Knowledge

Boiling-point elevation

Source 📝

52: 95:
or the gas phase has a lower chemical potential and is more energetically favorable than the other phase. This means that when a nonvolatile solute is added, the chemical potential of the solvent in the liquid phase is decreased by dilution, but the chemical potential of the solvent in the gas phase is not affected. This means in turn that the equilibrium between the liquid and gas phase is established at another temperature for a solution than a pure liquid, i.e., the boiling point is elevated.
67:, which means that it is dependent on the presence of dissolved particles and their number, but not their identity. It is an effect of the dilution of the solvent in the presence of a solute. It is a phenomenon that happens for all solutes in all solutions, even in ideal solutions, and does not depend on any specific solute–solvent interactions. The boiling point elevation happens both when the solute is an 94:
Put in chemical potential terms, at the boiling point, the liquid phase and the gas (or vapor) phase have the same chemical potential (or vapor pressure) meaning that they are energetically equivalent. The chemical potential is dependent on the temperature, and at other temperatures either the liquid
370:
of the solution. If the solute is also volatile, one of the key assumptions used in deriving the formula is not true, since it derived for solutions of non-volatile solutes in a volatile solvent. In the case of volatile solutes it is more relevant to talk of a mixture of volatile compounds and the
90:
Put in vapor pressure terms, a liquid boils at the temperature when its vapor pressure equals the surrounding pressure. For the solvent, the presence of the solute decreases its vapor pressure by dilution. A nonvolatile solute has a vapor pressure of zero, so the vapor pressure of the solution is
102:
is analogous to boiling point elevation. However, the magnitude of the freezing point depression is larger than the boiling point elevation for the same solvent and the same concentration of a solute. Because of these two phenomena, the liquid range of a solvent is increased in the presence of a
550:. Furthermore, the cryoscopic constant that determines freezing-point depression is larger than the ebullioscopic constant, and since the freezing point is often easier to measure with precision, it is more common to use 38:
has a higher boiling point than a pure solvent. This happens whenever a non-volatile solute, such as a salt, is added to a pure solvent, such as water. The boiling point can be measured accurately using an
87:
of the solvent. In both cases, the explanation depends on the fact that many solutes are only present in the liquid phase and do not enter into the gas phase (except at extremely high temperatures).
119:
together with the assumption of the non-volatility of the solute. The result is that in dilute ideal solutions, the extent of boiling-point elevation is directly proportional to the
375:
of the mixture. In such cases, the mixture can sometimes have a boiling point that is lower than either of the pure components; a mixture with a minimum boiling point is a type of
91:
less than the vapor pressure of the solvent. Thus, a higher temperature is needed for the vapor pressure to reach the surrounding pressure, and the boiling point is elevated.
252:
into account since the boiling point elevation is a colligative property, dependent on the number of particles in solution. This is most easily done by using the
967: 578: 669: 55:
The change in chemical potential of a solvent when a solute is added explains why boiling point elevation takes place.
714: 611: 662: 112: 804: 515:
Together with the formula above, the boiling-point elevation can in principle be used to measure the degree of
285:
accounts for the number of individual particles (typically ions) formed by a compound in solution. Examples:
1033: 1028: 957: 329:
factors result from ion pairs in solution, which lower the effective number of particles in the solution.
1038: 887: 655: 51: 942: 834: 568: 99: 819: 754: 516: 249: 774: 872: 867: 724: 563: 245: 178: 972: 952: 253: 367: 686: 678: 547: 546:
measurements are difficult to carry out, which was partly overcome by the invention of the
457: 232: 64: 35: 624: 573: 305:
in water, due to the near full dissociation of NaCl into Na and Cl (often simplified as 2)
8: 799: 769: 84: 977: 936: 839: 607: 912: 907: 739: 699: 444: 312: 897: 882: 814: 779: 764: 759: 744: 709: 302: 116: 947: 902: 892: 809: 704: 694: 181:, which is dependent on the properties of the solvent. It can be calculated as 80: 72: 1022: 992: 829: 789: 734: 532: 372: 23: 849: 844: 536: 210: 40: 1002: 917: 470: 418: 68: 106: 997: 987: 982: 859: 520: 371:
effect of the solute on the boiling point must be determined from the
1007: 962: 877: 647: 551: 376: 111:
The extent of boiling-point elevation can be calculated by applying
824: 120: 927: 729: 719: 431: 366:
At high concentrations, the above formula is less precise due to
292: 76: 31: 34:) will be higher when another compound is added, meaning that a 483: 27: 749: 528: 496: 16:
Elevation of boiling point due to addition of a compound
107:
The equation for calculations at dilute concentration
968:
List of boiling and freezing information of solvents
579:
List of boiling and freezing information of solvents
75:
terms, the origin of the boiling point elevation is
606:, 4th Ed., Oxford University Press, Oxford, 1994, 523:of the solute. This kind of measurement is called 121:molal concentration (amount of substance per mass) 71:, such as various salts, and a nonelectrolyte. In 315:in water, due to nearly full dissociation of CaCl 220:is the boiling temperature of the pure solvent , 153:where the boiling point elevation, is defined as 1020: 625:"Colligative Properties and Molality - UBC Wiki" 332:Equation after including the van 't Hoff factor 663: 281:is the molality of the solution. The factor 123:of the solution according to the equation: 670: 656: 382: 598: 596: 594: 50: 319:into Ca and 2Cl (often simplified as 3) 1021: 677: 387:Values of the ebullioscopic constants 224:is the molar mass of the solvent, and 651: 591: 79:and can be explained in terms of the 535:"boiling-viewing"). However, since 13: 14: 1050: 539:is difficult to avoid, precise 631: 617: 46: 22:is the phenomenon whereby the 1: 641:, 4th Ed., p. C17 (Table 7.2) 584: 958:Inorganic nonaqueous solvent 7: 557: 113:Clausius–Clapeyron relation 10: 1055: 943:Acid dissociation constant 926: 858: 788: 685: 569:Freezing point depression 100:freezing-point depression 406:Ebullioscopic constant 235:per mole of the solvent. 908:Solubility table (data) 775:Apparent molar property 510: 394:for selected solvents: 383:Ebullioscopic constants 248:, calculated by taking 61:boiling point elevation 20:Boiling-point elevation 873:Total dissolved solids 868:Solubility equilibrium 793:and related quantities 564:Colligative properties 179:ebullioscopic constant 56: 973:Partition coefficient 953:Polar aprotic solvent 54: 888:Enthalpy of solution 815:Volume concentration 810:Number concentration 548:Beckmann thermometer 458:Carbon tetrachloride 246:colligative molality 233:heat of vaporization 65:colligative property 1034:Chemical properties 1029:Amount of substance 800:Molar concentration 770:Dilution (equation) 403:Boiling point in °C 1039:Physical chemistry 840:Isotopic abundance 805:Mass concentration 679:Chemical solutions 639:Physical Chemistry 604:Physical Chemistry 254:van 't Hoff factor 98:The phenomenon of 85:chemical potential 57: 1016: 1015: 508: 507: 413:in units of or 1046: 913:Solubility chart 740:Phase separation 700:Aqueous solution 672: 665: 658: 649: 648: 642: 635: 629: 628: 621: 615: 600: 445:Carbon disulfide 397: 396: 313:calcium chloride 165:b (pure solvent) 1054: 1053: 1049: 1048: 1047: 1045: 1044: 1043: 1019: 1018: 1017: 1012: 922: 883:Solvation shell 854: 792: 784: 780:Miscibility gap 765:Serial dilution 760:Supersaturation 710:Buffer solution 681: 676: 646: 645: 636: 632: 623: 622: 618: 601: 592: 587: 560: 545: 513: 412: 393: 385: 362: 357: 350: 343: 318: 303:sodium chloride 280: 272: 265: 243: 230: 219: 204: 194: 187: 176: 166: 159: 149: 148: 141: 134: 109: 49: 17: 12: 11: 5: 1052: 1042: 1041: 1036: 1031: 1014: 1013: 1011: 1010: 1005: 1000: 995: 990: 985: 980: 975: 970: 965: 960: 955: 950: 948:Protic solvent 945: 940: 932: 930: 924: 923: 921: 920: 915: 910: 905: 900: 895: 893:Lattice energy 890: 885: 880: 875: 870: 864: 862: 856: 855: 853: 852: 847: 842: 837: 832: 827: 822: 817: 812: 807: 802: 796: 794: 786: 785: 783: 782: 777: 772: 767: 762: 757: 752: 747: 745:Eutectic point 742: 737: 732: 727: 722: 717: 712: 707: 705:Solid solution 702: 697: 695:Ideal solution 691: 689: 683: 682: 675: 674: 667: 660: 652: 644: 643: 637:P. W. Atkins, 630: 616: 602:P. W. Atkins, 589: 588: 586: 583: 582: 581: 576: 574:DĂźhring's rule 571: 566: 559: 556: 543: 512: 509: 506: 505: 502: 499: 493: 492: 489: 486: 480: 479: 476: 473: 467: 466: 463: 460: 454: 453: 450: 447: 441: 440: 437: 434: 428: 427: 424: 421: 415: 414: 410: 404: 401: 391: 384: 381: 364: 363: 355: 348: 341: 336: 323: 322: 321: 320: 316: 306: 296: 278: 270: 263: 241: 236: 228: 217: 202: 192: 185: 174: 164: 157: 151: 150: 146: 139: 132: 127: 108: 105: 81:vapor pressure 48: 45: 15: 9: 6: 4: 3: 2: 1051: 1040: 1037: 1035: 1032: 1030: 1027: 1026: 1024: 1009: 1006: 1004: 1001: 999: 996: 994: 991: 989: 986: 984: 981: 979: 976: 974: 971: 969: 966: 964: 961: 959: 956: 954: 951: 949: 946: 944: 941: 938: 934: 933: 931: 929: 925: 919: 916: 914: 911: 909: 906: 904: 901: 899: 896: 894: 891: 889: 886: 884: 881: 879: 876: 874: 871: 869: 866: 865: 863: 861: 857: 851: 848: 846: 843: 841: 838: 836: 835:Mass fraction 833: 831: 830:Mole fraction 828: 826: 823: 821: 818: 816: 813: 811: 808: 806: 803: 801: 798: 797: 795: 791: 790:Concentration 787: 781: 778: 776: 773: 771: 768: 766: 763: 761: 758: 756: 753: 751: 748: 746: 743: 741: 738: 736: 735:Phase diagram 733: 731: 728: 726: 723: 721: 718: 716: 715:Flory–Huggins 713: 711: 708: 706: 703: 701: 698: 696: 693: 692: 690: 688: 684: 680: 673: 668: 666: 661: 659: 654: 653: 650: 640: 634: 626: 620: 613: 612:0-19-269042-6 609: 605: 599: 597: 595: 590: 580: 577: 575: 572: 570: 567: 565: 562: 561: 555: 553: 549: 542: 538: 534: 530: 526: 522: 518: 503: 500: 498: 495: 494: 490: 487: 485: 482: 481: 477: 474: 472: 469: 468: 464: 461: 459: 456: 455: 451: 448: 446: 443: 442: 438: 435: 433: 430: 429: 425: 422: 420: 417: 416: 409: 405: 402: 399: 398: 395: 390: 380: 378: 374: 373:phase diagram 369: 361: 354: 347: 340: 335: 334: 333: 330: 328: 314: 310: 307: 304: 300: 297: 294: 290: 287: 286: 284: 276: 269: 262: 258: 255: 251: 247: 240: 237: 234: 227: 223: 216: 212: 208: 201: 197: 191: 184: 180: 173: 170: 169: 168: 163: 156: 145: 138: 131: 126: 125: 124: 122: 118: 114: 104: 101: 96: 92: 88: 86: 82: 78: 74: 73:thermodynamic 70: 66: 62: 53: 44: 42: 37: 33: 29: 25: 24:boiling point 21: 898:Raoult's law 850:Ternary plot 845:Mixing ratio 638: 633: 619: 614:, p. 222-225 603: 540: 537:superheating 525:ebullioscopy 524: 517:dissociation 514: 407: 388: 386: 365: 359: 352: 345: 338: 331: 326: 325:Non integer 324: 308: 298: 288: 282: 274: 267: 260: 256: 250:dissociation 238: 225: 221: 214: 211:gas constant 206: 199: 195: 189: 182: 171: 161: 158:b (solution) 154: 152: 143: 136: 129: 117:Raoult's law 110: 97: 93: 89: 60: 58: 41:ebullioscope 19: 18: 1003:Lyonium ion 918:Miscibility 903:Henry's law 471:Naphthalene 419:Acetic acid 368:nonideality 69:electrolyte 47:Explanation 1023:Categories 998:Amphiphile 993:Lipophilic 988:Hydrophile 983:Hydrophobe 860:Solubility 755:Saturation 725:Suspension 585:References 521:molar mass 311:= 2.3 for 301:= 1.9 for 1008:Lyate ion 963:Solvation 878:Solvation 820:Normality 552:cryoscopy 377:azeotrope 277:, where b 978:Polarity 937:Category 825:Molality 687:Solution 558:See also 400:Compound 295:in water 291:= 1 for 205:, where 103:solute. 77:entropic 36:solution 928:Solvent 730:Colloid 720:Mixture 519:or the 432:Benzene 244:is the 231:is the 209:is the 32:solvent 610:  504:0.512 488:181.75 484:Phenol 356:solute 279:solute 271:solute 213:, and 177:, the 28:liquid 750:Alloy 533:Greek 529:Latin 497:Water 491:3.04 475:217.9 465:4.95 452:2.37 439:2.53 426:3.07 423:118.1 293:sugar 63:is a 26:of a 608:ISBN 511:Uses 478:5.8 462:76.8 449:46.2 436:80.1 115:and 59:The 501:100 259:as 83:or 30:(a 1025:: 593:^ 554:. 541:ΔT 379:. 358:¡ 351:¡ 344:= 273:¡ 266:= 226:ΔH 200:ΔH 190:RT 188:= 167:. 160:− 142:¡ 135:= 43:. 939:) 935:( 671:e 664:t 657:v 627:. 544:b 531:- 527:( 411:b 408:K 392:b 389:K 360:i 353:b 349:b 346:K 342:b 339:T 337:Δ 327:i 317:2 309:i 299:i 289:i 283:i 275:i 268:b 264:c 261:b 257:i 242:c 239:b 229:v 222:M 218:b 215:T 207:R 203:v 198:/ 196:M 193:b 186:b 183:K 175:b 172:K 162:T 155:T 147:c 144:b 140:b 137:K 133:b 130:T 128:Δ

Index

boiling point
liquid
solvent
solution
ebullioscope

colligative property
electrolyte
thermodynamic
entropic
vapor pressure
chemical potential
freezing-point depression
Clausius–Clapeyron relation
Raoult's law
molal concentration (amount of substance per mass)
ebullioscopic constant
gas constant
heat of vaporization
colligative molality
dissociation
van 't Hoff factor
sugar
sodium chloride
calcium chloride
nonideality
phase diagram
azeotrope
Acetic acid
Benzene

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑