Knowledge

Ziegler–Natta catalyst

Source 📝

311: 170:. Ziegler–Natta catalysts have been used in the commercial manufacture of various polyolefins since 1956. As of 2010, the total volume of plastics, elastomers, and rubbers produced from alkenes with these and related (especially Phillips) catalysts worldwide exceeds 100 million tonnes. Together, these polymers represent the largest-volume commodity plastics as well as the largest-volume commodity chemicals in the world. 639: 477: 777:
Polymerization reactions of alkenes with solid titanium-based catalysts occur at special titanium centers located on the exterior of the catalyst crystallites. Some titanium atoms in these crystallites react with organoaluminum cocatalysts with the formation of Ti–C bonds. The polymerization reaction
338:
groups in the figure. In the isotactic polymers, all stereogenic centers CHR share the same configuration. The stereogenic centers in syndiotactic polymers alternate their relative configuration. A polymer that lacks any regular arrangement in the position of its alkyl substituents (R) is called
280:) was discovered to greatly enhance the activity of the titanium-based catalysts. These catalysts were so active that the removal of unwanted amorphous polymer and residual titanium from the product (so-called deashing) was no longer necessary, enabling the commercialization of 339:
atactic. Both isotactic and syndiotactic polypropylene are crystalline, whereas atactic polypropylene, which can also be prepared with special Ziegler–Natta catalysts, is amorphous. The stereoregularity of the polymer is determined by the catalyst used to prepare it.
650:
describes the growth of stereospecific polymers. This mechanism states that the polymer grows through alkene coordination at a vacant site at the titanium atom, which is followed by insertion of the C=C bond into the Ti−C bond at the active center.
814:
The two chain termination reactions occur quite rarely in Ziegler–Natta catalysis and the formed polymers have a too high molecular weight to be of commercial use. To reduce the molecular weight, hydrogen is added to the polymerization reaction:
461:. The modifiers react both with inorganic ingredients of the solid catalysts as well as with organoaluminum cocatalysts. These catalysts polymerize propylene and other 1-alkenes to highly crystalline isotactic polymers. 569:
Ziegler–Natta catalysts of the third class, non-metallocene catalysts, use a variety of complexes of various metals, ranging from scandium to lanthanoid and actinoid metals, and a large variety of ligands containing
261:. In that process, the particle bed in the reactor was either not fluidized or not fully fluidized. In 1968, the first gas-phase fluidized-bed polymerization process, the Unipol process, was commercialized by 1002:
Nowlin, T. E.; Mink, R. I.; Kissin, Y. V. (2010). "Supported Magnesium/Titanium-Based Ziegler Catalysts for Production of Polyethylene". In Hoff, Ray; Mathers, Robert T. (eds.).
635:, which is ion-paired to some derivative(s) of MAO. A polymer molecule grows by numerous insertion reactions of C=C bonds of 1-alkene molecules into the Zr–C bond in the ion: 177:
discovered that chromium catalysts are highly effective for the low-temperature polymerization of ethylene, which launched major industrial technologies culminating in the
1171:
Alt, H. G.; Koppl, A. (2000). "Effect of the Nature of Metallocene Complexes of Group IV Metals on Their Performance in Catalytic Ethylene and Propylene Polymerization".
1534: 303:
and other 1-alkenes. He discovered that these polymers are crystalline materials and ascribed their crystallinity to a special feature of the polymer structure called
609:
The structure of active centers in Ziegler–Natta catalysts is well established only for metallocene catalysts. An idealized and simplified metallocene complex Cp
646:
Many thousands of alkene insertion reactions occur at each active center resulting in the formation of long polymer chains attached to the center. The
405:. A third component of most catalysts is a carrier, a material that determines the size and the shape of catalyst particles. The preferred carrier is 322:
The concept of stereoregularity in polymer chains is illustrated in the picture on the left with polypropylene. Stereoregular poly(1-alkene) can be
1273:
Britovsek, G. J. P.; Gibson, V. C.; Wass, D. F. (1999). "The Search for New-Generation Olefin Polymerization Catalysts: Life beyond Metallocenes".
1234:
Corradini, P.; Guerra, G.; Cavallo, L. (2004). "Do New Century Catalysts Unravel the Mechanism of Stereocontrol of Old Ziegler–Natta Catalysts?".
659:
On occasion, the polymer chain is disengaged from the active centers in the chain termination reaction. Several pathways exist for termination:
617:
represents a typical precatalyst. It is unreactive toward alkenes. The dihalide reacts with MAO and is transformed into a metallocenium ion Cp
1287: 469:
A second class of Ziegler–Natta catalysts are soluble in the reaction medium. Traditionally such homogeneous catalysts were derived from
1324: 1367: 381:
The overlap between these two subclasses is relatively small because the requirements to the respective catalysts differ widely.
847:
Another termination process involves the action of protic (acidic) reagents, which can be intentionally added or adventitious.
17: 597:
Most Ziegler–Natta catalysts and all the alkylaluminium cocatalysts are unstable in air, and the alkylaluminium compounds are
1045: 435:
All modern supported Ziegler–Natta catalysts designed for polymerization of propylene and higher 1-alkenes are prepared with
1382: 1474: 1155: 1019: 968: 1509: 1504: 1469: 1630: 1519: 1514: 1499: 281: 555:, metallocene catalysts can produce either isotactic or syndiotactic polymers of propylene and other 1-alkenes. 1524: 1402: 1107:"Development of Group Iv Molecular Catalysts for High Temperature Ethylene-Α-Olefin Copolymerization Reactions" 935: 725:
Another type of chain termination reaction called a β-hydride elimination reaction also occurs periodically:
473:, but the structures of active catalysts have been significantly broadened to include nitrogen-based ligands. 1645: 1317: 417:
are packed into the silica pores. All these catalysts are activated with organoaluminum compounds such as
1575: 647: 1640: 1392: 564: 413:
with a diameter of 30–40 mm. During the catalyst synthesis, both the titanium compounds and MgCl
190: 1655: 1650: 1464: 1428: 1333: 1310: 155: 62:
based on titanium compounds are used in polymerization reactions in combination with cocatalysts,
353: 54:). Two broad classes of Ziegler–Natta catalysts are employed, distinguished by their solubility: 314:
Short segments of polypropylene, showing examples of isotactic (above) and syndiotactic (below)
1609: 1494: 436: 385: 182: 265:
to produce polyethylene. In the mid-1980s, the Unipol process was further extended to produce
1529: 525: 927: 384:
Commercial catalysts are supported by being bound to a solid with a high surface area. Both
1484: 1347: 918:
Giuliano Cecchin; Giampiero Morini; Fabrizio Piemontesi (2003). "Ziegler–Natta Catalysts".
392: 362:-based catalysts) for alkene polymerization can be roughly subdivided into two subclasses: 206: 287:
The fluidized-bed process remains one of the two most widely used processes for producing
205:
Cl) gave comparable activities for the production of polyethylene. Natta used crystalline
8: 1604: 1423: 1397: 1352: 449:
as a support. Another component of all such catalysts is an organic modifier, usually an
1635: 1418: 1372: 601:. The catalysts, therefore, are always prepared and handled under an inert atmosphere. 443: 399: 273: 174: 1599: 1570: 1560: 1489: 1291: 1275: 1252: 1189: 1151: 1128: 1041: 1015: 964: 931: 874: 494: 418: 213: 178: 101: 67: 299:
Natta first used polymerization catalysts based on titanium chlorides to polymerize
1565: 1459: 1362: 1357: 1283: 1244: 1181: 1118: 1007: 956: 923: 917: 549: 548:. Depending on the type of their cyclopentadienyl ligands, for example by using an 529: 506: 410: 304: 100:. They are usually used in combination with a different organoaluminum cocatalyst, 86: 59: 594:(S). The complexes are activated using MAO, as is done for metallocene catalysts. 1438: 1433: 1236: 1123: 1106: 533: 366:
catalysts suitable for homopolymerization of ethylene and for ethylene/1-alkene
1555: 1454: 1377: 254: 63: 1035: 1011: 1624: 1550: 1288:
10.1002/(SICI)1521-3773(19990215)38:4<428::AID-ANIE428>3.0.CO;2-3
899: 882: 861: 499:
These catalysts are metallocenes together with a cocatalyst, typically MAO, −
454: 288: 266: 262: 258: 231: 1037:
Polypropylene Production via Gas Phase Process, Technology Economics Program
850: 370:
reactions leading to copolymers with a low 1-alkene content, 2–4 mol% (
1302: 1295: 1256: 1193: 1132: 887: 869: 856: 481: 327: 163: 159: 109: 51: 39: 35: 960: 310: 284:(LLDPE) resins and allowed the development of fully amorphous copolymers. 1479: 470: 406: 125: 105: 1173: 778:
of alkenes occurs similarly to the reactions in metallocene catalysts:
598: 587: 398:
give active catalysts. The support in the majority of the catalysts is
1248: 1185: 1591: 1387: 1104: 517: 367: 323: 315: 300: 243: 228: 167: 93: 579: 359: 358:
The first and dominant class of titanium-based catalysts (and some
239: 235: 162:, for his discovery of first titanium-based catalysts, and Italian 89: 47: 43: 1148:
Organometallics 1, Complexes with Transition Metal-Carbon σ-Bonds
638: 521: 113: 104:(or methylalumoxane, MAO). These catalysts traditionally contain 97: 1264:
Takahashi, T. (2001). "Titanium(IV) Chloride-Triethylaluminum".
242:
and Ziegler–Natta catalysts refer to systems for conversions of
1227:
Alkene Polymerization Reactions with Transition Metal Catalysts
1092:
Alkene Polymerization Reactions with Transition Metal Catalysts
591: 571: 121: 642:
Simplified mechanism for Zr-catalyzed ethylene polymerization.
476: 181:. A few years later, Ziegler discovered that a combination of 458: 450: 371: 331: 1006:(Online ed.). John Wiley & Sons. pp. 131–155. 604: 505:−. The idealized metallocene catalysts have the composition 377:
catalysts suitable for the synthesis of isotactic 1-alkenes.
334:
groups in polymer chains consisting of units −−, like the CH
1028: 893: 250: 1535:
Arene complexes of univalent gallium, indium, and thallium
989:
Stereoregular Polymers and Stereospecific Polymerizations
851:
Commercial polymers prepared with Ziegler–Natta catalysts
166:, for using them to prepare stereoregular polymers from 120:
Ziegler–Natta catalysts are used to polymerize terminal
85:
Homogeneous catalysts usually based on complexes of the
1233: 1150:. New York: Oxford University Press. pp. 69–71. 1004:
Handbook of Transition Metal Polymerization Catalysts
953:
Handbook of Transition Metal Polymerization Catalysts
528:. Typically, the organic ligands are derivatives of 294: 1272: 1206: 1105:Klosin, J.; Fontaine, P. P.; Figueroa, R. (2015). 1070:. New York: Wiley-InterScience. pp. 136–139. 1622: 1001: 82:. This class of catalyst dominates the industry. 920:Kirk-Othmer Encyclopedia of Chemical Technology 27:Catalyst for synthesis of polymers of 1-alkenes 1266:Encyclopedia of Reagents for Organic Synthesis 982: 980: 1318: 330:depending on the relative orientation of the 1332: 986: 951:Hoff, Ray; Mathers, Robert T., eds. (2010). 558: 536:(Cp) rings are linked with bridges, like −CH 253:developed a gas-phase, mechanically-stirred 977: 950: 1419:Oxidative addition / reductive elimination 1325: 1311: 955:(Online ed.). John Wiley & Sons. 347: 1263: 1211:. New York: VCH Verlag. pp. 423–425. 1122: 605:Mechanism of Ziegler–Natta polymerization 480:A post-metallocene catalyst developed at 1368:Polyhedral skeletal electron pair theory 1170: 1145: 654: 637: 488: 475: 464: 309: 1209:Organometallics: a Concise Introduction 944: 928:10.1002/0471238961.2609050703050303.a01 14: 1623: 1224: 1207:Elschenbroich, C.; Salzer, A. (1992). 1089: 1085: 1083: 1081: 1079: 1077: 1061: 1059: 1057: 1306: 1098: 987:Natta, G.; Danusso, F., eds. (1967). 234:. Usually Ziegler catalysts refer to 1475:Transition metal fullerene complexes 1065: 866:Copolymers of ethylene and 1-alkenes 1090:Kissin, Y. V. (2008). "Chapter 4". 1074: 1054: 24: 1510:Transition metal carbyne complexes 1505:Transition metal carbene complexes 1470:Transition metal indenyl complexes 1218: 238:-based systems for conversions of 25: 1667: 1520:Transition metal alkyne complexes 1515:Transition metal alkene complexes 295:Stereochemistry of poly-1-alkenes 1525:Transition-metal allyl complexes 1068:Organotransition Metal Chemistry 1500:Transition metal acyl complexes 1200: 1164: 282:linear low-density polyethylene 124:(ethylene and alkenes with the 1139: 995: 911: 892:Amorphous poly-alpha-olefins ( 173:In the early 1950s workers at 13: 1: 1111:Accounts of Chemical Research 905: 532:. In some complexes, the two 442:as the active ingredient and 1124:10.1021/acs.accounts.5b00065 7: 1576:Shell higher olefin process 1383:Dewar–Chatt–Duncanson model 112:oxygen- and nitrogen-based 10: 1672: 1465:Cyclopentadienyl complexes 1429:β-hydride elimination 1403:Metal–ligand multiple bond 562: 492: 351: 342: 149: 1589: 1543: 1530:Transition metal carbides 1447: 1411: 1340: 1012:10.1002/9780470504437.ch6 565:Post-metallocene catalyst 559:Non-metallocene catalysts 191:diethylaluminium chloride 46:used in the synthesis of 1334:Organometallic chemistry 1268:. John Wiley & Sons. 156:Nobel Prize in Chemistry 1495:Half sandwich compounds 648:Cossee–Arlman mechanism 354:Heterogeneous catalysis 348:Heterogeneous catalysts 1631:Coordination complexes 1610:Bioinorganic chemistry 1229:. Amsterdam: Elsevier. 1225:Kissin, Y. V. (2008). 1094:. Amsterdam: Elsevier. 643: 485: 319: 183:titanium tetrachloride 158:was awarded to German 32:Ziegler–Natta catalyst 18:Ziegler-Natta catalyst 1581:Ziegler–Natta process 1485:Metal tetranorbornyls 1276:Angew. Chem. Int. Ed. 1146:Bochmann, M. (1994). 961:10.1002/9780470504437 655:Termination processes 641: 526:titanocene dichloride 489:Metallocene catalysts 479: 465:Homogeneous catalysts 313: 1646:Industrial processes 1590:Related branches of 1348:Crystal field theory 1066:Hill, A. F. (2002). 249:Also, in the 1960s, 212:in combination with 1605:Inorganic chemistry 1424:Migratory insertion 1398:Agostic interaction 1353:Ligand field theory 257:process for making 60:supported catalysts 1490:Sandwich compounds 1448:Types of compounds 1373:Isolobal principle 1040:. Intratec. 2012. 644: 486: 320: 274:magnesium chloride 175:Phillips Petroleum 66:compounds such as 1641:Polymer chemistry 1618: 1617: 1600:Organic chemistry 1571:Olefin metathesis 1561:Grignard reaction 1460:Grignard reagents 1249:10.1021/ar030165n 1186:10.1021/cr9804700 1047:978-0-615-66694-5 991:. Pergamon Press. 875:Polymethylpentene 792:−CHR–polymer + CH 495:Kaminsky catalyst 227:to produce first 179:Phillips catalyst 108:but also feature 102:methylaluminoxane 68:triethylaluminium 16:(Redirected from 1663: 1566:Monsanto process 1363:d electron count 1358:18-electron rule 1327: 1320: 1313: 1304: 1303: 1299: 1269: 1260: 1230: 1213: 1212: 1204: 1198: 1197: 1180:(4): 1205–1222. 1168: 1162: 1161: 1143: 1137: 1136: 1126: 1117:(7): 2004–2016. 1102: 1096: 1095: 1087: 1072: 1071: 1063: 1052: 1051: 1032: 1026: 1025: 999: 993: 992: 984: 975: 974: 948: 942: 941: 915: 879:Polycycloolefins 829:−CHR–polymer + H 768: 767: 766: 763: 742: 741: 740: 737: 708: 707: 706: 703: 676: 675: 674: 671: 630: 629: 628: 625: 530:cyclopentadienyl 411:amorphous silica 368:copolymerization 305:stereoregularity 21: 1671: 1670: 1666: 1665: 1664: 1662: 1661: 1660: 1656:1953 in Germany 1651:1953 in science 1621: 1620: 1619: 1614: 1585: 1539: 1455:Gilman reagents 1443: 1439:Carbometalation 1434:Transmetalation 1407: 1336: 1331: 1237:Acc. Chem. Res. 1221: 1219:Further reading 1216: 1205: 1201: 1169: 1165: 1158: 1144: 1140: 1103: 1099: 1088: 1075: 1064: 1055: 1048: 1034: 1033: 1029: 1022: 1000: 996: 985: 978: 971: 949: 945: 938: 916: 912: 908: 853: 842: 838: 832: 828: 824: 809: 805: 801: 795: 791: 787: 772: 764: 761: 760: 759: 758: 754: 750: 746: 738: 735: 734: 733: 732: 720: 716: 712: 704: 701: 700: 699: 698: 694: 690: 686: 680: 672: 669: 668: 667: 666: 657: 634: 626: 623: 622: 621: 620: 616: 612: 607: 585: 577: 567: 561: 547: 543: 539: 534:cyclopentadiene 515: 511: 504: 497: 491: 467: 455:aromatic diacid 447: 440: 430: 426: 422: 416: 403: 396: 389: 356: 350: 345: 337: 297: 279: 225: 221: 217: 210: 204: 200: 196: 188: 152: 144: 138: 81: 77: 73: 28: 23: 22: 15: 12: 11: 5: 1669: 1659: 1658: 1653: 1648: 1643: 1638: 1633: 1616: 1615: 1613: 1612: 1607: 1602: 1596: 1594: 1587: 1586: 1584: 1583: 1578: 1573: 1568: 1563: 1558: 1556:Cativa process 1553: 1547: 1545: 1541: 1540: 1538: 1537: 1532: 1527: 1522: 1517: 1512: 1507: 1502: 1497: 1492: 1487: 1482: 1477: 1472: 1467: 1462: 1457: 1451: 1449: 1445: 1444: 1442: 1441: 1436: 1431: 1426: 1421: 1415: 1413: 1409: 1408: 1406: 1405: 1400: 1395: 1390: 1385: 1380: 1375: 1370: 1365: 1360: 1355: 1350: 1344: 1342: 1338: 1337: 1330: 1329: 1322: 1315: 1307: 1301: 1300: 1282:(4): 428–447. 1270: 1261: 1243:(4): 231–241. 1231: 1220: 1217: 1215: 1214: 1199: 1163: 1156: 1138: 1097: 1073: 1053: 1046: 1027: 1020: 994: 976: 969: 943: 936: 909: 907: 904: 903: 902: 897: 890: 885: 880: 877: 872: 867: 864: 859: 852: 849: 845: 844: 840: 834: 830: 826: 820: 812: 811: 807: 803: 797: 793: 789: 783: 775: 774: 770: 756: 752: 748: 744: 730: 723: 722: 718: 714: 710: 696: 692: 688: 682: 678: 664: 656: 653: 632: 618: 614: 610: 606: 603: 583: 575: 563:Main article: 560: 557: 545: 541: 537: 513: 509: 500: 493:Main article: 490: 487: 466: 463: 445: 438: 428: 424: 420: 414: 401: 394: 387: 379: 378: 375: 352:Main article: 349: 346: 344: 341: 335: 296: 293: 277: 272:In the 1970s, 255:polymerization 223: 219: 215: 208: 202: 198: 194: 186: 151: 148: 147: 146: 140: 136: 128:double bond): 118: 117: 87:group 4 metals 83: 79: 75: 71: 64:organoaluminum 58:Heterogeneous 50:of 1-alkenes ( 34:, named after 26: 9: 6: 4: 3: 2: 1668: 1657: 1654: 1652: 1649: 1647: 1644: 1642: 1639: 1637: 1634: 1632: 1629: 1628: 1626: 1611: 1608: 1606: 1603: 1601: 1598: 1597: 1595: 1593: 1588: 1582: 1579: 1577: 1574: 1572: 1569: 1567: 1564: 1562: 1559: 1557: 1554: 1552: 1551:Carbonylation 1549: 1548: 1546: 1542: 1536: 1533: 1531: 1528: 1526: 1523: 1521: 1518: 1516: 1513: 1511: 1508: 1506: 1503: 1501: 1498: 1496: 1493: 1491: 1488: 1486: 1483: 1481: 1478: 1476: 1473: 1471: 1468: 1466: 1463: 1461: 1458: 1456: 1453: 1452: 1450: 1446: 1440: 1437: 1435: 1432: 1430: 1427: 1425: 1422: 1420: 1417: 1416: 1414: 1410: 1404: 1401: 1399: 1396: 1394: 1391: 1389: 1386: 1384: 1381: 1379: 1378:π backbonding 1376: 1374: 1371: 1369: 1366: 1364: 1361: 1359: 1356: 1354: 1351: 1349: 1346: 1345: 1343: 1339: 1335: 1328: 1323: 1321: 1316: 1314: 1309: 1308: 1305: 1297: 1293: 1289: 1285: 1281: 1278: 1277: 1271: 1267: 1262: 1258: 1254: 1250: 1246: 1242: 1239: 1238: 1232: 1228: 1223: 1222: 1210: 1203: 1195: 1191: 1187: 1183: 1179: 1176: 1175: 1167: 1159: 1157:9780198558132 1153: 1149: 1142: 1134: 1130: 1125: 1120: 1116: 1112: 1108: 1101: 1093: 1086: 1084: 1082: 1080: 1078: 1069: 1062: 1060: 1058: 1049: 1043: 1039: 1038: 1031: 1023: 1021:9780470504437 1017: 1013: 1009: 1005: 998: 990: 983: 981: 972: 970:9780470504437 966: 962: 958: 954: 947: 939: 933: 929: 925: 922:. Wiley-VCH. 921: 914: 910: 901: 900:Polyacetylene 898: 895: 891: 889: 886: 884: 883:Polybutadiene 881: 878: 876: 873: 871: 868: 865: 863: 862:Polypropylene 860: 858: 855: 854: 848: 837: 823: 818: 817: 816: 800: 786: 781: 780: 779: 728: 727: 726: 685: 662: 661: 660: 652: 649: 640: 636: 602: 600: 595: 593: 589: 581: 573: 566: 556: 554: 552: 544:− or >SiPh 535: 531: 527: 523: 519: 508: 503: 496: 483: 478: 474: 472: 462: 460: 456: 452: 448: 441: 433: 431: 412: 408: 404: 397: 390: 382: 376: 373: 369: 365: 364: 363: 361: 355: 340: 333: 329: 325: 317: 312: 308: 306: 302: 292: 290: 289:polypropylene 285: 283: 275: 270: 268: 267:polypropylene 264: 263:Union Carbide 260: 259:polypropylene 256: 252: 247: 245: 241: 237: 233: 232:polypropylene 230: 226: 211: 192: 184: 180: 176: 171: 169: 165: 161: 157: 143: 134: 131: 130: 129: 127: 123: 115: 111: 107: 103: 99: 95: 91: 88: 84: 69: 65: 61: 57: 56: 55: 53: 52:alpha-olefins 49: 45: 41: 37: 33: 19: 1580: 1544:Applications 1480:Metallocenes 1279: 1274: 1265: 1240: 1235: 1226: 1208: 1202: 1177: 1172: 1166: 1147: 1141: 1114: 1110: 1100: 1091: 1067: 1036: 1030: 1003: 997: 988: 952: 946: 919: 913: 888:Polyisoprene 870:Polybutene-1 857:Polyethylene 846: 843:−CHR–polymer 835: 821: 813: 810:−CHR–polymer 798: 784: 776: 724: 683: 658: 645: 608: 596: 568: 550: 501: 498: 482:Dow Chemical 471:metallocenes 468: 434: 383: 380: 374:resins), and 357: 328:syndiotactic 321: 298: 286: 271: 248: 172: 164:Giulio Natta 160:Karl Ziegler 153: 141: 132: 119: 110:multidentate 106:metallocenes 40:Giulio Natta 36:Karl Ziegler 31: 29: 1393:spin states 773:=CR–polymer 721:=CR–polymer 409:spheres of 407:microporous 1625:Categories 1341:Principles 1174:Chem. Rev. 937:0471238961 906:References 599:pyrophoric 588:phosphorus 524:) such as 1636:Catalysts 1592:chemistry 1412:Reactions 1388:Hapticity 839:Ti−H + CH 695:=CHR → Cp 590:(P), and 516:(M = Ti, 324:isotactic 316:tacticity 301:propylene 244:propylene 229:isotactic 168:propylene 154:The 1963 94:zirconium 1296:29711786 1257:15096060 1194:11749264 1133:26151395 796:=CHR → L 580:nitrogen 360:vanadium 240:ethylene 236:titanium 139:=CHR → − 135: CH 90:titanium 48:polymers 44:catalyst 806:-CHR–CH 769:−H + CH 553:-bridge 459:diether 343:Classes 150:History 122:alkenes 114:ligands 98:hafnium 42:, is a 1294:  1255:  1192:  1154:  1131:  1044:  1018:  967:  934:  717:R + CH 592:sulfur 572:oxygen 453:of an 207:α-TiCl 189:) and 70:, Al(C 825:Ti–CH 802:Ti–CH 788:Ti–CH 747:−CHR) 681:−CHR) 457:or a 451:ester 372:LLDPE 332:alkyl 276:(MgCl 193:(Al(C 185:(TiCl 126:vinyl 1292:PMID 1253:PMID 1190:PMID 1152:ISBN 1129:PMID 1042:ISBN 1016:ISBN 965:ISBN 932:ISBN 894:APAO 755:→ Cp 743:−(CH 691:+ CH 677:−(CH 613:ZrCl 551:ansa 444:MgCl 437:TiCl 419:Al(C 400:MgCl 393:TiCl 391:and 386:TiCl 251:BASF 214:Al(C 38:and 1284:doi 1245:doi 1182:doi 1178:100 1119:doi 1008:doi 957:doi 924:doi 833:→ L 751:−CH 713:−CH 709:−CH 687:−CH 586:), 578:), 540:−CH 512:MCl 326:or 307:. 246:. 96:or 1627:: 1290:. 1280:38 1251:. 1241:37 1188:. 1127:. 1115:48 1113:. 1109:. 1076:^ 1056:^ 1014:. 979:^ 963:. 930:. 765:Zr 739:Zr 729:Cp 705:Zr 673:Zr 663:Cp 631:CH 627:Zr 582:(N 574:(O 522:Hf 520:, 518:Zr 507:Cp 432:. 291:. 269:. 145:−; 92:, 30:A 1326:e 1319:t 1312:v 1298:. 1286:: 1259:. 1247:: 1196:. 1184:: 1160:. 1135:. 1121:: 1050:. 1024:. 1010:: 973:. 959:: 940:. 926:: 896:) 841:3 836:n 831:2 827:2 822:n 819:L 808:2 804:2 799:n 794:2 790:2 785:n 782:L 771:2 762:+ 757:2 753:3 749:n 745:2 736:+ 731:2 719:2 715:2 711:2 702:+ 697:2 693:2 689:3 684:n 679:2 670:+ 665:2 633:3 624:+ 619:2 615:2 611:2 584:2 576:2 546:2 542:2 538:2 514:2 510:2 502:n 484:. 446:2 439:4 429:3 427:) 425:5 423:H 421:2 415:2 402:2 395:3 388:4 336:3 318:. 278:2 224:3 222:) 220:5 218:H 216:2 209:3 203:2 201:) 199:5 197:H 195:2 187:4 142:n 137:2 133:n 116:. 80:3 78:) 76:5 74:H 72:2 20:)

Index

Ziegler-Natta catalyst
Karl Ziegler
Giulio Natta
catalyst
polymers
alpha-olefins
supported catalysts
organoaluminum
triethylaluminium
group 4 metals
titanium
zirconium
hafnium
methylaluminoxane
metallocenes
multidentate
ligands
alkenes
vinyl
Nobel Prize in Chemistry
Karl Ziegler
Giulio Natta
propylene
Phillips Petroleum
Phillips catalyst
titanium tetrachloride
diethylaluminium chloride
α-TiCl3
Al(C2H5)3
isotactic

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.