Knowledge

Catalyst poisoning

Source đź“ť

900: 118:
poisoning of the catalyst. Conversely, if the reaction rate is fast compared to the rate of diffusion, a poisoned shell will form on the exterior layers of the catalyst, a situation known as "pore-mouth" poisoning, and the rate of catalytic reaction may become limited by the rate of diffusion through
927:
S and hydrocarbons of varying chain length. Common catalysts used are tungsten and molybdenum sulfide. Adding cobalt and nickel to either edges or partially incorporating them into the crystal lattice structure can improve the catalyst's efficiency. The synthesis of the catalyst creates a supported
910:
Usually, catalyst poisoning is undesirable as it leads to the wasting of expensive metals or their complexes. However, poisoning of catalysts can be used to improve selectivity of reactions. Poisoning can allow for selective intermediates to be isolated and desirable final products to be produced.
104:
to a catalyst's active sites. Poisoning decreases the number of active sites, and the average distance that a reactant molecule must diffuse through the pore structure before undergoing reaction increases as a result. As a result, poisoned sites can no longer accelerate the reaction with which the
47:
Organic functional groups and inorganic anions often have the ability to strongly adsorb to metal surfaces. Common catalyst poisons include carbon monoxide, halides, cyanides, sulfides, sulfites, phosphates, phosphites and organic molecules such as nitriles, nitro compounds, oximes, and
312: 648: 659: 555: 131:
If the catalyst and reaction conditions are indicative of low effectiveness, selective poisoning may be observed, where poisoning of only a small fraction of the catalyst's surface gives a disproportionately large drop in activity.
113:
include steps to remove potential poisons from the product stream. When the poisoning reaction rate is slow relative to the rate of diffusion, the poison will be evenly distributed throughout the catalyst and will result in
210: 439:
In this case, the catalyst effectiveness factors are considerably less than unity, and the effects of the portion of the poison adsorbed near the closed end of the pore are not as apparent as when
664: 434: 221: 957:. Lead alloys with the metals present in the catalyst, while lead oxides and halides coat the catalyst's surfaces, reducing the converter's ability to reduce NOx emissions. 48:
nitrogen-containing heterocycles. Agents vary their catalytic properties because of the nature of the transition metal. Lindlar catalysts are prepared by the reduction of
895:{\displaystyle {\begin{aligned}F&={\frac {v_{\rm {poisoned}}}{v_{\rm {unpoisoned}}}}\\&={\frac {\tanh\coth h_{\rm {T}}}{1+\alpha h_{\rm {T}}\tanh}}\end{aligned}}} 387:
This represents the "classical case" of nonselective poisoning where the fraction of the activity remaining is equal to the fraction of the unpoisoned surface remaining.
382: 566: 455: 653:
The fraction of the catalyst surface available for reaction can be obtained from the ratio of the poisoned reaction rate to the unpoisoned reaction rate:
1242:
Kishan, G; Coulier, L; Van Veen, J.A.R; Niemantsverdriet, J.W (2001). "Promoting Synergy in CoW Sulfide Hydrotreating Catalysts by Chelating Agents".
1207:
Cheng, F. Y; Chen, J; Gou, X. L (2006). "MoS2–Ni Nanocomposites as Catalysts for Hydrodesulfurization of Thiophene and Thiophene Derivatives".
23:
by a chemical compound. Poisoning refers specifically to chemical deactivation, rather than other mechanisms of catalyst degradation such as
919:
In the purification of petroleum products, the process of hydrodesulfurization is utilized. Thiols, such as thiophene, are reduced using H
156: 27:
or physical damage. Although usually undesirable, poisoning may be helpful when it results in improved catalyst selectivity (e.g.
92:
in order to lower the catalyst activity and thereby prevent over-reduction of the aldehyde product to the primary alcohol.
964:
using platinum catalysts, the fuels must be free of sulfur and carbon monoxide, unless a desulfurization system is used.
1171: 1150: 449:
The rate of diffusion of the reactant through the poisoned region is equal to the rate of reaction and is given by:
119:
the inactive shell. Homogenous and "pore-mouth" poisoning occurrences are most frequently observed when using a
403: 307:{\displaystyle F={\sqrt {1-\alpha }}\,\tanh \left(h_{\rm {T}}{\sqrt {1-\alpha }}\right)\coth h_{\rm {T}}} 355: 110: 215:
When the ratio of the reaction rates of the poisoned pore to the unpoisoned pore is considered:
32: 987: 967: 28: 24: 983: 1106:
Lindlar, H.; Dubuis, R. (1966). "Palladium Catalyst for Partial Reduction of Acetylenes".
643:{\displaystyle v=\eta \pi \langle r\rangle (1-\alpha )\langle L\rangle k_{1}''c_{\rm {c}}} 8: 1280: 938: 550:{\displaystyle {\vec {v}}_{\rm {diffusion}}=-\pi \langle r^{2}\rangle D{\vec {\nabla }}c} 61: 1275: 1224: 1055: 1013: 49: 1091: 1074: 1051: 1189: 1167: 1146: 1108: 950: 81: 1228: 1059: 1251: 1216: 1117: 1086: 1047: 1018: 954: 1008: 105:
catalyst was supposed to catalyze. Large scale production of substances such as
946: 942: 147: 77: 1184:
Satterfield, Charles N.; Sherwood, Thomas K. (1963). Hoelscher, Harold (ed.).
1269: 1121: 979: 120: 101: 1255: 1220: 975: 57: 982:, etc.) are poisoned by water and oxygen. This poisoning applies to both 115: 65: 36: 971: 1241: 1188:. Massachusetts Institute of Technology: Addison-Wesley. p. 94. 995: 961: 89: 73: 991: 69: 20: 106: 1193: 85: 205:{\displaystyle \eta ={\frac {\tanh h_{\rm {p}}}{h_{\rm {p}}}}} 1038:
Forzatti, P.; Lietti, L. (1999). "Catalyst Deactivation".
335:
The above equation simplifies depending on the value of
139:
is the effectiveness factor of the poisoned surface and
990:
for olefin polymerization. This requires the monomers (
1037: 31:). An important historic example was the poisoning of 928:
hybrid that prevents poisoning of the cobalt nuclei.
662: 569: 458: 406: 358: 224: 159: 560:
And the rate of reaction within a pore is given by:
1183: 328:is the Thiele modulus for the unpoisoned case, and 905: 894: 642: 549: 428: 376: 306: 204: 914: 332:is the fraction of the surface that is poisoned. 1267: 84:) is intentionally poisoned by the addition of 321:is the ratio of poisoned to unpoisoned pores, 1105: 1206: 612: 606: 588: 582: 526: 513: 42: 1164:Industrial catalysis: a practical approach 1072: 1137: 1135: 1133: 1131: 19:is the partial or total deactivation of a 1143:An Introduction To Chemical Engine Design 1090: 244: 100:Poisoning often involves compounds that 1128: 941:used on automobiles, the combustion of 1268: 1156: 1099: 126: 52:in a slurry of calcium carbonate (CaCO 1075:"Mechanisms of Catalyst Deactivation" 429:{\displaystyle F={\sqrt {1-\alpha }}} 95: 1145:, John Wiley & Sons Inc., 1977 13: 1186:The Role of Diffusion in Catalysis 876: 840: 817: 796: 745: 742: 739: 736: 733: 730: 727: 724: 721: 718: 706: 703: 700: 697: 694: 691: 688: 685: 634: 535: 498: 495: 492: 489: 486: 483: 480: 477: 474: 298: 262: 194: 181: 14: 1292: 931: 342:. When the surface is available, 906:Benefits of selective poisoning 1235: 1200: 1177: 1073:Bartholomew, Calvin H (2001). 1066: 1031: 915:Hydrodesulfurization catalysts 882: 867: 855: 852: 802: 787: 775: 772: 603: 591: 538: 466: 1: 1092:10.1016/S0926-860X(00)00843-7 1052:10.1016/S0920-5861(99)00074-7 1024: 56:) followed by poisoning with 1079:Applied Catalysis A: General 7: 1002: 397:is very large, it becomes: 377:{\displaystyle F=1-\alpha } 10: 1297: 945:produces elemental lead, 60:. In a related case, the 43:Poisoning of Pd catalysts 1122:10.15227/orgsyn.046.0089 998:, etc.) to be purified. 988:heterogeneous catalysts 968:Ziegler-Natta catalysts 150:for the poisoned case: 1256:10.1006/jcat.2001.3203 1221:10.1002/adma.200600912 970:for the production of 896: 644: 551: 430: 378: 308: 206: 984:homogeneous catalysts 897: 645: 552: 431: 379: 309: 207: 25:thermal decomposition 1244:Journal of Catalysis 939:catalytic converters 660: 567: 456: 404: 356: 222: 157: 33:catalytic converters 627: 127:Selective poisoning 111:Haber–Bosch process 62:Rosenmund reduction 1209:Advanced Materials 1166:, Wiley-VCH, 2006 1014:Reaction inhibitor 892: 890: 640: 615: 547: 426: 374: 304: 202: 50:palladium chloride 29:Lindlar's catalyst 17:Catalyst poisoning 1141:Charles G. Hill, 1109:Organic Syntheses 951:lead(II) chloride 886: 751: 541: 469: 424: 279: 242: 200: 96:Poisoning process 82:calcium carbonate 1288: 1260: 1259: 1239: 1233: 1232: 1204: 1198: 1197: 1181: 1175: 1160: 1154: 1139: 1126: 1124: 1103: 1097: 1096: 1094: 1070: 1064: 1063: 1046:(2–3): 165–181. 1035: 1019:Enzyme inhibitor 955:lead(II) bromide 901: 899: 898: 893: 891: 887: 885: 881: 880: 879: 845: 844: 843: 823: 822: 821: 820: 801: 800: 799: 764: 756: 752: 750: 749: 748: 711: 710: 709: 678: 649: 647: 646: 641: 639: 638: 637: 623: 556: 554: 553: 548: 543: 542: 534: 525: 524: 503: 502: 501: 471: 470: 462: 435: 433: 432: 427: 425: 414: 383: 381: 380: 375: 313: 311: 310: 305: 303: 302: 301: 285: 281: 280: 269: 267: 266: 265: 243: 232: 211: 209: 208: 203: 201: 199: 198: 197: 187: 186: 185: 184: 167: 1296: 1295: 1291: 1290: 1289: 1287: 1286: 1285: 1266: 1265: 1264: 1263: 1240: 1236: 1205: 1201: 1182: 1178: 1161: 1157: 1140: 1129: 1104: 1100: 1071: 1067: 1040:Catalysis Today 1036: 1032: 1027: 1009:Hydrogen purity 1005: 943:leaded gasoline 934: 926: 922: 917: 908: 889: 888: 875: 874: 870: 839: 838: 834: 824: 816: 815: 811: 795: 794: 790: 765: 763: 754: 753: 717: 716: 712: 684: 683: 679: 677: 670: 663: 661: 658: 657: 633: 632: 628: 619: 568: 565: 564: 533: 532: 520: 516: 473: 472: 461: 460: 459: 457: 454: 453: 445: 413: 405: 402: 401: 396: 357: 354: 353: 349:is negligible: 348: 341: 327: 297: 296: 292: 268: 261: 260: 256: 255: 251: 231: 223: 220: 219: 193: 192: 188: 180: 179: 175: 168: 166: 158: 155: 154: 144: 129: 102:chemically bond 98: 76:catalyst (over 55: 45: 12: 11: 5: 1294: 1284: 1283: 1278: 1262: 1261: 1234: 1199: 1176: 1155: 1127: 1098: 1085:(1–2): 17–60. 1065: 1029: 1028: 1026: 1023: 1022: 1021: 1016: 1011: 1004: 1001: 1000: 999: 965: 958: 947:lead(II) oxide 933: 932:Other examples 930: 924: 920: 916: 913: 907: 904: 903: 902: 884: 878: 873: 869: 866: 863: 860: 857: 854: 851: 848: 842: 837: 833: 830: 827: 819: 814: 810: 807: 804: 798: 793: 789: 786: 783: 780: 777: 774: 771: 768: 762: 759: 757: 755: 747: 744: 741: 738: 735: 732: 729: 726: 723: 720: 715: 708: 705: 702: 699: 696: 693: 690: 687: 682: 676: 673: 671: 669: 666: 665: 651: 650: 636: 631: 626: 622: 618: 614: 611: 608: 605: 602: 599: 596: 593: 590: 587: 584: 581: 578: 575: 572: 558: 557: 546: 540: 537: 531: 528: 523: 519: 515: 512: 509: 506: 500: 497: 494: 491: 488: 485: 482: 479: 476: 468: 465: 443: 437: 436: 423: 420: 417: 412: 409: 394: 385: 384: 373: 370: 367: 364: 361: 346: 339: 325: 315: 314: 300: 295: 291: 288: 284: 278: 275: 272: 264: 259: 254: 250: 247: 241: 238: 235: 230: 227: 213: 212: 196: 191: 183: 178: 174: 171: 165: 162: 148:Thiele modulus 142: 128: 125: 97: 94: 78:barium sulfate 53: 44: 41: 9: 6: 4: 3: 2: 1293: 1282: 1279: 1277: 1274: 1273: 1271: 1257: 1253: 1249: 1245: 1238: 1230: 1226: 1222: 1218: 1214: 1210: 1203: 1195: 1191: 1187: 1180: 1173: 1172:3-527-31144-0 1169: 1165: 1159: 1152: 1151:0-471-39609-5 1148: 1144: 1138: 1136: 1134: 1132: 1123: 1119: 1115: 1111: 1110: 1102: 1093: 1088: 1084: 1080: 1076: 1069: 1061: 1057: 1053: 1049: 1045: 1041: 1034: 1030: 1020: 1017: 1015: 1012: 1010: 1007: 1006: 997: 993: 989: 985: 981: 980:polypropylene 977: 973: 969: 966: 963: 959: 956: 952: 948: 944: 940: 936: 935: 929: 912: 871: 864: 861: 858: 849: 846: 835: 831: 828: 825: 812: 808: 805: 791: 784: 781: 778: 769: 766: 760: 758: 713: 680: 674: 672: 667: 656: 655: 654: 629: 624: 620: 616: 609: 600: 597: 594: 585: 579: 576: 573: 570: 563: 562: 561: 544: 529: 521: 517: 510: 507: 504: 463: 452: 451: 450: 447: 442: 421: 418: 415: 410: 407: 400: 399: 398: 393: 388: 371: 368: 365: 362: 359: 352: 351: 350: 345: 338: 333: 331: 324: 320: 293: 289: 286: 282: 276: 273: 270: 257: 252: 248: 245: 239: 236: 233: 228: 225: 218: 217: 216: 189: 176: 172: 169: 163: 160: 153: 152: 151: 149: 145: 138: 133: 124: 122: 121:porous medium 117: 112: 108: 103: 93: 91: 87: 83: 79: 75: 71: 67: 63: 59: 51: 40: 38: 34: 30: 26: 22: 18: 1247: 1243: 1237: 1215:(19): 2561. 1212: 1208: 1202: 1185: 1179: 1163: 1162:Jens Hagen, 1158: 1142: 1113: 1107: 1101: 1082: 1078: 1068: 1043: 1039: 1033: 976:polyethylene 923:to produce H 918: 909: 652: 559: 448: 440: 438: 391: 389: 386: 343: 336: 334: 329: 322: 318: 316: 214: 140: 136: 134: 130: 99: 66:acyl halides 58:lead acetate 46: 16: 15: 1250:: 194–196. 972:polyolefins 116:homogeneous 37:leaded fuel 1281:Fuel cells 1270:Categories 1174:, page 197 1153:, page 464 1025:References 962:fuel cells 446:is small. 123:catalyst. 1276:Catalysis 996:propylene 865:α 862:− 850:⁡ 832:α 809:⁡ 785:α 782:− 770:⁡ 613:⟩ 607:⟨ 601:α 598:− 589:⟩ 583:⟨ 580:π 577:η 539:→ 536:∇ 527:⟩ 514:⟨ 511:π 508:− 467:→ 422:α 419:− 372:α 369:− 290:⁡ 277:α 274:− 249:⁡ 240:α 237:− 173:⁡ 161:η 90:quinoline 74:palladium 70:aldehydes 1229:98052306 1194:63-16570 1060:19737702 1003:See also 992:ethylene 625:″ 21:catalyst 146:is the 109:in the 107:ammonia 1227:  1192:  1170:  1149:  1116:: 89. 1058:  974:(e.g. 953:, and 317:where 86:sulfur 72:, the 1225:S2CID 1056:S2CID 390:When 1190:LCCN 1168:ISBN 1147:ISBN 986:and 847:tanh 806:coth 767:tanh 287:coth 246:tanh 170:tanh 1252:doi 1248:200 1217:doi 1118:doi 1087:doi 1083:212 1048:doi 960:In 937:In 135:If 88:or 80:or 68:to 64:of 35:by 1272:: 1246:. 1223:. 1213:18 1211:. 1130:^ 1114:46 1112:. 1081:. 1077:. 1054:. 1044:52 1042:. 994:, 978:, 949:, 39:. 1258:. 1254:: 1231:. 1219:: 1196:. 1125:. 1120:: 1095:. 1089:: 1062:. 1050:: 925:2 921:2 883:] 877:T 872:h 868:) 859:1 856:( 853:[ 841:T 836:h 829:+ 826:1 818:T 813:h 803:] 797:T 792:h 788:) 779:1 776:( 773:[ 761:= 746:d 743:e 740:n 737:o 734:s 731:i 728:o 725:p 722:n 719:u 714:v 707:d 704:e 701:n 698:o 695:s 692:i 689:o 686:p 681:v 675:= 668:F 635:c 630:c 621:1 617:k 610:L 604:) 595:1 592:( 586:r 574:= 571:v 545:c 530:D 522:2 518:r 505:= 499:n 496:o 493:i 490:s 487:u 484:f 481:f 478:i 475:d 464:v 444:T 441:h 416:1 411:= 408:F 395:T 392:h 366:1 363:= 360:F 347:T 344:h 340:T 337:h 330:α 326:T 323:h 319:F 299:T 294:h 283:) 271:1 263:T 258:h 253:( 234:1 229:= 226:F 195:p 190:h 182:p 177:h 164:= 143:p 141:h 137:η 54:3

Index

catalyst
thermal decomposition
Lindlar's catalyst
catalytic converters
leaded fuel
palladium chloride
lead acetate
Rosenmund reduction
acyl halides
aldehydes
palladium
barium sulfate
calcium carbonate
sulfur
quinoline
chemically bond
ammonia
Haber–Bosch process
homogeneous
porous medium
Thiele modulus
catalytic converters
leaded gasoline
lead(II) oxide
lead(II) chloride
lead(II) bromide
fuel cells
Ziegler-Natta catalysts
polyolefins
polyethylene

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑