: 11700: 11697: 11695: 11692: 11691: 11689: 11685: 11679: 11676: 11674: 11671: 11670: 11668: 11664: 11658: 11654: 11650: 11648: 11644: 11640: 11636: 11633: 11632: 11631: 11630: 11625: 11621: 11619: 11615: 11611: 11607: 11605: 11601: 11597: 11595: 11591: 11587: 11583: 11581: 11577: 11573: 11571: 11567: 11563: 11559: 11558: 11556: 11552: 11546: 11543: 11541: 11538: 11536: 11533: 11531: 11528: 11526: 11523: 11521: 11518: 11517: 11515: 11511: 11507: 11500: 11495: 11493: 11488: 11486: 11481: 11480: 11477: 11465: 11464: 11459: 11455: 11454: 11451: 11445: 11442: 11440: 11437: 11435: 11432: 11430: 11427: 11425: 11422: 11421: 11419: 11417: 11413: 11407: 11404: 11400: 11397: 11396: 11395: 11392: 11389: 11388:Recombination 11385: 11381: 11377: 11374: 11372: 11369: 11367: 11364: 11362: 11359: 11356: 11352: 11348: 11344: 11341: 11339: 11336: 11334: 11331: 11329: 11326: 11325: 11323: 11321: 11317: 11313: 11306: 11301: 11299: 11294: 11292: 11287: 11286: 11283: 11267: 11263: 11259: 11255: 11251: 11239: 11235: 11231: 11227: 11215: 11211: 11207: 11203: 11190: 11186: 11182: 11178: 11166: 11162: 11158: 11157: 11152: 11148: 11137: 11133: 11129: 11128: 11122: 11117: 11113: 11101: 11097: 11093: 11089: 11078: 11074: 11070: 11066: 11065: 11059: 11047: 11043: 11039: 11038: 11033: 11029: 11017: 11013: 11009: 11005: 10993: 10989: 10985: 10981: 10977: 10965: 10961: 10957: 10953: 10949: 10937: 10933: 10929: 10928: 10923: 10919: 10918: 10907: 10903: 10899: 10895: 10891: 10885: 10881: 10877: 10872: 10868: 10864: 10860: 10856: 10852: 10846: 10842: 10838: 10833: 10828: 10824: 10820: 10816: 10812: 10808: 10804: 10800: 10795: 10794:10044/1/68623 10790: 10785: 10780: 10776: 10772: 10768: 10764: 10763: 10758: 10754: 10749: 10745: 10741: 10737: 10733: 10729: 10723: 10719: 10715: 10710: 10706: 10701: 10697: 10693: 10689: 10685: 10681: 10675: 10671: 10667: 10663: 10659: 10655: 10651: 10647: 10641: 10637: 10632: 10628: 10624: 10620: 10616: 10612: 10606: 10602: 10598: 10594: 10590: 10586: 10582: 10578: 10574: 10570: 10564: 10560: 10556: 10552: 10548: 10544: 10540: 10536: 10532: 10528: 10522: 10518: 10514: 10510: 10506: 10502: 10498: 10494: 10490: 10486: 10482: 10478: 10474: 10470: 10465: 10460: 10456: 10452: 10448: 10442: 10427: 10423: 10419: 10415: 10411: 10407: 10401: 10397: 10393: 10389: 10385: 10378: 10374: 10370: 10366: 10365: 10352: 10348: 10344: 10340: 10336: 10332: 10331: 10326: 10320: 10312: 10308: 10304: 10300: 10296: 10292: 10291: 10286: 10280: 10272: 10268: 10264: 10260: 10256: 10252: 10251: 10243: 10224: 10220: 10216: 10212: 10208: 10204: 10200: 10196: 10192: 10188: 10184: 10183: 10175: 10171: 10165: 10146: 10142: 10138: 10134: 10130: 10126: 10122: 10118: 10114: 10113: 10105: 10101: 10097: 10091: 10073: 10069: 10068: 10063: 10059: 10055: 10054: 10043: 10042: 10037: 10034:(July 1852). 10033: 10027: 10019: 10015: 10008: 10002: 9997: 9989: 9985: 9981: 9977: 9973: 9969: 9964: 9959: 9955: 9951: 9950: 9945: 9944:Ratra, Bharat 9941: 9935: 9918: 9914: 9910: 9906: 9905: 9901:. Out There. 9899: 9894: 9888: 9880: 9876: 9872: 9868: 9863: 9858: 9854: 9850: 9846: 9839: 9822: 9817: 9813: 9809: 9805: 9801: 9797: 9791: 9789: 9787: 9770: 9766: 9762: 9758: 9752: 9742: 9738: 9734: 9730: 9726: 9722: 9717: 9712: 9708: 9704: 9703: 9698: 9694: 9689: 9688: 9677: 9673: 9669: 9662: 9646: 9642: 9638: 9637: 9632: 9628: 9622: 9606: 9602: 9598: 9594: 9593: 9588: 9584: 9578: 9562: 9558: 9554: 9548: 9532: 9528: 9527: 9522: 9515: 9507: 9503: 9499: 9495: 9491: 9487: 9482: 9477: 9473: 9469: 9468: 9463: 9459: 9455: 9449: 9440: 9435: 9431: 9427: 9424:: L107–L112. 9423: 9419: 9418: 9413: 9409: 9403: 9395: 9391: 9387: 9383: 9379: 9375: 9370: 9365: 9361: 9357: 9356: 9351: 9347: 9343: 9337: 9328: 9323: 9319: 9312: 9304: 9300: 9296: 9292: 9288: 9284: 9279: 9274: 9270: 9266: 9265: 9257: 9249: 9245: 9241: 9237: 9233: 9229: 9224: 9219: 9215: 9211: 9210: 9205: 9204:Loeb, Abraham 9198: 9190: 9186: 9182: 9178: 9174: 9170: 9165: 9160: 9156: 9152: 9151: 9146: 9139: 9137: 9128: 9124: 9120: 9116: 9112: 9108: 9103: 9098: 9094: 9090: 9089: 9081: 9079: 9062: 9058: 9054: 9053: 9048: 9041: 9025: 9021: 9017: 9011: 9009: 9007: 8998: 8992: 8976: 8972: 8968: 8962: 8954: 8953:jwst.nasa.gov 8950: 8944: 8936: 8932: 8926: 8924: 8915: 8911: 8904: 8896: 8892: 8887: 8882: 8878: 8874: 8869: 8864: 8860: 8856: 8855: 8850: 8848: 8844: 8835: 8819: 8815: 8809: 8794: 8790: 8783: 8767: 8763: 8759: 8755: 8751: 8745: 8726: 8722: 8718: 8714: 8713: 8705: 8701: 8700:Loeb, Abraham 8695: 8679: 8675: 8671: 8670: 8665: 8658: 8642: 8638: 8632: 8616: 8612: 8608: 8607: 8602: 8595: 8593: 8591: 8583: 8582:Mukhanov 2005 8578: 8569: 8564: 8559: 8554: 8550: 8546: 8542: 8535: 8529:, p. 291 8528: 8523: 8515: 8511: 8507: 8503: 8499: 8495: 8490: 8485: 8481: 8477: 8476: 8471: 8467: 8461: 8445: 8441: 8437: 8436: 8431: 8424: 8417: 8412: 8406: 8401: 8393: 8389: 8385: 8381: 8377: 8373: 8368: 8363: 8359: 8355: 8354: 8346: 8337: 8333: 8329: 8325: 8321: 8317: 8312: 8307: 8303: 8299: 8298: 8290: 8282: 8278: 8274: 8270: 8266: 8262: 8257: 8252: 8248: 8244: 8243: 8234: 8218: 8214: 8210: 8206: 8199: 8183: 8179: 8175: 8171: 8167: 8161: 8145: 8141: 8137: 8131: 8129: 8112: 8108: 8104: 8100: 8096: 8090: 8071: 8067: 8060: 8056: 8050: 8041: 8036: 8032: 8028: 8024: 8020: 8019: 8014: 8010: 8004: 7996: 7992: 7988: 7984: 7980: 7976: 7971: 7966: 7963:(8): 084051. 7962: 7958: 7957: 7949: 7939: 7935: 7931: 7927: 7926: 7921: 7917: 7912: 7911: 7908: 7904: 7900: 7896: 7895: 7890: 7886: 7880: 7870: 7866: 7862: 7858: 7854: 7850: 7846: 7842: 7837: 7832: 7829:(9): 091301. 7828: 7824: 7823: 7816: 7815: 7804: 7800: 7796: 7792: 7788: 7787: 7779: 7775: 7774:Siegel, Ethan 7769: 7767: 7765: 7763: 7746: 7741: 7736: 7732: 7728: 7721: 7714: 7712: 7710: 7708: 7706: 7704: 7702: 7700: 7698: 7691: 7687: 7682: 7676: 7672: 7667: 7665: 7663: 7654: 7650: 7646: 7642: 7638: 7634: 7629: 7624: 7621:(2): 025003. 7620: 7616: 7615: 7607: 7598: 7581: 7577: 7573: 7569: 7568: 7562: 7557: 7551: 7535: 7531: 7527: 7526: 7521: 7514: 7506: 7502: 7498: 7494: 7490: 7486: 7482: 7478: 7473: 7468: 7464: 7460: 7459: 7454: 7450: 7443: 7427: 7423: 7422: 7417: 7410: 7393: 7389: 7385: 7381: 7380: 7374: 7369: 7363: 7347: 7343: 7339: 7335: 7334:"BICEP2 News" 7331: 7325: 7317: 7313: 7309: 7305: 7301: 7297: 7293: 7289: 7284: 7279: 7275: 7271: 7270: 7262: 7260: 7242: 7238: 7234: 7230: 7229: 7223: 7218: 7212: 7196: 7192: 7188: 7187: 7182: 7175: 7159: 7155: 7151: 7147: 7143: 7137: 7131:, p. 196 7130: 7125: 7123: 7106: 7102: 7098: 7094: 7088: 7080: 7076: 7072: 7068: 7064: 7060: 7055: 7050: 7046: 7042: 7041: 7036: 7032: 7026: 7024: 7022: 7020: 7018: 7010: 7006: 7001: 6986: 6985:Astronomy.com 6982: 6975: 6968: 6963: 6961: 6959: 6947: 6943: 6939: 6935: 6931: 6927: 6923: 6918: 6913: 6909: 6905: 6904: 6896: 6889: 6880: 6875: 6871: 6864: 6857: 6842: 6835: 6827: 6823: 6819: 6815: 6811: 6807: 6802: 6797: 6793: 6789: 6788: 6783: 6782:Woosley, Stan 6776: 6769: 6765: 6759: 6757: 6755: 6744: 6737: 6730: 6726: 6721: 6700: 6696: 6691: 6684: 6680: 6675: 6671: 6663: =  6648: 6644: 6635: 6631: 6625: 6618: 6614: 6610: 6606: 6601: 6594: 6589: 6587: 6585: 6568: 6564: 6560: 6556: 6549: 6542: 6536: 6532: 6528: 6524: 6520: 6516: 6511: 6506: 6502: 6498: 6497: 6492: 6485: 6481: 6465: 6461: 6449: 6446: 6443: 6440: 6438: 6435: 6432: 6429: 6426: 6423: 6420: 6417: 6415: 6412: 6409: 6406: 6403: 6400: 6394: 6391: 6388: 6385: 6382: 6379: 6376: 6373: 6370: 6366: 6363: 6360: 6357: 6356: 6349: 6347: 6342: 6333: 6328: 6324: 6320: 6316: 6312: 6309: 6305: 6303: 6302: 6298: 6297: 6293: 6288: 6285: 6283: 6282: 6278: 6277: 6273: 6268: 6265: 6261: 6259: 6258: 6254: 6253: 6249: 6245: 6241: 6237: 6233: 6229: 6225: 6221: 6218: 6216: 6215: 6211: 6210: 6206: 6202: 6199: 6196: 6194: 6190: 6186: 6182: 6178: 6172: 6170: 6166: 6165:"empty" space 6162: 6158: 6154: 6147: 6143: 6138: 6128: 6125: 6117: 6106: 6103: 6099: 6096: 6092: 6089: 6085: 6082: 6078: 6075: –  6074: 6070: 6069:Find sources: 6063: 6059: 6053: 6052: 6047:This section 6045: 6041: 6036: 6035: 6031: 6027: 6021: 6017: 6007: 6005: 6001: 5997: 5992: 5990: 5984: 5979: 5975: 5968: 5965: 5964: 5958: 5949: 5947: 5946:lookback time 5943: 5939: 5934: 5933:Richard Ellis 5930: 5925: 5922: 5918: 5917:superclusters 5914: 5910: 5906: 5897: 5892: 5882: 5880: 5875: 5871: 5869: 5864: 5860: 5856: 5850: 5848: 5843: 5839: 5835: 5831: 5825: 5822: 5818: 5814: 5808: 5800: 5795: 5791: 5787: 5777: 5774: 5770: 5765: 5763: 5758: 5757:UDFj-39546284 5754: 5750: 5746: 5745:UDFy-38135539 5741: 5739: 5734: 5729: 5727: 5721: 5719: 5715: 5713: 5708: 5704: 5700: 5696: 5690: 5688: 5684: 5680: 5676: 5671: 5669: 5665: 5655: 5648: 5643: 5638: 5634: 5630: 5626: 5622: 5618: 5611: 5608: 5607: 5601: 5599: 5594: 5592: 5588: 5584: 5580: 5576: 5572: 5566: 5562: 5558: 5544: 5540: 5538: 5533: 5531: 5527: 5521: 5516: 5505: 5501: 5500:Hydrogen line 5494: 5491: 5490: 5484: 5482: 5478: 5474: 5469: 5466: 5462: 5458: 5448: 5444: 5440: 5436: 5432: 5431: 5428: 5426: 5422: 5418: 5414: 5410: 5404: 5402: 5398: 5394: 5389: 5375: 5370: 5367: 5362: 5360: 5352: 5348: 5345:image of the 5344: 5339: 5335: 5332: 5328: 5318: 5316: 5312: 5307: 5302: 5300: 5295: 5290: 5288: 5284: 5280: 5275: 5273: 5270: 5266: 5262: 5255: 5251: 5244: 5241: 5240: 5234: 5230: 5228: 5224: 5220: 5216: 5212: 5208: 5203: 5201: 5197: 5193: 5187: 5183: 5181: 5175: 5168: 5165: 5164: 5158: 5155: 5151: 5145: 5138: 5135: 5134: 5128: 5124: 5122: 5118: 5115:(such as the 5114: 5108: 5101: 5098: 5097: 5091: 5089: 5085: 5081: 5077: 5061: 5041: 5038: 5035: 5031: 5027: 5024: 5015: 5013: 5009: 5003: 4996: 4993: 4992: 4986: 4984: 4975: 4973: 4969: 4964: 4959: 4957: 4950: 4946: 4939: 4936: 4935: 4929: 4927: 4923: 4917: 4915: 4911: 4904: 4897: 4894: 4893: 4887: 4885: 4881: 4876: 4872: 4868: 4863: 4857: 4850: 4847: 4846: 4840: 4838: 4833: 4831: 4827: 4823: 4822:antiparticles 4819: 4815: 4810: 4808: 4804: 4799: 4793: 4786: 4783: 4782: 4776: 4774: 4773:atomic nuclei 4764: 4760: 4756: 4753: 4749: 4748: 4747: 4745: 4741: 4737: 4731: 4724: 4721: 4720: 4714: 4696: 4691: 4687: 4683: 4680: 4677: 4674: 4669: 4665: 4661: 4658: 4655: 4650: 4647: 4644: 4641: 4638: 4635: 4632: 4629: 4626: 4623: 4620: 4617: 4614: 4611: 4607: 4599: 4598: 4597: 4581: 4578: 4574: 4565: 4549: 4527: 4524: 4520: 4510: 4508: 4503: 4501: 4479: 4476: 4472: 4466: 4462: 4458: 4455: 4449: 4444: 4439: 4435: 4431: 4428: 4420: 4416: 4412: 4407: 4404: 4401: 4393: 4388: 4384: 4380: 4377: 4374: 4371: 4366: 4363: 4356: 4355: 4354: 4352: 4348: 4326: 4323: 4319: 4313: 4309: 4305: 4302: 4299: 4294: 4290: 4286: 4282: 4278: 4275: 4272: 4269: 4266: 4263: 4256: 4255: 4254: 4252: 4234: 4230: 4226: 4223: 4219: 4198: 4176: 4168: 4161: 4157: 4152: 4148: 4118: 4115: 4111: 4105: 4101: 4097: 4092: 4088: 4084: 4080: 4074: 4070: 4064: 4060: 4056: 4053: 4050: 4043: 4042: 4041: 4039: 4033: 4023: 4020: 4016: 4012: 4008: 4003: 4001: 3997: 3993: 3989: 3985: 3981: 3974: 3971: 3970: 3964: 3962: 3958: 3948: 3946: 3945:superpartners 3942: 3938: 3937:supersymmetry 3932: 3922: 3919: 3918: 3913: 3908: 3905: 3901: 3897: 3892: 3888: 3886: 3881: 3876: 3874: 3870: 3865: 3860: 3858: 3854: 3850: 3845: 3843: 3839: 3835: 3831: 3827: 3820: 3816: 3809: 3806: 3805: 3799: 3797: 3793: 3789: 3784: 3781: 3775: 3768: 3765: 3764: 3758: 3756: 3752: 3747: 3745: 3741: 3737: 3733: 3728: 3726: 3720: 3718: 3714: 3709: 3706: 3702: 3699: 3695: 3691: 3685: 3678: 3675: 3674: 3668: 3666: 3662: 3658: 3654: 3650: 3644: 3642: 3638: 3634: 3630: 3626: 3622: 3618: 3613: 3607: 3600: 3598: 3593: 3592: 3586: 3584: 3578: 3575: 3565: 3562: 3558: 3553: 3551: 3545: 3543: 3539: 3535: 3531: 3527: 3523: 3519: 3515: 3509: 3505: 3501: 3486: 3482: 3478: 3474: 3470: 3466: 3462: 3458: 3455: 3452: 3449: 3447: 3444: 3443: 3439: 3435: 3431: 3428:60 K ~ 0.03 K 3426: 3421: 3416: 3414: 3411: 3410: 3406: 3402: 3398: 3394: 3393:vacuum energy 3390: 3387: 3384: 3381: 3379: 3378:dominated era 3374: 3373: 3369: 3365: 3361: 3357: 3352: 3347: 3342: 3340: 3335: 3334: 3330: 3326: 3322: 3318: 3314: 3310: 3307: 3304: 3298: 3296: 3291: 3290: 3285: 3280: 3277: 3274: 3271: 3269: 3266: 3265: 3261: 3257: 3253: 3249: 3244: 3241: 3235:200 Ma ~ 1 Ga 3233: 3231: 3228: 3227: 3223: 3219: 3207: 3206:superclusters 3195: 3184: 3181: 3178: 3164: 3162: 3161:and evolution 3157: 3156: 3152: 3148: 3147:hydrogen line 3144: 3140: 3137:4000 K ~ 60 K 3135: 3130: 3123: 3121: 3118: 3117: 3113: 3108: 3104: 3100: 3095: 3092: 3089: 3087: 3086:Recombination 3084: 3083: 3079: 3075: 3071: 3067: 3060:10 K ~ 4000 K 3058: 3056: 3052: 3045: 3043: 3040: 3039: 3034: 3030: 3026: 3022: 3018: 3014: 3013:atomic nuclei 3010: 3006: 3003: 2994: 2992: 2987: 2985: 2980: 2979: 2975: 2971: 2968: 2959: 2957: 2952: 2950: 2947: 2946: 2942: 2938: 2934: 2930: 2927: 2925:(1 MeV) 2920: 2918: 2915: 2913: 2908: 2907: 2902: 2898: 2894: 2890: 2881: 2879: 2874: 2872: 2869: 2868: 2864: 2860: 2855: 2846: 2844: 2839: 2837: 2834: 2833: 2829: 2825: 2824:light-seconds 2821: 2817: 2813: 2806: 2757: 2752: 2750: 2747: 2744: 2739: 2738: 2734: 2730: 2726: 2722: 2718: 2717:expands space 2715: 2712: 2709:(10 ~ 10 GeV) 2703: 2701: 2696: 2694: 2687: 2682: 2681: 2677: 2673: 2669: 2660: 2658: 2653: 2651: 2644: 2643: 2639: 2634: 2630: 2621: 2619: 2614: 2612: 2607: 2606: 2602: 2594: 2592: 2589: 2586: 2583: 2582: 2577: 2575: 2563: 2559: 2554: 2553: 2551: 2547: 2543: 2539: 2533: 2529: 2525: 2521: 2517: 2503: 2499: 2495: 2477: 2475: 2471: 2467: 2457: 2454: 2450: 2446: 2441: 2439: 2435: 2431: 2427: 2423: 2396: 2390:ageAtRedshift 2385: 2379: 2373:ageAtRedshift 2368: 2362: 2347: 2346: 2345: 2343: 2342:lookback time 2323: 2309: 2305: 2301: 2296: 2292: 2288: 2280: 2277: 2274: 2268: 2261: 2251: 2248: 2243: 2240: 2237: 2231: 2227: 2218: 2210: 2207: 2204: 2198: 2193: 2172: 2169: 2164: 2161: 2156: 2151: 2148: 2143: 2138: 2135: 2129: 2123: 2119: 2113: 2106: 2099: 2098: 2097: 2096: 2077: 2073: 2069: 2064: 2060: 2057: 2053: 2042: 2033: 2030: 2026: 2023: 2017: 2012: 2004: 1989: 1982: 1979: 1975: 1972: 1965: 1953: 1949: 1945: 1939: 1933:ageAtRedshift 1924: 1923: 1922: 1921:may be used: 1917: 1911: 1906: 1904: 1900: 1895: 1892: 1888: 1884: 1880: 1879:superclusters 1876: 1869: 1868:lookback time 1864: 1860: 1858: 1853: 1850: 1846: 1845:hydrogen fuel 1842: 1838: 1834: 1830: 1826: 1823: 1817: 1815: 1811: 1810:visible light 1807: 1803: 1799: 1795: 1791: 1779: 1771: 1763: 1758: 1749: 1747: 1743: 1739: 1735: 1731: 1727: 1719: 1715: 1712:is the first 1711: 1696: 1692: 1687: 1685: 1682: 1678: 1674: 1670: 1665: 1663: 1659: 1655: 1652: 1648: 1644: 1640: 1636: 1632: 1628: 1624: 1620: 1615: 1613: 1609: 1605: 1601: 1591: 1589: 1583: 1581: 1577: 1574: 1570: 1566: 1562: 1558: 1554: 1550: 1546: 1542: 1541:Planck epoch 1539:includes the 1538: 1534: 1524: 1522: 1518: 1510: 1506: 1501: 1480: 1473: 1466: 1447: 1443: 1442:Earliest apes 1438: 1433: 1432: 1423: 1418: 1413: 1412: 1403: 1398: 1393: 1392: 1383: 1379: 1374: 1369: 1368: 1359: 1354: 1349: 1348: 1339: 1334: 1329: 1328: 1319: 1314: 1309: 1308: 1299: 1294: 1289: 1288: 1279: 1274: 1269: 1268: 1259: 1255: 1250: 1245: 1244: 1235: 1230: 1225: 1224: 1215: 1210: 1205: 1204: 1195: 1190: 1185: 1184: 1175: 1170: 1165: 1164: 1155: 1150: 1145: 1144: 1134: 1130: 1123: 1118: 1117: 1108: 1103: 1098: 1097: 1088: 1083: 1078: 1077: 1068: 1063: 1058: 1057: 1049: 1038: 1035:Multicellular 1027: 1018: 1009: 998: 987: 974: 963: 817: 811: 806: 804: 799: 797: 792: 791: 785: 781: 774: 771: 769: 766:ago, with an 765: 764:billion years 760: 758: 755:according to 754: 750: 738: 733: 731: 726: 724: 719: 718: 716: 715: 710: 700: 698: 689: 688: 687: 686: 679: 676: 674: 671: 668: 662: 661: 658: 653: 652: 645: 642: 641: 637: 634: 632: 629: 627: 624: 622: 619: 617: 614: 612: 609: 607: 604: 602: 599: 597: 594: 592: 589: 587: 584: 582: 579: 577: 574: 572: 569: 567: 564: 562: 559: 557: 554: 552: 549: 547: 544: 542: 539: 537: 534: 532: 529: 527: 524: 522: 519: 517: 514: 512: 509: 507: 504: 502: 499: 497: 494: 492: 489: 488: 481: 480: 472: 466: 464: 461: 459: 456: 454: 451: 449: 446: 444: 441: 439: 436: 434: 431: 430: 427: 422: 421: 410: 407: 403: 400: 398: 395: 393: 390: 388: 385: 381: 378: 376: 373: 372: 371: 370: 366: 365: 360: 357: 353: 350: 348: 345: 344: 343: 342: 338: 337: 331: 325: 324: 317: 314: 312: 309: 307: 304: 302: 299: 295: 292: 290: 287: 285: 282: 278: 275: 274: 270: 264: 263: 252: 249: 245: 242: 240: 237: 236: 235: 234: 230: 229: 224: 221: 217: 214: 213: 212: 211: 203: 202: 197: 194: 192: 189: 187: 184: 180: 177: 176: 175: 174: 170: 166: 165: 162: 159: 158: 154: 153: 144: 141: 133: 130:November 2023 122: 119: 115: 112: 108: 105: 101: 98: 94: 91: –  90: 86: 85:Find sources: 79: 75: 69: 68: 63:This article 61: 57: 52: 51: 48: 44: 40: 33: 19: 12181:Solar System 12098: 12022:Reionization 11981:Quintessence 11914:Hubble's law 11808: 11739: 11652: 11642: 11629:Homo sapiens 11627: 11623: 11609: 11599: 11585: 11575: 11561: 11519: 11461: 11406:Reionization 11376:Photon epoch 11371:Lepton epoch 11366:Hadron epoch 11355:Baryogenesis 11333:Planck epoch 11319: 11311: 11270:. Retrieved 11242:. Retrieved 11218:. Retrieved 11214:the original 11193:. Retrieved 11189:the original 11184: 11169:. Retrieved 11155: 11139:. Retrieved 11130:. New York. 11125: 11104:. Retrieved 11080:. Retrieved 11063: 11050:. Retrieved 11036: 11020:. Retrieved 11016:the original 11008:"HubbleSite" 10996:. Retrieved 10983: 10968:. Retrieved 10940:. Retrieved 10926: 10875: 10818: 10769:(3): 1–708. 10766: 10760: 10713: 10704: 10665: 10635: 10596: 10554: 10551:Morison, Ian 10512: 10454: 10450: 10433:. Retrieved 10383: 10361:Bibliography 10334: 10328: 10319: 10294: 10288: 10279: 10254: 10248: 10242: 10230:. Retrieved 10186: 10180: 10164: 10152:. Retrieved 10116: 10110: 10090: 10076:. Retrieved 10071: 10065: 10046:. Retrieved 10039: 10026: 10017: 10007: 9996: 9953: 9947: 9934: 9921:. Retrieved 9902: 9887: 9852: 9848: 9838: 9826:. Retrieved 9821:the original 9803: 9796:Drake, Nadia 9775:22 September 9773:. Retrieved 9760: 9751: 9709:(1): 10–28. 9706: 9700: 9696: 9680:. Retrieved 9661: 9651:21 September 9649:. Retrieved 9639:. New York: 9634: 9621: 9611:22 September 9609:. Retrieved 9605:the original 9590: 9577: 9565:. Retrieved 9547: 9535:. Retrieved 9524: 9514: 9471: 9465: 9461: 9457: 9448: 9421: 9415: 9402: 9359: 9353: 9349: 9345: 9336: 9311: 9268: 9262: 9256: 9213: 9207: 9197: 9154: 9148: 9092: 9086: 9065:. Retrieved 9055:. New York: 9050: 9040: 9028:. Retrieved 9024:the original 8979:. Retrieved 8970: 8961: 8952: 8943: 8934: 8913: 8903: 8858: 8852: 8846: 8842: 8834: 8822:. Retrieved 8817: 8808: 8796:. Retrieved 8782: 8770:. Retrieved 8757: 8744: 8732:. Retrieved 8710: 8694: 8682:. Retrieved 8667: 8657: 8647:21 September 8645:. Retrieved 8640: 8631: 8619:. Retrieved 8609:. New York: 8604: 8577: 8548: 8544: 8534: 8522: 8479: 8473: 8469: 8460: 8448:. Retrieved 8438:. New York: 8433: 8423: 8411: 8400: 8357: 8351: 8345: 8301: 8295: 8289: 8246: 8240: 8233: 8223:21 September 8221:. Retrieved 8217:the original 8208: 8198: 8188:21 September 8186:. Retrieved 8173: 8160: 8148:. Retrieved 8139: 8115:. Retrieved 8102: 8089: 8077:. Retrieved 8049: 8025:(1): 75–78. 8022: 8016: 8003: 7960: 7954: 7948: 7929: 7923: 7898: 7892: 7879: 7826: 7820: 7807:. Retrieved 7784: 7751:21 September 7749:. Retrieved 7733:(1): 79–82. 7730: 7726: 7686:Morison 2015 7681: 7618: 7612: 7606: 7597: 7584:. Retrieved 7565: 7550: 7538:. Retrieved 7523: 7513: 7462: 7456: 7452: 7448: 7442: 7430:. Retrieved 7419: 7409: 7396:. Retrieved 7377: 7362: 7350:. Retrieved 7337: 7324: 7273: 7267: 7245:. Retrieved 7226: 7211: 7199:. Retrieved 7184: 7174: 7162:. Retrieved 7145: 7136: 7109:. Retrieved 7096: 7087: 7044: 7038: 7009:Alan H. Guth 7000: 6988:. Retrieved 6984: 6974: 6907: 6901: 6888: 6869: 6856: 6844:. Retrieved 6834: 6791: 6785: 6775: 6742: 6735: 6728: 6720: 6698: 6690: 6682: 6673: 6669: 6624: 6600: 6571:. Retrieved 6558: 6548: 6500: 6494: 6490: 6484: 6464: 6375:Cyclic model 6338: 6330: 6319:false vacuum 6299: 6292:cyclic model 6279: 6272:Planck scale 6255: 6212: 6207:Description 6197: 6173: 6157:proton decay 6150: 6120: 6111: 6101: 6094: 6087: 6080: 6068: 6056:Please help 6051:verification 6048: 6003: 5999: 5993: 5985: 5981: 5966: 5955: 5937: 5926: 5902: 5876: 5872: 5851: 5837: 5833: 5829: 5826: 5813:Lyman series 5809: 5805: 5790:Dwarf galaxy 5786:Reionization 5780:Reionization 5766: 5749:reionization 5742: 5737: 5730: 5722: 5711: 5691: 5679:reionization 5672: 5660: 5621:Dwarf galaxy 5609: 5595: 5571:reionization 5568: 5534: 5522: 5518: 5492: 5470: 5454: 5445:to form the 5435:4000 K color 5405: 5390: 5371: 5363: 5356: 5334: 5310: 5305: 5303: 5291: 5276: 5265:Jeans length 5260: 5257: 5242: 5231: 5204: 5188: 5184: 5177: 5166: 5154:relativistic 5147: 5144:Photon epoch 5136: 5131:Photon epoch 5125: 5110: 5107:Lepton epoch 5099: 5094:Lepton epoch 5016: 5005: 4994: 4979:1.96 ± 0.02K 4976: 4960: 4952: 4937: 4918: 4906: 4903:Hadron epoch 4895: 4890:Hadron epoch 4865: 4856:Baryogenesis 4848: 4843:Baryogenesis 4834: 4811: 4795: 4784: 4769: 4733: 4722: 4712: 4511: 4506: 4504: 4499: 4497: 4344: 4136: 4035: 4019:baryogenesis 4004: 3977: 3972: 3954: 3934: 3915: 3893: 3889: 3884: 3879: 3877: 3861: 3846: 3840:is known as 3822: 3807: 3785: 3777: 3766: 3748: 3729: 3721: 3710: 3694:condensation 3687: 3676: 3645: 3612:Planck epoch 3609: 3594: 3589:Planck epoch 3579: 3571: 3554: 3546: 3511: 3494:The Big Bang 3465:proton decay 3376:Dark-energy- 3317:relativistic 3268:Present time 3230:Reionization 3172:1 Ga ~ 10 Ga 3093:6000 ~ 1100 3042:Photon epoch 2949:Lepton epoch 2871:Hadron epoch 2804: 2684:Inflationary 2633:Planck scale 2603:Description 2555: 2502:Legacy Field 2500:galaxies to 2463: 2449:scalar field 2442: 2434:Solar System 2419: 2356:lookBackTime 2340: 1915: 1907: 1896: 1891:reionization 1885:and perhaps 1873: 1837:non-metallic 1833:solar masses 1818: 1787: 1738:ground state 1688: 1675:to exist or 1666: 1656:, initially 1616: 1597: 1584: 1530: 1514: 1507:(left), the 1258:Solar System 972:Reionization 777: 761: 748: 746: 471:Probe (WMAP) 405: 402:Reionization 383: 355: 329: 297: 280: 277:Hubble's law 268: 247: 219: 195: 182: 136: 127: 117: 110: 103: 96: 84: 72:Please help 67:verification 64: 47: 12169:Outer space 12157:Spaceflight 12041:Experiments 11976:Dark matter 11966:Dark energy 11904:FLRW metric 11741:Big History 11643:Agriculture 11614:abiogenesis 11594:dying stars 11535:Time scales 11506:Big History 11361:Quark epoch 11151:Plait, Phil 10074:. §§ 99–100 9923:21 February 9454:Xiaohu, Fan 9316:Lu, Limin; 8527:Wright 2004 7783:. Science. 7671:Petter 2013 7564:. Science. 7330:Woit, Peter 6846:14 November 6228:black holes 5989:mass–energy 5974:Dark energy 5859:ultraviolet 5591:cosmic time 5465:frequencies 5461:red-shifted 5421:radio waves 5287:dark matter 5150:mass–energy 4914:annihilated 4875:antibaryons 4798:quark epoch 4792:Quark epoch 3961:Quark epoch 3857:homogeneous 3755:electroweak 3736:gauge force 3725:Higgs field 3649:New Physics 3617:gravitation 3597:Planck time 3557:singularity 3538:homogeneity 3524:called the 3453:< −0.99 3329:dark energy 3246:60 K ~ 19 K 3072:of nuclei, 3036:radiation. 2996:10 K ~ 10 K 2989:10 s ~ 10 s 2961:10 K ~ 10 K 2941:light-years 2883:10 K ~ 10 K 2848:10 K ~ 10 K 2841:10 s ~ 10 s 2836:Quark epoch 2741:Electroweak 2721:supercooled 2705:10 K ~ 10 K 2691:Electroweak 2648:unification 2597:temperature 2445:dark energy 2432:), and the 1822:dark matter 1806:wavelengths 1802:redshifting 1770:dark energy 1730:transparent 1573:accelerated 1557:gravitation 1537:cosmic time 1047:Vertebrates 789:This box: 768:uncertainty 759:cosmology. 426:Experiments 359:Dark matter 352:Dark energy 294:FLRW metric 231:Backgrounds 39:Big History 12191:Categories 11971:Dark fluid 11959:Components 11828:History of 11792:Background 11719:Fred Spier 11714:Carl Sagan 11678:ChronoZoom 11657:modern era 11439:Big Bounce 11434:Big Crunch 11272:19 January 11244:21 January 11195:19 January 11141:19 January 11106:20 January 11082:19 January 11052:3 February 10988:PBS Online 10970:19 January 10942:20 January 10859:2005277053 10755:) (2018). 10744:1123190939 10736:2016040124 10696:1087978842 10688:2002013176 10619:2006295735 10577:2014016830 10489:2152/43109 10435:15 January 10232:16 January 10154:31 October 10078:16 January 10048:16 January 9828:15 January 9682:29 January 9567:14 January 9537:5 November 9067:13 January 9057:Future plc 9030:13 January 8981:12 January 8868:1603.00461 8861:(2). 129. 8772:21 January 8734:11 January 8684:11 January 8672:. London: 8621:10 January 8611:Future plc 8450:10 January 8440:Future plc 8405:Ryden 2006 8311:1609.06048 7836:1503.07863 7688:, p.  7673:, p.  7628:1508.07161 7586:31 January 7472:1502.00612 7449:Keck Array 7129:Ryden 2003 6969:, eq. 6.33 6967:Ryden 2006 6879:2212.04568 6725:Ryden 2006 6667:(based on 6607:, p.  6595:, eq. 6.41 6593:Ryden 2006 6510:1502.01589 6477:References 6315:metastable 6281:Big Crunch 6214:Heat Death 6114:March 2021 6084:newspapers 6004:increasing 5889:See also: 5784:See also: 5726:supernovae 5615:See also: 5513:See also: 5498:See also: 5443:redshifted 5423:and other 5315:gas clouds 5008:black hole 4878:allow the 4820:and their 4030:See also: 4000:sphalerons 3849:separation 3708:universe. 3663:, and the 3627:, and the 3604:See also: 3577:improves. 3477:Big Crunch 3473:heat death 3446:Far future 3423:20 ~ −0.99 3354:10 K ~ 4 K 3349:3600 ~ 0.4 3308:> 10 K 3305:> 3600 2954:1 s ~ 10 s 2912:decoupling 2876:10 s ~ 1 s 2748:10 s 2426:our galaxy 1901:which the 1852:supernovae 1790:decoupling 1764:for mass Ω 1629:(CνB). If 1612:antimatter 1533:picosecond 1531:The first 1517:originated 1133:black hole 506:Copernicus 484:Scientists 339:Components 100:newspapers 12133:Astronomy 12058:BOOMERanG 11883:Inflation 11785:Cosmology 11653:Modernity 11635:Stone Age 11570:cosmogony 11545:Modernity 11530:Deep time 11444:Big Slurp 11394:Dark ages 11351:Reheating 11171:2 October 11159:(Video). 11136:0362-4331 10906:813279385 10867:937330165 10654:863893991 10627:859642394 10585:910903969 10464:0803.0732 10414:1405-2059 10060:(1857) . 9988:118961123 9913:0362-4331 9879:0066-4146 9862:1003.6074 9816:850948164 9741:204925632 9506:119339804 9394:118856513 9369:1105.2038 9248:119094218 9127:119237814 9102:1406.7292 9052:Space.com 8973:. Paris: 8895:119262750 8606:Space.com 8558:0908.0435 8514:119271232 8489:1212.5225 8435:Space.com 8392:118781638 8367:1403.6694 8336:250691040 8281:118214861 8256:1403.4156 8150:7 January 8117:7 January 8079:7 January 7995:119305036 7970:1309.4201 7809:7 January 7799:0015-6914 7653:119261776 7576:0362-4331 7540:6 January 7505:218078264 7388:0362-4331 7352:6 January 7283:1403.3985 7247:6 January 7237:0362-4331 7201:6 January 7164:6 January 7111:6 January 6826:119296923 6801:1402.5960 6573:March 20, 6535:119262962 6264:spacetime 6204:Scenario 6142:red dwarf 5769:magnesium 5509:Dark Ages 5351:isotropic 5272:radiation 5211:lithium-6 5207:lithium-7 5200:beryllium 5062:ρ 5039:∼ 5036:ρ 5028:ρ 5025:δ 4684:≈ 4662:⋅ 4656:≈ 4579:− 4525:− 4477:− 4459:⋅ 4450:≈ 4405:π 4394:≈ 4381:ρ 4375:π 4367:≈ 4324:− 4306:≈ 4300:⋅ 4279:≈ 4273:⋅ 4267:⋅ 4264:σ 4224:− 4199:σ 4166:ℏ 4116:− 4098:≈ 4061:σ 3842:inflation 3826:nanometre 3742:, and an 3615:universe— 3522:spacetime 3518:cosmology 3385:< 0.4 3204:and into 3192:and into 3132:1100 ~ 20 3120:Dark Ages 3098:(0.4 eV) 3074:electrons 3033:lithium-7 3025:deuterium 2929:Neutrinos 2916:1 s 2753:10 K 2698:< 10 s 2662:> 10 K 2655:< 10 s 2623:> 10 K 2616:< 10 s 2595:Radiation 2568:), where 2422:thin disk 2386:− 2302:⋅ 2269:⋅ 2258:Ω 2252:⋅ 2241:⋅ 2232:⋅ 2199:⋅ 2190:Ω 2183:Λ 2179:Ω 2173:− 2065:⋅ 2018:⋅ 2009:Ω 2000:Λ 1996:Ω 1990:⋅ 1959:∞ 1950:∫ 1825:filaments 1814:Dark Ages 1658:deuterium 1635:Composite 1625:form the 1623:neutrinos 1127:Earliest 961:Dark Ages 636:Zeldovich 536:Friedmann 511:de Sitter 438:BOOMERanG 367:Structure 332:Structure 216:Inflation 12207:Big Bang 11929:Redshift 11814:Universe 11804:Big Bang 11586:Elements 11566:Big Bang 11562:Creation 11328:Big Bang 11266:Archived 11238:Archived 11236:. 2007. 11220:24 March 11208:(1997). 11185:Fermilab 11165:Archived 11100:Archived 11046:Archived 11022:24 March 10998:24 March 10992:Archived 10990:. 2000. 10964:Archived 10954:(2013). 10936:Archived 10898:97069268 10803:10020536 10664:(2003). 10595:(2005). 10553:(2015). 10535:83007330 10426:Archived 10422:58527824 10223:Archived 10145:Archived 9917:Archived 9769:Archived 9676:Archived 9645:Archived 9561:Archived 9531:Archived 9189:17932350 9095:: e040. 9061:Archived 8991:cite web 8824:March 3, 8798:March 4, 8766:Archived 8725:Archived 8678:Archived 8669:BBC News 8615:Archived 8444:Archived 8182:Archived 8144:Archived 8111:Archived 8097:(2013). 8070:Archived 7869:24763212 7861:26371637 7803:Archived 7745:Archived 7580:Archived 7534:Archived 7497:25815919 7426:Archived 7421:BBC News 7398:June 20, 7392:Archived 7346:Archived 7316:22780831 7308:24996078 7241:Archived 7195:Archived 7158:Archived 7105:Archived 7079:12173790 6990:27 March 6946:Archived 6942:16484977 6567:Archived 6352:See also 5913:clusters 5587:redshift 5530:infrared 5397:NGC 7027 5376:to form 5223:nitrogen 5215:boron-11 5180:elements 5117:electron 4750:Via the 4542:, where 3753:and the 3715:called " 3698:freezing 3583:clusters 3550:Big Bang 3542:isotropy 3500:Big Bang 3469:Dark Era 3403:and the 3272:13.8 Ga 3214:= 1.2 ). 3202:= 2.1 ), 3151:infrared 3029:helium-3 3021:helium-4 3017:hydrogen 3009:neutrons 2982:Big Bang 2910:Neutrino 2783:= B cos 2599:(Energy) 2591:Redshift 2574:redshift 2061:′ 2034:′ 1983:′ 1857:elements 1794:galaxies 1718:hydrogen 1714:molecule 1662:helium-4 1643:neutrons 1621:; these 1505:Big Bang 1490:Overview 757:Big Bang 697:Category 616:Suntzeff 576:Lemaître 526:Einstein 491:Aaronson 284:Redshift 186:Universe 179:Big Bang 12119:Portals 11733:Related 11600:Planets 11592:inside 11429:Big Rip 10837:Bibcode 10817:(ed.). 10771:Bibcode 10543:9488764 10497:3629998 10469:Bibcode 10339:Bibcode 10299:Bibcode 10259:Bibcode 10219:1340683 10211:1445512 10191:Bibcode 10141:4274444 10121:Bibcode 9968:Bibcode 9721:Bibcode 9486:Bibcode 9426:Bibcode 9374:Bibcode 9303:5758398 9283:Bibcode 9228:Bibcode 9169:Bibcode 9107:Bibcode 8873:Bibcode 8494:Bibcode 8372:Bibcode 8316:Bibcode 8261:Bibcode 8027:Bibcode 7975:Bibcode 7934:Bibcode 7903:Bibcode 7841:Bibcode 7633:Bibcode 7477:Bibcode 7455:Data". 7432:20 June 7288:Bibcode 7059:Bibcode 6922:Bibcode 6806:Bibcode 6679:/Riess) 6628:Notes: 6515:Bibcode 6257:Big Rip 6240:entropy 6177:our own 6098:scholar 6000:outward 5929:Keck II 5762:EGSY8p7 5439:photons 5437:of the 5341:9-year 5196:tritium 5113:leptons 4926:isotope 4867:Baryons 4830:baryons 4818:leptons 4807:hadrons 4562:is the 3904:B-modes 3902:in the 3740:gravity 3485:Big Rip 3242:20 ~ 6 3078:photons 3047:10 s ~ 3005:Protons 2970:Leptons 2859:hadrons 2810:is the 2725:Kelvins 2572:is the 1887:quasars 1734:lithium 1677:photons 1639:protons 1578:due to 1555:—first 1435:← 1415:← 1395:← 1371:← 1351:← 1331:← 1311:← 1291:← 1271:← 1247:← 1227:← 1207:← 1187:← 1167:← 1147:← 1120:← 1100:← 1080:← 1060:← 946:– 936:– 926:– 916:– 906:– 896:– 886:– 876:– 866:– 856:– 846:– 836:– 826:– 621:Sunyaev 606:Schmidt 596:Penzias 591:Penrose 566:Huygens 556:Hawking 541:Galileo 114:scholar 12078:Planck 11624:Humans 11134:  10904:  10896:  10886:  10865:  10857:  10847:  10801:  10742:  10734:  10724:  10694:  10686:  10676:  10652:  10642:  10625:  10617:  10607:  10583:  10575:  10565:  10541:  10533:  10523:  10495:  10420:  10412:  10402:  10217:  10209:  10139:  10112:Nature 10018:Forbes 9986:  9911:  9877:  9814:  9739:  9504:  9464:~ 6". 9392:  9301:  9246:  9187:  9125:  8893:  8512:  8390:  8334:  8279:  7993:  7867:  7859:  7797:  7786:Forbes 7781:(Blog) 7651:  7574:  7503:  7495:  7453:Planck 7386:  7314:  7306:  7235:  7077:  6940:  6870:Nature 6824:  6533:  6491:Planck 6469:states 6159:, the 6100:  6093:  6086:  6079:  6071:  6006:rate. 5794:Quasar 5792:, and 5738:Planck 5683:GN-z11 5635:, and 5575:GN-z11 5563:, and 5374:nuclei 5227:oxygen 5219:carbon 4871:quarks 4826:mesons 4803:quarks 4759:bosons 4498:where 4453:  3917:Planck 3896:BICEP2 3751:strong 3705:fields 3623:, the 3530:metric 3506:, and 3278:2.7 K 3256:GN-z11 3112:helium 3096:4000 K 3076:, and 3070:plasma 3031:, and 2826:(~0.6 2803:where 2727:. The 2609:Planck 2584:Epoch 2548:, and 2530:, and 1835:) and 1695:helium 1684:plasma 1681:opaque 1608:matter 1569:strong 1553:forces 1446:humans 1382:plants 1129:quasar 695:  631:Wilson 626:Tolman 586:Newton 581:Mather 571:Kepler 561:Hubble 521:Ehlers 501:Alpher 496:Alfvén 404:  382:  354:  296:  279:  271:Future 246:  218:  181:  116:  109:  102:  95:  87:  12145:Stars 11576:Stars 10827:arXiv 10493:S2CID 10459:arXiv 10429:(PDF) 10380:(PDF) 10226:(PDF) 10215:S2CID 10177:(PDF) 10148:(PDF) 10137:S2CID 10107:(PDF) 9984:S2CID 9958:arXiv 9857:arXiv 9737:S2CID 9711:arXiv 9502:S2CID 9476:arXiv 9390:S2CID 9364:arXiv 9322:arXiv 9299:S2CID 9273:arXiv 9244:S2CID 9218:arXiv 9185:S2CID 9159:arXiv 9123:S2CID 9097:arXiv 8891:S2CID 8863:arXiv 8728:(PDF) 8707:(PDF) 8553:arXiv 8510:S2CID 8484:arXiv 8388:S2CID 8362:arXiv 8332:S2CID 8306:arXiv 8277:S2CID 8251:arXiv 8073:(PDF) 8062:(PDF) 7991:S2CID 7965:arXiv 7865:S2CID 7831:arXiv 7723:(PDF) 7649:S2CID 7623:arXiv 7501:S2CID 7467:arXiv 7312:S2CID 7278:arXiv 7075:S2CID 7049:arXiv 6949:(PDF) 6938:S2CID 6912:arXiv 6898:(PDF) 6874:arXiv 6866:(PDF) 6822:S2CID 6796:arXiv 6711:−3167 6709:+3162 6531:S2CID 6505:arXiv 6456:Notes 6105:JSTOR 6091:books 5668:voids 5417:light 5121:muons 4972:phase 4922:fused 4761:(the 4505:Thus 4353:was: 3483:or a 3216:See: 3190:= 6 ) 3103:atoms 2901:pions 2897:muons 2745:ends 2743:epoch 2693:epoch 2686:epoch 2650:epoch 2646:Grand 2611:epoch 2587:Time 2244:977.8 2070:977.8 1726:stars 1673:atoms 1254:Earth 611:Smoot 601:Rubin 546:Gamow 531:Ellis 516:Dicke 121:JSTOR 107:books 12088:WMAP 12083:SDSS 12063:COBE 11616:and 11610:Life 11568:and 11274:2020 11246:2020 11222:2005 11197:2020 11173:2016 11143:2020 11132:ISSN 11108:2020 11084:2020 11075:for 11054:2020 11024:2005 11000:2005 10972:2020 10944:2020 10902:OCLC 10894:LCCN 10884:ISBN 10863:OCLC 10855:LCCN 10845:ISBN 10799:PMID 10740:OCLC 10732:LCCN 10722:ISBN 10692:OCLC 10684:LCCN 10674:ISBN 10650:OCLC 10640:ISBN 10623:OCLC 10615:LCCN 10605:ISBN 10581:OCLC 10573:LCCN 10563:ISBN 10539:OCLC 10531:LCCN 10521:ISBN 10437:2020 10418:OCLC 10410:ISSN 10400:ISBN 10234:2020 10207:OSTI 10156:2015 10080:2020 10050:2020 9925:2017 9909:ISSN 9875:ISSN 9830:2020 9812:OCLC 9777:2018 9684:2020 9653:2018 9613:2018 9597:NASA 9569:2020 9539:2023 9069:2020 9032:2020 8997:link 8983:2020 8826:2016 8800:2016 8774:2007 8736:2020 8686:2020 8649:2018 8623:2020 8452:2020 8358:2014 8225:2018 8190:2018 8152:2020 8119:2020 8081:2020 7857:PMID 7811:2020 7795:ISSN 7753:2018 7588:2015 7572:ISSN 7542:2020 7530:NASA 7493:PMID 7451:and 7434:2014 7400:2014 7384:ISSN 7354:2020 7304:PMID 7249:2020 7233:ISSN 7203:2020 7191:NASA 7166:2020 7113:2020 6992:2021 6848:2023 6699:WMAP 6670:WMAP 6665:69.6 6615:and 6575:2022 6539:The 6077:news 6028:and 6018:and 5976:and 5915:and 5773:iron 5645:The 5502:and 5343:WMAP 5329:and 5306:lose 5252:and 5225:and 4947:and 4837:pion 4796:The 3828:(10 3817:and 3796:weak 3794:and 3696:and 3610:The 3555:The 3540:and 3528:. A 3512:The 3459:The 3327:and 3250:The 3049:370 3019:and 3007:and 2922:10 K 2899:and 2794:sin 2631:The 2438:life 1877:and 1866:The 1768:and 1689:The 1651:fuse 1641:and 1610:and 1567:and 1565:weak 1521:time 1037:life 809:edit 802:talk 795:view 747:The 551:Guth 93:news 12053:6dF 12048:2dF 11651:8: 11641:7: 11622:6: 11608:5: 11598:4: 11584:3: 11574:2: 11560:1: 11073:NHK 10789:hdl 10779:doi 10485:hdl 10477:doi 10455:180 10347:doi 10307:doi 10267:doi 10199:doi 10129:doi 10117:298 10072:XXI 9976:doi 9867:doi 9729:doi 9707:663 9636:CNN 9494:doi 9472:122 9434:doi 9422:321 9382:doi 9360:752 9291:doi 9269:486 9236:doi 9214:349 9177:doi 9155:514 9115:doi 8881:doi 8859:819 8717:doi 8674:BBC 8563:doi 8549:330 8502:doi 8480:208 8380:doi 8324:doi 8302:665 8269:doi 8247:214 8035:doi 8023:152 7983:doi 7849:doi 7827:115 7735:doi 7690:298 7641:doi 7485:doi 7463:114 7296:doi 7274:112 7067:doi 6930:doi 6908:440 6814:doi 6792:792 6746:dec 6739:dec 6732:dec 6705:971 6703:376 6632:'s 6609:358 6523:doi 6501:594 6321:in 6146:Sun 6060:by 5870:). 5403:.) 5311:can 5042:0.1 4828:or 4736:GeV 4659:2.5 3941:TeV 3935:If 3885:end 3880:not 3834:DNA 3719:". 3516:of 3339:era 3295:era 2790:+ W 2766:, W 2762:, W 2430:Gya 2424:of 2320:Gyr 1606:of 1551:or 1509:CMB 985:era 76:by 12193:: 11655:- 11645:- 11612:- 11602:- 11588:- 11578:- 11564:- 11386:, 11382:, 11353:, 11349:, 11264:. 11183:. 11163:. 11124:. 11044:. 10982:. 10962:. 10934:. 10900:. 10892:. 10882:. 10861:. 10853:. 10843:. 10835:. 10797:. 10787:. 10777:. 10767:98 10765:. 10759:. 10738:. 10730:. 10720:. 10690:. 10682:. 10672:. 10648:. 10621:. 10613:. 10603:. 10579:. 10571:. 10561:. 10537:. 10529:. 10519:. 10507:; 10491:. 10483:. 10475:. 10467:. 10453:. 10449:. 10424:. 10416:. 10408:. 10371:; 10345:. 10335:15 10333:. 10305:. 10295:37 10293:. 10265:. 10255:14 10253:. 10221:. 10213:. 10205:. 10197:. 10187:21 10185:. 10179:. 10143:. 10135:. 10127:. 10115:. 10109:. 10098:; 10070:. 10064:. 10038:. 10016:. 9982:. 9974:. 9966:. 9954:75 9952:. 9942:; 9915:. 9907:. 9873:. 9865:. 9853:48 9851:. 9847:. 9810:. 9785:^ 9759:. 9735:. 9727:. 9719:. 9705:. 9643:. 9633:. 9599:; 9589:. 9529:. 9523:. 9500:. 9492:. 9484:. 9470:. 9432:. 9420:. 9414:. 9388:. 9380:. 9372:. 9358:. 9346:UV 9297:. 9289:. 9281:. 9267:. 9242:. 9234:. 9226:. 9212:. 9183:. 9175:. 9167:. 9153:. 9135:^ 9121:. 9113:. 9105:. 9093:31 9091:. 9077:^ 9059:. 9049:. 9005:^ 8993:}} 8989:{{ 8969:. 8951:. 8933:. 8922:^ 8912:. 8889:. 8879:. 8871:. 8857:. 8851:. 8816:. 8791:. 8764:. 8756:. 8752:. 8723:. 8709:. 8676:. 8639:. 8613:. 8603:. 8589:^ 8561:. 8547:. 8543:. 8508:. 8500:. 8492:. 8478:. 8442:. 8432:. 8386:. 8378:. 8370:. 8356:. 8330:. 8322:. 8314:. 8300:. 8275:. 8267:. 8259:. 8245:. 8207:. 8180:. 8172:. 8142:. 8138:. 8127:^ 8109:. 8101:. 8068:. 8057:. 8033:. 8021:. 8015:. 7989:. 7981:. 7973:. 7961:88 7959:. 7930:43 7928:. 7918:; 7899:10 7897:. 7887:; 7863:. 7855:. 7847:. 7839:. 7825:. 7801:. 7793:. 7789:. 7761:^ 7743:. 7729:. 7725:. 7696:^ 7675:68 7661:^ 7647:. 7639:. 7631:. 7619:93 7617:. 7578:. 7570:. 7532:. 7522:. 7499:. 7491:. 7483:. 7475:. 7461:. 7424:. 7390:. 7382:. 7344:. 7336:. 7310:. 7302:. 7294:. 7286:. 7272:. 7258:^ 7239:. 7231:. 7193:. 7183:. 7152:, 7144:. 7121:^ 7095:. 7073:. 7065:. 7057:. 7045:69 7043:. 7033:; 7016:^ 7011:.. 6983:. 6957:^ 6944:. 6936:. 6928:. 6920:. 6906:. 6872:. 6868:. 6820:. 6812:. 6804:. 6790:. 6753:^ 6583:^ 6565:. 6561:. 6557:. 6529:. 6521:. 6513:. 6499:. 6171:. 5919:. 5863:nm 5855:eV 5788:, 5771:, 5631:, 5627:, 5623:, 5619:, 5559:, 5419:, 5378:He 5221:, 5217:, 5119:, 5090:. 4839:. 4832:. 4809:. 4738:, 4692:27 4688:10 4670:14 4666:10 4467:10 4463:10 4314:26 4310:10 4106:53 4102:10 4040:: 4017:, 3914:'s 3844:. 3667:. 3659:, 3655:, 3643:. 3619:, 3502:, 3440:. 3407:. 3370:. 3331:. 3275:0 3224:. 3220:, 3210:( 3198:( 3051:ka 3027:, 3015:: 2865:. 2828:AU 2735:. 2640:. 2544:, 2540:, 2526:, 2522:, 2518:, 1816:. 1699:He 1686:. 1664:. 1582:. 1563:, 1444:/ 1380:/ 1256:/ 1131:/ 12121:: 11777:e 11770:t 11763:v 11498:e 11491:t 11484:v 11390:) 11378:( 11357:) 11345:( 11304:e 11297:t 11290:v 11276:. 11248:. 11224:. 11199:. 11175:. 11145:. 11110:. 11086:. 11056:. 11026:. 11002:. 10974:. 10946:. 10908:. 10869:. 10839:: 10829:: 10805:. 10791:: 10781:: 10773:: 10746:. 10707:. 10698:. 10656:. 10629:. 10587:. 10545:. 10499:. 10487:: 10479:: 10471:: 10461:: 10439:. 10353:. 10349:: 10341:: 10313:. 10309:: 10301:: 10273:. 10269:: 10261:: 10236:. 10201:: 10193:: 10158:. 10131:: 10123:: 10082:. 10052:. 10020:. 9990:. 9978:: 9970:: 9960:: 9927:. 9881:. 9869:: 9859:: 9832:. 9779:. 9743:. 9731:: 9723:: 9713:: 9697:z 9686:. 9655:. 9615:. 9571:. 9541:. 9508:. 9496:: 9488:: 9478:: 9462:z 9458:z 9442:. 9436:: 9428:: 9396:. 9384:: 9376:: 9366:: 9350:z 9330:. 9324:: 9305:. 9293:: 9285:: 9275:: 9250:. 9238:: 9230:: 9220:: 9191:. 9179:: 9171:: 9161:: 9129:. 9117:: 9109:: 9099:: 9071:. 9034:. 8999:) 8985:. 8955:. 8937:. 8897:. 8883:: 8875:: 8865:: 8843:z 8828:. 8802:. 8776:. 8738:. 8719:: 8688:. 8651:. 8625:. 8571:. 8565:: 8555:: 8516:. 8504:: 8496:: 8486:: 8454:. 8394:. 8382:: 8374:: 8364:: 8338:. 8326:: 8318:: 8308:: 8283:. 8271:: 8263:: 8253:: 8227:. 8192:. 8154:. 8121:. 8083:. 8043:. 8037:: 8029:: 7997:. 7985:: 7977:: 7967:: 7940:. 7936:: 7909:. 7905:: 7871:. 7851:: 7843:: 7833:: 7813:. 7755:. 7737:: 7731:1 7655:. 7643:: 7635:: 7625:: 7590:. 7544:. 7507:. 7487:: 7479:: 7469:: 7436:. 7402:. 7356:. 7318:. 7298:: 7290:: 7280:: 7251:. 7205:. 7168:. 7115:. 7081:. 7069:: 7061:: 7051:: 6994:. 6932:: 6924:: 6914:: 6882:. 6876:: 6850:. 6828:. 6816:: 6808:: 6798:: 6743:t 6736:T 6729:z 6683:z 6677:0 6674:H 6649:0 6645:H 6619:. 6577:. 6537:. 6525:: 6517:: 6507:: 6127:) 6121:( 6116:) 6112:( 6102:· 6095:· 6088:· 6081:· 6054:. 5938:z 5838:z 5834:z 5830:z 5712:N 5577:( 5261:z 5032:/ 4709:, 4697:K 4681:V 4678:e 4675:G 4651:n 4648:o 4645:i 4642:t 4639:a 4636:z 4633:i 4630:l 4627:a 4624:m 4621:r 4618:e 4615:h 4612:t 4608:T 4582:2 4575:a 4550:a 4528:1 4521:a 4507:H 4500:x 4494:, 4480:1 4473:s 4456:3 4445:T 4440:B 4436:k 4432:n 4429:x 4421:2 4417:c 4413:3 4408:G 4402:8 4389:3 4385:/ 4378:G 4372:8 4364:H 4341:. 4327:1 4320:s 4303:c 4295:3 4291:/ 4287:1 4283:n 4276:c 4270:n 4235:3 4231:/ 4227:2 4220:n 4177:3 4173:) 4169:c 4162:/ 4158:T 4153:B 4149:k 4145:( 4133:, 4119:3 4112:m 4093:B 4089:k 4085:c 4081:/ 4075:3 4071:T 4065:B 4057:2 4054:= 4051:n 3830:m 3599:) 3471:( 3212:z 3200:z 3188:z 2808:W 2805:θ 2801:, 2799:W 2796:θ 2792:3 2788:W 2785:θ 2781:γ 2776:3 2772:γ 2768:3 2764:2 2760:1 2576:. 2570:z 2566:z 2562:K 2496:— 2400:) 2397:z 2394:( 2383:) 2380:0 2377:( 2369:= 2366:) 2363:z 2360:( 2324:. 2310:0 2306:H 2297:2 2293:/ 2289:3 2285:) 2281:z 2278:+ 2275:1 2272:( 2262:m 2249:3 2238:2 2228:) 2219:3 2215:) 2211:z 2208:+ 2205:1 2202:( 2194:m 2170:; 2165:2 2162:3 2157:; 2152:2 2149:1 2144:, 2139:2 2136:1 2130:( 2124:1 2120:F 2114:2 2107:= 2078:0 2074:H 2058:z 2054:d 2043:3 2039:) 2031:z 2027:+ 2024:1 2021:( 2013:m 2005:+ 1987:) 1980:z 1976:+ 1973:1 1970:( 1966:1 1954:z 1946:= 1943:) 1940:z 1937:( 1919:1 1916:F 1913:2 1784:. 1782:0 1780:H 1774:Λ 1772:Ω 1766:m 1722:2 1481:) 1477:( 1465:e 1463:f 1461:i 1459:L 736:e 729:t 722:v 406:· 384:· 356:· 330:· 298:· 281:· 269:· 248:· 220:· 183:· 143:) 137:( 132:) 128:( 118:· 111:· 104:· 97:· 70:. 45:. 34:. 20:)

Index

Cosmological time scale
Graphical timeline from Big Bang to Heat Death
Big History
timeline of the early universe

verification
improve this article
adding citations to reliable sources
"Chronology of the universe"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
Physical cosmology
Full-sky image derived from nine years' WMAP data
Big Bang
Universe
Age of the universe
Chronology of the universe
Inflation
Nucleosynthesis
Gravitational wave (GWB)
Microwave (CMB)
Neutrino (CNB)
Hubble's law
Redshift
Expansion of the universe
FLRW metric

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.