Knowledge

Planar graph

Source đź“ť

2076:
handles) and thus the genus of a graph is well defined. Obviously, if the graph can be embedded without crossings into a (orientable, connected, closed) surface with genus g, it can be embedded without crossings into all (orientable, connected, closed) surfaces with greater or equal genus. There are also other concepts in graph theory that are called "X genus" with "X" some qualifier; in general these differ from the above defined concept of "genus" without any qualifier. Especially the non-orientable genus of a graph (using non-orientable surfaces in its definition) is different for a general graph from the genus of that graph (using orientable surfaces in its definition).
1050: 242: 365: 953: 1357: 74: 63: 111: 1228: 93: 631:, for example, has 6 vertices, 9 edges, and no cycles of length 3. Therefore, by Theorem 2, it cannot be planar. These theorems provide necessary conditions for planarity that are not sufficient conditions, and therefore can only be used to prove a graph is not planar, not that it is planar. If both theorem 1 and 2 fail, other methods may be used. 2084:
where electrical connection between the sides of the board can be made (as is possible with typical real life circuit boards, with the electrical connections on the top side of the board achieved through pieces of wire and at the bottom side by tracks of copper constructed on to the board itself and
2079:
Any graph may be embedded into three-dimensional space without crossings. In fact, any graph can be drawn without crossings in a two plane setup, where two planes are placed on top of each other and the edges are allowed to "jump up" and "drop down" from one plane to the other at any place (not just
2089:
them into the tracks); one can also interpret this as saying that in order to build any road network, one only needs just bridges or just tunnels, not both (2 levels is enough, 3 is not needed). Also, in three dimensions the question about drawing the graph without crossings is trivial. However, a
2075:
of a graph is the minimum genus of a two-dimensional surface into which the graph may be embedded; planar graphs have genus zero and nonplanar toroidal graphs have genus one. Every graph can be embedded without crossings into some (orientable, connected) closed two-dimensional surface (sphere with
2059:
is a graph formed from a set of finitely many simply-connected interior-disjoint regions in the plane by connecting two regions when they share at least one boundary point. When at most three regions meet at a point, the result is a planar graph, but when four or more regions meet at a point, the
2060:
result can be nonplanar (for example, if one thinks of a circle divided into sectors, with the sectors being the regions, then the corresponding map graph is the complete graph as all the sectors have a common boundary point - the centre point).
1095:
that do not cross each other. If one places each vertex of the graph at the center of the corresponding circle in a coin graph representation, then the line segments between centers of kissing circles do not cross any of the other edges.
3126:— Free C source code for reference implementation of Boyer–Myrvold planarity algorithm, which provides both a combinatorial planar embedder and Kuratowski subgraph isolator. An open source project with free licensing provides the 1076:) whenever they intersect in exactly one point. A "coin graph" is a graph formed by a set of circles, no two of which have overlapping interiors, by making a vertex for each circle and an edge for each pair of circles that kiss. The 1612:
planar graphs include triangle-free planar graphs and, more generally, 3-colourable planar graphs, as well as certain face subdivisions of triangular grid graphs, and certain triangulations of grid-covered cylinder graphs.
980:
of the polyhedron onto a plane with the center of perspective chosen near the center of one of the polyhedron's faces. Not every planar graph corresponds to a convex polyhedron in this way: the trees do not, for example.
682:
states that a graph is planar if and only if it has a drawing in which each independent pair of edges crosses an even number of times; it can be used to characterize the planar graphs via a system of equations
149:, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In other words, it can be drawn in such a way that no edges cross each other. Such a drawing is called a 1902:. Every simple outerplanar graph admits an embedding in the plane such that all vertices lie on a fixed circle and all edges are straight line segments that lie inside the disk and don't intersect, so 1438:
is a triangle. In a maximal planar graph (or more generally a polyhedral graph) the peripheral cycles are the faces, so maximal planar graphs are strangulated. The strangulated graphs include also the
1714: 1332:
Duals are useful because many properties of the dual graph are related in simple ways to properties of the original graph, enabling results to be proven about graphs by examining their dual graphs.
900:, planar graph, any face (except possibly the outer one) is bounded by at least three edges and every edge touches at most two faces; using Euler's formula, one can then show that these graphs are 2080:
at the graph vertexes) so that the edges can avoid intersections with other edges. This can be interpreted as saying that it is possible to make any electrical conductor network with a two-sided
1562:
that can be drawn in the plane with its edges as non-crossing curves that are consistently oriented in an upward direction. Not every planar directed acyclic graph is upward planar, and it is
1372:
if it is planar but adding any edge (on the given vertex set) would destroy that property. All faces (including the outer one) are then bounded by three edges, explaining the alternative term
1538:
is a graph formed from an undirected plane tree (with no degree-two nodes) by connecting its leaves into a cycle, in the order given by the plane embedding of the tree. Equivalently, it is a
1020:, because each face has at least three face-edge incidences and each edge contributes exactly two incidences. It follows via algebraic transformations of this inequality with Euler's formula 1782: 1740: 1192: 441:
of a graph results from taking a subgraph and repeatedly contracting an edge into a vertex, with each neighbor of the original end-vertices becoming a neighbor of the new vertex.
1461:
are graphs with an embedding in the plane such that all vertices belong to the unbounded face of the embedding. Every outerplanar graph is planar, but the converse is not true:
445: 947: 1862: 1835: 761: 1898:
vertices has such an embedding with all vertices in the point set; there exist universal point sets of quadratic size, formed by taking a rectangular subset of the
1808: 1648: 161:
on that plane, such that the extreme points of each curve are the points mapped from its end nodes, and all curves are disjoint except on their extreme points.
2245:
Buhl, J.; Gautrais, J.; Sole, R.V.; Kuntz, P.; Valverde, S.; Deneubourg, J.L.; Theraulaz, G. (2004), "Efficiency and robustness in ant networks of galleries",
1470:
is planar but not outerplanar. A theorem similar to Kuratowski's states that a finite graph is outerplanar if and only if it does not contain a subdivision of
2467: 1424:
are the maximal planar graphs formed by repeatedly splitting triangular faces into triples of smaller triangles. Equivalently, they are the planar
655:
gives a characterization based on the existence of a bipartition of the cotree edges of a depth-first search tree. It is central to the left-right
1601:
even states that for simple 3-vertex-connected planar graphs the position of the inner vertices can be chosen to be the average of its neighbors.
2112:
as a minor, the linklessly embeddable graphs may be characterized as the graphs that do not contain as a minor any of the seven graphs in the
1376:. The alternative names "triangular graph" or "triangulated graph" have also been used, but are ambiguous, as they more commonly refer to the 652: 157:
of the graph. A plane graph can be defined as a planar graph with a mapping from every node to a point on a plane, and from every edge to a
2998: 675:
gives a characterization based on the maximum multiplicity of the second eigenvalue of certain Schrödinger operators defined by the graph.
2098:
with each other. In analogy to Kuratowski's and Wagner's characterizations of the planar graphs as being the graphs that do not contain
502:
In practice, it is difficult to use Kuratowski's criterion to quickly decide whether a given graph is planar. However, there exist fast
3082: 3136:— GPL graph algorithm library including planarity testing, planarity embedder and Kuratowski subgraph exhibition in linear time. 3176: 2694:
Bonichon, N.; Gavoille, C.; Hanusse, N.; Poulalhon, D.; Schaeffer, G. (2006). "Planar Graphs, via Well-Orderly Maps and Trees".
2854:
Filotti, I. S.; Mayer, Jack N. (1980). "A polynomial-time algorithm for determining the isomorphism of graphs of fixed genus".
2085:
electrical connection between the sides of the board achieved through drilling holes, passing the wires through the holes and
1653: 1035:
that for finite planar graphs the average degree is strictly less than 6. Graphs with higher average degree cannot be planar.
2876: 2229: 2190: 1542:
in which one face is adjacent to all the others. Every Halin graph is planar. Like outerplanar graphs, Halin graphs have low
2555:
Chen, T. Z. Q.; Kitaev, S.; Sun, B. Y. (2016). "Word-representability of triangulations of grid-covered cylinder graphs".
2120:
at most two or three, the linklessly embeddable graphs are the graphs that have Colin de Verdière invariant at most four.
2117: 672: 2333:
Bhasker, Jayaram; Sahni, Sartaj (1988), "A linear algorithm to find a rectangular dual of a planar triangulated graph",
2510:
Chen, T. Z. Q.; Kitaev, S.; Sun, B. Y. (2016). "Word-representability of face subdivisions of triangular grid graphs".
2420: 2156:, a pencil-and-paper game where a planar graph subject to certain constraints is constructed as part of the game play 1124: 641: 972:. This is no coincidence: every convex polyhedron can be turned into a connected, simple, planar graph by using the 3078: 2014:
Any planar graph on n nodes has at most 8(n-2) maximal cliques, which implies that the class of planar graphs is a
635: 294: 2814:
Dębski, Michał; Felsner, Stefan; Micek, Piotr; Schröder, Felix (2021), "Improved Bounds for Centered Colorings",
1745: 1976:
of a graph of treewidth at most 8 and a path. This result has been used to show that planar graphs have bounded
28: 3142:, including linear time planarity testing, embedding, Kuratowski subgraph isolation, and straight-line drawing. 2204:
Thus a planar graph, when drawn on a flat surface, either has no edge-crossings or can be redrawn without them.
3021: 1936: 1719: 473: 17: 314: 279: 1145: 465: 138: 3139: 1913: 990: 891: 795:
faces, any change to the graph that creates an additional face while keeping the graph planar would keep
707: 1242:
of a (not necessarily simple) connected graph in the plane without edge intersections, we construct the
1091:, that every simple planar graph can be embedded in the plane in such a way that its edges are straight 698: 2747: 1887: 1590: 354: 318: 2138:, a planar graph formed from a drawing with crossings by replacing each crossing point by a new vertex 722:
is the number of faces (regions bounded by edges, including the outer, infinitely large region), then
2008: 3123: 2708: 2116:. In analogy to the characterizations of the outerplanar and planar graphs as being the graphs with 3036: 2671: 2141: 1928: 1609: 1594: 1361: 679: 334: 191: 169: 1546:, making many algorithmic problems on them more easily solved than in unrestricted planar graphs. 3171: 2159: 2015: 917: 298: 257: 2094:, graphs that can be embedded into three-dimensional space in such a way that no two cycles are 1972:
The planar product structure theorem states that every planar graph is a subgraph of the strong
993:
simple planar graphs. More generally, Euler's formula applies to any polyhedron whose faces are
468:
asked more generally whether any minor-closed class of graphs is determined by a finite set of "
3166: 2703: 2666: 2144:, the smallest number of planar graphs into which the edges of a given graph may be partitioned 1840: 1559: 1496:
by adding a new vertex, with edges connecting it to all the other vertices, is a planar graph.
1105: 1077: 1049: 1044: 977: 817: 1813: 728: 1555: 982: 662: 195: 3088: 2217: 1339:), graphs may have different (i.e. non-isomorphic) duals, obtained from different (i.e. non- 820:
it holds for all cases. Euler's formula can also be proved as follows: if the graph isn't a
3145: 2923: 2619: 2600:
Giménez, Omer; Noy, Marc (2009). "Asymptotic enumeration and limit laws of planar graphs".
2430: 2389: 2311: 2254: 2044:
is a graph that may be drawn in the plane with at most one simple crossing per edge, and a
1295:
is again the embedding of a (not necessarily simple) planar graph; it has as many edges as
884: 825: 438: 430: 404: 290: 2990: 1883: 1088: 8: 2072: 1891: 1627: 821: 400: 261: 245: 241: 217: 210: 2623: 2407:, Advanced Lectures in Mathematics, Friedr. Vieweg & Sohn, Wiesbaden, pp. 6–7, 2258: 3150: 3066: 3048: 2973: 2927: 2882: 2855: 2837: 2819: 2795: 2759: 2721: 2635: 2609: 2582: 2564: 2537: 2519: 2492: 2350: 2315: 2270: 2150:, a puzzle computer game in which the objective is to embed a planar graph onto a plane 2091: 1917: 1873: 1793: 1633: 1431: 1421: 357:
of a graph results from inserting vertices into edges (for example, changing an edge
3109: 2977: 2872: 2841: 2445:
Graph Theory: Proceedings of a Conference held in Lagów, Poland, February 10–13, 1981
2416: 2319: 2225: 2186: 2180: 2129: 1458: 1072: 969: 656: 524: 187: 176: 3070: 2886: 2725: 2586: 2541: 2496: 2274: 3105: 3058: 3007: 2965: 2942: 2864: 2829: 2769: 2713: 2676: 2639: 2627: 2574: 2529: 2482: 2448: 2447:, Lecture Notes in Mathematics, vol. 1018, Springer-Verlag, pp. 248–256, 2408: 2377: 2354: 2342: 2299: 2262: 1582:. Not all planar graphs have a convex embedding (e.g. the complete bipartite graph 1539: 1499:
A 1-outerplanar embedding of a graph is the same as an outerplanar embedding. For
1435: 986: 973: 957: 194:
drawings on the sphere, usually with additional assumptions such as the absence of
146: 2787: 2739: 2631: 2654: 2426: 2385: 2307: 2290: 2266: 2113: 1985: 1907: 1899: 1598: 767: 666: 469: 249: 225: 180: 142: 67: 2412: 2185:(Corrected, enlarged republication. ed.). New York: Dover Pub. p. 64. 2680: 2153: 2095: 2064: 2041: 1877: 1579: 1447: 1381: 994: 512: 449: 322: 310: 97: 78: 3062: 2717: 2578: 2533: 2487: 2403:
Felsner, Stefan (2004), "1.4 Outerplanar Graphs and Convex Geometric Graphs",
364: 3160: 2986: 2135: 2081: 1973: 1589:). A sufficient condition that a graph can be drawn convexly is that it is a 1439: 1385: 998: 346: 224: 0, since the plane (and the sphere) are surfaces of genus 0. See " 115: 32: 2947: 2908: 2368:
Seymour, P. D.; Weaver, R. W. (1984), "A generalization of chordal graphs",
2381: 2004: 1977: 1957: 1921: 1340: 1120: 1092: 1084:
in 1936, states that a graph is planar if and only if it is a coin graph.
961: 896: 597: 306: 130: 36: 27:"Triangular graph" redirects here. For line graphs of complete graphs, see 2868: 2033:-apex graph is a graph that may be made planar by the removal of at most 1981: 1563: 1535: 1336: 710:, planar graph is drawn in the plane without any edge intersections, and 645: 221: 158: 1916:(now a theorem) states that every planar graph can be represented as an 952: 3127: 3034: 3012: 2969: 2833: 2452: 2346: 2303: 2029:
is a graph that may be made planar by the removal of one vertex, and a
2026: 1443: 1377: 1356: 1335:
While the dual constructed for a particular embedding is unique (up to
1244: 1232: 1081: 644:
gives an algebraic characterization of finite planar graphs, via their
1787:
Almost all planar graphs have an exponential number of automorphisms.
476:, proved in a long series of papers. In the language of this theorem, 3053: 3025: 2743: 2614: 2147: 2086: 2056: 1988:
of near-linear size. It also has applications to vertex ranking and
1953: 1543: 1510:-outerplanar if removing the vertices on the outer face results in a 638:
gives a characterization based on the existence of an algebraic dual;
503: 2773: 1009:
Connected planar graphs with more than one edge obey the inequality
216:
Planar graphs generalize to graphs drawable on a surface of a given
73: 3096:
Fisk, Steve (1978), "A short proof of Chvátal's watchman theorem",
3087:(Technical report). UNM-ECE Technical Report 03-002. Archived from 2857:
Proceedings of the 12th Annual ACM Symposium on Theory of Computing
2824: 2800: 2764: 2569: 2524: 2443:
Sysło, Maciej M.; Proskurowski, Andrzej (1983), "On Halin graphs",
2090:
three-dimensional analogue of the planar graphs is provided by the
1886:
states that every simple planar graph admits a representation as a
1388:
respectively. Every maximal planar graph is at least 3-connected.
62: 2991:"On the cutting edge: Simplified O(n) planarity by edge addition" 2899:
Wood, D. R. (2007). On the Maximum Number of Cliques in a Graph.
850:
constant. Repeat until the remaining graph is a tree; trees have
110: 3133: 2956:
Wagner, K. (1937), "Ăśber eine Eigenschaft der ebenen Komplexe",
2693: 494:
are the forbidden minors for the class of finite planar graphs.
1425: 1325:
is the planar graph corresponding to a convex polyhedron, then
1318: 286: 165: 1227: 791:. In general, if the property holds for all planar graphs of 3134:
Public Implementation of a Graph Algorithm Library and Editor
2068: 444: 213:, none of the faces of a planar map has a particular status. 164:
Every graph that can be drawn on a plane can be drawn on the
2468:"Semi-transitive orientations and word-representable graphs" 1364:
is maximal planar. All its faces are bounded by three edges.
1317:; here the equality is the equivalence of embeddings on the 1307:
has vertices. The term "dual" is justified by the fact that
2785: 1488:. The above is a direct corollary of the fact that a graph 809:
an invariant. Since the property holds for all graphs with
3124:
Edge Addition Planarity Algorithm Source Code, version 1.0
2813: 2288:
Schnyder, W. (1989), "Planar graphs and poset dimension",
1790:
The number of unlabeled (non-isomorphic) planar graphs on
1329:
is the planar graph corresponding to the dual polyhedron.
1112:
of a planar graph, or network, is the ratio of the number
523:(linear time) whether the graph may be planar or not (see 92: 29:
Line graph § Strongly regular and perfect line graphs
3039:; Rosenstiehl, P. (2006), "Trémaux trees and planarity", 2465: 2067:
is a graph that can be embedded without crossings on the
411:
A finite graph is planar if and only if it does not have
293:
provided a characterization of planar graphs in terms of
3041:
International Journal of Foundations of Computer Science
2048:-planar graph is a graph that may be drawn with at most 1709:{\displaystyle g\cdot n^{-7/2}\cdot \gamma ^{n}\cdot n!} 2738: 2792:
Asymptotically optimal vertex ranking of planar graphs
2657:; Welsh, Dominic J.A. (2005). "Random planar graphs". 1952:) vertices. As a consequence, planar graphs also have 1062:, the complete graph on five vertices, minus one edge. 989:
formed from convex polyhedra are precisely the finite
35:. For data graphs plotted across three variables, see 2244: 1894:
is a set of points such that every planar graph with
1843: 1816: 1796: 1748: 1722: 1656: 1636: 1279:. Furthermore, this edge is drawn so that it crosses 1148: 920: 731: 236: 2652: 1212:
for a completely sparse planar graph (a tree), and
567:
Theorem 2. If there are no cycles of length 3, then
3128:
Edge Addition Planarity Algorithms, current version
2750:(2020), "Planar graphs have bounded queue number", 2132:
a combinatorial object that can encode plane graphs
1604: 1578:if all of its faces (including the outer face) are 1442:, and are exactly the graphs that can be formed by 2928:"Sur le problème des courbes gauches en topologie" 2466:HalldĂłrsson, M.; Kitaev, S.; Pyatkin., A. (2016). 1856: 1829: 1802: 1776: 1734: 1708: 1642: 1186: 964:, forming a planar graph from a convex polyhedron. 941: 755: 665:gives a characterization of planarity in terms of 2442: 1935:-vertex planar graph can be partitioned into two 1251:as follows: we choose one vertex in each face of 3158: 1999:vertices, it is possible to determine in time O( 1566:to test whether a given graph is upward planar. 542:faces, the following simple conditions hold for 386:subgraph. However, it contains a subdivision of 2459: 1621: 1219:for a completely dense (maximal) planar graph. 611:edges, asymptotically smaller than the maximum 3153:— NetLogo version of John Tantalo's game 3084:A New Parallel Algorithm for Planarity Testing 510:vertices, it is possible to determine in time 2554: 2509: 2367: 1630:for the number of (labeled) planar graphs on 1255:(including the outer face) and for each edge 3077: 2999:Journal of Graph Algorithms and Applications 2984: 2853: 2790:; Javarsineh, Mehrnoosh; Morin, Pat (2020), 2602:Journal of the American Mathematical Society 2332: 1346: 3140:Boost Graph Library tools for planar graphs 1777:{\displaystyle g\approx 0.43\times 10^{-5}} 530:For a simple, connected, planar graph with 3020: 2922: 2599: 2215: 1001:to a sphere, regardless of its convexity. 220:. In this terminology, planar graphs have 3098:Journal of Combinatorial Theory, Series B 3052: 3011: 2946: 2909:https://doi.org/10.1007/s00373-007-0738-8 2823: 2799: 2763: 2707: 2670: 2659:Journal of Combinatorial Theory, Series B 2613: 2568: 2548: 2523: 2486: 1066:We say that two circles drawn in a plane 1053:Example of the circle packing theorem on 653:Fraysseix–Rosenstiehl planarity criterion 2287: 1492:is outerplanar if the graph formed from 1355: 1351: 1226: 1048: 951: 824:, then remove an edge which completes a 699:Euler characteristic § Plane graphs 443: 363: 240: 2503: 2402: 2178: 1735:{\displaystyle \gamma \approx 27.22687} 1569: 1549: 1283:exactly once and that no other edge of 1099: 673:Colin de Verdière's planarity criterion 42:Graph that can be embedded in the plane 14: 3159: 2955: 1992:-centered colouring of planar graphs. 1910:are universal for outerplanar graphs. 1087:This result provides an easy proof of 1453: 1187:{\displaystyle D={\frac {f-1}{2v-5}}} 399:Instead of considering subdivisions, 231: 168:as well, and vice versa, by means of 3146:3 Utilities Puzzle and Planar Graphs 3095: 1876:states that every planar graph is 4- 1518:-outerplanar embedding. A graph is 506:for this problem: for a graph with 452:contains a minor isomorphic to the 24: 2020: 1271:corresponding to the two faces in 1119:of bounded faces (the same as the 968:Euler's formula is also valid for 692: 461:graph, and is therefore non-planar 237:Kuratowski's and Wagner's theorems 25: 3188: 3117: 3081:; Sreshta, S. (October 1, 2003). 3074:. Special Issue on Graph Drawing. 2405:Geometric graphs and arrangements 2222:Morphogenesis of Spatial Networks 2118:Colin de Verdière graph invariant 1127:) by its maximal possible values 1004: 596:In this sense, planar graphs are 497: 2742:; Joret, Gwenäel; Micek, Piotr; 1867: 1605:Word-representable planar graphs 202:. Although a plane graph has an 109: 91: 72: 61: 3027:A useful planar graph generator 2893: 2847: 2807: 2779: 2732: 2687: 2646: 2593: 1982:non-repetitive chromatic number 1529: 1303:has faces and as many faces as 1267:connecting the two vertices in 175:Plane graphs can be encoded by 31:. For triangulated graphs, see 3177:Intersection classes of graphs 2436: 2396: 2361: 2326: 2281: 2238: 2209: 2172: 1434:are the graphs in which every 1391:If a maximal planar graph has 1125:Mac Lane's planarity criterion 1038: 642:Mac Lane's planarity criterion 448:An animation showing that the 368:An example of a graph with no 44: 13: 1: 2916: 2632:10.1090/s0894-0347-08-00624-3 1574:A planar graph is said to be 1222: 687: 636:Whitney's planarity criterion 3110:10.1016/0095-8956(78)90059-X 2182:Introduction to Graph Theory 2179:Trudeau, Richard J. (1993). 2092:linklessly embeddable graphs 1622:Enumeration of planar graphs 1446:(without deleting edges) of 395:and is therefore non-planar. 228:" for other related topics. 108: 90: 71: 60: 7: 2413:10.1007/978-3-322-80303-0_1 2247:European Physical Journal B 2123: 2052:simple crossings per edge. 1995:For two planar graphs with 1616: 1450:and maximal planar graphs. 1263:we introduce a new edge in 942:{\displaystyle e\leq 3v-6.} 766:As an illustration, in the 718:is the number of edges and 714:is the number of vertices, 10: 3193: 2681:10.1016/j.jctb.2004.09.007 2267:10.1140/epjb/e2004-00364-9 1888:planar straight-line graph 1042: 696: 26: 3063:10.1142/S0129054106004248 2816:Advances in Combinatorics 2718:10.1007/s00373-006-0647-2 2579:10.1016/j.dam.2016.05.025 2534:10.1007/s00373-016-1693-z 2488:10.1016/j.dam.2015.07.033 2009:graph isomorphism problem 1857:{\displaystyle 30.06^{n}} 1522:-outerplanar if it has a 1368:A simple graph is called 1347:Families of planar graphs 706:states that if a finite, 600:, in that they have only 474:Robertson–Seymour theorem 47: 2901:Graphs and Combinatorics 2696:Graphs and Combinatorics 2166: 2142:Thickness (graph theory) 1929:planar separator theorem 1914:Scheinerman's conjecture 1830:{\displaystyle 27.2^{n}} 1526:-outerplanar embedding. 1402:, then it has precisely 999:topologically equivalent 756:{\displaystyle v-e+f=2.} 335:complete bipartite graph 192:topologically equivalent 170:stereographic projection 3151:NetLogo Planarity model 2948:10.4064/fm-15-1-271-283 2935:Fundamenta Mathematicae 2370:Journal of Graph Theory 2224:. Springer. p. 6. 2216:Barthelemy, M. (2017). 2160:Three utilities problem 2016:class with few cliques. 1943:/3 by the removal of O( 1231:A planar graph and its 667:partial order dimension 2382:10.1002/jgt.3190080206 2071:. More generally, the 1858: 1831: 1804: 1778: 1736: 1710: 1644: 1599:Tutte's spring theorem 1560:directed acyclic graph 1506:a planar embedding is 1365: 1299:, as many vertices as 1235: 1188: 1106:meshedness coefficient 1078:circle packing theorem 1063: 1045:Circle packing theorem 978:perspective projection 965: 943: 818:mathematical induction 757: 462: 396: 313:it does not contain a 282: 3024:; Brinkmann, Gunnar, 2958:Mathematische Annalen 2924:Kuratowski, Kazimierz 2869:10.1145/800141.804671 2746:; Ueckerdt, Torsten; 1859: 1832: 1805: 1779: 1737: 1711: 1645: 1359: 1352:Maximal planar graphs 1291:is intersected. Then 1230: 1189: 1052: 976:of the polyhedron, a 955: 944: 904:in the sense that if 758: 447: 367: 359:• —— • to • — • — • ) 244: 3037:Ossona de Mendez, P. 2863:. pp. 236–243. 2096:topologically linked 1841: 1814: 1810:vertices is between 1794: 1746: 1720: 1654: 1634: 1570:Convex planar graphs 1550:Upward planar graphs 1362:Goldner–Harary graph 1146: 1100:Planar graph density 997:that form a surface 918: 885:Euler characteristic 729: 680:Hanani–Tutte theorem 361:zero or more times. 299:Kuratowski's theorem 291:Kazimierz Kuratowski 2624:2009JAMS...22..309G 2259:2004EPJB...42..123B 2218:"1.5 Planar Graphs" 2003:) whether they are 1892:universal point set 1880:(i.e., 4-partite). 1556:upward planar graph 1432:Strangulated graphs 1422:Apollonian networks 1374:plane triangulation 1238:Given an embedding 828:. This lowers both 472:". This is now the 264:and finding either 246:Proof without words 3035:de Fraysseix, H.; 3013:10.7155/jgaa.00091 2970:10.1007/BF01594196 2834:10.19086/aic.27351 2752:Journal of the ACM 2653:McDiarmid, Colin; 2453:10.1007/BFb0071635 2347:10.1007/BF01762117 2304:10.1007/BF00353652 2162:, a popular puzzle 1931:states that every 1918:intersection graph 1874:four color theorem 1854: 1827: 1800: 1774: 1732: 1706: 1640: 1610:Word-representable 1595:3-vertex-connected 1459:Outerplanar graphs 1454:Outerplanar graphs 1366: 1236: 1197:The density obeys 1184: 1080:, first proved by 1064: 983:Steinitz's theorem 966: 939: 753: 663:Schnyder's theorem 463: 397: 283: 232:Planarity criteria 177:combinatorial maps 2987:Myrvold, Wendy J. 2878:978-0-89791-017-0 2786:Bose, Prosenjit; 2758:(4): 22:1–22:38, 2557:Discr. Appl. Math 2512:Graphs and Combin 2475:Discr. Appl. Math 2231:978-3-319-20565-6 2192:978-0-486-67870-2 2130:Combinatorial map 2007:or not (see also 1939:of size at most 2 1803:{\displaystyle n} 1643:{\displaystyle n} 1182: 1135:for a graph with 1123:of the graph, by 987:polyhedral graphs 657:planarity testing 525:planarity testing 262:Wagner's theorems 188:equivalence class 127: 126: 16:(Redirected from 3184: 3112: 3092: 3073: 3056: 3047:(5): 1017–1029, 3030: 3016: 3015: 2995: 2985:Boyer, John M.; 2980: 2951: 2950: 2932: 2911: 2897: 2891: 2890: 2862: 2851: 2845: 2844: 2827: 2811: 2805: 2804: 2803: 2783: 2777: 2776: 2767: 2736: 2730: 2729: 2711: 2691: 2685: 2684: 2674: 2655:Steger, Angelika 2650: 2644: 2643: 2617: 2597: 2591: 2590: 2572: 2552: 2546: 2545: 2527: 2507: 2501: 2500: 2490: 2472: 2463: 2457: 2455: 2440: 2434: 2433: 2400: 2394: 2392: 2365: 2359: 2357: 2341:(1–4): 247–278, 2330: 2324: 2322: 2285: 2279: 2277: 2242: 2236: 2235: 2213: 2207: 2206: 2201: 2199: 2176: 1986:universal graphs 1968: 1967: 1951: 1950: 1908:regular polygons 1863: 1861: 1860: 1855: 1853: 1852: 1836: 1834: 1833: 1828: 1826: 1825: 1809: 1807: 1806: 1801: 1783: 1781: 1780: 1775: 1773: 1772: 1741: 1739: 1738: 1733: 1715: 1713: 1712: 1707: 1696: 1695: 1683: 1682: 1678: 1649: 1647: 1646: 1641: 1588: 1540:polyhedral graph 1525: 1521: 1517: 1509: 1505: 1495: 1491: 1487: 1478: 1469: 1436:peripheral cycle 1417: 1409: 1401: 1394: 1328: 1324: 1316: 1306: 1302: 1298: 1294: 1290: 1286: 1282: 1278: 1274: 1270: 1266: 1262: 1258: 1254: 1250: 1241: 1218: 1211: 1204: 1193: 1191: 1190: 1185: 1183: 1181: 1167: 1156: 1138: 1134: 1118: 1111: 1061: 1034: 1019: 974:Schlegel diagram 970:convex polyhedra 958:Schlegel diagram 948: 946: 945: 940: 910: 882: 867: 860: 849: 836:by one, leaving 835: 831: 815: 808: 794: 790: 783: 776: 762: 760: 759: 754: 721: 717: 713: 630: 621: 610: 591: 577: 563: 548: 541: 537: 533: 522: 509: 493: 484: 470:forbidden minors 460: 428: 419: 401:Wagner's theorem 394: 385: 376: 360: 344: 332: 295:forbidden graphs 181:rotation systems 155:planar embedding 113: 95: 76: 65: 45: 21: 3192: 3191: 3187: 3186: 3185: 3183: 3182: 3181: 3157: 3156: 3120: 2993: 2930: 2919: 2914: 2898: 2894: 2879: 2860: 2852: 2848: 2812: 2808: 2784: 2780: 2774:10.1145/3385731 2737: 2733: 2709:10.1.1.106.7456 2692: 2688: 2651: 2647: 2598: 2594: 2553: 2549: 2508: 2504: 2470: 2464: 2460: 2441: 2437: 2423: 2401: 2397: 2366: 2362: 2331: 2327: 2286: 2282: 2243: 2239: 2232: 2214: 2210: 2197: 2195: 2193: 2177: 2173: 2169: 2126: 2114:Petersen family 2111: 2104: 2023: 2021:Generalizations 1963: 1961: 1946: 1944: 1900:integer lattice 1870: 1848: 1844: 1842: 1839: 1838: 1821: 1817: 1815: 1812: 1811: 1795: 1792: 1791: 1765: 1761: 1747: 1744: 1743: 1721: 1718: 1717: 1691: 1687: 1674: 1667: 1663: 1655: 1652: 1651: 1635: 1632: 1631: 1624: 1619: 1607: 1587: 1583: 1580:convex polygons 1572: 1552: 1532: 1523: 1519: 1511: 1507: 1500: 1493: 1489: 1486: 1480: 1477: 1471: 1468: 1462: 1456: 1448:complete graphs 1411: 1403: 1396: 1392: 1354: 1349: 1326: 1322: 1308: 1304: 1300: 1296: 1292: 1288: 1284: 1280: 1276: 1272: 1268: 1264: 1260: 1256: 1252: 1248: 1239: 1225: 1213: 1206: 1198: 1168: 1157: 1155: 1147: 1144: 1143: 1136: 1128: 1113: 1109: 1102: 1060: 1054: 1047: 1041: 1021: 1010: 1007: 995:simple polygons 919: 916: 915: 905: 869: 862: 851: 837: 833: 829: 810: 796: 792: 785: 778: 771: 768:butterfly graph 730: 727: 726: 719: 715: 711: 704:Euler's formula 701: 695: 693:Euler's formula 690: 629: 623: 612: 601: 582: 568: 554: 543: 539: 535: 531: 511: 507: 500: 492: 486: 483: 477: 459: 453: 427: 421: 418: 412: 393: 387: 384: 378: 375: 369: 358: 343: 337: 331: 325: 297:, now known as 277: 270: 250:hypercube graph 239: 234: 226:graph embedding 123: 114: 106: 100: 96: 86: 77: 68:Butterfly graph 66: 48:Example graphs 43: 40: 23: 22: 15: 12: 11: 5: 3190: 3180: 3179: 3174: 3172:Graph families 3169: 3155: 3154: 3148: 3143: 3137: 3131: 3119: 3118:External links 3116: 3115: 3114: 3093: 3091:on 2016-03-16. 3075: 3032: 3022:McKay, Brendan 3018: 3006:(3): 241–273, 2982: 2953: 2918: 2915: 2913: 2912: 2907:(3), 337–352. 2892: 2877: 2846: 2806: 2788:Dujmović, Vida 2778: 2748:Wood, David R. 2740:Dujmović, Vida 2731: 2702:(2): 185–202. 2686: 2672:10.1.1.572.857 2665:(2): 187–205. 2645: 2608:(2): 309–329. 2592: 2547: 2518:(5): 1749–61. 2502: 2458: 2435: 2421: 2395: 2376:(2): 241–251, 2360: 2325: 2298:(4): 323–343, 2280: 2253:(1): 123–129, 2237: 2230: 2208: 2191: 2170: 2168: 2165: 2164: 2163: 2157: 2154:Sprouts (game) 2151: 2145: 2139: 2133: 2125: 2122: 2109: 2102: 2065:toroidal graph 2042:1-planar graph 2022: 2019: 1924:in the plane. 1884:Fáry's theorem 1869: 1866: 1851: 1847: 1824: 1820: 1799: 1771: 1768: 1764: 1760: 1757: 1754: 1751: 1731: 1728: 1725: 1705: 1702: 1699: 1694: 1690: 1686: 1681: 1677: 1673: 1670: 1666: 1662: 1659: 1639: 1623: 1620: 1618: 1615: 1606: 1603: 1597:planar graph. 1585: 1571: 1568: 1551: 1548: 1531: 1528: 1484: 1475: 1466: 1455: 1452: 1440:chordal graphs 1395:vertices with 1386:chordal graphs 1382:complete graph 1370:maximal planar 1353: 1350: 1348: 1345: 1343:) embeddings. 1224: 1221: 1195: 1194: 1180: 1177: 1174: 1171: 1166: 1163: 1160: 1154: 1151: 1101: 1098: 1089:Fáry's theorem 1058: 1043:Main article: 1040: 1037: 1006: 1005:Average degree 1003: 985:says that the 950: 949: 938: 935: 932: 929: 926: 923: 764: 763: 752: 749: 746: 743: 740: 737: 734: 697:Main article: 694: 691: 689: 686: 685: 684: 683:modulo 2. 676: 670: 660: 649: 639: 627: 594: 593: 579: 565: 499: 498:Other criteria 496: 490: 481: 457: 450:Petersen graph 435: 434: 425: 416: 391: 382: 373: 351: 350: 341: 329: 323:complete graph 311:if and only if 289:mathematician 275: 268: 238: 235: 233: 230: 198:, is called a 125: 124: 121: 107: 104: 98:Complete graph 88: 87: 84: 79:Complete graph 70: 58: 57: 54: 50: 49: 41: 9: 6: 4: 3: 2: 3189: 3178: 3175: 3173: 3170: 3168: 3167:Planar graphs 3165: 3164: 3162: 3152: 3149: 3147: 3144: 3141: 3138: 3135: 3132: 3129: 3125: 3122: 3121: 3111: 3107: 3103: 3099: 3094: 3090: 3086: 3085: 3080: 3076: 3072: 3068: 3064: 3060: 3055: 3050: 3046: 3042: 3038: 3033: 3029: 3028: 3023: 3019: 3014: 3009: 3005: 3001: 3000: 2992: 2988: 2983: 2979: 2975: 2971: 2967: 2963: 2960:(in German), 2959: 2954: 2949: 2944: 2940: 2937:(in French), 2936: 2929: 2925: 2921: 2920: 2910: 2906: 2902: 2896: 2888: 2884: 2880: 2874: 2870: 2866: 2859: 2858: 2850: 2843: 2839: 2835: 2831: 2826: 2821: 2817: 2810: 2802: 2797: 2793: 2789: 2782: 2775: 2771: 2766: 2761: 2757: 2753: 2749: 2745: 2741: 2735: 2727: 2723: 2719: 2715: 2710: 2705: 2701: 2697: 2690: 2682: 2678: 2673: 2668: 2664: 2660: 2656: 2649: 2641: 2637: 2633: 2629: 2625: 2621: 2616: 2611: 2607: 2603: 2596: 2588: 2584: 2580: 2576: 2571: 2566: 2562: 2558: 2551: 2543: 2539: 2535: 2531: 2526: 2521: 2517: 2513: 2506: 2498: 2494: 2489: 2484: 2480: 2476: 2469: 2462: 2454: 2450: 2446: 2439: 2432: 2428: 2424: 2422:3-528-06972-4 2418: 2414: 2410: 2406: 2399: 2391: 2387: 2383: 2379: 2375: 2371: 2364: 2356: 2352: 2348: 2344: 2340: 2336: 2329: 2321: 2317: 2313: 2309: 2305: 2301: 2297: 2293: 2292: 2284: 2276: 2272: 2268: 2264: 2260: 2256: 2252: 2248: 2241: 2233: 2227: 2223: 2219: 2212: 2205: 2194: 2188: 2184: 2183: 2175: 2171: 2161: 2158: 2155: 2152: 2149: 2146: 2143: 2140: 2137: 2136:Planarization 2134: 2131: 2128: 2127: 2121: 2119: 2115: 2108: 2101: 2097: 2093: 2088: 2083: 2082:circuit board 2077: 2074: 2070: 2066: 2061: 2058: 2053: 2051: 2047: 2043: 2038: 2036: 2032: 2028: 2018: 2017: 2012: 2010: 2006: 2002: 1998: 1993: 1991: 1987: 1983: 1979: 1975: 1974:graph product 1970: 1966: 1959: 1955: 1949: 1942: 1938: 1934: 1930: 1925: 1923: 1922:line segments 1919: 1915: 1911: 1909: 1905: 1901: 1897: 1893: 1889: 1885: 1881: 1879: 1875: 1868:Other results 1865: 1849: 1845: 1822: 1818: 1797: 1788: 1785: 1769: 1766: 1762: 1758: 1755: 1752: 1749: 1729: 1726: 1723: 1703: 1700: 1697: 1692: 1688: 1684: 1679: 1675: 1671: 1668: 1664: 1660: 1657: 1637: 1629: 1614: 1611: 1602: 1600: 1596: 1592: 1581: 1577: 1567: 1565: 1561: 1557: 1547: 1545: 1541: 1537: 1527: 1515: 1503: 1497: 1483: 1474: 1465: 1460: 1451: 1449: 1445: 1441: 1437: 1433: 1429: 1427: 1423: 1419: 1415: 1407: 1399: 1389: 1387: 1383: 1379: 1375: 1371: 1363: 1358: 1344: 1342: 1338: 1333: 1330: 1320: 1315: 1311: 1275:that meet at 1247: 1246: 1234: 1229: 1220: 1216: 1209: 1202: 1178: 1175: 1172: 1169: 1164: 1161: 1158: 1152: 1149: 1142: 1141: 1140: 1132: 1126: 1122: 1116: 1107: 1097: 1094: 1093:line segments 1090: 1085: 1083: 1079: 1075: 1074: 1069: 1057: 1051: 1046: 1036: 1032: 1028: 1024: 1018: 1014: 1002: 1000: 996: 992: 988: 984: 979: 975: 971: 963: 960:of a regular 959: 954: 936: 933: 930: 927: 924: 921: 914: 913: 912: 908: 903: 899: 898: 893: 890:In a finite, 888: 886: 883:, i. e., the 880: 876: 872: 865: 858: 854: 848: 844: 840: 827: 823: 819: 813: 807: 803: 799: 788: 781: 774: 770:given above, 769: 750: 747: 744: 741: 738: 735: 732: 725: 724: 723: 709: 705: 700: 681: 677: 674: 671: 668: 664: 661: 658: 654: 650: 647: 643: 640: 637: 634: 633: 632: 626: 619: 615: 608: 604: 599: 598:sparse graphs 589: 585: 580: 575: 571: 566: 561: 557: 552: 551: 550: 546: 534:vertices and 528: 526: 520: 516: 515: 505: 495: 489: 480: 475: 471: 467: 456: 451: 446: 442: 440: 432: 424: 415: 410: 409: 408: 406: 402: 390: 381: 372: 366: 362: 356: 348: 347:utility graph 340: 336: 328: 324: 320: 316: 312: 308: 304: 303: 302: 300: 296: 292: 288: 281: 274: 267: 263: 259: 255: 251: 247: 243: 229: 227: 223: 219: 214: 212: 209: 205: 201: 197: 193: 189: 184: 182: 178: 173: 171: 167: 162: 160: 156: 152: 148: 144: 140: 136: 132: 120: 117: 116:Utility graph 112: 103: 99: 94: 89: 83: 80: 75: 69: 64: 59: 55: 52: 51: 46: 38: 34: 33:Chordal graph 30: 19: 18:Planar graphs 3101: 3097: 3089:the original 3083: 3054:math/0610935 3044: 3040: 3026: 3003: 2997: 2961: 2957: 2938: 2934: 2904: 2900: 2895: 2856: 2849: 2815: 2809: 2791: 2781: 2755: 2751: 2734: 2699: 2695: 2689: 2662: 2658: 2648: 2615:math/0501269 2605: 2601: 2595: 2560: 2556: 2550: 2515: 2511: 2505: 2478: 2474: 2461: 2444: 2438: 2404: 2398: 2373: 2369: 2363: 2338: 2335:Algorithmica 2334: 2328: 2295: 2289: 2283: 2250: 2246: 2240: 2221: 2211: 2203: 2196:. Retrieved 2181: 2174: 2106: 2099: 2078: 2062: 2054: 2049: 2045: 2039: 2034: 2030: 2024: 2013: 2000: 1996: 1994: 1989: 1978:queue number 1971: 1964: 1958:branch-width 1947: 1940: 1932: 1926: 1912: 1903: 1895: 1882: 1871: 1789: 1786: 1650:vertices is 1625: 1608: 1575: 1573: 1553: 1533: 1530:Halin graphs 1513: 1501: 1498: 1481: 1472: 1463: 1457: 1430: 1420: 1413: 1405: 1397: 1390: 1373: 1369: 1367: 1341:homeomorphic 1334: 1331: 1313: 1309: 1243: 1237: 1214: 1207: 1200: 1196: 1130: 1121:circuit rank 1114: 1103: 1086: 1071: 1067: 1065: 1055: 1030: 1026: 1022: 1016: 1012: 1008: 967: 962:dodecahedron 906: 901: 895: 889: 878: 874: 870: 863: 856: 852: 846: 842: 838: 811: 805: 801: 797: 786: 779: 772: 765: 703: 702: 646:cycle spaces 624: 622:. The graph 617: 613: 606: 602: 595: 587: 583: 573: 569: 559: 555: 544: 529: 518: 513: 501: 487: 478: 466:Klaus Wagner 464: 454: 436: 422: 413: 398: 388: 379: 370: 352: 338: 326: 307:finite graph 284: 272: 265: 258:Kuratowski's 253: 215: 207: 203: 199: 185: 174: 163: 154: 150: 141:that can be 135:planar graph 134: 131:graph theory 128: 118: 101: 81: 37:Ternary plot 3079:Bader, D.A. 2964:: 570–590, 2941:: 271–283, 2481:: 164–171. 1591:subdivision 1564:NP-complete 1536:Halin graph 1444:clique-sums 1384:and to the 1337:isomorphism 1108:or density 1039:Coin graphs 991:3-connected 868:, yielding 581:Theorem 3. 553:Theorem 1. 403:deals with 355:subdivision 319:subdivision 159:plane curve 151:plane graph 3161:Categories 3104:(3): 374, 2917:References 2825:1907.04586 2801:2007.06455 2765:1904.04791 2744:Morin, Pat 2570:1507.06749 2525:1503.08002 2037:vertices. 2027:apex graph 2005:isomorphic 1980:, bounded 1628:asymptotic 1410:edges and 1378:line graph 1245:dual graph 1223:Dual graph 1139:vertices: 1082:Paul Koebe 688:Properties 659:algorithm; 538:edges and 504:algorithms 317:that is a 309:is planar 254:non-planar 200:planar map 56:Nonplanar 2978:123534907 2842:195874032 2704:CiteSeerX 2667:CiteSeerX 2563:: 60–70. 2320:122785359 2148:Planarity 2087:soldering 2057:map graph 1954:treewidth 1937:subgraphs 1878:colorable 1767:− 1759:× 1753:≈ 1727:≈ 1724:γ 1698:⋅ 1689:γ 1685:⋅ 1669:− 1661:⋅ 1544:treewidth 1176:− 1162:− 934:− 925:≤ 892:connected 736:− 708:connected 280:subgraphs 278:(bottom) 271:(top) or 208:unbounded 196:isthmuses 3071:40107560 2989:(2005), 2926:(1930), 2887:16345164 2726:22639942 2587:26987743 2542:43817300 2497:26796091 2275:14975826 2198:8 August 2124:See also 1906:-vertex 1730:27.22687 1716:, where 1617:Theorems 1073:osculate 315:subgraph 204:external 143:embedded 2640:3353537 2620:Bibcode 2431:2061507 2390:0742878 2355:2709057 2312:1010382 2255:Bibcode 1962:√ 1945:√ 1426:3-trees 1418:faces. 1205:, with 333:or the 321:of the 248:that a 153:, or a 145:in the 53:Planar 3069:  2976:  2885:  2875:  2840:  2724:  2706:  2669:  2638:  2585:  2540:  2495:  2429:  2419:  2388:  2353:  2318:  2310:  2273:  2228:  2189:  1984:, and 1576:convex 1504:> 1 1479:or of 1400:> 2 1319:sphere 902:sparse 897:simple 887:is 2. 405:minors 287:Polish 256:using 166:sphere 3067:S2CID 3049:arXiv 2994:(PDF) 2974:S2CID 2931:(PDF) 2883:S2CID 2861:(PDF) 2838:S2CID 2820:arXiv 2796:arXiv 2760:arXiv 2722:S2CID 2636:S2CID 2610:arXiv 2583:S2CID 2565:arXiv 2538:S2CID 2520:arXiv 2493:S2CID 2471:(PDF) 2351:S2CID 2316:S2CID 2291:Order 2271:S2CID 2167:Notes 2073:genus 2069:torus 1846:30.06 1593:of a 1558:is a 1380:of a 1321:. If 1312:** = 826:cycle 816:, by 439:minor 431:minor 429:as a 222:genus 218:genus 147:plane 139:graph 137:is a 2873:ISBN 2417:ISBN 2226:ISBN 2200:2012 2187:ISBN 1956:and 1927:The 1890:. A 1872:The 1837:and 1819:27.2 1756:0.43 1742:and 1626:The 1516:– 1) 1360:The 1233:dual 1199:0 ≤ 1104:The 1070:(or 1068:kiss 861:and 832:and 822:tree 784:and 678:The 651:The 485:and 285:The 211:face 133:, a 3106:doi 3059:doi 3008:doi 2966:doi 2962:114 2943:doi 2865:doi 2830:doi 2770:doi 2714:doi 2677:doi 2628:doi 2575:doi 2561:213 2530:doi 2483:doi 2479:201 2449:doi 2409:doi 2378:doi 2343:doi 2300:doi 2263:doi 2110:3,3 2105:or 2025:An 2011:). 1969:). 1920:of 1586:2,4 1554:An 1485:2,3 1416:– 4 1408:– 6 1287:or 1259:in 1217:= 1 1210:= 0 1203:≤ 1 1133:– 5 1117:– 1 1033:= 2 1015:≥ 3 909:≥ 3 881:= 2 866:= 1 859:+ 1 814:= 2 789:= 3 782:= 6 775:= 5 628:3,3 590:– 4 586:≤ 2 576:– 4 572:≤ 2 562:– 6 558:≤ 3 547:≥ 3 527:). 491:3,3 458:3,3 426:3,3 420:or 392:3,3 383:3,3 377:or 342:3,3 276:3,3 260:or 252:is 206:or 190:of 186:An 179:or 129:In 122:3,3 3163:: 3102:24 3100:, 3065:, 3057:, 3045:17 3043:, 3002:, 2996:, 2972:, 2939:15 2933:, 2905:23 2903:, 2881:. 2871:. 2836:, 2828:, 2818:, 2794:, 2768:, 2756:67 2754:, 2720:. 2712:. 2700:22 2698:. 2675:. 2663:93 2661:. 2634:. 2626:. 2618:. 2606:22 2604:. 2581:. 2573:. 2559:. 2536:. 2528:. 2516:32 2514:. 2491:. 2477:. 2473:. 2427:MR 2425:, 2415:, 2386:MR 2384:, 2372:, 2349:, 2337:, 2314:, 2308:MR 2306:, 2294:, 2269:, 2261:, 2251:42 2249:, 2220:. 2202:. 2063:A 2055:A 2040:A 1960:O( 1864:. 1784:. 1763:10 1534:A 1428:. 1327:G* 1293:G* 1289:G* 1269:G* 1265:G* 1249:G* 1029:+ 1025:– 956:A 937:6. 911:: 894:, 877:+ 873:– 855:= 845:+ 841:– 804:+ 800:– 777:, 751:2. 549:: 437:A 407:: 353:A 349:). 305:A 301:: 183:. 172:. 3130:. 3113:. 3108:: 3061:: 3051:: 3031:. 3017:. 3010:: 3004:8 2981:. 2968:: 2952:. 2945:: 2889:. 2867:: 2832:: 2822:: 2798:: 2772:: 2762:: 2728:. 2716:: 2683:. 2679:: 2642:. 2630:: 2622:: 2612:: 2589:. 2577:: 2567:: 2544:. 2532:: 2522:: 2499:. 2485:: 2456:. 2451:: 2411:: 2393:. 2380:: 2374:8 2358:. 2345:: 2339:3 2323:. 2302:: 2296:5 2278:. 2265:: 2257:: 2234:. 2107:K 2103:5 2100:K 2050:k 2046:k 2035:k 2031:k 2001:v 1997:v 1990:p 1965:n 1948:n 1941:n 1933:n 1904:n 1896:n 1850:n 1823:n 1798:n 1770:5 1750:g 1704:! 1701:n 1693:n 1680:2 1676:/ 1672:7 1665:n 1658:g 1638:n 1584:K 1524:k 1520:k 1514:k 1512:( 1508:k 1502:k 1494:G 1490:G 1482:K 1476:4 1473:K 1467:4 1464:K 1414:v 1412:2 1406:v 1404:3 1398:v 1393:v 1323:G 1314:G 1310:G 1305:G 1301:G 1297:G 1285:G 1281:e 1277:e 1273:G 1261:G 1257:e 1253:G 1240:G 1215:D 1208:D 1201:D 1179:5 1173:v 1170:2 1165:1 1159:f 1153:= 1150:D 1137:v 1131:v 1129:2 1115:f 1110:D 1059:5 1056:K 1031:f 1027:e 1023:v 1017:f 1013:e 1011:2 931:v 928:3 922:e 907:v 879:f 875:e 871:v 864:f 857:e 853:v 847:f 843:e 839:v 834:f 830:e 812:f 806:f 802:e 798:v 793:f 787:f 780:e 773:v 748:= 745:f 742:+ 739:e 733:v 720:f 716:e 712:v 669:; 648:; 625:K 620:) 618:v 616:( 614:O 609:) 607:v 605:( 603:O 592:. 588:v 584:f 578:. 574:v 570:e 564:; 560:v 556:e 545:v 540:f 536:e 532:v 521:) 519:n 517:( 514:O 508:n 488:K 482:5 479:K 455:K 433:. 423:K 417:5 414:K 389:K 380:K 374:5 371:K 345:( 339:K 330:5 327:K 273:K 269:5 266:K 119:K 105:4 102:K 85:5 82:K 39:. 20:)

Index

Planar graphs
Line graph § Strongly regular and perfect line graphs
Chordal graph
Ternary plot

Butterfly graph

Complete graph

Complete graph

Utility graph
graph theory
graph
embedded
plane
plane curve
sphere
stereographic projection
combinatorial maps
rotation systems
equivalence class
topologically equivalent
isthmuses
face
genus
genus
graph embedding

Proof without words

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑