Knowledge

Computational neuroscience

Source đź“ť

530:
In order to have a more concrete specification of the mechanism underlying visual attention and the binding of features, a number of computational models have been proposed aiming to explain psychophysical findings. In general, all models postulate the existence of a saliency or priority map for registering the potentially interesting areas of the retinal input, and a gating mechanism for reducing the amount of incoming visual information, so that the limited computational resources of the brain can handle it. An example theory that is being extensively tested behaviorally and physiologically is the
330:
investigations, where many neurons need to be simulated. As a result, researchers that study large neural circuits typically represent each neuron and synapse with an artificially simple model, ignoring much of the biological detail. Hence there is a drive to produce simplified neuron models that can retain significant biological fidelity at a low computational overhead. Algorithms have been developed to produce faithful, faster running, simplified surrogate neuron models from computationally expensive, detailed neuron models.
4125: 4137: 3683: 394:, where the neurons encoded information which minimized the number of spikes. Experimental and computational work have since supported this hypothesis in one form or another. For the example of visual processing, efficient coding is manifested in the forms of efficient spatial coding, color coding, temporal/motion coding, stereo coding, and combinations of them. 147:, at the request of the Systems Development Foundation to provide a summary of the current status of a field which until that point was referred to by a variety of names, such as neural modeling, brain theory and neural networks. The proceedings of this definitional meeting were published in 1990 as the book 492:
of such simple systems are well-characterized theoretically. Some recent evidence suggests that dynamics of arbitrary neuronal networks can be reduced to pairwise interactions. It is not known, however, whether such descriptive dynamics impart any important computational function. With the emergence
714:
computer such as this is that it takes the computational load of the processor (in the sense that the structural and some of the functional elements don't have to be programmed since they are in hardware). In recent times, neuromorphic technology has been used to build supercomputers which are used
529:
Visual attention can be described as a set of mechanisms that limit some processing to a subset of incoming stimuli. Attentional mechanisms shape what we see and what we can act upon. They allow for concurrent selection of some (preferably, relevant) information and inhibition of other information.
520:
of neural networks. While many neurotheorists prefer such models with reduced complexity, others argue that uncovering structural-functional relations depends on including as much neuronal and network structure as possible. Models of this type are typically built in large simulation platforms like
276:
only employed two voltage-sensitive currents (Voltage sensitive ion channels are glycoprotein molecules which extend through the lipid bilayer, allowing ions to traverse under certain conditions through the axolemma), the fast-acting sodium and the inward-rectifying potassium. Though successful in
76:
Computational neuroscience employs computational simulations to validate and solve mathematical models, and so can be seen as a sub-field of theoretical neuroscience; however, the two fields are often synonymous. The term mathematical neuroscience is also used sometimes, to stress the quantitative
417:
Many models of the way the brain controls movement have been developed. This includes models of processing in the brain such as the cerebellum's role for error correction, skill learning in motor cortex and the basal ganglia, or the control of the vestibulo ocular reflex. This also includes many
651:
Predictive computational neuroscience is a recent field that combines signal processing, neuroscience, clinical data and machine learning to predict the brain during coma or anesthesia. For example, it is possible to anticipate deep brain states using the EEG signal. These states can be used to
534:
that a bottom-up saliency map is created in the primary visual cortex to guide attention exogenously. Computational neuroscience provides a mathematical framework for studying the mechanisms involved in brain function and allows complete simulation and prediction of neuropsychological syndromes.
329:
Modeling the richness of biophysical properties on the single-neuron scale can supply mechanisms that serve as the building blocks for network dynamics. However, detailed neuron descriptions are computationally expensive and this computing cost can limit the pursuit of realistic network
1950:
Pannasch, Ulrike; Freche, Dominik; Dallérac, Glenn; Ghézali, Grégory; Escartin, Carole; Ezan, Pascal; Cohen-Salmon, Martine; Benchenane, Karim; Abudara, Veronica; Dufour, Amandine; Lübke, Joachim H. R.; Déglon, Nicole; Knott, Graham; Holcman, David; Rouach, Nathalie (April 2014).
342:, so important for maintaining homeostatis and to prevent epileptic seizures. Modeling reveals the role of glial protrusions that can penetrate in some cases the synaptic cleft to interfere with the synpatic transmission and thus control synaptic communication. 257:
Research in computational neuroscience can be roughly categorized into several lines of inquiry. Most computational neuroscientists collaborate closely with experimentalists in analyzing novel data and synthesizing new models of biological phenomena.
131:, columnar and topographic architecture, nuclei, all the way up to psychological faculties like memory, learning and behavior. These computational models frame hypotheses that can be directly tested by biological or psychological experiments. 124:; although mutual inspiration exists and sometimes there is no strict limit between fields, with model abstraction in computational neuroscience depending on research scope and the granularity at which biological entities are analyzed. 464:
forget less easily, but they are also harder to consolidate. It is likely that computational tools will contribute greatly to our understanding of how synapses function and change in relation to external stimulus in the coming decades.
281:. Scientists now believe that there are a wide variety of voltage-sensitive currents, and the implications of the differing dynamics, modulations, and sensitivity of these currents is an important topic of computational neuroscience. 404:
Current research in sensory processing is divided among a biophysical modelling of different subsystems and a more theoretical modelling of perception. Current models of perception have suggested that the brain performs some form of
559:
function as integrators of information from multiple sensory modalities. There are some tentative ideas regarding how simple mutually inhibitory functional circuits in these areas may carry out biologically relevant computation.
2609:
Adaszewski, Stanisław; Dukart, Juergen; Kherif, Ferath; Frackowiak, Richard; Draganski, Bogdan; Alzheimer's Disease Neuroimaging Initiative (2013). "How early can we predict Alzheimer's disease using computational anatomy?".
233:, have oriented receptive fields and are organized in columns. David Marr's work focused on the interactions between neurons, suggesting computational approaches to the study of how functional groups of neurons within the 444:
have been developed to address the properties of associative (also known as "content-addressable") style of memory that occur in biological systems. These attempts are primarily focusing on the formation of medium- and
571:. One of the key goals of computational neuroscience is to dissect how biological systems carry out these complex computations efficiently and potentially replicate these processes in building intelligent machines. 2696:
Floyrac, Aymeric; Doumergue, Adrien; Legriel, Stéphane; Deye, Nicolas; Megarbane, Bruno; Richard, Alexandra; Meppiel, Elodie; Masmoudi, Sana; Lozeron, Pierre; Vicaut, Eric; Kubis, Nathalie; Holcman, David (2023).
578:
attempts to consolidate these observations through unified descriptive models and databases of behavioral measures and recordings. These are the bases for some quantitative modeling of large-scale brain activity.
358:
form during development? How do axons know where to target and how to reach these targets? How do neurons migrate to the proper position in the central and peripheral systems? How do synapses form? We know from
586:) is another attempt at modeling human cognition through simulated processes like acquired rule-based systems in decision making and the manipulation of visual representations in decision making. 397:
Further along the visual pathway, even the efficiently coded visual information is too much for the capacity of the information bottleneck, the visual attentional bottleneck. A subsequent theory,
127:
Models in theoretical neuroscience are aimed at capturing the essential features of the biological system at multiple spatial-temporal scales, from membrane currents, and chemical coupling via
4168: 374:
Theoretical investigations into the formation and patterning of synaptic connection and morphology are still nascent. One hypothesis that has recently garnered some attention is the
1859: 401:, has been developed on exogenous attentional selection of a fraction of visual input for further processing, guided by a bottom-up saliency map in the primary visual cortex. 3373:
is a simulator for spiking neural network models that focuses on the dynamics, size and structure of neural systems rather than on the exact morphology of individual neurons.
477:, sparse and usually specific. It is not known how information is transmitted through such sparsely connected networks, although specific areas of the brain, such as the 2699:"Predicting neurological outcome after cardiac arrest by combining computational parameters extracted from standard and deviant responses from auditory evoked potentials" 338:
Glial cells participate significantly in the regulation of neuronal activity at both the cellular and the network level. Modeling this interaction allows to clarify the
390:. Somewhat similar to the minimal wiring hypothesis described in the preceding section, Barlow understood the processing of the early sensory systems to be a form of 3403: 567:
seems to be able to discriminate and adapt particularly well in certain contexts. For instance, human beings seem to have an enormous capacity for memorizing and
277:
predicting the timing and qualitative features of the action potential, it nevertheless failed to predict a number of important features such as adaptation and
3466: 3026: 288:
are also under intense investigation. There is a large body of literature regarding how different currents interact with geometric properties of neurons.
159:
in 1989. The first graduate educational program in computational neuroscience was organized as the Computational and Neural Systems Ph.D. program at the
418:
normative models, such as those of the Bayesian or optimal control flavor which are built on the idea that the brain efficiently solves its problems.
378:, which postulates that the formation of axons and dendrites effectively minimizes resource allocation while maintaining maximal information storage. 901: 241:
interact, store, process, and transmit information. Computational modeling of biophysically realistic neurons and dendrites began with the work of
2098: 2063: 312: 4175: 4429: 4045: 17: 481:, are understood in some detail. It is also unknown what the computational functions of these specific connectivity patterns are, if any. 2102: 574:
The brain's large-scale organizational principles are illuminated by many fields, including biology, psychology, and clinical practice.
900:
Patricia S. Churchland; Christof Koch; Terrence J. Sejnowski (1993). "What is computational neuroscience?". In Eric L. Schwartz (ed.).
2067: 2963: 1292: 521:
GENESIS or NEURON. There have been some attempts to provide unified methods that bridge and integrate these levels of complexity.
456:
One of the major problems in neurophysiological memory is how it is maintained and changed through multiple time scales. Unstable
1810:"Simulation of alcohol action upon a detailed Purkinje neuron model and a simpler surrogate model that runs >400 times faster" 4419: 3517: 3430: 2326:
Wilson, H. R.; Cowan, J.D. (1973). "A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue".
1078:
Gutkin, Boris; Pinto, David; Ermentrout, Bard (2003-03-01). "Mathematical neuroscience: from neurons to circuits to systems".
702:
A neuromorphic computer/chip is any device that uses physical artificial neurons (made from silicon) to do computations (See:
3299: 3280: 3261: 3242: 3170: 3147: 3102: 2452:
Machens CK, Romo R, Brody CD (2005). "Flexible control of mutual inhibition: a neural model of two-interval discrimination".
2436: 2411: 2378: 1741: 1716: 1445: 944: 884: 742: 406: 92:) and their physiology and dynamics, and it is therefore not directly concerned with biologically unrealistic models used in 3418: 1204:
Paolo, E. D., "Organismically-inspired robotics: homeostatic adaptation and teleology beyond the closed sensorimotor loop",
4398: 842: 4424: 620: 596:
One of the ultimate goals of psychology/neuroscience is to be able to explain the everyday experience of conscious life.
3460: 3321: 1759:"Intracellular Calcium Dynamics Permit a Purkinje Neuron Model to Perform Toggle and Gain Computations Upon its Inputs" 1658:"Intracellular Calcium Dynamics Permit a Purkinje Neuron Model to Perform Toggle and Gain Computations Upon its Inputs" 1470: 1055: 609: 272:
Even a single neuron has complex biophysical characteristics and can perform computations (e.g.). Hodgkin and Huxley's
160: 4025: 3121: 2371:
Neural Engineering: Computation, Representation, and Dynamics in Neurobiological Systems (Computational Neuroscience)
1302: 969: 543:
Computational modeling of higher cognitive functions has only recently begun. Experimental data comes primarily from
1545:
Lapicque L (1907). "Recherches quantitatives sur l'excitation électrique des nerfs traitée comme une polarisation".
473:
Biological neurons are connected to each other in a complex, recurrent fashion. These connections are, unlike most
2653:
Friston KJ, Stephan KE, Montague R, Dolan RJ (2014). "Computational psychiatry: the brain as a phantastic organ".
4373: 3485: 2758:"Combining transient statistical markers from the EEG signal to predict brain sensitivity to general anesthesia" 4296: 4276: 4161: 4141: 3866: 3352: 3346: 501:, we now have powerful experimental methods with which to test the new theories regarding neuronal networks. 151:. The first of the annual open international meetings focused on Computational Neuroscience was organized by 121: 2114:
Weiss, Yair; Simoncelli, Eero P.; Adelson, Edward H. (20 May 2002). "Motion illusions as optimal percepts".
4334: 4301: 4281: 4205: 4020: 3841: 2817: 3189:"A quantitative description of membrane current and its application to conduction and excitation in nerve" 2094: 4225: 4060: 1860:"Dynamics of Ion Fluxes between Neurons, Astrocytes and the Extracellular Space during Neurotransmission" 391: 3726: 907: 4271: 3510: 762: 474: 278: 54: 3454: 2757: 4388: 4378: 4311: 4055: 4030: 3899: 3188: 2007: 1608: 822: 772: 643:, and to train scientists and clinicians that wish to apply these models to diagnosis and treatment. 409:
and integration of different sensory information in generating our perception of the physical world.
195: 187: 156: 113: 2474: 2171: 4383: 4324: 4286: 3994: 3969: 3894: 3801: 3706: 3602: 3451:– a computational neuroscience meeting focusing on computational models capable of cognitive tasks. 782: 737: 697: 660: 575: 273: 267: 3229: 371:
that modulate and influence the growth and development of functional connections between neurons.
53:, theoretical analysis and abstractions of the brain to understand the principles that govern the 4393: 4352: 4347: 4319: 4291: 4235: 4210: 3831: 3542: 3537: 3408: 2864:"Computational Psychiatry Research Map (CPSYMAP): a new database for visualizing research papers" 2862:
Kato, Ayaka; Kunisato, Yoshihiko; Katahira, Kentaro; Okimura, Tsukasa; Yamashita, Yuichi (2020).
707: 484:
The interactions of neurons in a small network can be often reduced to simple models such as the
117: 105: 2157:
Ernst, Marc O.; BĂĽlthoff, Heinrich H. (April 2004). "Merging the senses into a robust percept".
1609:"Receptive fields, binocular interaction and functional architecture in the cat's visual cortex" 4342: 4215: 3826: 3816: 3607: 3562: 2469: 2403: 2166: 2099:
The V1 hypothesis—creating a bottom-up saliency map for preattentive selection and segmentation
703: 636: 531: 517: 398: 66: 876: 4368: 4263: 4200: 4192: 4184: 4129: 3889: 3884: 3691: 3582: 3503: 3020: 752: 544: 494: 489: 386:
Early models on sensory processing understood within a theoretical framework are credited to
226: 2395: 2261:"Weak pairwise correlations imply strongly correlated network states in a neural population" 868: 4243: 4110: 3861: 3701: 3672: 3567: 3492:, an online expert curated encyclopedia on computational neuroscience and dynamical systems 2461: 2282: 2019: 1896: 1564:
Brunel N, Van Rossum MC (2007). "Lapicque's 1907 paper: from frogs to integrate-and-fire".
1239: 1152: 837: 8: 4248: 4004: 3904: 3781: 3751: 3736: 3358: 2623: 716: 427: 3159:
Neural engineering: Representation, computation, and dynamics in neurobiological systems
2465: 2286: 2023: 1900: 1243: 1156: 899: 350:
Computational neuroscience aims to address a wide array of questions, including: How do
4080: 3974: 3914: 3637: 3617: 3364: 3213: 3086: 3074: 3003: 2978: 2939: 2914: 2890: 2863: 2839: 2812: 2785: 2733: 2698: 2678: 2635: 2591: 2539: 2514: 2495: 2351: 2303: 2272: 2260: 2241: 2192: 2139: 2043: 1988: 1927: 1884: 1836: 1809: 1785: 1758: 1684: 1657: 1633: 1589: 1522: 1487: 1413: 1378: 1354: 1319: 1273: 1209: 1181: 1142: 1130: 1111: 1021: 986: 812: 797: 792: 787: 292: 191: 144: 128: 2666: 2228: 2211: 1320:"Modeling language and cognition with deep unsupervised learning: a tutorial overview" 194:
model of the neuron in a seminal article published in 1907, a model still popular for
166:
The early historical roots of the field can be traced to the work of people including
4253: 3999: 3934: 3909: 3761: 3721: 3388: 3317: 3295: 3276: 3257: 3238: 3218: 3166: 3143: 3117: 3098: 3066: 3008: 2944: 2895: 2844: 2789: 2777: 2738: 2720: 2670: 2627: 2583: 2544: 2487: 2432: 2407: 2396: 2374: 2343: 2308: 2233: 2184: 2131: 2035: 1980: 1972: 1932: 1914: 1841: 1790: 1737: 1712: 1689: 1638: 1581: 1527: 1509: 1466: 1441: 1418: 1400: 1359: 1341: 1298: 1277: 1265: 1257: 1186: 1168: 1103: 1095: 1091: 1051: 1026: 1008: 965: 940: 880: 869: 767: 632: 513: 360: 296: 3078: 2682: 2595: 2499: 2245: 1593: 1213: 1115: 4040: 3924: 3851: 3766: 3647: 3597: 3342: 3208: 3204: 3200: 3140:
Theoretical neuroscience: computational and mathematical modeling of neural systems
3056: 2998: 2994: 2990: 2934: 2926: 2885: 2875: 2834: 2826: 2769: 2728: 2710: 2662: 2639: 2619: 2575: 2534: 2526: 2479: 2335: 2298: 2290: 2223: 2196: 2176: 2143: 2123: 2047: 2027: 1964: 1922: 1904: 1831: 1821: 1780: 1770: 1679: 1669: 1628: 1624: 1620: 1573: 1517: 1499: 1408: 1390: 1349: 1331: 1247: 1176: 1160: 1087: 1016: 998: 937:
Theoretical neuroscience: computational and mathematical modeling of neural systems
817: 777: 747: 732: 664: 640: 446: 437: 214: 140: 109: 50: 3433:(COSYNE) – a computational neuroscience meeting with a systems neuroscience focus. 2355: 1992: 1885:"The Neuroglial Potassium Cycle during Neurotransmission: Role of Kir4.1 Channels" 4100: 4095: 4090: 4085: 3979: 3919: 3856: 3771: 3731: 3716: 3667: 3657: 3612: 3370: 3061: 3044: 2915:"Computational psychiatry as a bridge from neuroscience to clinical applications" 1909: 1883:
Sibille, Jérémie; Duc, Khanh Dao; Holcman, David; Rouach, Nathalie (2015-03-31).
1045: 832: 827: 807: 568: 498: 339: 316: 62: 3289: 3085: 635:
and computational modeling to quantitatively define and investigate problems in
4065: 4035: 3964: 3939: 3929: 3776: 3756: 3746: 3632: 3552: 3230: 2830: 2773: 2180: 1953:"Connexin 30 sets synaptic strength by controlling astroglial synapse invasion" 711: 364: 363:
that distinct parts of the nervous system release distinct chemical cues, from
222: 218: 183: 179: 167: 152: 97: 89: 70: 2880: 2715: 1826: 1577: 1164: 4413: 3989: 3984: 3949: 3846: 3836: 3796: 3642: 3577: 3572: 3184: 2781: 2724: 1976: 1918: 1775: 1674: 1513: 1504: 1404: 1345: 1336: 1261: 1172: 1099: 1012: 1003: 802: 605: 601: 597: 590: 556: 478: 387: 323: 308: 210: 206: 175: 93: 2483: 2393: 4075: 4070: 3954: 3786: 3711: 3662: 3652: 3627: 3622: 3592: 3526: 3489: 3398: 3222: 3180: 3135: 3111: 3070: 3045:"Synaptic connectivity and neuronal morphology: two sides of the same coin" 3012: 2948: 2899: 2848: 2804: 2742: 2674: 2631: 2587: 2548: 2530: 2491: 2312: 2188: 2135: 2039: 1984: 1936: 1845: 1794: 1693: 1642: 1585: 1531: 1422: 1363: 1269: 1190: 1107: 1030: 959: 932: 757: 668: 552: 441: 246: 242: 202: 171: 58: 42: 3413: 3355:, web based 3D visualization tool to browse connections in the human brain 2347: 2237: 2212:"Sparse coding with an overcomplete basis set: A strategy employed by V1?" 1952: 3944: 3791: 3309: 3131: 2808: 928: 847: 608:
made some attempts to formulate consistent frameworks for future work in
485: 450: 234: 101: 46: 4153: 3475:– a biennial meeting that includes theoretical and experimental results. 2294: 2097:
Trends in Cognitive Sciences vol. 6, Pages 9-16, and Zhaoping, L. 2014,
2031: 1395: 4105: 3806: 3270: 2579: 2339: 2127: 1228:"Turing centenary: Is the brain a good model for machine intelligence?" 680: 676: 628: 524: 304: 2277: 4050: 3741: 3162: 3094: 719: 672: 624: 355: 320: 285: 238: 3472: 3156: 2930: 2368: 1968: 1252: 1227: 3959: 3254:
Computational neuroscience: realistic modeling for experimentalists
3233:; Rieke, Fred; David Warland; Rob de Ruyter van Steveninck (1999). 2563: 1734:
Biophysics of computation: information processing in single neurons
1706: 1318:
Zorzi, Marco; Testolin, Alberto; Stoianov, Ivilin P. (2013-08-20).
1147: 715:
in international neuroscience collaborations. Examples include the
548: 461: 460:
are easy to train but also prone to stochastic disruption. Stable
457: 368: 2079: 652:
anticipate hypnotic concentration to administrate to the patient.
612:(NCC), though much of the work in this field remains speculative. 3393: 229:, the first cortical area to process information coming from the 81: 2977:
Calimera, Andrea; Macii, Enrico; Poncino, Massimo (2013-08-20).
2608: 3495: 3445:– a leading annual conference covering mostly machine learning. 2513:
Robinson PA, Rennie CJ, Rowe DL, O'Connor SC, Gordon E (2005).
433: 345: 230: 85: 2964:"Beyond von Neumann, Neuromorphic Computing Steadily Advances" 2512: 1294:
Neural Network Perspectives on Cognition and Adaptive Robotics
1226:
Brooks, R.; Hassabis, D.; Bray, D.; Shashua, A. (2012-02-22).
3290:
Michael A. Arbib; Shun-ichi Amari; Prudence H. Arbib (2002).
2010:(October 2004). "Cortical rewiring and information storage". 1949: 1129:
Kriegeskorte, Nikolaus; Douglas, Pamela K. (September 2018).
564: 351: 315:, aims to construct a biophysically detailed simulation of a 2913:
Huys, Quentin J M; Maia, Tiago V; Frank, Michael J (2016).
2861: 2695: 2652: 583: 3682: 3455:
International Conference on Cognitive Neurodynamics (ICCN)
3112:
Gerstner, W.; Kistler, W.; Naud, R.; Paninski, L. (2014).
2258: 960:
Gerstner, W.; Kistler, W.; Naud, R.; Paninski, L. (2014).
582:
The Computational Representational Understanding of Mind (
538: 3467:
Bernstein Conference on Computational Neuroscience (BCCN)
2802: 2394:
Marvin M. Chun; Jeremy M. Wolfe; E. B. Goldstein (2001).
1225: 623:
is a field that brings together experts in neuroscience,
198:
studies because of its simplicity (see a recent review).
80:
Computational neuroscience focuses on the description of
3436: 2426: 2325: 663:
is a new emerging field that brings together experts in
646: 139:
The term 'computational neuroscience' was introduced by
3463:– a yearly conference, focused on mathematical aspects. 3448: 1882: 875:. United States: Oxford University Press Inc. pp.  2113: 1206:
Dynamical Systems Approach to Embodiment and Sociality
683:
to provide an understanding of psychiatric disorders.
615: 3442: 3130: 1317: 1077: 927: 2979:"The human brain project and neuromorphic computing" 2976: 2005: 525:
Visual attention, identification, and categorization
333: 3469:– a yearly computational neuroscience conference ]. 2210:Olshausen, Bruno A.; Field, David J. (1997-12-01). 1128: 3271:Sejnowski, Terrence J.; Hemmen, J. L. van (2006). 2259:Schneidman E, Berry MJ, Segev R, Bialek W (2006). 3251: 3025:: CS1 maint: DOI inactive as of September 2024 ( 2519:Philosophical Transactions of the Royal Society B 2080:https://en.wikipedia.org/Visual_spatial_attention 421: 4411: 3292:The Handbook of Brain Theory and Neural Networks 2451: 1563: 245:, with the first multicompartmental model using 3437:Annual Computational Neuroscience Meeting (CNS) 3157:Eliasmith, Chris; Anderson, Charles H. (2003). 2369:Anderson, Charles H.; Eliasmith, Chris (2004). 2068:Understanding vision: theory, models, and data 1460: 1377:Shai, Adam; Larkum, Matthew Evan (2017-12-05). 504:In some cases the complex interactions between 213:and created the first biophysical model of the 3439:– a yearly computational neuroscience meeting. 3314:Understanding vision: theory, models, and data 2756:Sun, Christophe; Holcman, David (2022-08-01). 2398:Blackwell Handbook of Sensation and Perception 2209: 2103:Understanding Vision: Theory, Models, and Data 1731: 1707:Wu, Samuel Miao-sin; Johnston, Daniel (1995). 1435: 143:, who organized a conference, held in 1985 in 4169: 3511: 3179: 3116:. Cambridge, UK: Cambridge University Press. 3042: 2912: 2156: 964:. Cambridge, UK: Cambridge University Press. 4046:Intraoperative neurophysiological monitoring 3443:Neural Information Processing Systems (NIPS) 1488:"A Brief History of Simulation Neuroscience" 987:"A Brief History of Simulation Neuroscience" 722:supercomputer and the BrainScaleS computer. 346:Development, axonal patterning, and guidance 3294:. Cambridge, Massachusetts: The MIT Press. 1606: 906:. MIT Press. pp. 46–55. Archived from 866: 655: 291:There are many software packages, such as 4176: 4162: 3518: 3504: 3486:Encyclopedia of Computational Neuroscience 3449:Cognitive Computational Neuroscience (CCN) 2755: 1807: 1756: 1655: 1544: 1485: 1376: 1047:Fundamentals of Computational Neuroscience 984: 871:Fundamentals of Computational Neuroscience 4183: 3212: 3060: 3002: 2938: 2889: 2879: 2838: 2732: 2714: 2561: 2538: 2473: 2302: 2276: 2227: 2170: 2089: 2087: 1926: 1908: 1835: 1825: 1784: 1774: 1683: 1673: 1632: 1521: 1503: 1412: 1394: 1353: 1335: 1251: 1180: 1146: 1020: 1002: 691: 436:are primarily based on the postulates of 261: 3308: 2762:Biomedical Signal Processing and Control 468: 440:. Biologically relevant models such as 313:École Polytechnique FĂ©dĂ©rale de Lausanne 3409:Frontiers in Computational Neuroscience 3316:. Oxford, UK: Oxford University Press. 2961: 2095:A saliency map in primary visual cortex 1763:Frontiers in Computational Neuroscience 1709:Foundations of cellular neurophysiology 1662:Frontiers in Computational Neuroscience 1082:. Neurogeometry and visual perception. 539:Cognition, discrimination, and learning 284:The computational functions of complex 14: 4412: 3431:Computational and Systems Neuroscience 2803:Montague, P. Read; Dolan, Raymond J.; 2084: 1463:20 years of Computational neuroscience 1290: 1131:"Cognitive computational neuroscience" 1043: 4157: 3499: 3461:UK Mathematical Neurosciences Meeting 3394:Journal of Computational Neuroscience 3367:, a general neural simulation system. 3089:; Churchland, Patricia Smith (1992). 2402:. Blackwell Publishing Ltd. pp.  647:Predictive computational neuroscience 381: 4430:Mathematical and theoretical biology 4136: 3389:Journal of Mathematical Neuroscience 3275:. Oxford : Oxford University Press. 2624:10.1016/j.neurobiolaging.2013.06.015 2429:Computational Neuroscience of Vision 1736:. Oxford : Oxford University Press. 710:). One of the advantages of using a 3273:23 problems in systems neuroscience 2427:Edmund Rolls; Gustavo Deco (2012). 621:Computational clinical neuroscience 616:Computational clinical neuroscience 24: 2373:. Cambridge, Mass: The MIT Press. 610:neural correlates of consciousness 299:, that allow rapid and systematic 161:California Institute of Technology 25: 4441: 4026:Development of the nervous system 3377: 3235:Spikes: exploring the neural code 1486:Fan, Xue; Markram, Henry (2019). 1203: 985:Fan, Xue; Markram, Henry (2019). 860: 334:Modeling Neuron-glia interactions 4135: 4124: 4123: 3681: 3525: 1092:10.1016/j.jphysparis.2003.09.005 589: 512:neurons can be simplified using 412: 3036: 2970: 2962:Russell, John (21 March 2016). 2955: 2906: 2855: 2796: 2749: 2689: 2646: 2602: 2564:"A framework for consciousness" 2555: 2506: 2445: 2420: 2387: 2362: 2319: 2252: 2203: 2150: 2107: 2078:see visual spational attention 2072: 2064:The efficient coding principle 2056: 1999: 1943: 1876: 1852: 1801: 1750: 1725: 1700: 1649: 1600: 1557: 1538: 1479: 1454: 1429: 1370: 1311: 1284: 1219: 867:Trappenberg, Thomas P. (2010). 303:modeling of realistic neurons. 252: 225:discovered that neurons in the 3424: 3205:10.1113/jphysiol.1952.sp004764 3142:. Cambridge, Mass: MIT Press. 1711:. Cambridge, Mass: MIT Press. 1625:10.1113/jphysiol.1962.sp006837 1440:. Cambridge, Mass: MIT Press. 1197: 1122: 1071: 1037: 978: 953: 939:. Cambridge, Mass: MIT Press. 921: 893: 422:Memory and synaptic plasticity 13: 1: 4420:Computational fields of study 3867:Social cognitive neuroscience 3419:Frontiers in Neuroinformatics 3361:, neural simulation software. 3353:Budapest Reference Connectome 3331: 2667:10.1016/S2215-0366(14)70275-5 2431:. Oxford Scholarship Online. 2229:10.1016/S0042-6989(97)00169-7 2066:, chapter 3, of the textbook 1492:Frontiers in Neuroinformatics 1465:. Berlin, Germany: Springer. 991:Frontiers in Neuroinformatics 854: 686: 399:V1 Saliency Hypothesis (V1SH) 122:computational learning theory 3842:Molecular cellular cognition 3062:10.1016/j.neuron.2004.08.012 2995:10.11138/FNeur/2013.28.3.191 2818:Trends in Cognitive Sciences 2515:"Multiscale brain modelling" 2159:Trends in Cognitive Sciences 1910:10.1371/journal.pcbi.1004137 1607:Hubel DH, Wiesel TN (1962). 1044:Thomas, Trappenberg (2010). 18:Computational neuroscientist 7: 4061:Neurodevelopmental disorder 4036:Neural network (biological) 4031:Neural network (artificial) 3479: 3382: 3336: 1080:Journal of Physiology-Paris 725: 10: 4446: 4425:Computational neuroscience 3588:Computational neuroscience 3414:PLoS Computational Biology 3252:Schutter, Erik de (2001). 2831:10.1016/j.tics.2011.11.018 2813:"Computational psychiatry" 2774:10.1016/j.bspc.2022.103713 2181:10.1016/j.tics.2004.02.002 1889:PLOS Computational Biology 1438:Computational neuroscience 903:Computational Neuroscience 763:Differentiable programming 695: 516:, which gives rise to the 475:artificial neural networks 425: 265: 196:artificial neural networks 190:. Lapicque introduced the 149:Computational Neuroscience 134: 114:artificial neural networks 31:Computational neuroscience 4361: 4333: 4310: 4262: 4234: 4191: 4119: 4056:Neurodegenerative disease 4013: 3900:Evolutionary neuroscience 3875: 3815: 3690: 3679: 3551: 3533: 2881:10.3389/fpsyt.2020.578706 2716:10.3389/fnins.2023.988394 2703:Frontiers in Neuroscience 1827:10.1186/s12868-015-0162-6 1808:Forrest MD (April 2015). 1578:10.1007/s00422-007-0190-0 1291:Browne, A. (1997-01-01). 1165:10.1038/s41593-018-0210-5 1050:. OUP Oxford. p. 2. 823:Neuromimetic intelligence 376:minimal wiring hypothesis 157:San Francisco, California 39:mathematical neuroscience 4021:Brain–computer interface 3970:Neuromorphic engineering 3895:Educational neuroscience 3802:Nutritional neuroscience 3707:Clinical neurophysiology 3603:Integrative neuroscience 3237:. Cambridge, Mass: MIT. 2562:Crick F, Koch C (2003). 1776:10.3389/fncom.2014.00086 1675:10.3389/fncom.2014.00086 1505:10.3389/fninf.2019.00032 1461:Bower, James M. (2013). 1337:10.3389/fpsyg.2013.00515 1004:10.3389/fninf.2019.00032 738:Biological neuron models 698:Neuromorphic engineering 661:Computational psychiatry 656:Computational Psychiatry 576:Integrative neuroscience 268:Biological neuron models 35:theoretical neuroscience 3832:Behavioral neuroscience 3404:Cognitive Neurodynamics 3091:The computational brain 2997:(inactive 2024-09-12). 2868:Frontiers in Psychiatry 2484:10.1126/science.1104171 2006:Chklovskii DB, Mel BW, 1732:Koch, Christof (1999). 1547:J. Physiol. Pathol. Gen 1436:Schwartz, Eric (1990). 1379:"Branching into brains" 1324:Frontiers in Psychology 708:physical neural network 307:, a project founded by 118:artificial intelligence 106:quantitative psychology 4399:Transportation science 3827:Affective neuroscience 3608:Molecular neuroscience 3563:Behavioral epigenetics 3457:– a yearly conference. 3087:Sejnowski, Terrence J. 3043:Chklovskii DB (2004). 2531:10.1098/rstb.2005.1638 704:neuromorphic computing 692:Neuromorphic computing 532:V1 Saliency Hypothesis 262:Single-neuron modeling 201:About 40 years later, 41:) is a branch of  27:Branch of neuroscience 4185:Computational science 3890:Cultural neuroscience 3885:Consumer neuroscience 3727:Neurogastroenterology 3583:Cellular neuroscience 773:FitzHugh–Nagumo model 753:Computational anatomy 545:single-unit recording 495:two-photon microscopy 490:statistical mechanics 469:Behaviors of networks 227:primary visual cortex 77:nature of the field. 4244:Electronic structure 3862:Sensory neuroscience 3702:Behavioral neurology 3673:Systems neuroscience 2983:Functional Neurology 838:Systems neuroscience 783:Hodgkin–Huxley model 641:psychiatric diseases 449:, localizing in the 129:network oscillations 45: which employs 4249:Molecular mechanics 4005:Social neuroscience 3905:Global neurosurgery 3782:Neurorehabilitation 3752:Neuro-ophthalmology 3737:Neurointensive care 3568:Behavioral genetics 3473:AREADNE Conferences 3256:. Boca Raton: CRC. 3161:. Cambridge, Mass: 3093:. Cambridge, Mass: 2919:Nature Neuroscience 2525:(1457): 1043–1050. 2466:2005Sci...307.1121M 2295:10.1038/nature04701 2287:2006Natur.440.1007S 2116:Nature Neuroscience 2032:10.1038/nature03012 2024:2004Natur.431..782C 1957:Nature Neuroscience 1901:2015PLSCB..11E4137S 1757:Forrest MD (2014). 1656:Forrest MD (2014). 1396:10.7554/eLife.33066 1244:2012Natur.482..462. 1157:2018arXiv180711819K 1135:Nature Neuroscience 843:Theoretical biology 717:Human Brain Project 428:Synaptic plasticity 155:and John Miller in 67:cognitive abilities 4206:Biological systems 4081:Neuroimmune system 3975:Neurophenomenology 3915:Neural engineering 3638:Neuroendocrinology 3618:Neural engineering 3399:Neural Computation 3187:(28 August 1952). 2580:10.1038/nn0203-119 2340:10.1007/BF00288786 2128:10.1038/nn0602-858 2062:Zhaoping L. 2014, 813:Neural oscillation 798:Nonlinear dynamics 793:Mathematical model 788:Information theory 432:Earlier models of 407:Bayesian inference 382:Sensory processing 192:integrate and fire 145:Carmel, California 4407: 4406: 4374:Materials science 4254:Quantum mechanics 4151: 4150: 4000:Paleoneurobiology 3935:Neuroepistemology 3910:Neuroanthropology 3876:Interdisciplinary 3762:Neuropharmacology 3722:Neuroepidemiology 3301:978-0-262-01197-6 3282:978-0-19-514822-0 3263:978-0-8493-2068-2 3244:978-0-262-68108-7 3172:978-0-262-05071-5 3149:978-0-262-04199-7 3114:Neuronal Dynamics 3104:978-0-262-03188-2 2655:Lancet Psychiatry 2438:978-0-198-52488-5 2413:978-0-631-20684-2 2380:978-0-262-55060-4 2271:(7087): 1007–12. 2222:(23): 3311–3325. 1743:978-0-19-510491-2 1718:978-0-262-10053-3 1447:978-0-262-19291-0 1238:(7386): 462–463. 962:Neuronal Dynamics 946:978-0-262-04199-7 886:978-0-19-851582-1 768:Electrophysiology 633:decision sciences 569:recognizing faces 514:mean-field theory 361:molecular biology 16:(Redirected from 4437: 4297:Particle physics 4277:Electromagnetics 4178: 4171: 4164: 4155: 4154: 4139: 4138: 4127: 4126: 4041:Detection theory 3925:Neurocriminology 3852:Neurolinguistics 3767:Neuroprosthetics 3685: 3648:Neuroinformatics 3598:Imaging genetics 3520: 3513: 3506: 3497: 3496: 3327: 3305: 3286: 3267: 3248: 3226: 3216: 3176: 3153: 3127: 3108: 3082: 3064: 3031: 3030: 3024: 3016: 3006: 2974: 2968: 2967: 2959: 2953: 2952: 2942: 2910: 2904: 2903: 2893: 2883: 2874:(1360): 578706. 2859: 2853: 2852: 2842: 2805:Friston, Karl J. 2800: 2794: 2793: 2753: 2747: 2746: 2736: 2718: 2693: 2687: 2686: 2650: 2644: 2643: 2606: 2600: 2599: 2559: 2553: 2552: 2542: 2510: 2504: 2503: 2477: 2460:(5712): 1121–4. 2449: 2443: 2442: 2424: 2418: 2417: 2401: 2391: 2385: 2384: 2366: 2360: 2359: 2323: 2317: 2316: 2306: 2280: 2256: 2250: 2249: 2231: 2207: 2201: 2200: 2174: 2154: 2148: 2147: 2111: 2105: 2091: 2082: 2076: 2070: 2060: 2054: 2051: 2003: 1997: 1996: 1947: 1941: 1940: 1930: 1912: 1880: 1874: 1873: 1871: 1870: 1856: 1850: 1849: 1839: 1829: 1814:BMC Neuroscience 1805: 1799: 1798: 1788: 1778: 1754: 1748: 1747: 1729: 1723: 1722: 1704: 1698: 1697: 1687: 1677: 1653: 1647: 1646: 1636: 1604: 1598: 1597: 1572:(5–6): 337–339. 1561: 1555: 1554: 1542: 1536: 1535: 1525: 1507: 1483: 1477: 1476: 1458: 1452: 1451: 1433: 1427: 1426: 1416: 1398: 1374: 1368: 1367: 1357: 1339: 1315: 1309: 1308: 1288: 1282: 1281: 1255: 1223: 1217: 1216: 1201: 1195: 1194: 1184: 1150: 1141:(9): 1148–1160. 1126: 1120: 1119: 1075: 1069: 1068: 1066: 1064: 1041: 1035: 1034: 1024: 1006: 982: 976: 975: 957: 951: 950: 925: 919: 918: 916: 915: 897: 891: 890: 874: 864: 818:Neuroinformatics 778:Goldman equation 748:Brain simulation 733:Action potential 665:machine learning 518:population model 447:long-term memory 438:Hebbian learning 392:efficient coding 215:action potential 141:Eric L. Schwartz 110:machine learning 51:computer science 21: 4445: 4444: 4440: 4439: 4438: 4436: 4435: 4434: 4410: 4409: 4408: 4403: 4357: 4329: 4306: 4258: 4230: 4187: 4182: 4152: 4147: 4115: 4101:Neurotechnology 4096:Neuroplasticity 4091:Neuromodulation 4086:Neuromanagement 4009: 3980:Neurophilosophy 3877: 3871: 3857:Neuropsychology 3818: 3811: 3772:Neuropsychiatry 3732:Neuroimmunology 3717:Neurocardiology 3693: 3686: 3677: 3668:Neurophysiology 3658:Neuromorphology 3613:Neural decoding 3554: 3547: 3529: 3524: 3482: 3427: 3385: 3380: 3349:based simulator 3339: 3334: 3324: 3302: 3283: 3264: 3245: 3173: 3150: 3124: 3105: 3039: 3034: 3018: 3017: 2975: 2971: 2960: 2956: 2931:10.1038/nn.4238 2911: 2907: 2860: 2856: 2811:(14 Dec 2011). 2801: 2797: 2754: 2750: 2694: 2690: 2651: 2647: 2618:(12): 2815–26. 2612:Neurobiol Aging 2607: 2603: 2560: 2556: 2511: 2507: 2475:10.1.1.523.4396 2450: 2446: 2439: 2425: 2421: 2414: 2392: 2388: 2381: 2367: 2363: 2324: 2320: 2257: 2253: 2216:Vision Research 2208: 2204: 2172:10.1.1.299.4638 2155: 2151: 2112: 2108: 2092: 2085: 2077: 2073: 2061: 2057: 2052: 2018:(7010): 782–8. 2004: 2000: 1969:10.1038/nn.3662 1948: 1944: 1895:(3): e1004137. 1881: 1877: 1868: 1866: 1864:cyberleninka.ru 1858: 1857: 1853: 1806: 1802: 1755: 1751: 1744: 1730: 1726: 1719: 1705: 1701: 1654: 1650: 1605: 1601: 1562: 1558: 1543: 1539: 1484: 1480: 1473: 1459: 1455: 1448: 1434: 1430: 1375: 1371: 1316: 1312: 1305: 1289: 1285: 1253:10.1038/482462a 1224: 1220: 1202: 1198: 1127: 1123: 1076: 1072: 1062: 1060: 1058: 1042: 1038: 983: 979: 972: 958: 954: 947: 926: 922: 913: 911: 898: 894: 887: 865: 861: 857: 852: 833:Neurophysiology 828:Neuroplasticity 808:Neural decoding 728: 700: 694: 689: 658: 649: 618: 594: 541: 527: 499:calcium imaging 471: 430: 424: 415: 384: 348: 340:potassium cycle 336: 317:cortical column 270: 264: 255: 137: 33:(also known as 28: 23: 22: 15: 12: 11: 5: 4443: 4433: 4432: 4427: 4422: 4405: 4404: 4402: 4401: 4396: 4391: 4386: 4381: 4376: 4371: 4365: 4363: 4359: 4358: 4356: 4355: 4350: 4345: 4339: 4337: 4335:Social science 4331: 4330: 4328: 4327: 4322: 4316: 4314: 4308: 4307: 4305: 4304: 4302:Thermodynamics 4299: 4294: 4289: 4284: 4282:Fluid dynamics 4279: 4274: 4268: 4266: 4260: 4259: 4257: 4256: 4251: 4246: 4240: 4238: 4232: 4231: 4229: 4228: 4223: 4218: 4213: 4208: 4203: 4197: 4195: 4189: 4188: 4181: 4180: 4173: 4166: 4158: 4149: 4148: 4146: 4145: 4133: 4120: 4117: 4116: 4114: 4113: 4111:Self-awareness 4108: 4103: 4098: 4093: 4088: 4083: 4078: 4073: 4068: 4066:Neurodiversity 4063: 4058: 4053: 4048: 4043: 4038: 4033: 4028: 4023: 4017: 4015: 4011: 4010: 4008: 4007: 4002: 3997: 3992: 3987: 3982: 3977: 3972: 3967: 3965:Neuromarketing 3962: 3957: 3952: 3947: 3942: 3940:Neuroesthetics 3937: 3932: 3930:Neuroeconomics 3927: 3922: 3917: 3912: 3907: 3902: 3897: 3892: 3887: 3881: 3879: 3873: 3872: 3870: 3869: 3864: 3859: 3854: 3849: 3844: 3839: 3834: 3829: 3823: 3821: 3813: 3812: 3810: 3809: 3804: 3799: 3794: 3789: 3784: 3779: 3777:Neuroradiology 3774: 3769: 3764: 3759: 3757:Neuropathology 3754: 3749: 3747:Neuro-oncology 3744: 3739: 3734: 3729: 3724: 3719: 3714: 3709: 3704: 3698: 3696: 3688: 3687: 3680: 3678: 3676: 3675: 3670: 3665: 3660: 3655: 3650: 3645: 3640: 3635: 3633:Neurochemistry 3630: 3625: 3620: 3615: 3610: 3605: 3600: 3595: 3590: 3585: 3580: 3575: 3570: 3565: 3559: 3557: 3549: 3548: 3546: 3545: 3540: 3534: 3531: 3530: 3523: 3522: 3515: 3508: 3500: 3494: 3493: 3481: 3478: 3477: 3476: 3470: 3464: 3458: 3452: 3446: 3440: 3434: 3426: 3423: 3422: 3421: 3416: 3411: 3406: 3401: 3396: 3391: 3384: 3381: 3379: 3378:External links 3376: 3375: 3374: 3368: 3362: 3356: 3350: 3338: 3335: 3333: 3330: 3329: 3328: 3323:978-0199564668 3322: 3306: 3300: 3287: 3281: 3268: 3262: 3249: 3243: 3231:William Bialek 3227: 3177: 3171: 3154: 3148: 3128: 3122: 3109: 3103: 3083: 3038: 3035: 3033: 3032: 2989:(3): 191–196. 2969: 2954: 2925:(3): 404–413. 2905: 2854: 2795: 2748: 2688: 2645: 2601: 2554: 2505: 2444: 2437: 2419: 2412: 2386: 2379: 2361: 2318: 2251: 2202: 2165:(4): 162–169. 2149: 2122:(6): 598–604. 2106: 2083: 2071: 2055: 2053:Review article 1998: 1963:(4): 549–558. 1942: 1875: 1851: 1800: 1749: 1742: 1724: 1717: 1699: 1648: 1599: 1556: 1537: 1478: 1472:978-1461414230 1471: 1453: 1446: 1428: 1369: 1310: 1303: 1283: 1218: 1196: 1121: 1086:(2): 209–219. 1070: 1057:978-0199568413 1056: 1036: 977: 970: 952: 945: 920: 892: 885: 858: 856: 853: 851: 850: 845: 840: 835: 830: 825: 820: 815: 810: 805: 800: 795: 790: 785: 780: 775: 770: 765: 760: 755: 750: 745: 743:Bayesian brain 740: 735: 729: 727: 724: 712:physical model 696:Main article: 693: 690: 688: 685: 657: 654: 648: 645: 617: 614: 593: 588: 540: 537: 526: 523: 470: 467: 426:Main article: 423: 420: 414: 411: 383: 380: 365:growth factors 347: 344: 335: 332: 274:original model 266:Main article: 263: 260: 254: 251: 209:developed the 168:Louis Lapicque 153:James M. Bower 136: 133: 98:control theory 90:neural systems 71:nervous system 26: 9: 6: 4: 3: 2: 4442: 4431: 4428: 4426: 4423: 4421: 4418: 4417: 4415: 4400: 4397: 4395: 4392: 4390: 4387: 4385: 4382: 4380: 4377: 4375: 4372: 4370: 4367: 4366: 4364: 4360: 4354: 4351: 4349: 4346: 4344: 4341: 4340: 4338: 4336: 4332: 4326: 4323: 4321: 4318: 4317: 4315: 4313: 4309: 4303: 4300: 4298: 4295: 4293: 4290: 4288: 4285: 4283: 4280: 4278: 4275: 4273: 4270: 4269: 4267: 4265: 4261: 4255: 4252: 4250: 4247: 4245: 4242: 4241: 4239: 4237: 4233: 4227: 4226:Phylogenetics 4224: 4222: 4219: 4217: 4214: 4212: 4209: 4207: 4204: 4202: 4199: 4198: 4196: 4194: 4190: 4186: 4179: 4174: 4172: 4167: 4165: 4160: 4159: 4156: 4144: 4143: 4134: 4132: 4131: 4122: 4121: 4118: 4112: 4109: 4107: 4104: 4102: 4099: 4097: 4094: 4092: 4089: 4087: 4084: 4082: 4079: 4077: 4074: 4072: 4069: 4067: 4064: 4062: 4059: 4057: 4054: 4052: 4049: 4047: 4044: 4042: 4039: 4037: 4034: 4032: 4029: 4027: 4024: 4022: 4019: 4018: 4016: 4012: 4006: 4003: 4001: 3998: 3996: 3995:Neurotheology 3993: 3991: 3990:Neurorobotics 3988: 3986: 3985:Neuropolitics 3983: 3981: 3978: 3976: 3973: 3971: 3968: 3966: 3963: 3961: 3958: 3956: 3953: 3951: 3950:Neuroethology 3948: 3946: 3943: 3941: 3938: 3936: 3933: 3931: 3928: 3926: 3923: 3921: 3918: 3916: 3913: 3911: 3908: 3906: 3903: 3901: 3898: 3896: 3893: 3891: 3888: 3886: 3883: 3882: 3880: 3874: 3868: 3865: 3863: 3860: 3858: 3855: 3853: 3850: 3848: 3847:Motor control 3845: 3843: 3840: 3838: 3837:Chronobiology 3835: 3833: 3830: 3828: 3825: 3824: 3822: 3820: 3814: 3808: 3805: 3803: 3800: 3798: 3797:Neurovirology 3795: 3793: 3790: 3788: 3785: 3783: 3780: 3778: 3775: 3773: 3770: 3768: 3765: 3763: 3760: 3758: 3755: 3753: 3750: 3748: 3745: 3743: 3740: 3738: 3735: 3733: 3730: 3728: 3725: 3723: 3720: 3718: 3715: 3713: 3710: 3708: 3705: 3703: 3700: 3699: 3697: 3695: 3689: 3684: 3674: 3671: 3669: 3666: 3664: 3661: 3659: 3656: 3654: 3651: 3649: 3646: 3644: 3643:Neurogenetics 3641: 3639: 3636: 3634: 3631: 3629: 3626: 3624: 3621: 3619: 3616: 3614: 3611: 3609: 3606: 3604: 3601: 3599: 3596: 3594: 3591: 3589: 3586: 3584: 3581: 3579: 3578:Brain-reading 3576: 3574: 3573:Brain mapping 3571: 3569: 3566: 3564: 3561: 3560: 3558: 3556: 3550: 3544: 3541: 3539: 3536: 3535: 3532: 3528: 3521: 3516: 3514: 3509: 3507: 3502: 3501: 3498: 3491: 3487: 3484: 3483: 3474: 3471: 3468: 3465: 3462: 3459: 3456: 3453: 3450: 3447: 3444: 3441: 3438: 3435: 3432: 3429: 3428: 3420: 3417: 3415: 3412: 3410: 3407: 3405: 3402: 3400: 3397: 3395: 3392: 3390: 3387: 3386: 3372: 3369: 3366: 3363: 3360: 3357: 3354: 3351: 3348: 3344: 3341: 3340: 3325: 3319: 3315: 3311: 3307: 3303: 3297: 3293: 3288: 3284: 3278: 3274: 3269: 3265: 3259: 3255: 3250: 3246: 3240: 3236: 3232: 3228: 3224: 3220: 3215: 3210: 3206: 3202: 3199:(4): 500–44. 3198: 3194: 3190: 3186: 3182: 3178: 3174: 3168: 3164: 3160: 3155: 3151: 3145: 3141: 3137: 3136:Abbott, L. F. 3133: 3129: 3125: 3123:9781107447615 3119: 3115: 3110: 3106: 3100: 3096: 3092: 3088: 3084: 3080: 3076: 3072: 3068: 3063: 3058: 3055:(5): 609–17. 3054: 3050: 3046: 3041: 3040: 3028: 3022: 3014: 3010: 3005: 3000: 2996: 2992: 2988: 2984: 2980: 2973: 2965: 2958: 2950: 2946: 2941: 2936: 2932: 2928: 2924: 2920: 2916: 2909: 2901: 2897: 2892: 2887: 2882: 2877: 2873: 2869: 2865: 2858: 2850: 2846: 2841: 2836: 2832: 2828: 2824: 2820: 2819: 2814: 2810: 2806: 2799: 2791: 2787: 2783: 2779: 2775: 2771: 2767: 2763: 2759: 2752: 2744: 2740: 2735: 2730: 2726: 2722: 2717: 2712: 2708: 2704: 2700: 2692: 2684: 2680: 2676: 2672: 2668: 2664: 2661:(2): 148–58. 2660: 2656: 2649: 2641: 2637: 2633: 2629: 2625: 2621: 2617: 2613: 2605: 2597: 2593: 2589: 2585: 2581: 2577: 2574:(2): 119–26. 2573: 2569: 2568:Nat. Neurosci 2565: 2558: 2550: 2546: 2541: 2536: 2532: 2528: 2524: 2520: 2516: 2509: 2501: 2497: 2493: 2489: 2485: 2481: 2476: 2471: 2467: 2463: 2459: 2455: 2448: 2440: 2434: 2430: 2423: 2415: 2409: 2405: 2400: 2399: 2390: 2382: 2376: 2372: 2365: 2357: 2353: 2349: 2345: 2341: 2337: 2333: 2329: 2322: 2314: 2310: 2305: 2300: 2296: 2292: 2288: 2284: 2279: 2278:q-bio/0512013 2274: 2270: 2266: 2262: 2255: 2247: 2243: 2239: 2235: 2230: 2225: 2221: 2217: 2213: 2206: 2198: 2194: 2190: 2186: 2182: 2178: 2173: 2168: 2164: 2160: 2153: 2145: 2141: 2137: 2133: 2129: 2125: 2121: 2117: 2110: 2104: 2100: 2096: 2090: 2088: 2081: 2075: 2069: 2065: 2059: 2049: 2045: 2041: 2037: 2033: 2029: 2025: 2021: 2017: 2013: 2009: 2002: 1994: 1990: 1986: 1982: 1978: 1974: 1970: 1966: 1962: 1958: 1954: 1946: 1938: 1934: 1929: 1924: 1920: 1916: 1911: 1906: 1902: 1898: 1894: 1890: 1886: 1879: 1865: 1861: 1855: 1847: 1843: 1838: 1833: 1828: 1823: 1819: 1815: 1811: 1804: 1796: 1792: 1787: 1782: 1777: 1772: 1768: 1764: 1760: 1753: 1745: 1739: 1735: 1728: 1720: 1714: 1710: 1703: 1695: 1691: 1686: 1681: 1676: 1671: 1667: 1663: 1659: 1652: 1644: 1640: 1635: 1630: 1626: 1622: 1619:(1): 106–54. 1618: 1614: 1610: 1603: 1595: 1591: 1587: 1583: 1579: 1575: 1571: 1567: 1560: 1552: 1548: 1541: 1533: 1529: 1524: 1519: 1515: 1511: 1506: 1501: 1497: 1493: 1489: 1482: 1474: 1468: 1464: 1457: 1449: 1443: 1439: 1432: 1424: 1420: 1415: 1410: 1406: 1402: 1397: 1392: 1388: 1384: 1380: 1373: 1365: 1361: 1356: 1351: 1347: 1343: 1338: 1333: 1329: 1325: 1321: 1314: 1306: 1304:9780750304559 1300: 1297:. CRC Press. 1296: 1295: 1287: 1279: 1275: 1271: 1267: 1263: 1259: 1254: 1249: 1245: 1241: 1237: 1233: 1229: 1222: 1215: 1211: 1207: 1200: 1192: 1188: 1183: 1178: 1174: 1170: 1166: 1162: 1158: 1154: 1149: 1144: 1140: 1136: 1132: 1125: 1117: 1113: 1109: 1105: 1101: 1097: 1093: 1089: 1085: 1081: 1074: 1059: 1053: 1049: 1048: 1040: 1032: 1028: 1023: 1018: 1014: 1010: 1005: 1000: 996: 992: 988: 981: 973: 971:9781107447615 967: 963: 956: 948: 942: 938: 934: 933:Abbott, L. F. 930: 924: 910:on 2011-06-04 909: 905: 904: 896: 888: 882: 878: 873: 872: 863: 859: 849: 846: 844: 841: 839: 836: 834: 831: 829: 826: 824: 821: 819: 816: 814: 811: 809: 806: 804: 803:Neural coding 801: 799: 796: 794: 791: 789: 786: 784: 781: 779: 776: 774: 771: 769: 766: 764: 761: 759: 756: 754: 751: 749: 746: 744: 741: 739: 736: 734: 731: 730: 723: 721: 718: 713: 709: 705: 699: 684: 682: 678: 674: 670: 666: 662: 653: 644: 642: 638: 634: 630: 626: 622: 613: 611: 607: 606:Christof Koch 603: 602:Giulio Tononi 599: 598:Francis Crick 592: 591:Consciousness 587: 585: 580: 577: 572: 570: 566: 561: 558: 557:parietal lobe 554: 550: 546: 536: 533: 522: 519: 515: 511: 507: 502: 500: 496: 491: 487: 482: 480: 479:visual cortex 476: 466: 463: 459: 454: 452: 448: 443: 439: 435: 429: 419: 413:Motor control 410: 408: 402: 400: 395: 393: 389: 388:Horace Barlow 379: 377: 372: 370: 366: 362: 357: 353: 343: 341: 331: 327: 325: 324:supercomputer 322: 318: 314: 310: 309:Henry Markram 306: 302: 298: 294: 289: 287: 282: 280: 275: 269: 259: 250: 248: 244: 240: 236: 232: 228: 224: 220: 216: 212: 211:voltage clamp 208: 204: 199: 197: 193: 189: 185: 181: 177: 173: 169: 164: 162: 158: 154: 150: 146: 142: 132: 130: 125: 123: 119: 115: 111: 107: 103: 99: 95: 94:connectionism 91: 87: 83: 78: 74: 72: 68: 64: 60: 56: 52: 48: 44: 40: 36: 32: 19: 4272:Astrophysics 4221:Neuroscience 4220: 4140: 4128: 4076:Neuroimaging 4071:Neurogenesis 3955:Neurohistory 3920:Neurobiotics 3819:neuroscience 3787:Neurosurgery 3712:Epileptology 3694:neuroscience 3663:Neurophysics 3653:Neurometrics 3628:Neurobiology 3623:Neuroanatomy 3593:Connectomics 3587: 3527:Neuroscience 3490:Scholarpedia 3313: 3310:Zhaoping, Li 3291: 3272: 3253: 3234: 3196: 3192: 3158: 3139: 3113: 3090: 3052: 3048: 3037:Bibliography 3021:cite journal 2986: 2982: 2972: 2957: 2922: 2918: 2908: 2871: 2867: 2857: 2825:(1): 72–80. 2822: 2816: 2809:Dayan, Peter 2798: 2765: 2761: 2751: 2706: 2702: 2691: 2658: 2654: 2648: 2615: 2611: 2604: 2571: 2567: 2557: 2522: 2518: 2508: 2457: 2453: 2447: 2428: 2422: 2397: 2389: 2370: 2364: 2334:(2): 55–80. 2331: 2327: 2321: 2268: 2264: 2254: 2219: 2215: 2205: 2162: 2158: 2152: 2119: 2115: 2109: 2101:in the book 2093:Li. Z. 2002 2074: 2058: 2015: 2011: 2001: 1960: 1956: 1945: 1892: 1888: 1878: 1867:. Retrieved 1863: 1854: 1817: 1813: 1803: 1766: 1762: 1752: 1733: 1727: 1708: 1702: 1665: 1661: 1651: 1616: 1612: 1602: 1569: 1566:Biol. Cybern 1565: 1559: 1550: 1546: 1540: 1495: 1491: 1481: 1462: 1456: 1437: 1431: 1386: 1382: 1372: 1327: 1323: 1313: 1293: 1286: 1235: 1231: 1221: 1205: 1199: 1138: 1134: 1124: 1083: 1079: 1073: 1061:. Retrieved 1046: 1039: 994: 990: 980: 961: 955: 936: 923: 912:. Retrieved 908:the original 902: 895: 870: 862: 758:Connectomics 701: 669:neuroscience 659: 650: 637:neurological 619: 595: 581: 573: 562: 553:frontal lobe 542: 528: 509: 505: 503: 483: 472: 455: 442:Hopfield net 431: 416: 403: 396: 385: 375: 373: 349: 337: 328: 300: 290: 283: 271: 256: 253:Major topics 247:cable theory 243:Wilfrid Rall 200: 165: 148: 138: 126: 82:biologically 79: 75: 43:neuroscience 38: 34: 30: 29: 4389:Engineering 4379:Mathematics 4312:Linguistics 3945:Neuroethics 3792:Neurotology 3425:Conferences 848:Theta model 486:Ising model 451:hippocampus 235:hippocampus 102:cybernetics 55:development 47:mathematics 4414:Categories 4384:Statistics 4325:Lexicology 4287:Geophysics 4106:Neurotoxin 3807:Psychiatry 3488:, part of 3193:J. Physiol 3181:Hodgkin AL 2768:: 103713. 2709:: 988394. 2328:Kybernetik 1869:2023-03-14 1820:(27): 27. 1613:J. Physiol 1553:: 620–635. 1148:1807.11819 1063:17 January 914:2009-06-11 855:References 687:Technology 681:psychology 677:psychiatry 629:psychiatry 510:excitatory 506:inhibitory 305:Blue Brain 188:David Marr 84:plausible 63:physiology 4394:Semiotics 4353:Economics 4348:Sociology 4320:Semantics 4292:Mechanics 4236:Chemistry 4211:Cognition 4051:Neurochip 3817:Cognitive 3742:Neurology 3185:Huxley AF 3163:MIT Press 3095:MIT Press 2790:248488365 2782:1746-8094 2725:1662-453X 2470:CiteSeerX 2167:CiteSeerX 2008:Svoboda K 1977:1546-1726 1919:1553-7358 1514:1662-5196 1405:2050-084X 1346:1664-1078 1278:205070106 1262:0028-0836 1173:1546-1726 1100:0928-4257 1013:1662-5196 720:SpiNNaker 673:neurology 625:neurology 356:dendrites 321:Blue Gene 311:from the 301:in silico 286:dendrites 239:neocortex 163:in 1985. 59:structure 4343:Politics 4216:Genomics 4130:Category 4014:Concepts 3960:Neurolaw 3692:Clinical 3480:Websites 3383:Journals 3359:Emergent 3337:Software 3332:See also 3312:(2014). 3223:12991237 3138:(2001). 3132:Dayan P. 3079:16217065 3071:15339643 3013:24139655 2949:26906507 2900:33343418 2849:22177032 2743:36875664 2683:15504512 2675:26360579 2632:23890839 2596:13960489 2588:12555104 2549:16087447 2500:45378154 2492:15718474 2313:16625187 2246:14208692 2189:15050512 2136:12021763 2040:15483599 1985:24584052 1937:25826753 1846:25928094 1795:25191262 1694:25191262 1643:14449617 1594:17816096 1586:17968583 1532:31133838 1423:29205152 1364:23970869 1270:22358812 1214:15349751 1191:30127428 1116:10040483 1108:14766142 1031:31133838 935:(2001). 929:Dayan P. 726:See also 549:primates 462:synapses 458:synapses 369:hormones 279:shunting 4369:Finance 4264:Physics 4201:Anatomy 4193:Biology 4142:Commons 3555:science 3543:History 3538:Outline 3365:GENESIS 3214:1392413 3004:3812737 2940:5443409 2891:7746554 2840:3556822 2734:9975713 2640:1025210 2540:1854922 2462:Bibcode 2454:Science 2348:4767470 2304:1785327 2283:Bibcode 2238:9425546 2197:7837073 2144:2777968 2048:4430167 2020:Bibcode 1928:4380507 1897:Bibcode 1837:4417229 1786:4138505 1685:4138505 1634:1359523 1523:6513977 1414:5716658 1355:3747356 1330:: 515. 1240:Bibcode 1182:6706072 1153:Bibcode 1022:6513977 551:. The 319:on the 293:GENESIS 203:Hodgkin 172:Hodgkin 135:History 86:neurons 69:of the 3878:fields 3347:Python 3320:  3298:  3279:  3260:  3241:  3221:  3211:  3169:  3146:  3120:  3101:  3077:  3069:  3049:Neuron 3011:  3001:  2947:  2937:  2898:  2888:  2847:  2837:  2788:  2780:  2741:  2731:  2723:  2681:  2673:  2638:  2630:  2594:  2586:  2547:  2537:  2498:  2490:  2472:  2435:  2410:  2406:–310. 2377:  2356:292546 2354:  2346:  2311:  2301:  2265:Nature 2244:  2236:  2195:  2187:  2169:  2142:  2134:  2046:  2038:  2012:Nature 1993:554918 1991:  1983:  1975:  1935:  1925:  1917:  1844:  1834:  1793:  1783:  1769:: 86. 1740:  1715:  1692:  1682:  1668:: 86. 1641:  1631:  1592:  1584:  1530:  1520:  1512:  1498:: 32. 1469:  1444:  1421:  1411:  1403:  1362:  1352:  1344:  1301:  1276:  1268:  1260:  1232:Nature 1212:  1189:  1179:  1171:  1114:  1106:  1098:  1054:  1029:  1019:  1011:  997:: 32. 968:  943:  883:  488:. The 434:memory 297:NEURON 231:retina 223:Wiesel 207:Huxley 186:, and 184:Wiesel 176:Huxley 174:& 4362:Other 3553:Basic 3343:BRIAN 3075:S2CID 2786:S2CID 2679:S2CID 2636:S2CID 2592:S2CID 2496:S2CID 2352:S2CID 2273:arXiv 2242:S2CID 2193:S2CID 2140:S2CID 2044:S2CID 1989:S2CID 1590:S2CID 1383:eLife 1274:S2CID 1210:S2CID 1143:arXiv 1112:S2CID 565:brain 352:axons 219:Hubel 180:Hubel 88:(and 3371:NEST 3345:, a 3318:ISBN 3296:ISBN 3277:ISBN 3258:ISBN 3239:ISBN 3219:PMID 3167:ISBN 3144:ISBN 3118:ISBN 3099:ISBN 3067:PMID 3027:link 3009:PMID 2945:PMID 2896:PMID 2845:PMID 2778:ISSN 2739:PMID 2721:ISSN 2671:PMID 2628:PMID 2584:PMID 2545:PMID 2488:PMID 2433:ISBN 2408:ISBN 2375:ISBN 2344:PMID 2309:PMID 2234:PMID 2185:PMID 2132:PMID 2036:PMID 1981:PMID 1973:ISSN 1933:PMID 1915:ISSN 1842:PMID 1791:PMID 1738:ISBN 1713:ISBN 1690:PMID 1639:PMID 1582:PMID 1528:PMID 1510:ISSN 1467:ISBN 1442:ISBN 1419:PMID 1401:ISSN 1360:PMID 1342:ISSN 1299:ISBN 1266:PMID 1258:ISSN 1187:PMID 1169:ISSN 1104:PMID 1096:ISSN 1065:2017 1052:ISBN 1027:PMID 1009:ISSN 966:ISBN 941:ISBN 881:ISBN 639:and 604:and 584:CRUM 563:The 555:and 508:and 497:and 354:and 295:and 237:and 221:and 205:and 182:and 120:and 65:and 3209:PMC 3201:doi 3197:117 3057:doi 2999:PMC 2991:doi 2935:PMC 2927:doi 2886:PMC 2876:doi 2835:PMC 2827:doi 2770:doi 2729:PMC 2711:doi 2663:doi 2620:doi 2576:doi 2535:PMC 2527:doi 2523:360 2480:doi 2458:307 2404:272 2336:doi 2299:PMC 2291:doi 2269:440 2224:doi 2177:doi 2124:doi 2028:doi 2016:431 1965:doi 1923:PMC 1905:doi 1832:PMC 1822:doi 1781:PMC 1771:doi 1680:PMC 1670:doi 1629:PMC 1621:doi 1617:160 1574:doi 1518:PMC 1500:doi 1409:PMC 1391:doi 1350:PMC 1332:doi 1248:doi 1236:482 1177:PMC 1161:doi 1088:doi 1017:PMC 999:doi 547:in 493:of 453:. 367:to 37:or 4416:: 3217:. 3207:. 3195:. 3191:. 3183:, 3165:. 3134:; 3097:. 3073:. 3065:. 3053:43 3051:. 3047:. 3023:}} 3019:{{ 3007:. 2987:28 2985:. 2981:. 2943:. 2933:. 2923:19 2921:. 2917:. 2894:. 2884:. 2872:11 2870:. 2866:. 2843:. 2833:. 2823:16 2821:. 2815:. 2807:; 2784:. 2776:. 2766:77 2764:. 2760:. 2737:. 2727:. 2719:. 2707:17 2705:. 2701:. 2677:. 2669:. 2657:. 2634:. 2626:. 2616:34 2614:. 2590:. 2582:. 2570:. 2566:. 2543:. 2533:. 2521:. 2517:. 2494:. 2486:. 2478:. 2468:. 2456:. 2350:. 2342:. 2332:13 2330:. 2307:. 2297:. 2289:. 2281:. 2267:. 2263:. 2240:. 2232:. 2220:37 2218:. 2214:. 2191:. 2183:. 2175:. 2161:. 2138:. 2130:. 2118:. 2086:^ 2042:. 2034:. 2026:. 2014:. 1987:. 1979:. 1971:. 1961:17 1959:. 1955:. 1931:. 1921:. 1913:. 1903:. 1893:11 1891:. 1887:. 1862:. 1840:. 1830:. 1818:16 1816:. 1812:. 1789:. 1779:. 1765:. 1761:. 1688:. 1678:. 1664:. 1660:. 1637:. 1627:. 1615:. 1611:. 1588:. 1580:. 1570:97 1568:. 1549:. 1526:. 1516:. 1508:. 1496:13 1494:. 1490:. 1417:. 1407:. 1399:. 1389:. 1385:. 1381:. 1358:. 1348:. 1340:. 1326:. 1322:. 1272:. 1264:. 1256:. 1246:. 1234:. 1230:. 1208:, 1185:. 1175:. 1167:. 1159:. 1151:. 1139:21 1137:. 1133:. 1110:. 1102:. 1094:. 1084:97 1025:. 1015:. 1007:. 995:13 993:. 989:. 931:; 879:. 706:, 679:, 675:, 671:, 667:, 631:, 627:, 600:, 326:. 249:. 217:. 178:, 170:, 116:, 112:, 108:, 104:, 100:, 96:, 73:. 61:, 57:, 49:, 4177:e 4170:t 4163:v 3519:e 3512:t 3505:v 3326:. 3304:. 3285:. 3266:. 3247:. 3225:. 3203:: 3175:. 3152:. 3126:. 3107:. 3081:. 3059:: 3029:) 3015:. 2993:: 2966:. 2951:. 2929:: 2902:. 2878:: 2851:. 2829:: 2792:. 2772:: 2745:. 2713:: 2685:. 2665:: 2659:1 2642:. 2622:: 2598:. 2578:: 2572:6 2551:. 2529:: 2502:. 2482:: 2464:: 2441:. 2416:. 2383:. 2358:. 2338:: 2315:. 2293:: 2285:: 2275:: 2248:. 2226:: 2199:. 2179:: 2163:8 2146:. 2126:: 2120:5 2050:. 2030:: 2022:: 1995:. 1967:: 1939:. 1907:: 1899:: 1872:. 1848:. 1824:: 1797:. 1773:: 1767:8 1746:. 1721:. 1696:. 1672:: 1666:8 1645:. 1623:: 1596:. 1576:: 1551:9 1534:. 1502:: 1475:. 1450:. 1425:. 1393:: 1387:6 1366:. 1334:: 1328:4 1307:. 1280:. 1250:: 1242:: 1193:. 1163:: 1155:: 1145:: 1118:. 1090:: 1067:. 1033:. 1001:: 974:. 949:. 917:. 889:. 877:2 20:)

Index

Computational neuroscientist
neuroscience
mathematics
computer science
development
structure
physiology
cognitive abilities
nervous system
biologically
neurons
neural systems
connectionism
control theory
cybernetics
quantitative psychology
machine learning
artificial neural networks
artificial intelligence
computational learning theory
network oscillations
Eric L. Schwartz
Carmel, California
James M. Bower
San Francisco, California
California Institute of Technology
Louis Lapicque
Hodgkin
Huxley
Hubel

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑