Knowledge

Color-coding

Source 📝

2311:
Alon, N., Yuster, R., and Zwick, U. 1994. Color-coding: a new method for finding simple paths, cycles and other small subgraphs within large graphs. In Proceedings of the Twenty-Sixth Annual ACM Symposium on theory of Computing (Montreal, Quebec, Canada, May 23–25, 1994). STOC '94. ACM, New York, NY,
579:. Here, a graph is colorful if every vertex in it is colored with a distinct color. This method works by repeating (1) random coloring a graph and (2) finding colorful copy of the target subgraph, and eventually the target subgraph can be found if the process is repeated a sufficient number of times. 2400:
Naor, J. and Naor, M. 1990. Small-bias probability spaces: efficient constructions and applications. In Proceedings of the Twenty-Second Annual ACM Symposium on theory of Computing (Baltimore, Maryland, United States, May 13–17, 1990). H. Ortiz, Ed. STOC '90. ACM, New York, NY, 213-223. DOI=
2413:
Alon, N., Goldreich, O., Hastad, J., and Peralta, R. 1990. Simple construction of almost k-wise independent random variables. In Proceedings of the 31st Annual Symposium on Foundations of Computer Science (October 22–24, 1990). SFCS. IEEE Computer Society, Washington, DC, 544-553 vol.2.
2360:
Naor, M., Schulman, L. J., and Srinivasan, A. 1995. Splitters and near-optimal derandomization. In Proceedings of the 36th Annual Symposium on Foundations of Computer Science (October 23–25, 1995). FOCS. IEEE Computer Society, Washington, DC,
2157:
Due to the huge amount of gene data that can be collected, searching for pathways or motifs can be highly time consuming. However, by exploiting the color-coding method, the motifs or signaling pathways with
2350:
Alon, N. and Naor, M. 1994 Derandomization, Witnesses for Boolean Matrix Multiplication and Construction of Perfect Hash Functions. Technical Report. UMI Order Number: CS94-11., Weizmann Science Press of
1686: 1392: 1441: 1015: 253: 1755: 684: 522: 852: 761: 2117: 1978: 1875: 1443:. Although this algorithm finds only the end points of the colorful path, another algorithm by Alon and Naor that finds colorful paths themselves can be incorporated into it. 186: 431: 946: 2197: 1316: 569: 1915: 966: 1553: 1200: 879: 1108: 906: 1692: 1610: 1614: 770:, it is possible to develop an algorithm that finds well-colored cycles. Here, a cycle is well-colored if its vertices are colored by consecutive colors. 98: 2207:
vertices can be found very efficiently in polynomial time. Thus, this enables us to explore more complex or larger structures in PPI networks.
2154:
allows a deeper understanding of the similarities and differences of many biological functions, processes, and structures among organisms.
2260:
Hüffner, F.; Wernicke, S.; Zichner, T. (2008). "Algorithm Engineering for Color-Coding with Applications to Signaling Pathway Detection".
766:
Sometimes it is also desirable to use a more restricted version of colorfulness. For example, in the context of finding cycles in
908:
colorful occurrences. Then an algorithm (described next) can be used to find colorful cycles in the randomly colored graph
1688:
can be obtained. This construction does not require the target subgraph to exist in the original subgraph finding problem.
2339: 288: 16:
This article is about a technique in the design of graph algorithms. For the use of color to display information, see
2134:
Recently, color-coding has attracted much attention in the field of bioinformatics. One example is the detection of
2040:
can be constructed in a way similar to the approach 3 above (the first step). In particular, it is done by using
1620: 1332: 1397: 971: 193: 2000:
In the case of derandomizing well-coloring, where each vertex on the subgraph is colored consecutively, a
1698: 2139: 621: 459: 21: 803: 728: 2067: 1928: 1825: 145: 2436: 1877:. In the second step, it has been shown by Jeanette P. Schmidt and Alan Siegel that the size of such 384: 915: 2274: 1822:-wise independent, and the sample space needed for generating those random bits can be as small as 1039:, and then checking whether the two vertices in each pair are connected. Given a coloring function 60: 2374:
Schmidt, J. P.; Siegel, A. (1990). "The spatial complexity of oblivious k-probe Hash functions".
2161: 1281: 64: 2327:
Alon, N., Yuster, R., and Zwick, U. 1995. Color-coding. J. ACM 42, 4 (Jul. 1995), 844–856. DOI=
2269: 531: 1884: 2147: 2135: 951: 690:
is only polynomially small. Suppose again there exists an algorithm such that, given a graph
260: 40: 1522: 1171: 857: 75: 71: 2122:
The derandomization of color-coding method can be easily parallelized, yielding efficient
8: 1085: 48: 888: 2287: 2243: 2218: 2248: 1028:
The colorful cycle-finding algorithm works by first finding all pairs of vertices in
2234: 2415: 2383: 2279: 2238: 2230: 2151: 2143: 1471:
to be discoverable, the enumeration has to include at least one instance where the
28: 2291: 2123: 1452: 369: 83: 2217:
Alon, N.; Dao, P.; Hajirasouliha, I.; Hormozdiari, F.; Sahinalp, S. C. (2008).
2283: 2430: 767: 44: 2419: 614:
times, then this copy is expected to become colorful once. Note that though
2402: 2328: 2313: 2252: 1579: 800:
By applying random coloring method, each simple cycle has a probability of
292: 56: 32: 2142:(PPI) networks. Another example is to discover and to count the number of 113:
The following results can be obtained through the method of color-coding:
79: 524:, the method of color-coding begins by randomly coloring each vertex of 17: 1761: 1606: 1260:
be the matrix describing the adjacency relations between vertices of
453: 354: 102: 94: 87: 2387: 2219:"Biomolecular network motif counting and discovery by color coding" 1455:
of color-coding involves enumerating possible colorings of a graph
86:
when the subgraph pattern that it is trying to detect has bounded
1804:
In the first step, it is possible to construct such a family with
594:. It immediately follows that if the random coloring is repeated 2216: 1168:
respectively. Then, recursively find colorful paths of length
93:
The color-coding method was proposed and analyzed in 1994 by
1329:. Thus, the recursive relation of matrix multiplications is 1760:
Another construction that appears in the original paper of
968:
is the matrix multiplication constant. Therefore, it takes
74:
of a given length, and more generally it applies to the
1238:
represent the connectivity of each pair of vertices in
2259: 1582:. In other words, there must exist a hash function in 739: 2164: 2070: 1931: 1887: 1828: 1701: 1623: 1525: 1400: 1335: 1284: 1174: 1088: 974: 954: 918: 891: 860: 806: 778:
An example would be finding a simple cycle of length
731: 624: 534: 462: 387: 196: 148: 2191: 2111: 1972: 1909: 1869: 1749: 1680: 1547: 1435: 1386: 1310: 1194: 1102: 1009: 960: 940: 900: 873: 846: 755: 678: 571:colors, and then tries to find a colorful copy of 563: 516: 425: 247: 180: 1597:There are several approaches to construct such a 2428: 1322:that are connected by a colorful path of length 590:becomes colorful with some non-zero probability 1463:is no longer required. For the target subgraph 368:vertices, then such a subgraph can be found in 1032:that are connected by a simple path of length 1017:overall time to find a simple cycle of length 70:Color-coding also applies to the detection of 2373: 885:vertices on the cycle, among which there are 1475:is colorful. To achieve this, enumerating a 1058:, enumerate all partitions of the color set 353:contains a subgraph isomorphic to a bounded 67:without much overhead in the running time. 59:. The traditional color-coding algorithm is 2060:independent, and the size of the resulting 1764:et al. can be obtained by first building a 717:. Then the expected time to find a copy of 381:To solve the problem of finding a subgraph 1681:{\displaystyle e^{k}k^{O(\log k)}\log |V|} 1387:{\displaystyle t(k)\leq 2^{k}\cdot t(k/2)} 1256:by a colorful path, respectively, and let 47:. For example, it can be used to detect a 2273: 2242: 1436:{\displaystyle 2^{O(k)}\cdot V^{\omega }} 1010:{\displaystyle e^{k}\cdot O(V^{\omega })} 694:and a coloring which maps each vertex of 2403:http://doi.acm.org/10.1145/100216.100244 2329:http://doi.acm.org/10.1145/210332.210337 2314:http://doi.acm.org/10.1145/195058.195179 1695:and Alan Siegel yields a family of size 248:{\displaystyle O(|V|^{\omega }\log |V|)} 2004:-perfect family of hash functions from 1459:, such that the randomness of coloring 452:can be a path, a cycle, or any bounded 2429: 2369: 2367: 2323: 2321: 1921:-perfect families from both steps, a 1605:The best explicit construction is by 706:, if one exists, within some runtime 140:, then such a cycle can be found in: 1750:{\displaystyle 2^{O(k)}\log ^{2}|V|} 854:to become colorful, since there are 702:colors, it finds a copy of colorful 43:which is useful in the discovery of 2364: 2318: 679:{\displaystyle |V_{H}|=O(\log |V|)} 517:{\displaystyle |V_{H}|=O(\log |V|)} 303:, then such cycle can be found in: 13: 2210: 1446: 847:{\displaystyle k!/k^{k}>e^{-k}} 756:{\displaystyle O({\tfrac {r}{p}})} 14: 2448: 1917:. Consequently, by composing the 1691:Another explicit construction by 2112:{\displaystyle k^{O(k)}\log |V|} 2024:-perfect family which maps from 1973:{\displaystyle 2^{O(k)}\log |V|} 1870:{\displaystyle k^{O(1)}\log |V|} 1150:denote the subgraphs induced by 299:contains a simple cycle of size 181:{\displaystyle O(|V|^{\omega })} 136:contains a simple cycle of size 2146:in PPI networks. Studying both 2129: 1555:, there exists a hash function 1318:gives all pairs of vertices in 426:{\displaystyle H=(V_{H},E_{H})} 2407: 2394: 2354: 2344: 2340:Coppersmith–Winograd Algorithm 2333: 2305: 2186: 2174: 2105: 2097: 2085: 2079: 1966: 1958: 1946: 1940: 1902: 1896: 1863: 1855: 1843: 1837: 1743: 1735: 1716: 1710: 1674: 1666: 1654: 1642: 1535: 1527: 1499:is sufficient. By definition, 1415: 1409: 1381: 1367: 1345: 1339: 1004: 991: 941:{\displaystyle O(V^{\omega })} 935: 922: 750: 735: 673: 669: 661: 651: 641: 626: 618:is small, it is shown that if 557: 542: 511: 507: 499: 489: 479: 464: 420: 394: 242: 238: 230: 213: 204: 200: 175: 165: 156: 152: 1: 2299: 2235:10.1093/bioinformatics/btn163 1784:followed by building another 1507:-perfect if for every subset 1220:. Suppose the boolean matrix 376: 2050:random bits that are almost 1815:random bits that are almost 1394:, which yields a runtime of 76:subgraph isomorphism problem 7: 2192:{\displaystyle k=O(\log n)} 2140:protein-protein interaction 1311:{\displaystyle A_{1}BA_{2}} 22:Color code (disambiguation) 10: 2453: 1788:-perfect family that maps 1768:-perfect family that maps 773: 287:that is in any nontrivial 108: 84:polynomial time algorithms 82:problem), where it yields 15: 2284:10.1007/s00453-007-9008-7 1617:, where a family of size 564:{\displaystyle k=|V_{H}|} 289:minor-closed graph family 268:For every fixed constant 117:For every fixed constant 2064:-perfect family will be 2020:is needed. A sufficient 1925:-perfect family of size 1910:{\displaystyle 2^{O(k)}} 2420:10.1109/FSCS.1990.89575 1881:-perfect family can be 1483:of hash functions from 961:{\displaystyle \omega } 255:worst-case time, where 2199:vertices in a network 2193: 2113: 1974: 1911: 1871: 1751: 1682: 1601:-perfect hash family: 1586:that colors any given 1549: 1437: 1388: 1312: 1278:, the boolean product 1196: 1104: 1011: 962: 942: 902: 875: 848: 757: 680: 565: 518: 427: 249: 182: 20:. For other uses, see 2194: 2114: 1975: 1912: 1872: 1752: 1683: 1550: 1548:{\displaystyle |S|=k} 1438: 1389: 1313: 1197: 1195:{\displaystyle k/2-1} 1132:accordingly, and let 1105: 1012: 963: 943: 903: 881:ways of coloring the 876: 874:{\displaystyle k^{k}} 849: 758: 681: 566: 519: 428: 261:matrix multiplication 250: 183: 41:algorithmic technique 2162: 2068: 1929: 1885: 1826: 1699: 1621: 1523: 1398: 1333: 1282: 1172: 1114:can be divided into 1086: 972: 952: 916: 889: 858: 804: 729: 725:, if one exists, is 622: 532: 460: 385: 194: 146: 1693:Jeanette P. Schmidt 1611:Leonard J. Schulman 1103:{\displaystyle k/2} 259:is the exponent of 2189: 2148:signaling pathways 2136:signaling pathways 2109: 1970: 1907: 1867: 1747: 1678: 1615:Aravind Srinivasan 1545: 1433: 1384: 1308: 1192: 1100: 1007: 958: 938: 901:{\displaystyle k!} 898: 871: 844: 753: 748: 676: 582:Suppose a copy of 561: 514: 423: 272:, and every graph 245: 178: 2229:(13): i241–i249. 1594:distinct colors. 1066:into two subsets 747: 433:in a given graph 316:expected time, or 188:expected time, or 2444: 2437:Graph algorithms 2422: 2411: 2405: 2398: 2392: 2391: 2371: 2362: 2358: 2352: 2348: 2342: 2337: 2331: 2325: 2316: 2309: 2295: 2277: 2256: 2246: 2206: 2202: 2198: 2196: 2195: 2190: 2118: 2116: 2115: 2110: 2108: 2100: 2089: 2088: 2063: 2059: 2049: 2039: 2031: 2023: 2019: 2011: 2003: 1996:can be obtained. 1995: 1987: 1979: 1977: 1976: 1971: 1969: 1961: 1950: 1949: 1924: 1920: 1916: 1914: 1913: 1908: 1906: 1905: 1880: 1876: 1874: 1873: 1868: 1866: 1858: 1847: 1846: 1821: 1814: 1803: 1795: 1787: 1783: 1775: 1767: 1756: 1754: 1753: 1748: 1746: 1738: 1730: 1729: 1720: 1719: 1687: 1685: 1684: 1679: 1677: 1669: 1658: 1657: 1633: 1632: 1600: 1593: 1589: 1585: 1577: 1562: 1558: 1554: 1552: 1551: 1546: 1538: 1530: 1518: 1510: 1506: 1502: 1498: 1490: 1482: 1479:-perfect family 1478: 1474: 1470: 1466: 1462: 1458: 1442: 1440: 1439: 1434: 1432: 1431: 1419: 1418: 1393: 1391: 1390: 1385: 1377: 1360: 1359: 1328: 1321: 1317: 1315: 1314: 1309: 1307: 1306: 1294: 1293: 1277: 1268: 1259: 1255: 1246: 1237: 1228: 1219: 1210: 1201: 1199: 1198: 1193: 1182: 1167: 1158: 1149: 1140: 1131: 1122: 1113: 1110:each. Note that 1109: 1107: 1106: 1101: 1096: 1081: 1065: 1057: 1053: 1038: 1031: 1024: 1020: 1016: 1014: 1013: 1008: 1003: 1002: 984: 983: 967: 965: 964: 959: 947: 945: 944: 939: 934: 933: 911: 907: 905: 904: 899: 884: 880: 878: 877: 872: 870: 869: 853: 851: 850: 845: 843: 842: 827: 826: 817: 796: 781: 762: 760: 759: 754: 749: 740: 724: 720: 716: 705: 701: 697: 693: 689: 685: 683: 682: 677: 672: 664: 644: 639: 638: 629: 617: 613: 612: 610: 609: 604: 601: 593: 589: 585: 578: 574: 570: 568: 567: 562: 560: 555: 554: 545: 527: 523: 521: 520: 515: 510: 502: 482: 477: 476: 467: 451: 447: 432: 430: 429: 424: 419: 418: 406: 405: 367: 357:graph which has 352: 333:worst-case time. 332: 315: 302: 298: 286: 271: 258: 254: 252: 251: 246: 241: 233: 222: 221: 216: 207: 187: 185: 184: 179: 174: 173: 168: 159: 139: 135: 120: 63:, but it can be 54: 29:computer science 2452: 2451: 2447: 2446: 2445: 2443: 2442: 2441: 2427: 2426: 2425: 2412: 2408: 2399: 2395: 2388:10.1137/0219054 2372: 2365: 2359: 2355: 2349: 2345: 2338: 2334: 2326: 2319: 2310: 2306: 2302: 2213: 2211:Further reading 2204: 2200: 2163: 2160: 2159: 2132: 2104: 2096: 2075: 2071: 2069: 2066: 2065: 2061: 2051: 2041: 2033: 2025: 2021: 2013: 2005: 2001: 1989: 1981: 1980:that maps from 1965: 1957: 1936: 1932: 1930: 1927: 1926: 1922: 1918: 1892: 1888: 1886: 1883: 1882: 1878: 1862: 1854: 1833: 1829: 1827: 1824: 1823: 1816: 1805: 1797: 1789: 1785: 1777: 1769: 1765: 1742: 1734: 1725: 1721: 1706: 1702: 1700: 1697: 1696: 1673: 1665: 1638: 1634: 1628: 1624: 1622: 1619: 1618: 1598: 1591: 1587: 1583: 1564: 1560: 1556: 1534: 1526: 1524: 1521: 1520: 1512: 1508: 1504: 1500: 1492: 1484: 1480: 1476: 1472: 1468: 1464: 1460: 1456: 1453:derandomization 1449: 1447:Derandomization 1427: 1423: 1405: 1401: 1399: 1396: 1395: 1373: 1355: 1351: 1334: 1331: 1330: 1323: 1319: 1302: 1298: 1289: 1285: 1283: 1280: 1279: 1276: 1270: 1267: 1261: 1257: 1254: 1248: 1245: 1239: 1236: 1230: 1227: 1221: 1218: 1212: 1209: 1203: 1178: 1173: 1170: 1169: 1166: 1160: 1157: 1151: 1148: 1142: 1139: 1133: 1130: 1124: 1121: 1115: 1111: 1092: 1087: 1084: 1083: 1080: 1073: 1067: 1059: 1055: 1054:to color graph 1040: 1033: 1029: 1022: 1018: 998: 994: 979: 975: 973: 970: 969: 953: 950: 949: 929: 925: 917: 914: 913: 909: 890: 887: 886: 882: 865: 861: 859: 856: 855: 835: 831: 822: 818: 813: 805: 802: 801: 783: 779: 776: 738: 730: 727: 726: 722: 718: 707: 703: 699: 695: 691: 687: 668: 660: 640: 634: 630: 625: 623: 620: 619: 615: 605: 602: 599: 598: 596: 595: 591: 587: 583: 576: 572: 556: 550: 546: 541: 533: 530: 529: 525: 506: 498: 478: 472: 468: 463: 461: 458: 457: 449: 434: 414: 410: 401: 397: 386: 383: 382: 379: 370:polynomial time 358: 339: 319: 306: 300: 296: 273: 269: 256: 237: 229: 217: 212: 211: 203: 195: 192: 191: 169: 164: 163: 155: 147: 144: 143: 137: 122: 118: 111: 52: 25: 12: 11: 5: 2450: 2440: 2439: 2424: 2423: 2406: 2393: 2382:(5): 775–786. 2376:SIAM J. Comput 2363: 2353: 2343: 2332: 2317: 2312:326–335. DOI= 2303: 2301: 2298: 2297: 2296: 2275:10.1.1.68.9469 2268:(2): 114–132. 2257: 2223:Bioinformatics 2212: 2209: 2188: 2185: 2182: 2179: 2176: 2173: 2170: 2167: 2131: 2128: 2107: 2103: 2099: 2095: 2092: 2087: 2084: 2081: 2078: 2074: 1998: 1997: 1968: 1964: 1960: 1956: 1953: 1948: 1945: 1942: 1939: 1935: 1904: 1901: 1898: 1895: 1891: 1865: 1861: 1857: 1853: 1850: 1845: 1842: 1839: 1836: 1832: 1758: 1745: 1741: 1737: 1733: 1728: 1724: 1718: 1715: 1712: 1709: 1705: 1689: 1676: 1672: 1668: 1664: 1661: 1656: 1653: 1650: 1647: 1644: 1641: 1637: 1631: 1627: 1590:vertices with 1544: 1541: 1537: 1533: 1529: 1448: 1445: 1430: 1426: 1422: 1417: 1414: 1411: 1408: 1404: 1383: 1380: 1376: 1372: 1369: 1366: 1363: 1358: 1354: 1350: 1347: 1344: 1341: 1338: 1305: 1301: 1297: 1292: 1288: 1274: 1265: 1252: 1243: 1234: 1225: 1216: 1207: 1191: 1188: 1185: 1181: 1177: 1164: 1155: 1146: 1137: 1128: 1119: 1099: 1095: 1091: 1078: 1071: 1006: 1001: 997: 993: 990: 987: 982: 978: 957: 937: 932: 928: 924: 921: 897: 894: 868: 864: 841: 838: 834: 830: 825: 821: 816: 812: 809: 775: 772: 752: 746: 743: 737: 734: 698:to one of the 675: 671: 667: 663: 659: 656: 653: 650: 647: 643: 637: 633: 628: 559: 553: 549: 544: 540: 537: 513: 509: 505: 501: 497: 494: 491: 488: 485: 481: 475: 471: 466: 422: 417: 413: 409: 404: 400: 396: 393: 390: 378: 375: 374: 373: 336: 335: 334: 317: 266: 265: 264: 244: 240: 236: 232: 228: 225: 220: 215: 210: 206: 202: 199: 189: 177: 172: 167: 162: 158: 154: 151: 110: 107: 99:Raphael Yuster 45:network motifs 9: 6: 4: 3: 2: 2449: 2438: 2435: 2434: 2432: 2421: 2417: 2410: 2404: 2397: 2389: 2385: 2381: 2377: 2370: 2368: 2357: 2347: 2341: 2336: 2330: 2324: 2322: 2315: 2308: 2304: 2293: 2289: 2285: 2281: 2276: 2271: 2267: 2263: 2258: 2254: 2250: 2245: 2240: 2236: 2232: 2228: 2224: 2220: 2215: 2214: 2208: 2183: 2180: 2177: 2171: 2168: 2165: 2155: 2153: 2149: 2145: 2141: 2137: 2127: 2125: 2120: 2101: 2093: 2090: 2082: 2076: 2072: 2058: 2054: 2048: 2044: 2037: 2029: 2017: 2009: 1993: 1985: 1962: 1954: 1951: 1943: 1937: 1933: 1899: 1893: 1889: 1859: 1851: 1848: 1840: 1834: 1830: 1820: 1813: 1809: 1801: 1793: 1781: 1773: 1763: 1759: 1739: 1731: 1726: 1722: 1713: 1707: 1703: 1694: 1690: 1670: 1662: 1659: 1651: 1648: 1645: 1639: 1635: 1629: 1625: 1616: 1612: 1608: 1604: 1603: 1602: 1595: 1581: 1575: 1571: 1567: 1542: 1539: 1531: 1516: 1496: 1488: 1454: 1444: 1428: 1424: 1420: 1412: 1406: 1402: 1378: 1374: 1370: 1364: 1361: 1356: 1352: 1348: 1342: 1336: 1326: 1303: 1299: 1295: 1290: 1286: 1273: 1269:and those of 1264: 1251: 1242: 1233: 1224: 1215: 1206: 1189: 1186: 1183: 1179: 1175: 1163: 1154: 1145: 1136: 1127: 1118: 1097: 1093: 1089: 1077: 1070: 1063: 1051: 1047: 1043: 1036: 1026: 999: 995: 988: 985: 980: 976: 955: 930: 926: 919: 895: 892: 866: 862: 839: 836: 832: 828: 823: 819: 814: 810: 807: 798: 794: 790: 786: 771: 769: 768:planar graphs 764: 744: 741: 732: 714: 710: 665: 657: 654: 648: 645: 635: 631: 608: 580: 551: 547: 538: 535: 503: 495: 492: 486: 483: 473: 469: 455: 445: 441: 437: 415: 411: 407: 402: 398: 391: 388: 371: 365: 361: 356: 350: 346: 342: 337: 330: 326: 322: 318: 313: 309: 305: 304: 294: 290: 284: 280: 276: 267: 262: 234: 226: 223: 218: 208: 197: 190: 170: 160: 149: 142: 141: 133: 129: 125: 121:, if a graph 116: 115: 114: 106: 104: 100: 96: 91: 89: 85: 81: 77: 73: 68: 66: 62: 61:probabilistic 58: 50: 46: 42: 39:refers to an 38: 34: 30: 23: 19: 2409: 2396: 2379: 2375: 2356: 2346: 2335: 2307: 2265: 2262:Algorithmica 2261: 2226: 2222: 2156: 2133: 2130:Applications 2126:algorithms. 2121: 2056: 2052: 2046: 2042: 2035: 2027: 2015: 2007: 1999: 1991: 1983: 1818: 1811: 1807: 1799: 1791: 1779: 1771: 1596: 1573: 1569: 1565: 1514: 1494: 1486: 1450: 1324: 1271: 1262: 1249: 1240: 1231: 1222: 1213: 1204: 1161: 1152: 1143: 1134: 1125: 1116: 1075: 1068: 1061: 1049: 1045: 1041: 1034: 1027: 799: 792: 788: 784: 777: 765: 712: 708: 606: 581: 456:graph where 443: 439: 435: 380: 363: 359: 348: 344: 340: 328: 324: 320: 311: 307: 293:planar graph 282: 278: 274: 131: 127: 123: 112: 92: 69: 65:derandomized 37:color-coding 36: 33:graph theory 26: 1572:→ {1, ..., 1202:in each of 1048:→ {1, ..., 575:in colored 338:If a graph 80:NP-complete 55:in a given 49:simple path 35:, the term 2300:References 2026:{1, ..., | 2006:{1, ..., | 1982:{1, ..., | 1770:{1, ..., | 1563:such that 1513:{1, ..., | 1485:{1, ..., | 377:The method 51:of length 18:color code 2270:CiteSeerX 2181:⁡ 2094:⁡ 2034:{1, ..., 2014:{1, ..., 1990:{1, ..., 1955:⁡ 1852:⁡ 1798:{1, ..., 1790:{1, ..., 1778:{1, ..., 1762:Noga Alon 1732:⁡ 1663:⁡ 1649:⁡ 1607:Moni Naor 1493:{1, ..., 1429:ω 1421:⋅ 1362:⋅ 1349:≤ 1187:− 1060:{1, ..., 1000:ω 986:⋅ 956:ω 931:ω 837:− 782:in graph 658:⁡ 496:⁡ 454:treewidth 355:treewidth 291:(e.g., a 227:⁡ 219:ω 171:ω 103:Uri Zwick 95:Noga Alon 88:treewidth 2431:Category 2253:18586721 1568: : 1082:of size 1044: : 948:, where 912:in time 448:, where 2351:Israel. 2244:2718641 1580:perfect 774:Example 611:⁠ 597:⁠ 109:Results 2290:  2272:  2251:  2241:  2152:motifs 2144:motifs 1613:, and 1519:where 295:), if 101:, and 72:cycles 2292:81069 2288:S2CID 2203:with 1817:2log 528:with 362:(log 57:graph 2361:182. 2249:PMID 2150:and 2055:log 2045:log 1810:log 1451:The 1247:and 1229:and 1211:and 1159:and 1141:and 1123:and 829:> 327:log 78:(an 31:and 2416:doi 2384:doi 2280:doi 2239:PMC 2231:doi 2178:log 2138:in 2091:log 2032:to 2030:|} 2018:!} 2012:to 2010:|} 1988:to 1986:|} 1952:log 1849:log 1796:to 1776:to 1774:|} 1723:log 1660:log 1646:log 1578:is 1559:in 1517:|} 1511:of 1503:is 1491:to 1489:|} 1467:in 1327:− 1 1037:− 1 1021:in 787:= ( 721:in 655:log 586:in 493:log 438:= ( 343:= ( 277:= ( 224:log 126:= ( 27:In 2433:: 2380:19 2378:. 2366:^ 2320:^ 2286:. 2278:. 2266:52 2264:. 2247:. 2237:. 2227:24 2225:. 2221:. 2124:NC 2119:. 2043:nk 2038:} 1994:} 1802:}. 1794:} 1782:}, 1609:, 1576:} 1497:} 1074:, 1064:} 1052:} 1025:. 797:. 791:, 763:. 686:, 442:, 347:, 281:, 130:, 105:. 97:, 90:. 2418:: 2390:. 2386:: 2294:. 2282:: 2255:. 2233:: 2205:n 2201:G 2187:) 2184:n 2175:( 2172:O 2169:= 2166:k 2106:| 2102:V 2098:| 2086:) 2083:k 2080:( 2077:O 2073:k 2062:k 2057:k 2053:k 2047:k 2036:k 2028:V 2022:k 2016:k 2008:V 2002:k 1992:k 1984:V 1967:| 1963:V 1959:| 1947:) 1944:k 1941:( 1938:O 1934:2 1923:k 1919:k 1903:) 1900:k 1897:( 1894:O 1890:2 1879:k 1864:| 1860:V 1856:| 1844:) 1841:1 1838:( 1835:O 1831:k 1819:k 1812:k 1808:n 1806:2 1800:k 1792:k 1786:k 1780:k 1772:V 1766:k 1757:. 1744:| 1740:V 1736:| 1727:2 1717:) 1714:k 1711:( 1708:O 1704:2 1675:| 1671:V 1667:| 1655:) 1652:k 1643:( 1640:O 1636:k 1630:k 1626:e 1599:k 1592:k 1588:k 1584:F 1574:k 1570:S 1566:h 1561:F 1557:h 1543:k 1540:= 1536:| 1532:S 1528:| 1515:V 1509:S 1505:k 1501:F 1495:k 1487:V 1481:F 1477:k 1473:H 1469:G 1465:H 1461:G 1457:G 1425:V 1416:) 1413:k 1410:( 1407:O 1403:2 1382:) 1379:2 1375:/ 1371:k 1368:( 1365:t 1357:k 1353:2 1346:) 1343:k 1340:( 1337:t 1325:k 1320:V 1304:2 1300:A 1296:B 1291:1 1287:A 1275:2 1272:V 1266:1 1263:V 1258:B 1253:2 1250:G 1244:1 1241:G 1235:2 1232:A 1226:1 1223:A 1217:2 1214:G 1208:1 1205:G 1190:1 1184:2 1180:/ 1176:k 1165:2 1162:V 1156:1 1153:V 1147:2 1144:G 1138:1 1135:G 1129:2 1126:V 1120:1 1117:V 1112:V 1098:2 1094:/ 1090:k 1079:2 1076:C 1072:1 1069:C 1062:k 1056:G 1050:k 1046:V 1042:c 1035:k 1030:V 1023:G 1019:k 1005:) 996:V 992:( 989:O 981:k 977:e 936:) 927:V 923:( 920:O 910:G 896:! 893:k 883:k 867:k 863:k 840:k 833:e 824:k 820:k 815:/ 811:! 808:k 795:) 793:E 789:V 785:G 780:k 751:) 745:p 742:r 736:( 733:O 723:G 719:H 715:) 713:r 711:( 709:O 704:H 700:k 696:G 692:G 688:p 674:) 670:| 666:V 662:| 652:( 649:O 646:= 642:| 636:H 632:V 627:| 616:p 607:p 603:/ 600:1 592:p 588:G 584:H 577:G 573:H 558:| 552:H 548:V 543:| 539:= 536:k 526:G 512:) 508:| 504:V 500:| 490:( 487:O 484:= 480:| 474:H 470:V 465:| 450:H 446:) 444:E 440:V 436:G 421:) 416:H 412:E 408:, 403:H 399:V 395:( 392:= 389:H 372:. 366:) 364:V 360:O 351:) 349:E 345:V 341:G 331:) 329:V 325:V 323:( 321:O 314:) 312:V 310:( 308:O 301:k 297:G 285:) 283:E 279:V 275:G 270:k 263:. 257:ω 243:) 239:| 235:V 231:| 214:| 209:V 205:| 201:( 198:O 176:) 166:| 161:V 157:| 153:( 150:O 138:k 134:) 132:E 128:V 124:G 119:k 53:k 24:.

Index

color code
Color code (disambiguation)
computer science
graph theory
algorithmic technique
network motifs
simple path
graph
probabilistic
derandomized
cycles
subgraph isomorphism problem
NP-complete
polynomial time algorithms
treewidth
Noga Alon
Raphael Yuster
Uri Zwick
matrix multiplication
minor-closed graph family
planar graph
treewidth
polynomial time
treewidth
planar graphs
derandomization
perfect
Moni Naor
Leonard J. Schulman
Aravind Srinivasan

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.