Knowledge

Branch-decomposition

Source 📝

607: 31: 578:
for graphs, but so far this has been proven only for the matroids of bounded branchwidth. Additionally, if a minor-closed family of matroids representable over a finite field does not include the graphic matroids of all planar graphs, then there is a constant bound on the branchwidth of the matroids
500:
that generalizes branch-decompositions of graphs. A branch-decomposition of a matroid is a hierarchical clustering of the matroid elements, represented as an unrooted binary tree with the elements of the matroid at its leaves. An e-separation may be defined in the same way as for graphs, and results
699:
and the non-graphic matroid U(2,4). The matroids of branchwidth three are not well-quasi-ordered without the additional assumption of representability over a finite field, but nevertheless the matroids with any finite bound on their branchwidth have finitely many minimal forbidden minors, all of
377:
Carving width is a concept defined similarly to branch width, except with edges replaced by vertices and vice versa. A carving decomposition is an unrooted binary tree with each leaf representing a vertex in the original graph, and the width of a cut is the number (or total weight in a weighted
545:
have different branchwidths, 2 and 1 respectively, but they both induce the same graphic matroid with branchwidth 1. However, for graphs that are not trees, the branchwidth of the graph is equal to the branchwidth of its associated graphic matroid. The branchwidth of a matroid is equal to the
487:
argue that branchwidth works better than treewidth in the development of fixed-parameter-tractable algorithms on planar graphs, for multiple reasons: branchwidth may be more tightly bounded by a function of the parameter of interest than the bounds on treewidth, it can be computed exactly in
686:
Forbidden minors have also been studied for matroid branchwidth, despite the lack of a full analogue to the Robertson–Seymour theorem in this case. A matroid has branchwidth one if and only if every element is either a loop or a coloop, so the unique minimal forbidden minor is the
565:
can also be generalized to matroids, and plays a bigger role than branchwidth in the theory of graph minors, branchwidth has more convenient properties in the matroid setting. Robertson and Seymour conjectured that the matroids representable over any particular
646:; the minimal forbidden minors for branchwidth 1 are the triangle graph (or the two-edge cycle, if multigraphs rather than simple graphs are considered) and the three-edge path graph. The graphs of branchwidth 2 are the graphs in which each 361: 440:, the branchwidth can be computed exactly in polynomial time. This in contrast to treewidth for which the complexity on planar graphs is a well known open problem. The original algorithm for planar branchwidth, by 691:
U(2,3), the graphic matroid of the triangle graph. A matroid has branchwidth two if and only if it is the graphic matroid of a graph of branchwidth two, so its minimal forbidden minors are the graphic matroid of
131:
is a connected undirected graph with no cycles in which each non-leaf node has exactly three neighbors. A branch-decomposition may be represented by an unrooted binary tree
533:, and the width of the decomposition and the branchwidth of the matroid are defined analogously. The branchwidth of a graph and the branchwidth of the corresponding 107:. And as with treewidth, many graph optimization problems may be solved efficiently for graphs of small branchwidth. However, unlike treewidth, the branchwidth of 638:
and a triangle graph (or the two-edge cycle, if multigraphs rather than simple graphs are considered). The graphs of branchwidth 1 are the graphs in which each
471:
algorithms for many NP-hard optimization problems, using an amount of time that is exponential in the width of the input graph or matroid. For instance,
1389: 972:. The fourth forbidden minor for treewidth three, the pentagonal prism, has the cube graph as a minor, so it is not minimal for branchwidth three. 84:
into two subgraphs, and the width of the decomposition is the maximum number of shared vertices of any pair of subgraphs formed in this way. The
302: 1398: 274:: the two quantities are always within a constant factor of each other. In particular, in the paper in which they introduced branch-width, 1232: 668:
as a minor; therefore, the four minimal forbidden minors are three of the four forbidden minors for treewidth three (the graph of the
1218: 381:
Branch width algorithms typically work by reducing to an equivalent carving width problem. In particular, the carving width of the
103:: for all graphs, both of these numbers are within a constant factor of each other, and both quantities may be characterized by 1324: 1030: 802:
Another long-standing open problem is whether there is a polynomial-time algorithm to compute the treewidth of planar graphs.
1098:
Fomin, Fedor V.; Thilikos, Dimitrios M. (2006), "Dominating sets in planar graphs: branch-width and exponential speed-up",
550:, and in particular this implies that the branchwidth of any planar graph that is not a tree is equal to that of its dual. 1465:
Mazoit, Frédéric; Thomassé, Stéphan (2007), "Branchwidth of graphic matroids", in Hilton, Anthony; Talbot, John (eds.),
639: 795: 483:
heuristic to find a good branch-decomposition of this graph, and applying dynamic programming to the decomposition.
488:
polynomial time rather than merely approximated, and the algorithm for computing it has no large hidden constants.
104: 1489: 425:: there is an algorithm for computing optimal branch-decompositions whose running time, on graphs of branchwidth 1520: 1150: 275: 1604: 1584: 619: 575: 250:. The width of the branch-decomposition is the maximum width of any of its e-separations. The branchwidth of 664:
on four vertices. A graph has branchwidth three if and only if it has treewidth three and does not have the
1550: 1524: 1484: 1067: 445: 441: 279: 479:
into a single global solution, by forming a sparse graph from the union of the partial solutions, using a
1589: 1474:, London Mathematical Society Lecture Note Series, vol. 346, Cambridge University Press, p. 275 476: 17: 1466: 1210: 1183:; Gerards, Bert; Whittle, Geoff (2002), "Branch-width and well-quasi-ordering in matroids and graphs", 1345:
Hicks, Illya V.; McMurray, Nolan B. Jr. (2007), "The branchwidth of graphs and their cycle matroids",
774:), at the expense of an increase in the dependence on the number of vertices from linear to quadratic. 475:
apply branchwidth-based dynamic programming to a problem of merging multiple partial solutions to the
1594: 651: 1421: 422: 1599: 631: 58: 38:, showing an e-separation. The separation, the decomposition, and the graph all have width three. 456:
vertices, and their algorithm for constructing a branch decomposition of this width took time O(
1259: 1271:
Gu, Qian-Ping; Tamaki, Hisao (July 2008), "Optimal branch-decomposition of planar graphs in O(
785: 1368:
Proc. 28th International Symposium on Mathematical Foundations of Computer Science (MFCS '03)
1071: 647: 1512: 418: 413:
are both considered as inputs to the problem. However, the graphs with branchwidth at most
128: 66: 8: 643: 571: 542: 480: 468: 1370:, Lecture Notes in Computer Science, vol. 2747, Springer-Verlag, pp. 470–479, 1009:, Lecture Notes in Computer Science, vol. 1256, Springer-Verlag, pp. 627–637, 1005:; Thilikos, Dimitrios M. (1997), "Constructive linear time algorithms for branchwidth", 1040: 1002: 267: 100: 1171: 1007:
Proc. 24th International Colloquium on Automata, Languages and Programming (ICALP '97)
1541: 1383: 1026: 791: 1375: 1330: 1562: 1536: 1498: 1449: 1413: 1371: 1354: 1309: 1284: 1251: 1192: 1166: 1132: 1107: 1086: 1052: 1018: 1010: 51: 1153:; Whittle, Geoff (2003), "On the excluded minors for the matroids of branch-width 1508: 688: 665: 627: 611: 606: 591: 534: 112: 1120: 1090: 700:
which have a number of elements that is at most exponential in the branchwidth.
1503: 1358: 1300:; Semple, Charles; Whittle, Geoff (2002), "On matroids of branch-width three", 1255: 655: 595: 115:. Branch-decompositions and branchwidth may also be generalized from graphs to 1454: 1417: 1137: 1111: 1014: 1578: 579:
in the family, generalizing similar results for minor-closed graph families.
558: 372: 236:; that is, it is the number of vertices that are shared by the two subgraphs 185:
into subtrees induces a partition of the edges associated with the leaves of
108: 1288: 1314: 1197: 1057: 680: 567: 547: 514: 437: 385:
of a planar graph is exactly twice the branch width of the original graph.
382: 356:{\displaystyle b-1\leq k\leq \left\lfloor {\frac {3}{2}}b\right\rfloor -1.} 43: 1366:
HliněnĂœ, Petr (2003), "On matroid properties definable in the MSO logic",
1043:; Thilikos, Dimitrios M. (1999), "Graphs with branchwidth at most three", 553:
Branchwidth is an important component of attempts to extend the theory of
1480: 1297: 554: 394: 1440:
HliněnĂœ, Petr; Whittle, Geoff (2009), "Addendum to matroid tree-width",
1566: 1228: 1206: 1180: 1146: 669: 635: 538: 35: 30: 1022: 562: 271: 496:
It is also possible to define a notion of branch-decomposition for
497: 116: 517:
of the matroid, then the width of an e-separation is defined as
378:
graph) of edges that are incident to a vertex in both subtrees.
1527:(1991), "Graph minors. X. Obstructions to tree-decomposition", 1121:"Computing branchwidth via efficient triangulations and blocks" 1145: 985: 1553:; Thomas, Robin (1994), "Call routing and the ratcatcher", 467:
As with treewidth, branchwidth can be used as the basis of
421:, from which it follows that computing the branchwidth is 218:
The width of an e-separation is the number of vertices of
1119:
Fomin, Fedor V.; Mazoit, Frédéric; Todinca, Ioan (2009),
266:
Branch-decompositions of graphs are closely related to
1295: 1211:"Towards a structure theory for matrices and matroids" 981: 594:
by an algorithm that has access to the matroid via an
305: 1227: 1205: 1179: 928: 924: 912: 908: 896: 92:
is the minimum width of any branch-decomposition of
807: 784:Kao, Ming-Yang, ed. (2008), "Treewidth of graphs", 1118: 1039: 1001: 969: 844:. Section 12, "Tangles and Matroids", pp. 188–190. 763:describe an algorithm with improved dependence on 760: 756: 355: 254:is the minimum width of a branch-decomposition of 135:, together with a bijection between the leaves of 1576: 1519: 957: 841: 744: 715: 1329:, Ph.D. thesis, Rice University, archived from 1464: 1439: 1396: 1388:: CS1 maint: DOI inactive as of August 2024 ( 1219:Proc. International Congress of Mathematicians 884: 868: 856: 634:; the minimal forbidden minors are a two-edge 1549: 1344: 1097: 872: 732: 491: 484: 1326:Branch Decompositions and their Applications 433:, is linear in the size of the input graph. 401:has a branch-decomposition of width at most 388: 1065: 953: 951: 949: 472: 1479: 940: 654:; the only minimal forbidden minor is the 1540: 1502: 1453: 1347:Journal of Combinatorial Theory, Series B 1313: 1302:Journal of Combinatorial Theory, Series B 1244:Journal of Combinatorial Theory, Series B 1196: 1185:Journal of Combinatorial Theory, Series B 1170: 1159:Journal of Combinatorial Theory, Series B 1136: 1056: 537:may differ: for instance, the three-edge 270:, and branch-width is closely related to 1270: 1231:; Gerards, Bert; Whittle, Geoff (2007), 1209:; Gerards, Bert; Whittle, Geoff (2006), 946: 813: 626:can be characterized by a finite set of 605: 586:, the matroids with branchwidth at most 261: 29: 1365: 1072:"Tour merging via branch-decomposition" 829: 14: 1577: 1397:HliněnĂœ, Petr; Whittle, Geoff (2006), 852: 850: 728: 726: 724: 630:. The graphs of branchwidth 0 are the 76:as its leaves. Removing any edge from 27:Hierarchical clustering of graph edges 1322: 825: 505:of matroid elements into two subsets 222:that are incident both to an edge of 929:Geelen, Gerards & Whittle (2007) 925:Geelen, Gerards & Whittle (2006) 913:Geelen, Gerards & Whittle (2006) 909:Geelen, Gerards & Whittle (2002) 897:Geelen, Gerards & Whittle (2006) 847: 783: 721: 601: 24: 1233:"Excluding a planar graph from GF( 761:Fomin, Mazoit & Todinca (2009) 99:Branchwidth is closely related to 25: 1616: 1442:European Journal of Combinatorics 1406:European Journal of Combinatorics 1222:, vol. III, pp. 827–842 139:and the edges of the given graph 1487:(2007), "Testing branch-width", 970:Bodlaender & Thilikos (1999) 757:Bodlaender & Thilikos (1997) 683:) together with the cube graph. 614:for graphs of branchwidth three. 366: 211:into two subgraphs is called an 167:partitions it into two subtrees 1529:Journal of Combinatorial Theory 1490:Journal of Combinatorial Theory 975: 963: 934: 918: 902: 890: 878: 862: 460:). This was later sped up to O( 1277:ACM Transactions on Algorithms 958:Robertson & Seymour (1991) 835: 819: 777: 750: 745:Robertson & Seymour (1991) 738: 709: 122: 13: 1: 1468:Surveys in Combinatorics 2007 1376:10.1007/978-3-540-45138-9\_41 1172:10.1016/S0095-8956(02)00046-1 994: 419:minor-closed family of graphs 397:to determine whether a graph 1542:10.1016/0095-8956(91)90061-N 1125:Discrete Applied Mathematics 1079:INFORMS Journal on Computing 885:HliněnĂœ & Whittle (2006) 869:Mazoit & ThomassĂ© (2007) 857:Mazoit & ThomassĂ© (2007) 842:Robertson & Seymour 1991 716:Robertson & Seymour 1991 622:, the graphs of branchwidth 111:may be computed exactly, in 7: 1091:10.1287/ijoc.15.3.233.16078 873:Hicks & McMurray (2007) 733:Seymour & Thomas (1994) 485:Fomin & Thilikos (2006) 477:travelling salesman problem 10: 1621: 1504:10.1016/j.jctb.2006.06.006 1438:Addendum and corrigendum: 1359:10.1016/j.jctb.2006.12.007 1256:10.1016/j.jctb.2007.02.005 787:Encyclopedia of Algorithms 501:in a partition of the set 492:Generalization to matroids 370: 34:Branch decomposition of a 1455:10.1016/j.ejc.2008.09.028 1418:10.1016/j.ejc.2006.06.005 1237:)-representable matroids" 1138:10.1016/j.dam.2008.08.009 1112:10.1137/S0097539702419649 1100:SIAM Journal on Computing 1015:10.1007/3-540-63165-8_217 790:, Springer, p. 969, 620:Robertson–Seymour theorem 576:Robertson–Seymour theorem 473:Cook & Seymour (2003) 423:fixed-parameter tractable 389:Algorithms and complexity 1323:Hicks, Illya V. (2000), 941:Oum & Seymour (2007) 703: 282:showed that for a graph 155:is any edge of the tree 80:partitions the edges of 1289:10.1145/1367064.1367070 582:For any fixed constant 429:for any fixed constant 59:hierarchical clustering 1315:10.1006/jctb.2002.2120 1198:10.1006/jctb.2001.2082 1058:10.1006/jagm.1999.1011 960:, Theorem 4.2, p. 165. 814:Gu & Tamaki (2008) 747:, Theorem 4.1, p. 164. 718:, Theorem 5.1, p. 168. 615: 357: 39: 1378:(inactive 2024-08-12) 1045:Journal of Algorithms 672:, the complete graph 652:series–parallel graph 648:biconnected component 609: 590:can be recognized in 574:, analogously to the 358: 262:Relation to treewidth 33: 1605:NP-complete problems 1585:Trees (graph theory) 1399:"Matroid tree-width" 986:Geelen et al. (2003) 303: 207:. This partition of 181:. This partition of 129:unrooted binary tree 67:unrooted binary tree 65:, represented by an 48:branch-decomposition 1041:Bodlaender, Hans L. 1003:Bodlaender, Hans L. 640:connected component 596:independence oracle 546:branchwidth of its 541:and the three-edge 513:. If ρ denotes the 481:spectral clustering 469:dynamic programming 268:tree decompositions 189:into two subgraphs 1590:Graph minor theory 1567:10.1007/BF01215352 982:Hall et al. (2002) 616: 572:well-quasi-ordered 353: 229:and to an edge of 72:with the edges of 40: 1283:(3): 30:1–30:13, 1149:; Gerards, Bert; 1131:(12): 2726–2736, 1032:978-3-540-63165-1 452:) on graphs with 337: 16:(Redirected from 1612: 1595:Graph invariants 1569: 1551:Seymour, Paul D. 1545: 1544: 1525:Seymour, Paul D. 1515: 1506: 1475: 1473: 1458: 1457: 1448:(4): 1036–1044, 1434: 1433: 1432: 1426: 1420:, archived from 1412:(7): 1117–1128, 1403: 1393: 1387: 1379: 1361: 1340: 1339: 1338: 1318: 1317: 1296:Hall, Rhiannon; 1291: 1266: 1264: 1258:, archived from 1241: 1223: 1215: 1201: 1200: 1175: 1174: 1141: 1140: 1114: 1093: 1076: 1068:Seymour, Paul D. 1061: 1060: 1035: 989: 979: 973: 967: 961: 955: 944: 938: 932: 922: 916: 906: 900: 894: 888: 882: 876: 866: 860: 854: 845: 839: 833: 823: 817: 811: 805: 804: 781: 775: 773: 772: 754: 748: 742: 736: 730: 719: 713: 628:forbidden minors 612:forbidden minors 602:Forbidden minors 532: 362: 360: 359: 354: 346: 342: 338: 330: 296: 290:and branchwidth 286:with tree-width 159:, then removing 105:forbidden minors 61:of the edges of 52:undirected graph 21: 1620: 1619: 1615: 1614: 1613: 1611: 1610: 1609: 1575: 1574: 1573: 1521:Robertson, Neil 1471: 1430: 1428: 1424: 1401: 1381: 1380: 1336: 1334: 1262: 1239: 1213: 1151:Robertson, Neil 1074: 1066:Cook, William; 1033: 997: 992: 980: 976: 968: 964: 956: 947: 939: 935: 923: 919: 907: 903: 895: 891: 883: 879: 867: 863: 855: 848: 840: 836: 824: 820: 812: 808: 798: 782: 778: 770: 768: 755: 751: 743: 739: 731: 722: 714: 710: 706: 698: 689:uniform matroid 678: 663: 604: 592:polynomial time 535:graphic matroid 518: 494: 391: 375: 369: 329: 328: 324: 304: 301: 300: 291: 264: 249: 242: 235: 228: 202: 195: 180: 173: 125: 113:polynomial time 28: 23: 22: 15: 12: 11: 5: 1618: 1608: 1607: 1602: 1600:Matroid theory 1597: 1592: 1587: 1572: 1571: 1561:(2): 217–241, 1547: 1535:(2): 153–190, 1517: 1497:(3): 385–393, 1477: 1462: 1461: 1460: 1394: 1363: 1353:(5): 681–692, 1342: 1320: 1308:(1): 148–171, 1293: 1268: 1250:(6): 971–998, 1225: 1203: 1191:(2): 270–290, 1177: 1165:(2): 261–265, 1143: 1116: 1095: 1085:(3): 233–248, 1063: 1051:(2): 167–194, 1037: 1031: 998: 996: 993: 991: 990: 974: 962: 945: 933: 917: 901: 889: 877: 861: 846: 834: 830:HliněnĂœ (2003) 818: 806: 796: 776: 749: 737: 720: 707: 705: 702: 696: 676: 661: 656:complete graph 603: 600: 559:matroid minors 493: 490: 448:, took time O( 390: 387: 371:Main article: 368: 365: 364: 363: 352: 349: 345: 341: 336: 333: 327: 323: 320: 317: 314: 311: 308: 276:Neil Robertson 263: 260: 247: 240: 233: 226: 200: 193: 178: 171: 143: = ( 124: 121: 26: 9: 6: 4: 3: 2: 1617: 1606: 1603: 1601: 1598: 1596: 1593: 1591: 1588: 1586: 1583: 1582: 1580: 1568: 1564: 1560: 1556: 1555:Combinatorica 1552: 1548: 1543: 1538: 1534: 1530: 1526: 1522: 1518: 1514: 1510: 1505: 1500: 1496: 1492: 1491: 1486: 1485:Seymour, Paul 1482: 1478: 1470: 1469: 1463: 1456: 1451: 1447: 1443: 1437: 1436: 1427:on 2012-03-06 1423: 1419: 1415: 1411: 1407: 1400: 1395: 1391: 1385: 1377: 1373: 1369: 1364: 1360: 1356: 1352: 1348: 1343: 1333:on 2011-07-16 1332: 1328: 1327: 1321: 1316: 1311: 1307: 1303: 1299: 1294: 1290: 1286: 1282: 1278: 1274: 1269: 1265:on 2010-09-24 1261: 1257: 1253: 1249: 1245: 1238: 1236: 1230: 1226: 1221: 1220: 1212: 1208: 1204: 1199: 1194: 1190: 1186: 1182: 1178: 1173: 1168: 1164: 1160: 1156: 1152: 1148: 1144: 1139: 1134: 1130: 1126: 1122: 1117: 1113: 1109: 1105: 1101: 1096: 1092: 1088: 1084: 1080: 1073: 1069: 1064: 1059: 1054: 1050: 1046: 1042: 1038: 1034: 1028: 1024: 1020: 1016: 1012: 1008: 1004: 1000: 999: 987: 983: 978: 971: 966: 959: 954: 952: 950: 942: 937: 930: 926: 921: 914: 910: 905: 898: 893: 886: 881: 874: 870: 865: 858: 853: 851: 843: 838: 831: 827: 822: 815: 810: 803: 799: 797:9780387307701 793: 789: 788: 780: 766: 762: 758: 753: 746: 741: 734: 729: 727: 725: 717: 712: 708: 701: 695: 690: 684: 682: 675: 671: 667: 660: 657: 653: 649: 645: 641: 637: 633: 629: 625: 621: 613: 608: 599: 597: 593: 589: 585: 580: 577: 573: 569: 564: 560: 556: 551: 549: 544: 540: 536: 530: 526: 522: 516: 515:rank function 512: 508: 504: 499: 489: 486: 482: 478: 474: 470: 465: 463: 459: 455: 451: 447: 443: 439: 438:planar graphs 434: 432: 428: 424: 420: 416: 412: 408: 404: 400: 396: 386: 384: 379: 374: 373:Carving width 367:Carving width 350: 347: 343: 339: 334: 331: 325: 321: 318: 315: 312: 309: 306: 299: 298: 297: 294: 289: 285: 281: 277: 273: 269: 259: 257: 253: 246: 239: 232: 225: 221: 216: 214: 210: 206: 199: 192: 188: 184: 177: 170: 166: 162: 158: 154: 150: 146: 142: 138: 134: 130: 120: 118: 114: 110: 109:planar graphs 106: 102: 97: 95: 91: 87: 83: 79: 75: 71: 68: 64: 60: 56: 53: 49: 45: 37: 32: 19: 1558: 1554: 1532: 1528: 1494: 1493:, Series B, 1488: 1481:Oum, Sang-il 1467: 1445: 1441: 1429:, retrieved 1422:the original 1409: 1405: 1367: 1350: 1346: 1335:, retrieved 1331:the original 1325: 1305: 1301: 1298:Oxley, James 1280: 1276: 1272: 1260:the original 1247: 1243: 1234: 1217: 1188: 1184: 1162: 1158: 1154: 1128: 1124: 1103: 1099: 1082: 1078: 1048: 1044: 1006: 977: 965: 936: 920: 904: 892: 880: 864: 837: 826:Hicks (2000) 821: 809: 801: 786: 779: 764: 752: 740: 711: 693: 685: 681:Wagner graph 673: 658: 623: 617: 587: 583: 581: 568:finite field 555:graph minors 552: 548:dual matroid 528: 527:) − ρ( 524: 520: 510: 506: 502: 495: 466: 461: 457: 453: 449: 446:Robin Thomas 442:Paul Seymour 435: 430: 426: 414: 410: 406: 402: 398: 392: 383:medial graph 380: 376: 292: 287: 283: 280:Paul Seymour 265: 255: 251: 244: 237: 230: 223: 219: 217: 213:e-separation 212: 208: 204: 197: 190: 186: 182: 175: 168: 164: 160: 156: 152: 148: 144: 140: 136: 132: 126: 98: 93: 89: 85: 81: 77: 73: 69: 62: 54: 47: 44:graph theory 41: 1229:Geelen, Jim 1207:Geelen, Jim 1181:Geelen, Jim 1147:Geelen, Jim 561:: although 395:NP-complete 123:Definitions 86:branchwidth 18:Branchwidth 1579:Categories 1431:2010-07-06 1337:2010-07-06 1106:(2): 281, 1023:2117/96447 995:References 679:, and the 670:octahedron 666:cube graph 636:path graph 539:path graph 272:tree-width 101:tree-width 36:grid graph 1275:) time", 632:matchings 610:The four 563:treewidth 348:− 322:≤ 316:≤ 310:− 1384:citation 1070:(2003), 498:matroids 344:⌋ 326:⌊ 117:matroids 1513:2305892 769:√ 618:By the 417:form a 405:, when 295:> 1, 1511:  1029:  794:  523:) + ρ( 393:It is 151:). If 50:of an 1472:(PDF) 1425:(PDF) 1402:(PDF) 1263:(PDF) 1240:(PDF) 1214:(PDF) 1075:(PDF) 704:Notes 650:is a 642:is a 531:) + 1 163:from 57:is a 1390:link 1027:ISBN 792:ISBN 767:, (2 644:star 570:are 543:star 509:and 444:and 436:For 409:and 278:and 243:and 196:and 174:and 46:, a 1563:doi 1537:doi 1499:doi 1450:doi 1414:doi 1372:doi 1355:doi 1310:doi 1285:doi 1252:doi 1193:doi 1167:doi 1157:", 1133:doi 1129:157 1108:doi 1087:doi 1053:doi 1019:hdl 1011:doi 557:to 464:). 203:of 127:An 88:of 42:In 1581:: 1559:14 1557:, 1533:52 1531:, 1523:; 1509:MR 1507:, 1495:97 1483:; 1446:30 1444:, 1435:. 1410:27 1408:, 1404:, 1386:}} 1382:{{ 1351:97 1349:, 1306:86 1304:, 1279:, 1248:97 1246:, 1242:, 1216:, 1189:84 1187:, 1163:88 1161:, 1127:, 1123:, 1104:36 1102:, 1083:15 1081:, 1077:, 1049:32 1047:, 1025:, 1017:, 984:; 948:^ 927:; 911:; 871:; 849:^ 828:; 800:, 759:. 723:^ 598:. 519:ρ( 351:1. 258:. 215:. 119:. 96:. 1570:. 1565:: 1546:. 1539:: 1516:. 1501:: 1476:. 1459:. 1452:: 1416:: 1392:) 1374:: 1362:. 1357:: 1341:. 1319:. 1312:: 1292:. 1287:: 1281:4 1273:n 1267:. 1254:: 1235:q 1224:. 1202:. 1195:: 1176:. 1169:: 1155:k 1142:. 1135:: 1115:. 1110:: 1094:. 1089:: 1062:. 1055:: 1036:. 1021:: 1013:: 988:. 943:. 931:. 915:. 899:. 887:. 875:. 859:. 832:. 816:. 771:3 765:k 735:. 697:4 694:K 677:5 674:K 662:4 659:K 624:k 588:k 584:k 529:M 525:B 521:A 511:B 507:A 503:M 462:n 458:n 454:n 450:n 431:k 427:k 415:k 411:k 407:G 403:k 399:G 340:b 335:2 332:3 319:k 313:1 307:b 293:b 288:k 284:G 256:G 252:G 248:2 245:G 241:1 238:G 234:2 231:E 227:1 224:E 220:G 209:G 205:G 201:2 198:G 194:1 191:G 187:T 183:T 179:2 176:T 172:1 169:T 165:T 161:e 157:T 153:e 149:E 147:, 145:V 141:G 137:T 133:T 94:G 90:G 82:G 78:T 74:G 70:T 63:G 55:G 20:)

Index

Branchwidth

grid graph
graph theory
undirected graph
hierarchical clustering
unrooted binary tree
tree-width
forbidden minors
planar graphs
polynomial time
matroids
unrooted binary tree
tree decompositions
tree-width
Neil Robertson
Paul Seymour
Carving width
medial graph
NP-complete
minor-closed family of graphs
fixed-parameter tractable
planar graphs
Paul Seymour
Robin Thomas
dynamic programming
Cook & Seymour (2003)
travelling salesman problem
spectral clustering
Fomin & Thilikos (2006)

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑