Knowledge

Spectral clustering

Source πŸ“

380:
clustering of the masses. For example, assuming that all the springs and the masses are identical in the 2-dimensional spring system pictured, one would intuitively expect that the loosest connected masses on the right-hand side of the system would move with the largest amplitude and in the opposite direction to the rest of the masses when the system is shaken β€” and this expectation will be confirmed by analyzing components of the eigenvectors of the graph Laplacian corresponding to the smallest eigenvalues, i.e., the smallest
218:. There are many different ways to define a Laplacian which have different mathematical interpretations, and so the clustering will also have different interpretations. The eigenvectors that are relevant are the ones that correspond to several smallest eigenvalues of the Laplacian except for the smallest eigenvalue which will have a value of 0. For computational efficiency, these eigenvectors are often computed as the eigenvectors corresponding to the largest several eigenvalues of a function of the Laplacian. 229: 28: 20: 1845:, which estimate or sample a neighborhood of a given data point for nearest neighbors, and compute non-zero entries of the adjacency matrix by comparing only pairs of the neighbors. The number of the selected nearest neighbors thus determines the number of non-zero entries, and is often fixed so that the memory footprint of the 2546:
Ideas and network measures related to spectral clustering also play an important role in a number of applications apparently different from clustering problems. For instance, networks with stronger spectral partitions take longer to converge in opinion-updating models used in sociology and economics.
379:
The masses that are tightly connected by the springs in the mass-spring system evidently move together from the equilibrium position in low-frequency vibration modes, so that the components of the eigenvectors corresponding to the smallest eigenvalues of the graph Laplacian can be used for meaningful
394:
The goal of normalization is making the diagonal entries of the Laplacian matrix to be all unit, also scaling off-diagonal entries correspondingly. In a weighted graph, a vertex may have a large degree because of a small number of connected edges but with large weights just as well as due to a large
1744:
Moreover, a normalized Laplacian has exactly the same eigenvectors as the normalized adjacency matrix, but with the order of the eigenvalues reversed. Thus, instead of computing the eigenvectors corresponding to the smallest eigenvalues of the normalized Laplacian, one can equivalently compute the
1700:
The graph Laplacian can be and commonly is constructed from the adjacency matrix. The construction can be performed matrix-free, i.e., without explicitly forming the matrix of the graph Laplacian and no AO. It can also be performed in-place of the adjacency matrix without increasing the memory
1248:
represents, one cluster data points identified with mutually strongly connected masses would move together in one direction, while in the complement cluster data points identified with remaining masses would move together in the opposite direction. The algorithm can be used for
2485:
The ideas behind spectral clustering may not be immediately obvious. It may be useful to highlight relationships with other methods. In particular, it can be described in the context of kernel clustering methods, which reveals several similarities with other approaches.
236:
Spectral clustering is well known to relate to partitioning of a mass-spring system, where each mass is associated with a data point and each spring stiffness corresponds to a weight of an edge describing a similarity of the two related data points, as in the
1225:, thus bi-partitioning the graph and labeling the data points with two labels. This sign-based approach follows the intuitive explanation of spectral clustering via the mass-spring model β€” in the low frequency vibration mode that the 2530:
of each cluster (in the clustering) was at least Ξ± and the weight of the inter-cluster edges was at most Ξ΅ fraction of the total weight of all the edges in the graph. They also look at two approximation algorithms in the same paper.
1833:
entries of the matrix. Nystrom method can be used to approximate the similarity matrix, but the approximate matrix is not elementwise positive, i.e. cannot be interpreted as a distance-based similarity.
241:. Specifically, the classical reference explains that the eigenvalue problem describing transversal vibration modes of a mass-spring system is exactly the same as the eigenvalue problem for the graph 578: 757: 367: 2526:
Ravi Kannan, Santosh Vempala and Adrian Vetta proposed a bicriteria measure to define the quality of a given clustering. They said that a clustering was an (Ξ±, Ξ΅)-clustering if the
1692:
The need to construct the graph Laplacian is common for all distance- or correlation-based clustering methods. Computing the eigenvectors is specific to spectral clustering only.
677: 63:
in fewer dimensions. The similarity matrix is provided as an input and consists of a quantitative assessment of the relative similarity of each pair of points in the dataset.
1476:
has not already been explicitly constructed, the efficiency of spectral clustering may be improved if the solution to the corresponding eigenvalue problem is performed in a
460: 923: 136: 830: 2156: 2120: 2807:
Acer, Seher; Boman, Erik G.; Glusa, Christian A.; Rajamanickam, Sivasankaran (2021). "Sphynx: A parallel multi-GPU graph partitioner for distributed-memory systems".
2350: 2044: 1280: 278: 1831: 1804: 1777: 1223: 1196: 2408: 2379: 2284: 1970: 1941: 1912: 2208: 2182: 1102: 1647: 1149: 2428: 2324: 2304: 2255: 2235: 2084: 2064: 2018: 1998: 1883: 1863: 1739: 1719: 1687: 1667: 1624: 1604: 1584: 1564: 1540: 1474: 1444: 1424: 1404: 1381: 1361: 1341: 1318: 1246: 1169: 1122: 1073: 1053: 1033: 1013: 993: 973: 953: 873: 853: 783: 601: 483: 302: 216: 176: 156: 100: 2872:. Clustering Large Data Sets; Third IEEE International Conference on Data Mining (ICDM 2003) Melbourne, Florida: IEEE Computer Society. pp. 59–62. 2086:
graph Laplacian matrix by a vector, which varies greatly whether the graph Laplacian matrix is dense or sparse. For the dense case the cost thus is
400: 3144:
Donath, William; Hoffman, Alan (1972). "Algorithms for partitioning of graphs and computer logic based on eigenvectors of connections matrices".
1566:. No matter the algorithm of the spectral clustering, the two main costly items are the construction of the graph Laplacian and determining its 2502:-means problem shares the objective function with the spectral clustering problem, which can be optimized directly by multi-level methods. 1745:
eigenvectors corresponding to the largest eigenvalues of the normalized adjacency matrix, without even talking about the Laplacian matrix.
2438:
with distributed memory, resulting not only in high quality clusters, which spectral clustering is famous for, but also top performance.
2886:
Multiscale Spectral Image Segmentation Multiscale preconditioning for computing eigenvalues of graph Laplacians in image segmentation
2778:
Wang, S.; Gittens, A.; Mahoney, M.W. (2019). "Scalable Kernel K-Means Clustering with Nystrom Approximation: Relative-Error Bounds".
3021:
Dhillon, Inderjit; Guan, Yuqiang; Kulis, Brian (November 2007). "Weighted Graph Cuts without Eigenvectors: A Multilevel Approach".
67: 1701:
footprint. Either way, the costs of constructing the graph Laplacian is essentially determined by the costs of constructing the
3286:
Golub, Benjamin; Jackson, Matthew O. (2012-07-26). "How Homophily Affects the Speed of Learning and Best-Response Dynamics".
2925: 3326: 1514:, and dimension reduction techniques such as locally-linear embedding can be used to reduce errors from noise or outliers. 499: 2561: 381: 2996: 2511: 2046:) matrix of selected eigenvectors of the graph Laplacian is normally proportional to the cost of multiplication of the 1511: 1496: 3207:
Daniel A. Spielman and Shang-Hua Teng (1996). "Spectral Partitioning Works: Planar graphs and finite element meshes".
691: 388: 490: 3331: 413: 2852: 313: 2687:
Arias-Castro, E.; Chen, G.; Lerman, G. (2011), "Spectral clustering based on local linear approximations.",
2954: 2591: 2466: 3192:
Guattery, Stephen; Miller, Gary L. (1995). "On the performance of spectral graph partitioning methods".
2514:β€” the optimal clusters with no edges cut β€” spectral clustering is also related to a spectral version of 617: 3094:
Kannan, Ravi; Vempala, Santosh; Vetta, Adrian (2004). "On Clusterings : Good, Bad and Spectral".
1503:
method. Spectral clustering has been successfully applied on large graphs by first identifying their
3035: 3008:
Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining
2474: 419: 56: 878: 105: 1842: 1250: 36: 3030: 2446:
Free software implementing spectral clustering is available in large open source projects like
796: 762:
and can also be used for spectral clustering. A mathematically equivalent algorithm takes the
2125: 2089: 2914:. Workshop on Algorithms for Modern Massive Datasets Stanford University and Yahoo! Research. 2571: 2329: 2023: 1259: 251: 2969: 2556: 1809: 1782: 1755: 1201: 1174: 44: 3226: 2384: 2355: 2260: 1946: 1917: 1888: 8: 2623: 2527: 2187: 2161: 1586:
eigenvectors for the spectral embedding. The last step β€” determining the labels from the
1504: 1477: 1081: 2973: 1629: 1131: 3111: 3056: 2834: 2816: 2787: 2760: 2714: 2696: 2664: 2638:"Data reduction for spectral clustering to analyze high throughput flow cytometry data" 2637: 2610: 2413: 2309: 2289: 2240: 2220: 2069: 2049: 2003: 1983: 1868: 1848: 1724: 1704: 1672: 1652: 1609: 1589: 1569: 1549: 1525: 1459: 1449: 1429: 1409: 1389: 1366: 1346: 1326: 1303: 1231: 1154: 1107: 1058: 1038: 1018: 998: 978: 958: 938: 858: 838: 768: 586: 468: 287: 201: 161: 141: 85: 2869:
Modern preconditioned eigensolvers for spectral image segmentation and graph bisection
1546:
and compute time, or number of arithmetic operations (AO) performed, as a function of
3303: 3268: 3115: 3048: 2909: 2884: 2867: 2838: 2752: 2669: 1481: 1480:(without explicitly manipulating or even computing the similarity matrix), as in the 79: 52: 3129:
Cheeger, Jeff (1969). "A lower bound for the smallest eigenvalue of the Laplacian".
2718: 3295: 3260: 3172: 3103: 3060: 3040: 2977: 2890: 2826: 2764: 2744: 2706: 2659: 2649: 2566: 2540: 1749: 1543: 1488: 928: 790: 612: 373: 242: 222: 195: 179: 60: 2939: 2286:
non-zero entries, the cost of the matrix-vector product and thus of computing the
2981: 2470: 2458: 1492: 305: 2894: 2830: 995:
of selected eigenvectors, mapping β€” called spectral embedding β€” of the original
2748: 2211: 1226: 1125: 409: 3264: 2184:
and is clearly misleading, since, e.g., in a hierarchical spectral clustering
3320: 3307: 3272: 3177: 3160: 2654: 1838: 238: 3044: 2732: 3052: 2756: 2673: 2626:", Neural Information Processing Systems 13 (NIPS 2000), 2001, pp. 873–879. 2447: 1499:
is a key technology accelerating the convergence, e.g., in the matrix-free
3107: 3077:
The Relationship of DBSCAN to Matrix Factorization and Spectral Clustering
3075: 3299: 1972:
non-zero entries, and the calculations can be trivially run in parallel.
1626:
matrix of eigenvectors β€” is typically the least expensive requiring only
1487:
For large-sized graphs, the second eigenvalue of the (normalized) graph
1128:, corresponds to the second smallest eigenvalue. Using the components of 763: 604: 463: 191: 48: 3131:
Proceedings of the Princeton Conference in Honor of Professor S. Bochner
2592:"CS267: Notes for Lecture 23, April 9, 1999, Graph Partitioning, Part 2" 228: 138:
represents a measure of the similarity between data points with indices
2543:
method was popularized by Shi & Malik and Ng, Jordan, & Weiss.
786: 608: 486: 2953:
Filippone, M.; Camastra, F.; Masulli, F.; Rovetta, S. (January 2008).
2710: 66:
In application to image segmentation, spectral clustering is known as
3206: 2455: 3240: 2821: 2792: 178:. The general approach to spectral clustering is to use a standard 2701: 2539:
Spectral clustering has a long history. Spectral clustering as a
3249:"Persuasion Bias, Social Influence, and Unidimensional Opinions" 3248: 2866:
Knyazev, Andrew V. (2003). Boley; Dhillon; Ghosh; Kogan (eds.).
2952: 2515: 2462: 2451: 2431: 1500: 1495:, leading to slow convergence of iterative eigenvalue solvers. 1283: 3023:
IEEE Transactions on Pattern Analysis and Machine Intelligence
2737:
IEEE Transactions on Pattern Analysis and Machine Intelligence
2430:
data points. Moreover, matrix-free eigenvalue solvers such as
2410:β€” both are the optimal low bounds of complexity of clustering 855:
of the symmetrically normalized Laplacian and the eigenvector
2911:
Multiscale Spectral Graph Partitioning and Image Segmentation
2636:
Zare, Habil; Shooshtari, P.; Gupta, A.; Brinkman, R. (2010).
2480: 1448:
Cluster the graph nodes based on these features (e.g., using
875:
of the left normalized Laplacian are related by the identity
1752:, e.g., using the RBF kernel, make it dense, thus requiring 1253:
by repeatedly partitioning the subsets in the same fashion.
3279: 2635: 2435: 1943:
sequential arithmetic operations are needed to compute the
27: 2806: 927: 398:
A popular normalized spectral clustering technique is the
19: 3074:
Schubert, Erich; Hess, Sibylle; Morik, Katharina (2018).
1055:. Now the analysis is reduced to clustering vectors with 3209:
Annual IEEE Symposium on Foundations of Computer Science
2955:"A survey of kernel and spectral methods for clustering" 2926:"Clustering - RDD-based API - Spark 3.2.0 Documentation" 1837:
Algorithms to construct the graph adjacency matrix as a
3247:
DeMarzo, P. M.; Vayanos, D.; Zwiebel, J. (2003-08-01).
3225:
Ng, Andrew Y.; Jordan, Michael I.; Weiss, Yair (2002).
2889:. Fast Manifold Learning Workshop, WM Williamburg, VA. 2686: 2613:, IEEE Transactions on PAMI, Vol. 22, No. 8, Aug 2000. 3246: 2876: 2416: 2387: 2358: 2332: 2312: 2292: 2263: 2243: 2223: 2190: 2164: 2128: 2092: 2072: 2052: 2026: 2006: 1986: 1949: 1920: 1891: 1871: 1851: 1812: 1785: 1758: 1727: 1707: 1675: 1655: 1632: 1612: 1592: 1572: 1552: 1528: 1462: 1432: 1412: 1392: 1369: 1349: 1329: 1306: 1282:, any vector clustering technique can be used, e.g., 1262: 1234: 1204: 1177: 1157: 1134: 1110: 1084: 1061: 1041: 1021: 1001: 981: 961: 941: 881: 861: 841: 799: 771: 694: 620: 589: 573:{\displaystyle L^{\text{norm}}:=I-D^{-1/2}AD^{-1/2}.} 502: 471: 422: 316: 290: 254: 204: 164: 144: 108: 88: 2518:
clustering that finds density-connected components.
1343:
eigenvectors (the eigenvectors corresponding to the
3227:"On spectral clustering: analysis and an algorithm" 2946: 2434:can efficiently run in parallel, e.g., on multiple 3093: 2777: 2534: 2521: 2422: 2402: 2373: 2344: 2318: 2298: 2278: 2249: 2229: 2202: 2176: 2150: 2114: 2078: 2058: 2038: 2012: 1992: 1964: 1935: 1906: 1877: 1857: 1825: 1798: 1771: 1733: 1713: 1681: 1661: 1641: 1618: 1598: 1578: 1558: 1534: 1468: 1438: 1418: 1398: 1375: 1355: 1335: 1312: 1274: 1240: 1217: 1190: 1163: 1143: 1116: 1096: 1067: 1047: 1027: 1007: 987: 967: 947: 917: 867: 847: 824: 777: 751: 671: 595: 572: 477: 454: 361: 296: 272: 210: 170: 150: 130: 94: 3234:Advances in Neural Information Processing Systems 3073: 2988: 2122:. The very commonly cited in the literature cost 387: 3318: 3194:Annual ACM-SIAM Symposium on Discrete Algorithms 3020: 3001:-means: spectral clustering and normalized cuts" 2994: 1075:components, which may be done in various ways. 752:{\displaystyle L^{\text{rw}}:=D^{-1}L=I-D^{-1}A} 3294:(3). Oxford University Press (OUP): 1287–1338. 1695: 3191: 187: 3224: 3143: 395:number of connected edges with unit weights. 3285: 2940:"Kernlab: Kernel-Based Machine Learning Lab" 2733:"Spectral grouping using the Nystrom method" 2489: 2469:for pseudo-eigenvector clustering using the 1151:one can place all points whose component in 1035:-dimensional vector space using the rows of 78:Given an enumerated set of data points, the 23:An example connected graph, with 6 vertices. 2995:Dhillon, I.S.; Guan, Y.; Kulis, B. (2004). 1426:-th row defines the features of graph node 2481:Relationship with other clustering methods 1522:Denoting the number of the data points by 1510:Spectral clustering is closely related to 683:random walk (or left) normalized Laplacian 3176: 3034: 2820: 2791: 2700: 2663: 2653: 2505: 1975: 1386:Consider the matrix formed by the first 2611:"Normalized Cuts and Image Segmentation" 227: 68:segmentation-based object categorization 26: 18: 3259:(3). Oxford University Press: 909–968. 3158: 3128: 2907: 2882: 2865: 2730: 362:{\displaystyle D_{ii}=\sum _{j}A_{ij},} 3319: 2800: 2381:, with the memory footprint also only 31:Partitioning into two connected graphs 3220: 3218: 2624:Learning Segmentation by Random Walks 485:corresponding to the second-smallest 416:. It partitions points into two sets 182:method (there are many such methods, 82:may be defined as a symmetric matrix 2780:Journal of Machine Learning Research 2605: 2603: 2601: 607:corresponding to the second-largest 2562:Kernel principal component analysis 2510:In the trivial case of determining 2352:matrix of selected eigenvectors is 1507:, and then clustering communities. 221: 13: 3288:The Quarterly Journal of Economics 3253:The Quarterly Journal of Economics 3215: 3161:"Algebraic connectivity of graphs" 2589: 1542:, it is important to estimate the 1512:nonlinear dimensionality reduction 1104:, the selected single eigenvector 672:{\displaystyle D^{-1/2}AD^{-1/2}.} 14: 3343: 3165:Czechoslovak Mathematical Journal 3146:IBM Technical Disclosure Bulletin 2598: 1748:Naive constructions of the graph 611:of the symmetrically normalized 2689:Electronic Journal of Statistics 2622:Marina MeilΔƒ & Jianbo Shi, " 1689:vector of the labels in memory. 791:random walk normalized adjacency 3200: 3185: 3152: 3137: 3122: 3087: 3067: 3014: 2932: 2918: 2901: 2859: 2609:Jianbo Shi and Jitendra Malik, 2535:History and related literatures 2522:Measures to compare clusterings 1885:graph adjacency matrix is only 2845: 2771: 2724: 2680: 2629: 2616: 2583: 2397: 2391: 2368: 2362: 2273: 2267: 2145: 2132: 2109: 2096: 1959: 1953: 1930: 1924: 1901: 1895: 1015:data points is performed to a 491:symmetric normalized Laplacian 449: 423: 389:Laplacian matrix normalization 232:A 2-dimensional spring system. 73: 1: 2577: 1320:(or the normalized Laplacian) 1289: 785:corresponding to the largest 455:{\displaystyle (B_{1},B_{2})} 408:introduced by Jianbo Shi and 2982:10.1016/j.patcog.2007.05.018 2257:graph Laplacian matrix with 1806:AO to determine each of the 1696:Constructing graph Laplacian 918:{\displaystyle D^{-1/2}v=u.} 131:{\displaystyle A_{ij}\geq 0} 7: 3327:Cluster analysis algorithms 2908:Knyazev, Andrew V. (2006). 2895:10.13140/RG.2.2.35280.02565 2883:Knyazev, Andrew V. (2006). 2831:10.1016/j.parco.2021.102769 2550: 2441: 43:techniques make use of the 10: 3348: 3159:Fiedler, Miroslav (1973). 2749:10.1109/TPAMI.2004.1262185 2512:connected graph components 2217:In the sparse case of the 1980:The cost of computing the 3265:10.1162/00335530360698469 3083:. LWDA. pp. 330–334. 1841:are typically based on a 1456:If the similarity matrix 1300:Calculate the Laplacian 825:{\displaystyle P=D^{-1}A} 401:normalized cuts algorithm 3178:10.21136/CMJ.1973.101168 2655:10.1186/1471-2105-11-403 2151:{\displaystyle O(n^{3})} 2115:{\displaystyle O(n^{2})} 1741:graph adjacency matrix. 1517: 1363:smallest eigenvalues of 57:dimensionality reduction 3045:10.1109/tpami.2007.1115 1843:nearest neighbor search 1649:AO and creating just a 1251:hierarchical clustering 1171:is positive in the set 55:of the data to perform 37:multivariate statistics 3332:Algebraic graph theory 2506:Relationship to DBSCAN 2424: 2404: 2375: 2346: 2345:{\displaystyle k\ll n} 2320: 2300: 2280: 2251: 2231: 2204: 2178: 2152: 2116: 2080: 2060: 2040: 2039:{\displaystyle k\ll n} 2014: 1994: 1976:Computing eigenvectors 1966: 1937: 1908: 1879: 1859: 1827: 1800: 1773: 1735: 1715: 1683: 1663: 1643: 1620: 1600: 1580: 1560: 1536: 1470: 1440: 1420: 1400: 1377: 1357: 1337: 1314: 1276: 1275:{\displaystyle k>1} 1242: 1219: 1192: 1165: 1145: 1118: 1098: 1069: 1049: 1029: 1009: 989: 969: 949: 931:via Spectral Embedding 919: 869: 849: 826: 779: 753: 673: 597: 574: 479: 456: 363: 298: 274: 273:{\displaystyle L:=D-A} 233: 212: 172: 152: 132: 96: 32: 24: 3108:10.1145/990308.990313 2572:Spectral graph theory 2425: 2405: 2376: 2347: 2321: 2301: 2281: 2252: 2232: 2210:as determined by the 2205: 2179: 2153: 2117: 2081: 2061: 2041: 2015: 1995: 1967: 1938: 1909: 1880: 1860: 1828: 1826:{\displaystyle n^{2}} 1801: 1799:{\displaystyle n^{2}} 1774: 1772:{\displaystyle n^{2}} 1736: 1716: 1684: 1664: 1644: 1621: 1601: 1581: 1561: 1537: 1471: 1441: 1421: 1401: 1378: 1358: 1338: 1315: 1277: 1243: 1220: 1218:{\displaystyle B_{-}} 1193: 1191:{\displaystyle B_{+}} 1166: 1146: 1119: 1099: 1078:In the simplest case 1070: 1050: 1030: 1010: 990: 970: 950: 920: 870: 850: 827: 780: 754: 674: 598: 575: 480: 457: 382:vibration frequencies 364: 299: 275: 231: 213: 173: 153: 133: 97: 30: 22: 2557:Affinity propagation 2498:The weighted kernel 2414: 2403:{\displaystyle O(n)} 2385: 2374:{\displaystyle O(n)} 2356: 2330: 2310: 2290: 2279:{\displaystyle O(n)} 2261: 2241: 2221: 2188: 2162: 2158:comes from choosing 2126: 2090: 2070: 2050: 2024: 2004: 1984: 1965:{\displaystyle O(n)} 1947: 1936:{\displaystyle O(n)} 1918: 1907:{\displaystyle O(n)} 1889: 1869: 1849: 1810: 1783: 1756: 1725: 1705: 1673: 1653: 1630: 1610: 1590: 1570: 1550: 1526: 1460: 1430: 1410: 1390: 1367: 1347: 1327: 1323:Calculate the first 1304: 1260: 1256:In the general case 1232: 1202: 1175: 1155: 1132: 1108: 1082: 1059: 1039: 1019: 999: 979: 959: 939: 879: 859: 839: 797: 769: 692: 618: 587: 500: 469: 420: 412:, commonly used for 314: 288: 252: 202: 186:-means is discussed 162: 142: 106: 86: 2974:2008PatRe..41..176F 2962:Pattern Recognition 2942:. 12 November 2019. 2731:Fowlkes, C (2004). 2203:{\displaystyle k=1} 2177:{\displaystyle k=n} 1505:community structure 1478:matrix-free fashion 1406:eigenvectors; the 1097:{\displaystyle k=1} 406:Shi–Malik algorithm 41:spectral clustering 3300:10.1093/qje/qjs021 3096:Journal of the ACM 2809:Parallel Computing 2642:BMC Bioinformatics 2490:Relationship with 2420: 2400: 2371: 2342: 2316: 2296: 2276: 2247: 2227: 2200: 2174: 2148: 2112: 2076: 2056: 2036: 2010: 1990: 1962: 1933: 1904: 1875: 1855: 1823: 1796: 1769: 1731: 1711: 1679: 1659: 1642:{\displaystyle kn} 1639: 1616: 1596: 1576: 1556: 1532: 1466: 1450:k-means clustering 1436: 1416: 1396: 1373: 1353: 1333: 1310: 1272: 1238: 1215: 1188: 1161: 1144:{\displaystyle v,} 1141: 1114: 1094: 1065: 1045: 1025: 1005: 985: 965: 945: 915: 865: 845: 822: 775: 749: 669: 593: 570: 475: 452: 414:image segmentation 359: 342: 294: 270: 234: 208: 168: 148: 128: 92: 33: 25: 16:Clustering methods 3029:(11): 1944–1957. 3010:. pp. 551–6. 2853:"2.3. Clustering" 2711:10.1214/11-ejs651 2423:{\displaystyle n} 2319:{\displaystyle k} 2299:{\displaystyle n} 2250:{\displaystyle n} 2230:{\displaystyle n} 2079:{\displaystyle n} 2059:{\displaystyle n} 2013:{\displaystyle k} 1993:{\displaystyle n} 1878:{\displaystyle n} 1858:{\displaystyle n} 1734:{\displaystyle n} 1714:{\displaystyle n} 1682:{\displaystyle 1} 1662:{\displaystyle n} 1619:{\displaystyle k} 1599:{\displaystyle n} 1579:{\displaystyle k} 1559:{\displaystyle n} 1535:{\displaystyle n} 1482:Lanczos algorithm 1469:{\displaystyle A} 1439:{\displaystyle l} 1419:{\displaystyle l} 1399:{\displaystyle k} 1376:{\displaystyle L} 1356:{\displaystyle k} 1336:{\displaystyle k} 1313:{\displaystyle L} 1241:{\displaystyle v} 1164:{\displaystyle v} 1117:{\displaystyle v} 1068:{\displaystyle k} 1048:{\displaystyle V} 1028:{\displaystyle k} 1008:{\displaystyle n} 988:{\displaystyle V} 968:{\displaystyle k} 948:{\displaystyle n} 868:{\displaystyle u} 848:{\displaystyle v} 778:{\displaystyle u} 702: 596:{\displaystyle v} 510: 478:{\displaystyle v} 333: 297:{\displaystyle D} 211:{\displaystyle A} 171:{\displaystyle j} 151:{\displaystyle i} 95:{\displaystyle A} 80:similarity matrix 53:similarity matrix 3339: 3312: 3311: 3283: 3277: 3276: 3244: 3238: 3237: 3231: 3222: 3213: 3212: 3204: 3198: 3197: 3189: 3183: 3182: 3180: 3156: 3150: 3149: 3141: 3135: 3134: 3126: 3120: 3119: 3091: 3085: 3084: 3082: 3071: 3065: 3064: 3038: 3018: 3012: 3011: 3005: 2992: 2986: 2985: 2959: 2950: 2944: 2943: 2936: 2930: 2929: 2922: 2916: 2915: 2905: 2899: 2898: 2880: 2874: 2873: 2863: 2857: 2856: 2849: 2843: 2842: 2824: 2804: 2798: 2797: 2795: 2775: 2769: 2768: 2728: 2722: 2721: 2704: 2684: 2678: 2677: 2667: 2657: 2633: 2627: 2620: 2614: 2607: 2596: 2595: 2587: 2567:Cluster analysis 2541:machine learning 2429: 2427: 2426: 2421: 2409: 2407: 2406: 2401: 2380: 2378: 2377: 2372: 2351: 2349: 2348: 2343: 2325: 2323: 2322: 2317: 2305: 2303: 2302: 2297: 2285: 2283: 2282: 2277: 2256: 2254: 2253: 2248: 2236: 2234: 2233: 2228: 2209: 2207: 2206: 2201: 2183: 2181: 2180: 2175: 2157: 2155: 2154: 2149: 2144: 2143: 2121: 2119: 2118: 2113: 2108: 2107: 2085: 2083: 2082: 2077: 2065: 2063: 2062: 2057: 2045: 2043: 2042: 2037: 2019: 2017: 2016: 2011: 1999: 1997: 1996: 1991: 1971: 1969: 1968: 1963: 1942: 1940: 1939: 1934: 1913: 1911: 1910: 1905: 1884: 1882: 1881: 1876: 1864: 1862: 1861: 1856: 1832: 1830: 1829: 1824: 1822: 1821: 1805: 1803: 1802: 1797: 1795: 1794: 1778: 1776: 1775: 1770: 1768: 1767: 1750:adjacency matrix 1740: 1738: 1737: 1732: 1720: 1718: 1717: 1712: 1688: 1686: 1685: 1680: 1668: 1666: 1665: 1660: 1648: 1646: 1645: 1640: 1625: 1623: 1622: 1617: 1605: 1603: 1602: 1597: 1585: 1583: 1582: 1577: 1565: 1563: 1562: 1557: 1544:memory footprint 1541: 1539: 1538: 1533: 1489:Laplacian matrix 1475: 1473: 1472: 1467: 1445: 1443: 1442: 1437: 1425: 1423: 1422: 1417: 1405: 1403: 1402: 1397: 1382: 1380: 1379: 1374: 1362: 1360: 1359: 1354: 1342: 1340: 1339: 1334: 1319: 1317: 1316: 1311: 1281: 1279: 1278: 1273: 1247: 1245: 1244: 1239: 1224: 1222: 1221: 1216: 1214: 1213: 1198:and the rest in 1197: 1195: 1194: 1189: 1187: 1186: 1170: 1168: 1167: 1162: 1150: 1148: 1147: 1142: 1123: 1121: 1120: 1115: 1103: 1101: 1100: 1095: 1074: 1072: 1071: 1066: 1054: 1052: 1051: 1046: 1034: 1032: 1031: 1026: 1014: 1012: 1011: 1006: 994: 992: 991: 986: 974: 972: 971: 966: 954: 952: 951: 946: 929:Cluster analysis 924: 922: 921: 916: 902: 901: 897: 874: 872: 871: 866: 854: 852: 851: 846: 835:The eigenvector 831: 829: 828: 823: 818: 817: 784: 782: 781: 776: 758: 756: 755: 750: 745: 744: 720: 719: 704: 703: 700: 678: 676: 675: 670: 665: 664: 660: 641: 640: 636: 613:adjacency matrix 602: 600: 599: 594: 579: 577: 576: 571: 566: 565: 561: 542: 541: 537: 512: 511: 508: 484: 482: 481: 476: 461: 459: 458: 453: 448: 447: 435: 434: 374:adjacency matrix 368: 366: 365: 360: 355: 354: 341: 329: 328: 303: 301: 300: 295: 279: 277: 276: 271: 243:Laplacian matrix 223:Laplacian matrix 217: 215: 214: 209: 196:Laplacian matrix 177: 175: 174: 169: 157: 155: 154: 149: 137: 135: 134: 129: 121: 120: 101: 99: 98: 93: 3347: 3346: 3342: 3341: 3340: 3338: 3337: 3336: 3317: 3316: 3315: 3284: 3280: 3245: 3241: 3229: 3223: 3216: 3205: 3201: 3190: 3186: 3157: 3153: 3142: 3138: 3127: 3123: 3092: 3088: 3080: 3072: 3068: 3036:10.1.1.131.2635 3019: 3015: 3003: 2993: 2989: 2957: 2951: 2947: 2938: 2937: 2933: 2924: 2923: 2919: 2906: 2902: 2881: 2877: 2864: 2860: 2851: 2850: 2846: 2805: 2801: 2776: 2772: 2729: 2725: 2685: 2681: 2634: 2630: 2621: 2617: 2608: 2599: 2588: 2584: 2580: 2553: 2537: 2524: 2508: 2496: 2483: 2471:power iteration 2459:preconditioning 2444: 2415: 2412: 2411: 2386: 2383: 2382: 2357: 2354: 2353: 2331: 2328: 2327: 2311: 2308: 2307: 2291: 2288: 2287: 2262: 2259: 2258: 2242: 2239: 2238: 2222: 2219: 2218: 2189: 2186: 2185: 2163: 2160: 2159: 2139: 2135: 2127: 2124: 2123: 2103: 2099: 2091: 2088: 2087: 2071: 2068: 2067: 2051: 2048: 2047: 2025: 2022: 2021: 2005: 2002: 2001: 1985: 1982: 1981: 1978: 1948: 1945: 1944: 1919: 1916: 1915: 1890: 1887: 1886: 1870: 1867: 1866: 1850: 1847: 1846: 1817: 1813: 1811: 1808: 1807: 1790: 1786: 1784: 1781: 1780: 1763: 1759: 1757: 1754: 1753: 1726: 1723: 1722: 1706: 1703: 1702: 1698: 1674: 1671: 1670: 1654: 1651: 1650: 1631: 1628: 1627: 1611: 1608: 1607: 1591: 1588: 1587: 1571: 1568: 1567: 1551: 1548: 1547: 1527: 1524: 1523: 1520: 1497:Preconditioning 1493:ill-conditioned 1461: 1458: 1457: 1431: 1428: 1427: 1411: 1408: 1407: 1391: 1388: 1387: 1368: 1365: 1364: 1348: 1345: 1344: 1328: 1325: 1324: 1305: 1302: 1301: 1295:Basic Algorithm 1292: 1261: 1258: 1257: 1233: 1230: 1229: 1209: 1205: 1203: 1200: 1199: 1182: 1178: 1176: 1173: 1172: 1156: 1153: 1152: 1133: 1130: 1129: 1109: 1106: 1105: 1083: 1080: 1079: 1060: 1057: 1056: 1040: 1037: 1036: 1020: 1017: 1016: 1000: 997: 996: 980: 977: 976: 960: 957: 956: 940: 937: 936: 933: 893: 886: 882: 880: 877: 876: 860: 857: 856: 840: 837: 836: 810: 806: 798: 795: 794: 770: 767: 766: 737: 733: 712: 708: 699: 695: 693: 690: 689: 656: 649: 645: 632: 625: 621: 619: 616: 615: 588: 585: 584: 557: 550: 546: 533: 526: 522: 507: 503: 501: 498: 497: 470: 467: 466: 443: 439: 430: 426: 421: 418: 417: 392: 347: 343: 337: 321: 317: 315: 312: 311: 306:diagonal matrix 289: 286: 285: 253: 250: 249: 226: 203: 200: 199: 163: 160: 159: 143: 140: 139: 113: 109: 107: 104: 103: 87: 84: 83: 76: 17: 12: 11: 5: 3345: 3335: 3334: 3329: 3314: 3313: 3278: 3239: 3214: 3199: 3184: 3171:(2): 298–305. 3151: 3136: 3121: 3102:(3): 497–515. 3086: 3066: 3013: 2987: 2968:(1): 176–190. 2945: 2931: 2917: 2900: 2875: 2858: 2844: 2799: 2770: 2723: 2679: 2628: 2615: 2597: 2581: 2579: 2576: 2575: 2574: 2569: 2564: 2559: 2552: 2549: 2536: 2533: 2523: 2520: 2507: 2504: 2495: 2488: 2482: 2479: 2443: 2440: 2419: 2399: 2396: 2393: 2390: 2370: 2367: 2364: 2361: 2341: 2338: 2335: 2315: 2295: 2275: 2272: 2269: 2266: 2246: 2226: 2212:Fiedler vector 2199: 2196: 2193: 2173: 2170: 2167: 2147: 2142: 2138: 2134: 2131: 2111: 2106: 2102: 2098: 2095: 2075: 2055: 2035: 2032: 2029: 2009: 1989: 1977: 1974: 1961: 1958: 1955: 1952: 1932: 1929: 1926: 1923: 1903: 1900: 1897: 1894: 1874: 1854: 1820: 1816: 1793: 1789: 1766: 1762: 1730: 1710: 1697: 1694: 1678: 1658: 1638: 1635: 1615: 1595: 1575: 1555: 1531: 1519: 1516: 1465: 1454: 1453: 1446: 1435: 1415: 1395: 1384: 1372: 1352: 1332: 1321: 1309: 1297: 1296: 1291: 1288: 1271: 1268: 1265: 1237: 1227:Fiedler vector 1212: 1208: 1185: 1181: 1160: 1140: 1137: 1126:Fiedler vector 1113: 1093: 1090: 1087: 1064: 1044: 1024: 1004: 984: 964: 944: 932: 926: 914: 911: 908: 905: 900: 896: 892: 889: 885: 864: 844: 821: 816: 813: 809: 805: 802: 774: 760: 759: 748: 743: 740: 736: 732: 729: 726: 723: 718: 715: 711: 707: 698: 685:is defined as 668: 663: 659: 655: 652: 648: 644: 639: 635: 631: 628: 624: 592: 581: 580: 569: 564: 560: 556: 553: 549: 545: 540: 536: 532: 529: 525: 521: 518: 515: 506: 474: 451: 446: 442: 438: 433: 429: 425: 410:Jitendra Malik 391: 386: 370: 369: 358: 353: 350: 346: 340: 336: 332: 327: 324: 320: 293: 282: 281: 269: 266: 263: 260: 257: 225: 220: 207: 190:) on relevant 167: 147: 127: 124: 119: 116: 112: 91: 75: 72: 15: 9: 6: 4: 3: 2: 3344: 3333: 3330: 3328: 3325: 3324: 3322: 3309: 3305: 3301: 3297: 3293: 3289: 3282: 3274: 3270: 3266: 3262: 3258: 3254: 3250: 3243: 3235: 3228: 3221: 3219: 3210: 3203: 3195: 3188: 3179: 3174: 3170: 3166: 3162: 3155: 3147: 3140: 3132: 3125: 3117: 3113: 3109: 3105: 3101: 3097: 3090: 3079: 3078: 3070: 3062: 3058: 3054: 3050: 3046: 3042: 3037: 3032: 3028: 3024: 3017: 3009: 3002: 3000: 2991: 2983: 2979: 2975: 2971: 2967: 2963: 2956: 2949: 2941: 2935: 2927: 2921: 2913: 2912: 2904: 2896: 2892: 2888: 2887: 2879: 2871: 2870: 2862: 2854: 2848: 2840: 2836: 2832: 2828: 2823: 2818: 2814: 2810: 2803: 2794: 2789: 2785: 2781: 2774: 2766: 2762: 2758: 2754: 2750: 2746: 2743:(2): 214–25. 2742: 2738: 2734: 2727: 2720: 2716: 2712: 2708: 2703: 2698: 2694: 2690: 2683: 2675: 2671: 2666: 2661: 2656: 2651: 2647: 2643: 2639: 2632: 2625: 2619: 2612: 2606: 2604: 2602: 2593: 2586: 2582: 2573: 2570: 2568: 2565: 2563: 2560: 2558: 2555: 2554: 2548: 2544: 2542: 2532: 2529: 2519: 2517: 2513: 2503: 2501: 2493: 2487: 2478: 2476: 2472: 2468: 2464: 2460: 2457: 2453: 2449: 2439: 2437: 2433: 2417: 2394: 2388: 2365: 2359: 2339: 2336: 2333: 2313: 2293: 2270: 2264: 2244: 2224: 2215: 2213: 2197: 2194: 2191: 2171: 2168: 2165: 2140: 2136: 2129: 2104: 2100: 2093: 2073: 2053: 2033: 2030: 2027: 2007: 1987: 1973: 1956: 1950: 1927: 1921: 1898: 1892: 1872: 1852: 1844: 1840: 1839:sparse matrix 1835: 1818: 1814: 1791: 1787: 1764: 1760: 1751: 1746: 1742: 1728: 1708: 1693: 1690: 1676: 1656: 1636: 1633: 1613: 1593: 1573: 1553: 1545: 1529: 1515: 1513: 1508: 1506: 1502: 1498: 1494: 1490: 1485: 1483: 1479: 1463: 1451: 1447: 1433: 1413: 1393: 1385: 1370: 1350: 1330: 1322: 1307: 1299: 1298: 1294: 1293: 1287: 1285: 1269: 1266: 1263: 1254: 1252: 1235: 1228: 1210: 1206: 1183: 1179: 1158: 1138: 1135: 1127: 1124:, called the 1111: 1091: 1088: 1085: 1076: 1062: 1042: 1022: 1002: 982: 962: 942: 930: 925: 912: 909: 906: 903: 898: 894: 890: 887: 883: 862: 842: 833: 819: 814: 811: 807: 803: 800: 792: 788: 772: 765: 746: 741: 738: 734: 730: 727: 724: 721: 716: 713: 709: 705: 696: 688: 687: 686: 684: 679: 666: 661: 657: 653: 650: 646: 642: 637: 633: 629: 626: 622: 614: 610: 606: 590: 567: 562: 558: 554: 551: 547: 543: 538: 534: 530: 527: 523: 519: 516: 513: 504: 496: 495: 494: 492: 488: 472: 465: 462:based on the 444: 440: 436: 431: 427: 415: 411: 407: 403: 402: 396: 390: 385: 383: 377: 375: 372:and A is the 356: 351: 348: 344: 338: 334: 330: 325: 322: 318: 310: 309: 308: 307: 291: 267: 264: 261: 258: 255: 248: 247: 246: 244: 240: 239:spring system 230: 224: 219: 205: 197: 193: 189: 185: 181: 165: 145: 125: 122: 117: 114: 110: 89: 81: 71: 69: 64: 62: 58: 54: 50: 46: 42: 38: 29: 21: 3291: 3287: 3281: 3256: 3252: 3242: 3233: 3208: 3202: 3193: 3187: 3168: 3164: 3154: 3145: 3139: 3130: 3124: 3099: 3095: 3089: 3076: 3069: 3026: 3022: 3016: 3007: 2998: 2990: 2965: 2961: 2948: 2934: 2920: 2910: 2903: 2885: 2878: 2868: 2861: 2847: 2812: 2808: 2802: 2783: 2779: 2773: 2740: 2736: 2726: 2692: 2688: 2682: 2645: 2641: 2631: 2618: 2585: 2545: 2538: 2525: 2509: 2499: 2497: 2491: 2484: 2473:method, and 2448:scikit-learn 2445: 2216: 1979: 1836: 1747: 1743: 1699: 1691: 1521: 1509: 1486: 1455: 1255: 1077: 935:Knowing the 934: 834: 761: 682: 680: 603:is also the 582: 405: 399: 397: 393: 378: 371: 283: 245:defined as 235: 192:eigenvectors 183: 77: 65: 40: 34: 2695:: 1537–87, 2590:Demmel, J. 2528:conductance 1779:memory and 764:eigenvector 605:eigenvector 583:The vector 493:defined as 464:eigenvector 74:Definitions 49:eigenvalues 3321:Categories 2822:2105.00578 2815:: 102769. 2793:1706.02803 2578:References 1290:Algorithms 787:eigenvalue 609:eigenvalue 487:eigenvalue 180:clustering 61:clustering 3308:0033-5533 3273:0033-5533 3116:207558562 3031:CiteSeerX 2839:233481603 2702:1001.1323 2456:multigrid 2337:≪ 2031:≪ 1491:is often 1211:− 888:− 812:− 739:− 731:− 714:− 651:− 627:− 552:− 528:− 520:− 335:∑ 265:− 123:≥ 51:) of the 3053:17848776 2997:"Kernel 2786:: 1–49. 2757:15376896 2719:88518155 2674:20667133 2551:See also 2442:Software 102:, where 45:spectrum 3061:9402790 2970:Bibcode 2765:2384316 2665:2923634 2648:: 403. 1914:, only 975:matrix 793:matrix 789:of the 489:of the 304:is the 59:before 3306:  3271:  3114:  3059:  3051:  3033:  2837:  2763:  2755:  2717:  2672:  2662:  2516:DBSCAN 2494:-means 2463:ARPACK 2452:LOBPCG 2450:using 2432:LOBPCG 2020:(with 1501:LOBPCG 1284:DBSCAN 284:where 3230:(PDF) 3112:S2CID 3081:(PDF) 3057:S2CID 3004:(PDF) 2958:(PDF) 2835:S2CID 2817:arXiv 2788:arXiv 2761:S2CID 2715:S2CID 2697:arXiv 2467:MLlib 2454:with 2326:with 1518:Costs 194:of a 188:below 3304:ISSN 3269:ISSN 3049:PMID 2753:PMID 2670:PMID 2436:GPUs 2306:-by- 2237:-by- 2066:-by- 2000:-by- 1865:-by- 1721:-by- 1669:-by- 1606:-by- 1267:> 955:-by- 681:The 509:norm 158:and 3296:doi 3292:127 3261:doi 3257:118 3173:doi 3104:doi 3041:doi 2978:doi 2891:doi 2827:doi 2813:106 2745:doi 2707:doi 2660:PMC 2650:doi 2461:or 404:or 198:of 35:In 3323:: 3302:. 3290:. 3267:. 3255:. 3251:. 3232:. 3217:^ 3169:23 3167:. 3163:. 3110:. 3100:51 3098:. 3055:. 3047:. 3039:. 3027:29 3025:. 3006:. 2976:. 2966:41 2964:. 2960:. 2833:. 2825:. 2811:. 2784:20 2782:. 2759:. 2751:. 2741:26 2739:. 2735:. 2713:, 2705:, 2691:, 2668:. 2658:. 2646:11 2644:. 2640:. 2600:^ 2477:. 2465:, 2214:. 1484:. 1286:. 832:. 706::= 701:rw 514::= 384:. 376:. 259::= 70:. 39:, 3310:. 3298:: 3275:. 3263:: 3236:. 3211:. 3196:. 3181:. 3175:: 3148:. 3133:. 3118:. 3106:: 3063:. 3043:: 2999:k 2984:. 2980:: 2972:: 2928:. 2897:. 2893:: 2855:. 2841:. 2829:: 2819:: 2796:. 2790:: 2767:. 2747:: 2709:: 2699:: 2693:5 2676:. 2652:: 2594:. 2500:k 2492:k 2475:R 2418:n 2398:) 2395:n 2392:( 2389:O 2369:) 2366:n 2363:( 2360:O 2340:n 2334:k 2314:k 2294:n 2274:) 2271:n 2268:( 2265:O 2245:n 2225:n 2198:1 2195:= 2192:k 2172:n 2169:= 2166:k 2146:) 2141:3 2137:n 2133:( 2130:O 2110:) 2105:2 2101:n 2097:( 2094:O 2074:n 2054:n 2034:n 2028:k 2008:k 1988:n 1960:) 1957:n 1954:( 1951:O 1931:) 1928:n 1925:( 1922:O 1902:) 1899:n 1896:( 1893:O 1873:n 1853:n 1819:2 1815:n 1792:2 1788:n 1765:2 1761:n 1729:n 1709:n 1677:1 1657:n 1637:n 1634:k 1614:k 1594:n 1574:k 1554:n 1530:n 1464:A 1452:) 1434:l 1414:l 1394:k 1383:) 1371:L 1351:k 1331:k 1308:L 1270:1 1264:k 1236:v 1207:B 1184:+ 1180:B 1159:v 1139:, 1136:v 1112:v 1092:1 1089:= 1086:k 1063:k 1043:V 1023:k 1003:n 983:V 963:k 943:n 913:. 910:u 907:= 904:v 899:2 895:/ 891:1 884:D 863:u 843:v 820:A 815:1 808:D 804:= 801:P 773:u 747:A 742:1 735:D 728:I 725:= 722:L 717:1 710:D 697:L 667:. 662:2 658:/ 654:1 647:D 643:A 638:2 634:/ 630:1 623:D 591:v 568:. 563:2 559:/ 555:1 548:D 544:A 539:2 535:/ 531:1 524:D 517:I 505:L 473:v 450:) 445:2 441:B 437:, 432:1 428:B 424:( 357:, 352:j 349:i 345:A 339:j 331:= 326:i 323:i 319:D 292:D 280:, 268:A 262:D 256:L 206:A 184:k 166:j 146:i 126:0 118:j 115:i 111:A 90:A 47:(

Index



multivariate statistics
spectrum
eigenvalues
similarity matrix
dimensionality reduction
clustering
segmentation-based object categorization
similarity matrix
clustering
below
eigenvectors
Laplacian matrix
Laplacian matrix

spring system
Laplacian matrix
diagonal matrix
adjacency matrix
vibration frequencies
Laplacian matrix normalization
normalized cuts algorithm
Jitendra Malik
image segmentation
eigenvector
eigenvalue
symmetric normalized Laplacian
eigenvector
eigenvalue

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑