Knowledge

Biomaterial

Source 📝

38: 725:, there are a series of regulated tests that material must pass to be certified for use. These include the United States Pharmacopoeia IV (USP Class IV) Biological Reactivity Test and the International Standards Organization 10993 (ISO 10993) Biological Evaluation of Medical Devices. The main objective of biocompatibility tests is to quantify the acute and chronic toxicity of material and determine any potential adverse effects during use conditions, thus the tests required for a given material are dependent on its end-use (i.e. blood, central nervous system, etc.). 673:. The application of biodegradable synthetic polymers began in the later 1960s. Biodegradable materials have an advantage over other materials, as they have lower risk of harmful effects long term. In addition to ethical advancements using biodegradable materials, they also improve biocompatibility for materials used for implantation. Several properties including biocompatibility are important when considering different biodegradable biomaterials. Biodegradable biomaterials can be synthetic or natural depending on their source and type of extracellular matrix (ECM). 1058: 1133: 600:
the composition of the implanted material, the surface of the implant, the mechanism of fatigue, and chemical decomposition there are several other reactions possible. These can be local as well as systemic. These include immune response, foreign body reaction with the isolation of the implant with a vascular connective tissue, possible infection, and impact on the lifespan of the implant.
559:
acute phase, the body attempts to clean and heal the wound by delivering excess blood, proteins, and monocytes are called to the site. Continued inflammation leads to the chronic phase, which can be categorized by the presence of monocytes, macrophages, and lymphocytes. In addition, blood vessels and connective tissue form in order to heal the wounded area.
1337:. Cellulose is both the most common biopolymer and the most common organic compound on Earth. About 33% of all plant matter is cellulose. On a similar manner, silk (proteinaceous biopolymer) has garnered tremendous research interest in a myriad of domains including tissue engineering and regenerative medicine, microfluidics, drug delivery. 104:. However, "biomaterial" and "biological material" are often used interchangeably. Further, the word "bioterial" has been proposed as a potential alternate word for biologically-produced materials such as bone, or fungal biocomposites. Additionally, care should be exercised in defining a biomaterial as 1195:
During the formation of a crystalline structure, different impurities, irregularities, and other defects can form. These imperfections can form through deformation of the solid, rapid cooling, or high energy radiation. Types of defects include point defects, line defects, as well as edge dislocation.
1044:
The molecular composition of a biomaterial determines the physical and chemical properties of a biomaterial. These compositions create complex structures that allow the biomaterial to function, and therefore are necessary to define and understand in order to develop a biomaterial. biomaterials can be
469:
In the United States, 49% of the 250,000 valve replacement procedures performed annually involve a mechanical valve implant. The most widely used valve is a bileaflet disc heart valve or St. Jude valve. The mechanics involve two semicircular discs moving back and forth, with both allowing the flow of
257:
Nearly all materials could be seen as hierarchically structured, since the changes in spatial scale bring about different mechanisms of deformation and damage. However, in biological materials, this hierarchical organization is inherent to the microstructure. One of the first examples of this, in the
558:
and healing responses during FBR. The inflammatory response occurs within two time periods: the acute phase, and the chronic phase. The acute phase occurs during the initial hours to days of implantation, and is identified by fluid and protein exudation along with a neutrophilic reaction. During the
895:
limits that a device may be subject to within or external to the body. Depending on the application, it may be desirable for a biomaterial to have high strength so that it is resistant to failure when subjected to a load, however in other applications it may be beneficial for the material to be low
747:
refers to the physical and chemical properties that compose the biomaterial for its entire lifetime. They can be specifically generated to mimic the physiochemical properties of the tissue that the material is replacing. They are mechanical properties that are generated from a material's atomic and
599:
are often made of more than one material, so it might not always be sufficient to talk about the biocompatibility of a specific material. Surgical implantation of a biomaterial into the body triggers an organism-inflammatory reaction with the associated healing of the damaged tissue. Depending upon
1099:
The sub atomic level observes the electrical structure of an individual atom to define its interactions with other atoms and molecules. The molecular structure observes the arrangement of atoms within the material. Finally the ultra-structure observes the 3-D structure created from the atomic and
240:
Molecular self assembly is found widely in biological systems and provides the basis of a wide variety of complex biological structures. This includes an emerging class of mechanically superior biomaterials based on microstructural features and designs found in nature. Thus, self-assembly is also
526:
Host response is defined as the "response of the host organism (local and systemic) to the implanted material or device". Most materials will have a reaction when in contact with the human body. The success of a biomaterial relies on the host tissue's reaction with the foreign material. Specific
604:
is an auto- and alloimmune disorder, exhibiting a variable clinical course. It can manifest in either acute or chronic form, affecting multiple organs and tissues and causing serious complications in clinical practice, both during transplantation and implementation of biocompatible materials.
192:
and bioactive ceramics this term refers to the ability of implanted materials to bond well with surrounding tissue in either osteo conductive or osseo productive roles. Bone implant materials are often designed to promote bone growth while dissolving into surrounding body fluid. Thus for many
1229:
Biomaterials can be constructed using only materials sourced from plants and animals in order to alter, replace, or repair human tissue/organs. Use of natural biomaterials were used as early as ancient Egypt, where indigenous people used animal skin as sutures. A more modern example is a hip
1204:
Macrostructure refers to the overall geometric properties that will influence the force at failure, stiffness, bending, stress distribution, and the weight of the material. It requires little to no magnification to reveal the macrostructure of a material. Observing the macrostructure reveals
164:. Biomaterials are also commonly used in dental applications, surgery, and drug delivery. For example, a construct with impregnated pharmaceutical products can be placed into the body, which permits the prolonged release of a drug over an extended period of time. A biomaterial may also be an 488:
Most of the time, artificial tissue is grown from the patient's own cells. However, when the damage is so extreme that it is impossible to use the patient's own cells, artificial tissue cells are grown. The difficulty is in finding a scaffold that the cells can grow and organize on. The
799:
refers to the chemical and topographical features on the surface of the biomaterial that will have direct interaction with the host blood/tissue. Surface engineering and modification allows clinicians to better control the interactions of a biomaterial with the host living system.
570:
is related to the behavior of biomaterials in various environments under various chemical and physical conditions. The term may refer to specific properties of a material without specifying where or how the material is to be used. For example, a material may elicit little or no
331:. The brittle component is arranged in a helical pattern. Each of these mineral "rods" (1 μm diameter) contains chitin–protein fibrils with approximately 60 nm diameter. These fibrils are made of 3 nm diameter canals that link the interior and exterior of the shell. 1144:
of a material refers to the structure of an object, organism, or material as viewed at magnifications exceeding 25 times. It is composed of the different phases of form, size, and distribution of grains, pores, precipitates, etc. The majority of solid microstructures are
661:. These nanobiomaterial-based delivery systems could effectively promote antitumor immune responses and simultaneously reduce toxic adverse effects." This is a prime example of how the biocompatibility of a biomaterial can be altered to produce any desired function. 148:. They are often used and/or adapted for a medical application, and thus comprise the whole or part of a living structure or biomedical device which performs, augments, or replaces a natural function. Such functions may be relatively passive, like being used for a 579:. Immuno-informed biomaterials that direct the immune response rather than attempting to circumvent the process is one approach that shows promise. The ambiguity of the term reflects the ongoing development of insights into "how biomaterials interact with the 513:
As discussed previously, biomaterials are used in medical devices to treat, assist, or replace a function within the human body. The application of a specific biomaterial must combine the necessary composition, material properties, structure, and desired
551:(FBR) in order to protect the host from the foreign material. The interactions between the device upon the host tissue/blood as well as the host tissue/blood upon the device must be understood in order to prevent complications and device failure. 1164:
structure is the order of the components. Crystalline has the highest level of order possible in the material where amorphous structure consists of irregularities in the ordering pattern. One way to describe crystalline structures is through the
197:
is formed at the surface. These days, the development of clinically useful biomaterials is greatly enhanced by the advent of computational routines that can predict the molecular effects of biomaterials in a therapeutic setting based on limited
249:, phase-separated polymers, thin films and self-assembled monolayers all represent examples of the types of highly ordered structures, which are obtained using these techniques. The distinguishing feature of these methods is self-organization. 305:
In another level of complexity, the hydroxyapatite crystals are mineral platelets that have a diameter of approximately 70 to 100 nm and thickness of 1 nm. They originally nucleate at the gaps between collagen fibrils.
1970: 613:
A biomaterial should perform its intended function within the living body without negatively affecting other bodily tissues and organs. In order to prevent unwanted organ and tissue interactions, biomaterials should be
73:, is about fifty years old. It has experienced steady growth over its history, with many companies investing large amounts of money into the development of new products. Biomaterials science encompasses elements of 1814:
Nepal, Dhriti; Kang, Saewon; Adstedt, Katarina M.; Kanhaiya, Krishan; Bockstaller, Michael R.; Brinson, L. Catherine; Buehler, Markus J.; Coveney, Peter V.; Dayal, Kaushik; El-Awady, Jaafar A.; Henderson, Luke C.;
2751:
Sridharan, Rukmani; Cavanagh, Brenton; Cameron, Andrew R.; Kelly, Daniel J.; O'Brien, Fergal J. (February 2019). "Material stiffness influences the polarization state, function and migration mode of macrophages".
1399:
The definition "non-viable material used in a medical device, intended to interact with biological systems" recommended in ref. cannot be extended to the environmental field where people mean "material of natural
1100:
molecular structures of the material. The solid-state of a material is characterized by the intramolecular bonds between the atoms and molecules that comprise the material. Types of intramolecular bonds include:
470:
blood as well as the ability to form a seal against backflow. The valve is coated with pyrolytic carbon and secured to the surrounding tissue with a mesh of woven fabric called Dacron (du Pont's trade name for
928:. When this happens, irreversible damage to the brain can occur, thus the biomaterial must have an elastic modulus less than or equal to brain tissue and a low tensile strength if an applied load is expected. 193:
biomaterials good biocompatibility along with good strength and dissolution rates are desirable. Commonly, bioactivity of biomaterials is gauged by the surface biomineralization in which a native layer of
3550: 442:
therapies. All manufacturing companies are also required to ensure traceability of all of their products, so that if a defective product is discovered, others in the same batch may be traced.
3441:
Choi, Suji; Lee, Hyunjae; Ghaffari, Roozbeh; Hyeon, Taeghwan; Kim, Dae-Hyeong (June 2016). "Recent Advances in Flexible and Stretchable Bio-Electronic Devices Integrated with Nanomaterials".
3918:
Konwarh, Rocktotpal (2019). "Can the venerated silk be the next-generation nanobiomaterial for biomedical-device designing, regenerative medicine and drug delivery? Prospects and hitches".
188:
The ability of an engineered biomaterial to induce a physiological response that is supportive of the biomaterial's function and performance is known as bioactivity. Most commonly, in
4041: 863:. The Young's Moduli of the tissue and the device that is being coupled to it must closely match for optimal compatibility between device and body, whether the device is 2264:
Espinosa, H. D.; Rim, J. E.; Barthelat, F.; Buehler, M. J. (2009). "Merger of structure and material in nacre and bone – Perspectives on de novo biomimetic materials".
2037:
Pillai, C. K. S.; Sharma, C. P. (2010). "Review Paper: Absorbable Polymeric Surgical Sutures: Chemistry, Production, Properties, Biodegradability, and Performance".
1160:
is the composition of ions, atoms, and molecules that are held together and ordered in a 3D shape. The main difference between a crystalline structure and an
946:
is important. The material must be ductile for a similar reason that the tensile strength cannot be too high, ductility allows the material to bend without
645:
testing. Toxic biomaterials offer an opportunity to manipulate and control cancer cells. One recent study states: "Advanced nanobiomaterials, including
622:. A biomaterial should not give off anything to its environment unless it is intended to do so. Nontoxicity means that biomaterial is: noncarcinogenic, 518:
reaction in order to perform the desired function. Categorizations of different desired properties are defined in order to maximize functional results.
327:
are arthropods, whose carapace is made of a mineralized hard component (exhibits brittle fracture) and a softer organic component composed primarily of
1361: 896:
strength. There is a careful balance between strength and stiffness that determines how robust to failure the biomaterial device is. Typically, as the
634:. However, a biomaterial can be designed to include toxicity for an intended purpose. For example, application of toxic biomaterial is studied during 112: 1671:
Whitesides, G.; Mathias, J.; Seto, C. (1991). "Molecular self-assembly and nanochemistry: A chemical strategy for the synthesis of nanostructures".
2433: 1955: 108:, since it is application-specific. A biomaterial that is biocompatible or suitable for one application may not be biocompatible in another. 2090:
Waris, E; Ashammakhi, N; Kaarela, O; Raatikainen, T; Vasenius, J (December 2004). "Use of bioabsorbable osteofixation devices in the hand".
1049:. The structure of a biomaterial can be observed at different at different levels to better understand a materials properties and function. 233:(e.g., face-centered cubic, body-centered cubic, etc.). The fundamental difference in equilibrium structure is in the spatial scale of the 213:
is the most common term in use in the modern scientific community to describe the spontaneous aggregation of particles (atoms, molecules,
3297: 1390:
The notion of exploitation includes utility for applications and for fundamental research to understand reciprocal perturbations as well.
313:
shell begins at the nanolevel, with an organic layer having a thickness of 20 to 30 nm. This layer proceeds with single crystals of
4048: 3272:
Vogler, Erwin A. (2013). "Chapter 8 - Surface Modification for Biocompatibility". In Lakhtakia, Akhlesh; Martín-Palma, Raúl J. (eds.).
3166: 3140: 2614: 1463: 3805:
Buehler, M. J.; Yung, Y. C. (2009). "Deformation and failure of protein materials in physiologically extreme conditions and disease".
2872: 974:
and having a high toughness allows biomaterial implants to last longer within the body, especially when subjected to large stress or
302:" are the basic building blocks of bones, with the volume fraction distribution between organic and mineral phase being about 60/40. 3500:
Kuhn, Liisa T. (2005-01-01). "Chapter 6 - BIOMATERIALS". In Enderle, John D.; Blanchard, Susan M.; Bronzino, Joseph D. (eds.).
2796: 3509: 3281: 3203: 3150: 2502: 2464: 2417: 1980: 1931: 849: 3848:
Stupp, S. I.; Braun, P. V. (1997). "Molecular manipulation of microstructures: Biomaterials, ceramics, and semiconductors".
1112:. These bonds will dictate the physical and chemical properties of the material, as well as determine the type of material ( 489:
characteristics of the scaffold must be that it is biocompatible, cells can adhere to the scaffold, mechanically strong and
3608: 221:, etc.) without the influence of any external forces. Large groups of such particles are known to assemble themselves into 985:
For medical devices that are implanted or attached to the skin, another important property requiring consideration is the
3632: 2227:
Meyers, M. A.; Chen, P. Y.; Lin, A. Y. M.; Seki, Y. (2008). "Biological materials: Structure and mechanical properties".
3953:
Mehrotra, Shreya (2019). "Comprehensive Review on Silk at Nanoscale for Regenerative Medicine and Allied Applications".
547:
is affected by the body's response to the foreign material. The body undergoes a cascade of processes defined under the
3883:
Klemm, D; Heublein, B; Fink, H. P.; Bohn, A (2005). "Cellulose: Fascinating biopolymer and sustainable raw material".
1177:. There are 14 different configurations of atom arrangement in a crystalline structure, and are all represented under 3586: 3576: 2882: 1457: 321:) consisting of "bricks" with dimensions of 0.5 and finishing with layers approximately 0.3 mm (mesostructure). 61:
for a medical purpose – either a therapeutic (treat, augment, repair, or replace a tissue function of the body) or a
2291:
Zhao, Rusin; Yang, Ruijia; Cooper, Paul R.; Khurshid, Zohaib; Shavandi, Amin; Ratnayake, Jithendra (2021-05-18).
1820: 1575:
Zhu, H.; et al. (2018). "Nanostructural insights into the dissolution behavior of Sr-doped hydroxyapatite".
1366: 438:
setting. Because of this, biomaterials are usually subjected to the same requirements as those undergone by new
2184:
Banyard, D. A.; Bourgeois, J. M.; Widgerow, A. D.; Evans, G. R. (2015). "Regenerative biomaterials: A review".
1096:
between the atoms and molecules that compose the material will determine its material and chemical properties.
37: 891:
strengths which quantify the maximum stresses a material can withstand before breaking and may be used to set
4274: 4084: 997: 4315: 4192: 4163: 1535:
Definitions in Biomaterials, Proceedings of a Consensus Conference of the European Society for Biomaterials
852:
which govern the way that a given biomaterial behaves. One of the most relevant material parameters is the
17: 4017:
Department of Biomaterials at the Max Planck Institute of Colloids and Interfaces in Potsdam-Golm, Germany
3191: 819:
Topographical factors including: size, shape, alignment, structure determine the roughness of a material.
259: 225:
stable, structurally well-defined arrays, quite reminiscent of one of the seven crystal systems found in
4311: 4100: 3142:
Biomaterials, Medical Devices, and Combination Products: Biocompatibility Testing and Safety Assessment
1816: 1492:
Vert, M.; Doi, Y.; Hellwich, K. H.; Hess, M.; Hodge, P.; Kubisa, P.; Rinaudo, M.; Schué, F. O. (2012).
471: 3384: 4034: 2051: 1620:
Ferreira, Marcel; Milano, Renato; Rangel, Elidiano; Peppelenbosch, Maikel; Zambuzzi, Willian (2020).
901: 618:. The toxicity of a biomaterial refers to the substances that are emitted from the biomaterial while 601: 283: 2241: 1622:"OsteoBLAST: Computational Routine of Global Molecular Analysis Applied to Biomaterials Development" 4262: 4230: 4196: 4007: 3194:. In Wagner, William R.; Sakiyama-Elbert, Shelly E.; Zhang, Guigen; Yaszemski, Michael J. (eds.). 3080:
Song, Richard; Murphy, Maxwell; Li, Chenshuang; Ting, Kang; Soo, Chia; Zheng, Zhong (2018-09-24).
3021:
Song, Richard; Murphy, Maxwell; Li, Chenshuang; Ting, Kang; Soo, Chia; Zheng, Zhong (2018-09-24).
1924:
Biological materials science : biological materials, bioinspired materials, and biomaterials
1190: 1020:, as in epidermal electronics. Since flexural rigidity depends on the thickness of the material, 1005: 967: 860: 785: 690: 2409: 2402: 1149:, however some materials such as certain polymers will not crystallize when in the solid state. 904:
will decrease and vice versa. One application where a high-strength material is undesired is in
27:
Any substance that has been engineered to interact with biological systems for a medical purpose
2236: 2046: 1714:
Dabbs, D. M.; Aksay, I. A. (2000). "Self-Assembledceramicsproduced Bycomplex-Fluidtemplation".
1013: 714: 54: 31: 3704: 2367: 4376: 4371: 4335: 4188: 4184: 4180: 3680: 1371: 888: 686: 631: 548: 2492: 2401: 1445: 867:
or mounted externally. Matching the elastic modulus makes it possible to limit movement and
453:(its α- and β-hemihydrates) is a well known biocompatible material that is widely used as a 4246: 4143: 3814: 3748:
Reis, Lewis A; Chiu, Loraine L Y; Feric, Nicole; Fu, Lara; Radisic, Milica (January 2016).
3450: 3399: 2961:
Yang, Fan; Shi, Kun; Jia, Yan-peng; Hao, Ying; Peng, Jin-rong; Qian, Zhi-yong (July 2020).
1770: 1723: 1680: 1093: 1076:
within a material is one of the most important structural properties of a biomaterial. The
951: 935: 905: 897: 876: 790: 765: 755: 642: 2400:
Brown, Theodore L.; LeMay, H. Eugene, Jr.; Bursten, Bruce E. (2000). "12.3 Biomaterials".
1221:. The material's strength and elastic modulus are both independent of the macrostructure. 8: 4319: 4216: 4208: 3227:"Modern biomaterials: A review—Bulk properties and implications of surface modifications" 670: 575:
in a given organism, and may or may not able to integrate with a particular cell type or
153: 145: 3818: 3454: 3403: 2563:"Biomaterials/Tissue Interactions: Possible Solutions to Overcome Foreign Body Response" 1774: 1727: 1684: 1214: 136:
in the laboratory using a variety of chemical approaches utilizing metallic components,
4250: 4212: 4147: 4123: 3978: 3935: 3782: 3749: 3482: 3423: 3360: 3325: 3324:
Saini, Monika; Singh, Yashpal; Arora, Pooja; Arora, Vipin; Jain, Krati (January 2015).
3254: 3116: 3081: 3057: 3022: 2995: 2962: 2938: 2905: 2848: 2815: 2777: 2587: 2562: 2531: 2470: 2427: 2327: 2293:"Bone Grafts and Substitutes in Dentistry: A Review of Current Trends and Developments" 2292: 2209: 2161: 2134: 2115: 2072: 1949: 1907: 1878: 1859: 1791: 1782: 1758: 1648: 1621: 1602: 1598: 1584: 1515: 1033: 959: 947: 892: 880: 864: 853: 702: 685:
materials (or biomaterials) are polymers due to their inherent flexibility and tunable
483: 343: 86: 3526: 3082:"Current development of biodegradable polymeric materials for biomedical applications" 3023:"Current development of biodegradable polymeric materials for biomedical applications" 2706:"Fibrogenic cytokines: the role of immune mediators in the development of scar tissue" 1735: 4352: 4305: 4139: 3982: 3970: 3939: 3900: 3865: 3830: 3787: 3769: 3728: 3582: 3505: 3486: 3474: 3466: 3415: 3365: 3347: 3277: 3246: 3199: 3146: 3121: 3103: 3062: 3044: 3000: 2982: 2943: 2925: 2906:"Biomaterials and emerging anticancer therapeutics: engineering the microenvironment" 2878: 2853: 2835: 2769: 2733: 2725: 2721: 2686: 2678: 2592: 2543: 2535: 2498: 2474: 2460: 2413: 2379: 2371: 2332: 2314: 2201: 2166: 2107: 2064: 2019: 1976: 1937: 1927: 1863: 1851: 1843: 1796: 1739: 1696: 1653: 1606: 1561: 1453: 1356: 1174: 1169:, which is a three-dimensional representation of the location of a repeating factor ( 1157: 1009: 1004:
surface, which is especially important for devices that are measuring tissue motion (
993: 986: 733:
Two properties that have a large effect on the functionality of a biomaterial is the
101: 90: 62: 58: 3966: 3656: 3427: 3258: 2781: 2213: 2119: 2076: 1996:
Ibrahim, H.; Esfahani, S. N.; Poorganji, B.; Dean, D.; Elahinia, M. (January 2017).
1519: 844:, biomaterials must be engineered specifically to their target application within a 434:, which must be resolved before a product can be placed on the market and used in a 4234: 4224: 4076: 3962: 3927: 3892: 3857: 3822: 3777: 3761: 3458: 3407: 3355: 3337: 3238: 3226: 3111: 3093: 3052: 3034: 2990: 2974: 2933: 2917: 2843: 2827: 2761: 2717: 2670: 2582: 2574: 2527: 2494:
Host Response to Biomaterials: The Impact of Host Response on Biomaterial Selection
2452: 2363: 2322: 2304: 2273: 2246: 2193: 2156: 2146: 2099: 2056: 2009: 1902: 1894: 1835: 1786: 1778: 1731: 1688: 1643: 1633: 1594: 1557: 1505: 1494:"Terminology for biorelated polymers and applications (IUPAC Recommendations 2012)" 1242: 1109: 1077: 1061: 1001: 908:; if a high-strength material is used in these applications the tissue will always 841: 770: 722: 682: 669:
Biodegradable biomaterials refers to materials that are degradable through natural
658: 576: 567: 528: 527:
reactions between the host tissue and the biomaterial can be generated through the
431: 412: 351: 275: 177: 105: 3861: 2610: 2277: 2250: 4339: 4127: 4088: 4080: 4011: 2765: 2639: 2197: 1178: 1166: 1161: 1081: 963: 913: 884: 824: 592: 572: 474:). The mesh allows for the body's tissue to grow, while incorporating the valve. 450: 390: 365: 189: 157: 2674: 1057: 4299:
Basic material that is used to produce goods, energy, or intermediate materials
4176: 3931: 3411: 2456: 2103: 2014: 1839: 1757:
Ariga, K.; Hill, J. P.; Lee, M. V.; Vinu, A.; Charvet, R.; Acharya, S. (2008).
1141: 1089: 958:
is also important for dental implants as well as any other rigid, load-bearing
939: 845: 829: 760: 627: 584: 544: 385: 287: 242: 194: 3242: 2978: 2578: 2309: 1638: 1136:
A unit cell shows the locations of lattice points repeating in all directions.
4365: 4151: 3773: 3470: 3419: 3351: 3107: 3048: 2986: 2929: 2839: 2729: 2682: 2539: 2375: 2318: 2151: 2060: 1941: 1847: 1510: 1493: 1237: 1105: 1101: 975: 925: 909: 718: 694: 689:. Medical devices made of plastics are often made of a select few including: 583:" and eventually "how those interactions determine the clinical success of a 502: 490: 454: 430:
Biomaterials must be compatible with the body, and there are often issues of
424: 279: 222: 210: 2831: 2351: 1692: 4293: 3974: 3904: 3896: 3834: 3791: 3478: 3462: 3369: 3342: 3250: 3125: 3066: 3004: 2947: 2857: 2773: 2705: 2658: 2596: 2547: 2383: 2336: 2205: 2170: 2111: 2068: 2023: 1998:"Resorbable bone fixation alloys, forming, and post-fabrication treatments" 1855: 1800: 1743: 1657: 1230:
replacement using ivory material which was first recorded in Germany 1891.
1132: 1017: 872: 868: 710: 555: 374: 133: 3869: 2737: 2690: 2518:
Williams, David F. (2008-07-01). "On the mechanisms of biocompatibility".
1700: 3098: 3039: 2814:
Velnar, Tomaz; Bunc, Gorazd; Klobucar, Robert; Gradisnik, Lidija (2016).
2135:"Current state of laparoscopic parastomal hernia repair: A meta-analysis" 1898: 1146: 1046: 932: 807: 706: 623: 498: 357: 161: 149: 42: 1417:. The use of "polymeric biomaterial" is recommended when one deals with 1206: 122:
exploited in contact with living tissues, organisms, or microorganisms.
4016: 2921: 2797:"Considerations for the Biocompatibility Evaluation of Medical Devices" 1334: 1330: 1288: 917: 654: 596: 580: 230: 226: 141: 3765: 3826: 1298: 1170: 1029: 955: 954:
in the tissue when the temperature changes. The material property of
943: 698: 615: 588: 494: 458: 416: 314: 246: 234: 173: 169: 165: 82: 1819:; Keten, Sinan; Kotov, Nicholas A.; Schatz, George C. (2022-11-28). 4057: 3225:
Roach, Paul; Eglin, David; Rohde, Kirsty; Perry, Carole C. (2007).
2408:(Annotated Instructor's 8th ed.). Prentice-Hall, Inc. p.  1997: 1589: 1351: 1273: 1263: 1258: 1210: 1085: 971: 921: 780: 646: 639: 295: 271: 218: 214: 137: 74: 1759:"Challenges and breakthroughs in recent research on self-assembly" 3385:"Materials and technologies for soft implantable neuroprostheses" 2089: 1619: 1443: 1419: 1346: 1322: 1310: 1306: 1294: 1218: 1121: 1113: 775: 650: 635: 619: 540: 515: 310: 78: 3298:"How surface roughness and wettability affects biocompatibility" 3575:
Mercier, Jean-Pierre; Zambelli, Gérald; Kurz, Wilfried (2002).
3383:
Lacour, Stéphanie P.; Courtine, Grégoire; Guck, Jochen (2016).
1302: 1268: 435: 404: 328: 299: 291: 96:
A biomaterial is different from a biological material, such as
3657:"crystal defect | Definition, Types, & Facts | Britannica" 2350:
Thomas, Mark V.; Puleo, David A.; Al-Sabbagh, Mohanad (2005).
2133:
Deasis, F. J.; Lapin, B; Gitelis, M. E.; Ujiki, M. B. (2015).
1028:), it is very important that a biomaterial can be formed into 2871:
Thomas, Sabu; Grohens, Yves; Ninan, Neethu (8 January 2015).
2816:"Biomaterials and host versus graft response: a short review" 2750: 2183: 1326: 1117: 4026: 3609:"Crystalline Structure: Definition, Structure & Bonding" 1995: 1045:
designed to replicate natural organisms, a process known as
4021: 4004: 3633:"10.6 Lattice Structures in Crystalline Solids – Chemistry" 2813: 2263: 1069: 439: 324: 267: 263: 245:. Molecular crystals, liquid crystals, colloids, micelles, 97: 3999: 3504:(2nd ed.). Boston: Academic Press. pp. 255–312. 1548:
Cao, Wanpeng; Hench, Larry (1996). "Bioactive Materials".
2659:"Current concepts: immunology. Monocytes and macrophages" 1318: 1314: 1073: 979: 1813: 1423:
or polymer device of therapeutic or biological interest.
1409:
This general term should not be confused with the terms
996:
will determine how well the device surface can maintain
3754:
Journal of Tissue Engineering and Regenerative Medicine
2449:
An Introduction to Biomaterials Science and Engineering
2132: 1881:
Present at the flood: How structural biology came about
3167:"what is a surface, why is surface analysis important" 3139:
Gad, Shayne Cox; Gad-McDonald, Samantha (2015-12-01).
2290: 1821:"Hierarchically structured bioinspired nanocomposites" 534: 3882: 3555:
CES Information Guide - Materials Science Engineering
2395: 2393: 2349: 1670: 1080:
of a material can be viewed at different levels, the
278:, a triple helix with diameter of 1.5 nm. These 241:
emerging as a new strategy in chemical synthesis and
3440: 3323: 3224: 30:"Biomaterials" redirects here. For the journal, see 3705:"Natural Biomaterials by Isabel Hand - OpenWetWare" 3574: 3231:
Journal of Materials Science: Materials in Medicine
3198:(Fourth ed.). Academic Press. pp. 41–51. 2795:Kammula, Raju G.; Morris, Janine M. (May 1, 2001). 1491: 1233:Valuable criteria for viable natural biomaterials: 1184: 657:, play a vital role in the codelivery of drugs and 554:Tissue injury caused by device implantation causes 3382: 3376: 2874:Nanotechnology Applications for Tissue Engineering 2870: 2390: 1362:Surface modification of biomaterials with proteins 132:Biomaterials can be derived either from nature or 3016: 3014: 2399: 2226: 4363: 3190:Zhang, Guigen; Viney, Christopher (2020-01-01). 3079: 3020: 2963:"Advanced biomaterials for cancer immunotherapy" 2356:Journal of Long-Term Effects of Medical Implants 1756: 1016:), or are designed to stick to the skin without 966:. Toughness describes the material's ability to 3750:"Biomaterials in myocardial tissue engineering" 3747: 3138: 1921: 1532: 1032:in the previously mentioned applications where 931:For implanted biomaterials that may experience 875:between implant and tissue as well as avoiding 543:functionality and longevity of any implantable 45:is an example of an application of biomaterials 3326:"Implant biomaterials: A comprehensive review" 3011: 2807: 2451:. WORLD SCIENTIFIC. May 2021. pp. 82–93. 1972:Design of Artificial Human Joints & Organs 1321:are all examples of biopolymers, in which the 728: 156:with a more interactive functionality such as 65:one. The corresponding field of study, called 4042: 4005:CREB – Biomedical Engineering Research Centre 2960: 2794: 2447:"Chapter 4: Biomaterials: Basic principles". 2092:Journal of Hand Surgery (Edinburgh, Scotland) 1626:Frontiers in Bioengineering and Biotechnology 840:In addition to a material being certified as 664: 237:(lattice parameter) in each particular case. 3729:"Kelp (Laminaria digitata) – Irish Seaweeds" 3319: 3317: 2432:: CS1 maint: multiple names: authors list ( 2036: 1763:Science and Technology of Advanced Materials 1444:Schmalz, G.; Arenholdt-Bindslev, D. (2008). 270:by Astbury and Woods. In bone, for example, 258:history of structural biology, is the early 3804: 3434: 2611:"Exudate: MedlinePlus Medical Encyclopedia" 1437: 848:. This is especially important in terms of 4049: 4035: 3847: 3189: 2615:United States National Library of Medicine 2257: 1954:: CS1 maint: location missing publisher ( 1713: 1452:. Berlin: Springer-Verlag. pp. 1–12. 1247:Able to promote cell attachment and growth 421:Pins and screws for fracture stabilisation 3781: 3359: 3341: 3314: 3115: 3097: 3056: 3038: 2994: 2937: 2904:Gu, Luo; Mooney, David J (January 2016). 2847: 2820:Bosnian Journal of Basic Medical Sciences 2586: 2368:10.1615/jlongtermeffmedimplants.v15.i6.30 2326: 2308: 2240: 2160: 2150: 2050: 2013: 1975:. Springer Science & Business Media. 1906: 1790: 1647: 1637: 1588: 1509: 676: 3952: 2903: 2801:Medical Device & Diagnostic Industry 2656: 2517: 2220: 1547: 1152: 1131: 1056: 835: 36: 4022:Open Innovation Campus for Biomaterials 3917: 3885:Angewandte Chemie International Edition 3524: 2490: 1577:Journal of the European Ceramic Society 1487: 1485: 1483: 1481: 1224: 379:Skin repair devices (artificial tissue) 252: 14: 4364: 3502:Introduction to Biomedical Engineering 3276:. Boston: Elsevier. pp. 189–220. 3271: 3192:"1.2.3 - Bulk Properties of Materials" 2703: 2560: 1876: 912:before the device does (under applied 262:work on the hierarchical structure of 4030: 2633: 2631: 2486: 2484: 916:) because the Young's Modulus of the 883:. Other important properties are the 4000:Journal of Biomaterials Applications 3499: 3086:Drug Design, Development and Therapy 3027:Drug Design, Development and Therapy 2039:Journal of Biomaterials Applications 2002:Materials Science and Engineering: C 1478: 1466:from the original on 9 December 2017 1450:Biocompatibility of Dental Materials 1092:created by the atoms and molecules. 2663:The New England Journal of Medicine 1968: 1716:Annual Review of Physical Chemistry 1574: 1568: 1052: 535:Biomaterial and tissue interactions 24: 2637: 2628: 2532:10.1016/j.biomaterials.2008.04.023 2491:Badylak, Stephen F. (2015-05-08). 2481: 2186:Plastic and Reconstructive Surgery 1599:10.1016/j.jeurceramsoc.2018.07.056 1254:Examples of natural biomaterials: 900:of the biomaterial increases, the 298:of alternating directions. These " 25: 4388: 3993: 3578:Introduction to Materials Science 2139:World Journal of Gastroenterology 1736:10.1146/annurev.physchem.51.1.601 1199: 1127: 978:, like the stresses applied to a 2640:"Acute and chronic inflammation" 1185:Defects of crystalline structure 1173:) in the structure denoted with 816:Surface textures (smooth/rough) 562: 521: 362:Artificial ligaments and tendons 205: 4135:Material by orientation or size 3967:10.1021/acsbiomaterials.8b01560 3946: 3911: 3876: 3841: 3798: 3741: 3721: 3697: 3673: 3649: 3625: 3601: 3568: 3543: 3525:Partlow, William (2022-03-13). 3518: 3493: 3330:World Journal of Clinical Cases 3290: 3265: 3218: 3183: 3159: 3132: 3073: 2954: 2897: 2864: 2788: 2744: 2697: 2650: 2603: 2554: 2511: 2440: 2343: 2284: 2177: 2126: 2083: 2030: 1989: 1962: 1915: 1870: 1807: 1750: 1707: 1664: 1367:Synthetic biodegradable polymer 1064:of lithium-7's atomic structure 859:, which describes a material's 681:Some of the most commonly-used 595:)". Modern medical devices and 493:. One successful scaffold is a 464: 334: 127: 2704:Kovacs, E. J. (January 1991). 2657:Johnston, R. B. (1988-03-24). 2404:Chemistry: The Central Science 1922:Meyers, Marc A. (2014-07-31). 1613: 1541: 1526: 1403: 1393: 1384: 1297:produced by living organisms. 1282: 924:tissue is on the order of 500 803:Important surface properties: 477: 445: 183: 13: 1: 4275:Certified reference materials 4085:Alternative natural materials 4056: 3862:10.1126/science.277.5330.1242 2278:10.1016/j.pmatsci.2009.05.001 2266:Progress in Materials Science 2251:10.1016/j.pmatsci.2007.05.002 2229:Progress in Materials Science 1533:Williams, D. F., ed. (2004). 1430: 1278:Myocardial tissue engineering 970:under applied stress without 508: 290:, calcium phosphate) forming 274:is the building block of the 53:is a substance that has been 4316:Building insulation material 4193:Strongly correlated material 3920:Bio-Design and Manufacturing 2766:10.1016/j.actbio.2019.02.048 2722:10.1016/0167-5699(91)90107-5 2198:10.1097/PRS.0000000000001272 1783:10.1088/1468-6996/9/1/014109 1562:10.1016/0272-8842(95)00126-3 1377: 1039: 861:elastic response to stresses 309:Similarly, the hierarchy of 7: 2675:10.1056/NEJM198803243181205 2561:Morais, Jacqueline (2010). 2352:"Calcium sulfate: a review" 1969:Pal, Subrata (2013-08-31). 1340: 751:Important bulk properties: 729:Surface and bulk properties 608: 10: 4393: 4312:List of building materials 4101:Extraterrestrial materials 3932:10.1007/s42242-019-00052-9 3412:10.1038/natrevmats.2016.63 2967:Acta Pharmacologica Sinica 2457:10.1142/9789811228186_0004 2104:10.1016/j.jhsb.2004.02.005 2015:10.1016/j.msec.2016.09.069 1883:, by Richard E. Dickerson" 1840:10.1038/s41563-022-01384-1 1498:Pure and Applied Chemistry 1446:"Chapter 1: Basic Aspects" 1286: 1188: 976:cyclically loaded stresses 665:Biodegradable biomaterials 481: 472:polyethylene terephthalate 339:Biomaterials are used in: 29: 4350: 4326: 4304: 4292: 4285: 4269: 4257: 4241: 4223: 4203: 4171: 4162: 4134: 4118: 4111: 4095: 4071: 4064: 3243:10.1007/s10856-006-0064-3 2979:10.1038/s41401-020-0372-z 2579:10.1208/s12248-010-9175-3 2310:10.3390/molecules26103007 1926:. Chen, Po-Yu. New York. 1639:10.3389/fbioe.2020.565901 1325:units, respectively, are 952:concentration of stresses 902:ultimate tensile strength 602:Graft-versus-host disease 415:, clips, and staples for 4263:Thermoelectric materials 4231:Special nuclear material 4197:Electroshapable material 3392:Nature Reviews Materials 3302:www.biolinscientific.com 2152:10.3748/wjg.v21.i28.8670 2061:10.1177/0885328210384890 1511:10.1351/PAC-REC-10-12-04 748:molecular construction. 630:, blood compatible, and 395:Drug delivery mechanisms 286:with the mineral phase ( 100:, that is produced by a 71:biomaterials engineering 2832:10.17305/bjbms.2016.525 2644:Robbins Basic Pathology 1693:10.1126/science.1962191 1191:Crystallographic defect 786:Electrical Conductivity 691:cyclic olefin copolymer 371:Blood vessel prostheses 4112:Materials by structure 3955:ACS Biomater. Sci. Eng 3897:10.1002/anie.200460587 3557:. depts.washington.edu 3463:10.1002/adma.201504150 3343:10.12998/wjcc.v3.i1.52 2910:Nature Reviews. Cancer 1877:Stroud, R. M. (2006). 1550:Ceramics International 1537:. Amsterdam: Elsevier. 1137: 1088:level, as well as the 1065: 1024:, to the third power ( 950:and also prevents the 677:Biocompatible plastics 354:(IOLs) for eye surgery 124: 46: 32:Biomaterials (journal) 4189:Hyperelastic material 4185:Self-healing material 4181:Phase-change material 4164:Materials by property 3685:TheFreeDictionary.com 3274:Engineered Biomimicry 2638:Rn, Mitchell (2003). 1158:Crystalline structure 1153:Crystalline structure 1135: 1094:Intermolecular forces 1060: 964:replacement hip joint 850:mechanical properties 836:Mechanical properties 701:(PEI), medical grade 687:mechanical properties 549:foreign body response 398:Sustainable materials 382:Cochlear replacements 117: 40: 4336:List of biomaterials 4247:Combustible material 4144:Orthotropic material 3196:Biomaterials Science 3099:10.2147/DDDT.S165440 3040:10.2147/DDDT.S165440 2877:. Elsevier Science. 1899:10.1110/ps.062627807 1372:List of biomaterials 1225:Natural biomaterials 877:stress concentration 791:Thermal Conductivity 756:Chemical Composition 715:polyetheretherketone 643:cancer immunotherapy 317:(a polymorph of CaCO 253:Structural hierarchy 67:biomaterials science 4320:Structural material 4217:Mesoporous material 4209:Ultralight material 4204:Density or hardness 4065:Materials by origin 3819:2009NatMa...8..175B 3455:2016AdM....28.4203C 3404:2016NatRM...116063L 1775:2008STAdM...9a4109A 1728:2000ARPC...51..601D 1685:1991Sci...254.1312W 1205:properties such as 1068:The arrangement of 987:flexural rigidity, 671:enzymatic reactions 146:composite materials 4306:Building materials 4258:Thermal properties 4251:Energetic material 4213:Superhard material 4172:Designed materials 4148:Nanophase material 4124:Composite material 4119:Combined materials 4010:2021-05-07 at the 3661:www.britannica.com 3527:"1 - Biomaterials" 3443:Advanced Materials 2922:10.1038/nrc.2015.3 2754:Acta Biomaterialia 2497:. Academic Press. 1138: 1066: 1010:electrical signals 881:mechanical failure 797:Surface properties 484:Tissue engineering 461:or as its binder. 368:for tooth fixation 352:Intraocular lenses 344:Joint replacements 87:tissue engineering 59:biological systems 47: 4359: 4358: 4353:Materials science 4346: 4345: 4327:Use in human body 4281: 4280: 4158: 4157: 4140:Layered materials 4107: 4106: 4077:Natural materials 3766:10.1002/term.1944 3511:978-0-12-238662-6 3449:(22): 4203–4218. 3283:978-0-12-415995-2 3205:978-0-12-816137-1 3152:978-1-4822-4838-8 2526:(20): 2941–2953. 2504:978-0-12-800500-2 2466:978-981-12-2817-9 2419:978-0-13-084090-5 1982:978-1-4614-6255-2 1933:978-1-107-01045-1 1583:(16): 5554–5562. 1357:Polymeric surface 1084:level, atomic or 1000:contact with the 994:Flexural rigidity 879:that can lead to 854:Young's Modulus, 813:Surface chemistry 703:polyvinylchloride 531:of the material. 223:thermodynamically 202:experimentation. 190:bioactive glasses 102:biological system 91:materials science 57:to interact with 16:(Redirected from 4384: 4290: 4289: 4286:Materials by use 4235:Fertile material 4225:Nuclear material 4169: 4168: 4116: 4115: 4081:Biotic materials 4069: 4068: 4051: 4044: 4037: 4028: 4027: 3987: 3986: 3961:(5): 2054–2078. 3950: 3944: 3943: 3915: 3909: 3908: 3880: 3874: 3873: 3856:(5330): 1242–8. 3845: 3839: 3838: 3827:10.1038/nmat2387 3807:Nature Materials 3802: 3796: 3795: 3785: 3745: 3739: 3738: 3736: 3735: 3725: 3719: 3718: 3716: 3715: 3701: 3695: 3694: 3692: 3691: 3681:"Macrostructure" 3677: 3671: 3670: 3668: 3667: 3653: 3647: 3646: 3644: 3643: 3629: 3623: 3622: 3620: 3619: 3605: 3599: 3598: 3596: 3595: 3572: 3566: 3565: 3563: 3562: 3551:"Microstructure" 3547: 3541: 3540: 3538: 3537: 3531:Beyond Discovery 3522: 3516: 3515: 3497: 3491: 3490: 3438: 3432: 3431: 3389: 3380: 3374: 3373: 3363: 3345: 3321: 3312: 3311: 3309: 3308: 3294: 3288: 3287: 3269: 3263: 3262: 3237:(7): 1263–1277. 3222: 3216: 3215: 3213: 3212: 3187: 3181: 3180: 3178: 3177: 3163: 3157: 3156: 3136: 3130: 3129: 3119: 3101: 3077: 3071: 3070: 3060: 3042: 3018: 3009: 3008: 2998: 2958: 2952: 2951: 2941: 2901: 2895: 2894: 2892: 2891: 2868: 2862: 2861: 2851: 2811: 2805: 2804: 2792: 2786: 2785: 2748: 2742: 2741: 2710:Immunology Today 2701: 2695: 2694: 2654: 2648: 2647: 2635: 2626: 2625: 2623: 2621: 2607: 2601: 2600: 2590: 2567:The AAPS Journal 2558: 2552: 2551: 2515: 2509: 2508: 2488: 2479: 2478: 2444: 2438: 2437: 2431: 2423: 2407: 2397: 2388: 2387: 2347: 2341: 2340: 2330: 2312: 2288: 2282: 2281: 2272:(8): 1059–1100. 2261: 2255: 2254: 2244: 2224: 2218: 2217: 2181: 2175: 2174: 2164: 2154: 2130: 2124: 2123: 2087: 2081: 2080: 2054: 2052:10.1.1.1013.5873 2034: 2028: 2027: 2017: 1993: 1987: 1986: 1966: 1960: 1959: 1953: 1945: 1919: 1913: 1912: 1910: 1874: 1868: 1867: 1828:Nature Materials 1825: 1817:Kaplan, David L. 1811: 1805: 1804: 1794: 1754: 1748: 1747: 1711: 1705: 1704: 1679:(5036): 1312–9. 1668: 1662: 1661: 1651: 1641: 1617: 1611: 1610: 1592: 1572: 1566: 1565: 1545: 1539: 1538: 1530: 1524: 1523: 1513: 1489: 1476: 1475: 1473: 1471: 1441: 1424: 1415:biomacromolecule 1407: 1401: 1397: 1391: 1388: 1293:Biopolymers are 1179:Bravais lattices 1078:atomic structure 1062:Rutherford model 1053:Atomic structure 982:during running. 810:(surface energy) 771:Tensile Strength 723:biocompatibility 721:(PP). To ensure 717:(PEEK) and even 707:polyethersulfone 659:immunomodulators 568:Biocompatibility 529:biocompatibility 432:biocompatibility 413:Surgical sutures 260:X-ray scattering 21: 4392: 4391: 4387: 4386: 4385: 4383: 4382: 4381: 4362: 4361: 4360: 4355: 4342: 4340:Dental material 4322: 4300: 4277: 4265: 4253: 4237: 4219: 4199: 4154: 4130: 4128:Hybrid material 4103: 4091: 4089:Parent material 4060: 4055: 4012:Wayback Machine 3996: 3991: 3990: 3951: 3947: 3916: 3912: 3891:(22): 3358–93. 3881: 3877: 3846: 3842: 3803: 3799: 3746: 3742: 3733: 3731: 3727: 3726: 3722: 3713: 3711: 3709:openwetware.org 3703: 3702: 3698: 3689: 3687: 3679: 3678: 3674: 3665: 3663: 3655: 3654: 3650: 3641: 3639: 3631: 3630: 3626: 3617: 3615: 3607: 3606: 3602: 3593: 3591: 3589: 3573: 3569: 3560: 3558: 3549: 3548: 3544: 3535: 3533: 3523: 3519: 3512: 3498: 3494: 3439: 3435: 3387: 3381: 3377: 3322: 3315: 3306: 3304: 3296: 3295: 3291: 3284: 3270: 3266: 3223: 3219: 3210: 3208: 3206: 3188: 3184: 3175: 3173: 3165: 3164: 3160: 3153: 3137: 3133: 3078: 3074: 3019: 3012: 2959: 2955: 2902: 2898: 2889: 2887: 2885: 2869: 2865: 2812: 2808: 2793: 2789: 2749: 2745: 2702: 2698: 2669:(12): 747–752. 2655: 2651: 2636: 2629: 2619: 2617: 2609: 2608: 2604: 2559: 2555: 2516: 2512: 2505: 2489: 2482: 2467: 2446: 2445: 2441: 2425: 2424: 2420: 2398: 2391: 2348: 2344: 2289: 2285: 2262: 2258: 2242:10.1.1.466.3753 2225: 2221: 2182: 2178: 2131: 2127: 2088: 2084: 2035: 2031: 1994: 1990: 1983: 1967: 1963: 1947: 1946: 1934: 1920: 1916: 1887:Protein Science 1875: 1871: 1823: 1812: 1808: 1755: 1751: 1712: 1708: 1669: 1665: 1618: 1614: 1573: 1569: 1546: 1542: 1531: 1527: 1490: 1479: 1469: 1467: 1460: 1442: 1438: 1433: 1428: 1427: 1408: 1404: 1398: 1394: 1389: 1385: 1380: 1343: 1291: 1285: 1227: 1213:, gas bubbles, 1202: 1193: 1187: 1167:crystal lattice 1155: 1130: 1090:ultra-structure 1055: 1042: 940:dental implants 838: 825:Surface Tension 745:Bulk properties 739:bulk properties 731: 679: 667: 632:noninflammatory 611: 593:hip replacement 573:immune response 565: 537: 524: 511: 486: 480: 467: 451:Calcium sulfate 448: 401:Vascular grafts 391:Breast implants 366:Dental implants 337: 320: 294:that curl into 255: 208: 186: 158:hydroxy-apatite 130: 125: 116: 35: 28: 23: 22: 15: 12: 11: 5: 4390: 4380: 4379: 4374: 4357: 4356: 4351: 4348: 4347: 4344: 4343: 4330: 4328: 4324: 4323: 4310: 4308: 4302: 4301: 4298: 4296: 4287: 4283: 4282: 4279: 4278: 4273: 4271: 4267: 4266: 4261: 4259: 4255: 4254: 4245: 4243: 4242:Energy content 4239: 4238: 4229: 4227: 4221: 4220: 4207: 4205: 4201: 4200: 4177:Smart material 4175: 4173: 4166: 4160: 4159: 4156: 4155: 4138: 4136: 4132: 4131: 4122: 4120: 4113: 4109: 4108: 4105: 4104: 4099: 4097: 4093: 4092: 4075: 4073: 4066: 4062: 4061: 4054: 4053: 4046: 4039: 4031: 4025: 4024: 4019: 4014: 4002: 3995: 3994:External links 3992: 3989: 3988: 3945: 3926:(4): 278–286. 3910: 3875: 3840: 3797: 3740: 3720: 3696: 3672: 3648: 3624: 3600: 3587: 3567: 3542: 3517: 3510: 3492: 3433: 3375: 3313: 3289: 3282: 3264: 3217: 3204: 3182: 3171:www.kratos.com 3158: 3151: 3131: 3072: 3010: 2973:(7): 911–927. 2953: 2896: 2883: 2863: 2806: 2787: 2743: 2696: 2649: 2627: 2602: 2573:(2): 188–196. 2553: 2510: 2503: 2480: 2465: 2439: 2418: 2389: 2362:(6): 599–607. 2342: 2283: 2256: 2219: 2176: 2145:(28): 8670–7. 2125: 2082: 2045:(4): 291–366. 2029: 2008:(1): 870–888. 1988: 1981: 1961: 1932: 1914: 1893:(1): 135–136. 1869: 1806: 1749: 1706: 1663: 1612: 1567: 1556:(6): 493–507. 1540: 1525: 1477: 1458: 1435: 1434: 1432: 1429: 1426: 1425: 1402: 1392: 1382: 1381: 1379: 1376: 1375: 1374: 1369: 1364: 1359: 1354: 1349: 1342: 1339: 1287:Main article: 1284: 1281: 1280: 1279: 1276: 1271: 1266: 1261: 1252: 1251: 1248: 1245: 1240: 1226: 1223: 1215:stratification 1201: 1200:Macrostructure 1198: 1189:Main article: 1186: 1183: 1154: 1151: 1142:microstructure 1129: 1128:Microstructure 1126: 1110:metallic bonds 1106:covalent bonds 1054: 1051: 1041: 1038: 1036:is paramount. 846:medical device 837: 834: 833: 832: 830:Surface Charge 827: 822: 821: 820: 814: 811: 794: 793: 788: 783: 778: 773: 768: 763: 761:Microstructure 758: 730: 727: 699:polyetherimide 678: 675: 666: 663: 610: 607: 585:medical device 564: 561: 545:medical device 536: 533: 523: 520: 510: 507: 482:Main article: 479: 476: 466: 463: 457:substitute in 447: 444: 428: 427: 422: 419: 410: 409:Nerve conduits 407: 402: 399: 396: 393: 388: 386:Contact lenses 383: 380: 377: 372: 369: 363: 360: 355: 349: 346: 336: 333: 318: 288:hydroxyapatite 282:molecules are 276:organic matrix 254: 251: 243:nanotechnology 207: 204: 195:hydroxyapatite 185: 182: 129: 126: 111: 110: 26: 9: 6: 4: 3: 2: 4389: 4378: 4375: 4373: 4370: 4369: 4367: 4354: 4349: 4341: 4337: 4333: 4329: 4325: 4321: 4317: 4313: 4309: 4307: 4303: 4297: 4295: 4291: 4288: 4284: 4276: 4272: 4268: 4264: 4260: 4256: 4252: 4248: 4244: 4240: 4236: 4232: 4228: 4226: 4222: 4218: 4214: 4210: 4206: 4202: 4198: 4194: 4190: 4186: 4182: 4178: 4174: 4170: 4167: 4165: 4161: 4153: 4152:Nanomaterials 4149: 4145: 4141: 4137: 4133: 4129: 4125: 4121: 4117: 4114: 4110: 4102: 4098: 4094: 4090: 4086: 4082: 4078: 4074: 4070: 4067: 4063: 4059: 4052: 4047: 4045: 4040: 4038: 4033: 4032: 4029: 4023: 4020: 4018: 4015: 4013: 4009: 4006: 4003: 4001: 3998: 3997: 3984: 3980: 3976: 3972: 3968: 3964: 3960: 3956: 3949: 3941: 3937: 3933: 3929: 3925: 3921: 3914: 3906: 3902: 3898: 3894: 3890: 3886: 3879: 3871: 3867: 3863: 3859: 3855: 3851: 3844: 3836: 3832: 3828: 3824: 3820: 3816: 3813:(3): 175–88. 3812: 3808: 3801: 3793: 3789: 3784: 3779: 3775: 3771: 3767: 3763: 3759: 3755: 3751: 3744: 3730: 3724: 3710: 3706: 3700: 3686: 3682: 3676: 3662: 3658: 3652: 3638: 3637:opentextbc.ca 3634: 3628: 3614: 3610: 3604: 3590: 3588:9782842992866 3584: 3580: 3579: 3571: 3556: 3552: 3546: 3532: 3528: 3521: 3513: 3507: 3503: 3496: 3488: 3484: 3480: 3476: 3472: 3468: 3464: 3460: 3456: 3452: 3448: 3444: 3437: 3429: 3425: 3421: 3417: 3413: 3409: 3405: 3401: 3398:(10): 16063. 3397: 3393: 3386: 3379: 3371: 3367: 3362: 3357: 3353: 3349: 3344: 3339: 3335: 3331: 3327: 3320: 3318: 3303: 3299: 3293: 3285: 3279: 3275: 3268: 3260: 3256: 3252: 3248: 3244: 3240: 3236: 3232: 3228: 3221: 3207: 3201: 3197: 3193: 3186: 3172: 3168: 3162: 3154: 3148: 3145:. CRC Press. 3144: 3143: 3135: 3127: 3123: 3118: 3113: 3109: 3105: 3100: 3095: 3092:: 3117–3145. 3091: 3087: 3083: 3076: 3068: 3064: 3059: 3054: 3050: 3046: 3041: 3036: 3033:: 3117–3145. 3032: 3028: 3024: 3017: 3015: 3006: 3002: 2997: 2992: 2988: 2984: 2980: 2976: 2972: 2968: 2964: 2957: 2949: 2945: 2940: 2935: 2931: 2927: 2923: 2919: 2915: 2911: 2907: 2900: 2886: 2884:9780323328890 2880: 2876: 2875: 2867: 2859: 2855: 2850: 2845: 2841: 2837: 2833: 2829: 2825: 2821: 2817: 2810: 2802: 2798: 2791: 2783: 2779: 2775: 2771: 2767: 2763: 2759: 2755: 2747: 2739: 2735: 2731: 2727: 2723: 2719: 2715: 2711: 2707: 2700: 2692: 2688: 2684: 2680: 2676: 2672: 2668: 2664: 2660: 2653: 2645: 2641: 2634: 2632: 2616: 2612: 2606: 2598: 2594: 2589: 2584: 2580: 2576: 2572: 2568: 2564: 2557: 2549: 2545: 2541: 2537: 2533: 2529: 2525: 2521: 2514: 2506: 2500: 2496: 2495: 2487: 2485: 2476: 2472: 2468: 2462: 2458: 2454: 2450: 2443: 2435: 2429: 2421: 2415: 2411: 2406: 2405: 2396: 2394: 2385: 2381: 2377: 2373: 2369: 2365: 2361: 2357: 2353: 2346: 2338: 2334: 2329: 2324: 2320: 2316: 2311: 2306: 2302: 2298: 2294: 2287: 2279: 2275: 2271: 2267: 2260: 2252: 2248: 2243: 2238: 2234: 2230: 2223: 2215: 2211: 2207: 2203: 2199: 2195: 2192:(6): 1740–8. 2191: 2187: 2180: 2172: 2168: 2163: 2158: 2153: 2148: 2144: 2140: 2136: 2129: 2121: 2117: 2113: 2109: 2105: 2101: 2097: 2093: 2086: 2078: 2074: 2070: 2066: 2062: 2058: 2053: 2048: 2044: 2040: 2033: 2025: 2021: 2016: 2011: 2007: 2003: 1999: 1992: 1984: 1978: 1974: 1973: 1965: 1957: 1951: 1943: 1939: 1935: 1929: 1925: 1918: 1909: 1904: 1900: 1896: 1892: 1888: 1884: 1882: 1873: 1865: 1861: 1857: 1853: 1849: 1845: 1841: 1837: 1833: 1829: 1822: 1818: 1810: 1802: 1798: 1793: 1788: 1784: 1780: 1776: 1772: 1769:(1): 014109. 1768: 1764: 1760: 1753: 1745: 1741: 1737: 1733: 1729: 1725: 1721: 1717: 1710: 1702: 1698: 1694: 1690: 1686: 1682: 1678: 1674: 1667: 1659: 1655: 1650: 1645: 1640: 1635: 1631: 1627: 1623: 1616: 1608: 1604: 1600: 1596: 1591: 1586: 1582: 1578: 1571: 1563: 1559: 1555: 1551: 1544: 1536: 1529: 1521: 1517: 1512: 1507: 1503: 1499: 1495: 1488: 1486: 1484: 1482: 1465: 1461: 1459:9783540777823 1455: 1451: 1447: 1440: 1436: 1422: 1421: 1416: 1412: 1406: 1396: 1387: 1383: 1373: 1370: 1368: 1365: 1363: 1360: 1358: 1355: 1353: 1350: 1348: 1345: 1344: 1338: 1336: 1332: 1328: 1324: 1320: 1316: 1312: 1308: 1304: 1300: 1296: 1290: 1277: 1275: 1272: 1270: 1267: 1265: 1262: 1260: 1257: 1256: 1255: 1249: 1246: 1244: 1243:Biocompatible 1241: 1239: 1238:Biodegradable 1236: 1235: 1234: 1231: 1222: 1220: 1216: 1212: 1208: 1197: 1192: 1182: 1180: 1176: 1172: 1168: 1163: 1159: 1150: 1148: 1143: 1134: 1125: 1123: 1119: 1115: 1111: 1107: 1103: 1097: 1095: 1091: 1087: 1083: 1079: 1075: 1071: 1063: 1059: 1050: 1048: 1037: 1035: 1031: 1027: 1023: 1019: 1015: 1011: 1007: 1003: 999: 995: 991: 990: 983: 981: 977: 973: 969: 965: 961: 957: 953: 949: 945: 941: 937: 934: 929: 927: 923: 919: 915: 911: 907: 906:neural probes 903: 899: 894: 890: 886: 882: 878: 874: 870: 866: 862: 858: 857: 851: 847: 843: 842:biocompatible 831: 828: 826: 823: 818: 817: 815: 812: 809: 806: 805: 804: 801: 798: 792: 789: 787: 784: 782: 779: 777: 774: 772: 769: 767: 764: 762: 759: 757: 754: 753: 752: 749: 746: 742: 740: 736: 726: 724: 720: 719:polypropylene 716: 712: 708: 704: 700: 696: 695:polycarbonate 692: 688: 684: 683:biocompatible 674: 672: 662: 660: 656: 652: 648: 644: 641: 637: 633: 629: 628:nonallergenic 625: 621: 617: 606: 603: 598: 594: 590: 586: 582: 578: 574: 569: 563:Compatibility 560: 557: 552: 550: 546: 542: 532: 530: 522:Host response 519: 517: 506: 504: 503:glycolic acid 500: 496: 492: 491:biodegradable 485: 475: 473: 462: 460: 456: 452: 443: 441: 437: 433: 426: 425:Surgical mesh 423: 420: 418: 417:wound closure 414: 411: 408: 406: 403: 400: 397: 394: 392: 389: 387: 384: 381: 378: 376: 373: 370: 367: 364: 361: 359: 356: 353: 350: 347: 345: 342: 341: 340: 332: 330: 326: 322: 316: 312: 307: 303: 301: 297: 293: 289: 285: 281: 280:tropocollagen 277: 273: 269: 265: 261: 250: 248: 244: 238: 236: 232: 228: 224: 220: 216: 212: 211:Self-assembly 206:Self-assembly 203: 201: 196: 191: 181: 179: 175: 171: 167: 163: 159: 155: 151: 147: 143: 139: 135: 123: 121: 114: 109: 107: 106:biocompatible 103: 99: 94: 92: 88: 84: 80: 76: 72: 68: 64: 60: 56: 52: 44: 39: 33: 19: 4377:Biomolecules 4372:Biomaterials 4331: 4294:Raw material 4270:Legal status 3958: 3954: 3948: 3923: 3919: 3913: 3888: 3884: 3878: 3853: 3849: 3843: 3810: 3806: 3800: 3760:(1): 11–28. 3757: 3753: 3743: 3732:. Retrieved 3723: 3712:. Retrieved 3708: 3699: 3688:. Retrieved 3684: 3675: 3664:. Retrieved 3660: 3651: 3640:. Retrieved 3636: 3627: 3616:. Retrieved 3612: 3603: 3592:. Retrieved 3581:. Elsevier. 3577: 3570: 3559:. Retrieved 3554: 3545: 3534:. Retrieved 3530: 3520: 3501: 3495: 3446: 3442: 3436: 3395: 3391: 3378: 3333: 3329: 3305:. Retrieved 3301: 3292: 3273: 3267: 3234: 3230: 3220: 3209:. Retrieved 3195: 3185: 3174:. Retrieved 3170: 3161: 3141: 3134: 3089: 3085: 3075: 3030: 3026: 2970: 2966: 2956: 2916:(1): 56–66. 2913: 2909: 2899: 2888:. Retrieved 2873: 2866: 2826:(2): 82–90. 2823: 2819: 2809: 2800: 2790: 2757: 2753: 2746: 2716:(1): 17–23. 2713: 2709: 2699: 2666: 2662: 2652: 2643: 2618:. Retrieved 2605: 2570: 2566: 2556: 2523: 2520:Biomaterials 2519: 2513: 2493: 2448: 2442: 2403: 2359: 2355: 2345: 2303:(10): 3007. 2300: 2296: 2286: 2269: 2265: 2259: 2232: 2228: 2222: 2189: 2185: 2179: 2142: 2138: 2128: 2098:(6): 590–8. 2095: 2091: 2085: 2042: 2038: 2032: 2005: 2001: 1991: 1971: 1964: 1923: 1917: 1890: 1886: 1880: 1872: 1834:(1): 18–35. 1831: 1827: 1809: 1766: 1762: 1752: 1719: 1715: 1709: 1676: 1672: 1666: 1629: 1625: 1615: 1580: 1576: 1570: 1553: 1549: 1543: 1534: 1528: 1501: 1497: 1468:. Retrieved 1449: 1439: 1418: 1414: 1410: 1405: 1395: 1386: 1292: 1253: 1232: 1228: 1203: 1194: 1156: 1139: 1098: 1067: 1043: 1034:conformality 1025: 1021: 1018:delaminating 988: 984: 936:fluctuations 930: 873:biointerface 869:delamination 855: 839: 802: 796: 795: 750: 744: 743: 738: 734: 732: 711:polyethylene 680: 668: 624:nonpyrogenic 612: 566: 556:inflammatory 553: 538: 525: 512: 487: 468: 465:Heart valves 449: 429: 375:Heart valves 348:Bone plates 338: 335:Applications 323: 308: 304: 284:intercalated 256: 239: 209: 199: 187: 162:hip implants 131: 128:Introduction 119: 118: 95: 70: 66: 50: 48: 18:Biomaterials 4332:Biomaterial 4072:From nature 3336:(1): 52–7. 1470:29 February 1335:nucleotides 1331:amino acids 1283:Biopolymers 1147:crystalline 1102:ionic bonds 1047:biomimetics 1030:thin layers 933:temperature 889:compressive 808:Wettability 499:lactic acid 478:Skin repair 446:Bone grafts 358:Bone cement 184:Bioactivity 152:, or maybe 150:heart valve 134:synthesized 51:biomaterial 43:hip implant 4366:Categories 4096:From space 3734:2022-05-06 3714:2022-05-06 3690:2022-05-06 3666:2022-05-06 3642:2022-05-06 3618:2022-05-06 3594:2022-05-06 3561:2022-05-06 3536:2022-05-06 3307:2022-05-06 3211:2022-07-26 3176:2022-05-06 2890:2022-05-06 1722:: 601–22. 1632:: 565901. 1590:1910.10610 1504:(2): 377. 1431:References 1411:biopolymer 1289:Biopolymer 1082:sub atomic 972:fracturing 962:such as a 918:dura mater 898:elasticity 766:Elasticity 597:prostheses 581:human body 509:Properties 455:bone graft 231:mineralogy 227:metallurgy 180:material. 178:transplant 176:used as a 115:definition 63:diagnostic 55:engineered 4058:Materials 3983:132470283 3940:208833880 3774:1932-7005 3613:Study.com 3487:205264592 3471:0935-9648 3420:2058-8437 3352:2307-8960 3108:1177-8881 3049:1177-8881 2987:1745-7254 2930:1474-1768 2840:1840-4812 2760:: 47–59. 2730:0167-5699 2683:0028-4793 2540:0142-9612 2475:240851982 2428:cite book 2376:1050-6934 2319:1420-3049 2297:Molecules 2237:CiteSeerX 2235:: 1–206. 2047:CiteSeerX 1950:cite book 1942:869269337 1864:254094123 1848:1476-1122 1607:105932012 1378:Footnotes 1323:monomeric 1299:Cellulose 1250:Non-toxic 1171:unit cell 1162:amorphous 1086:molecular 1040:Structure 1014:impedance 998:conformal 980:hip joint 956:toughness 944:ductility 865:implanted 647:liposomes 616:non-toxic 589:pacemaker 587:(such as 495:copolymer 459:dentistry 315:aragonite 296:helicoids 247:emulsions 235:unit cell 174:xenograft 170:allograft 166:autograft 154:bioactive 83:chemistry 4008:Archived 3975:33405710 3905:15861454 3835:19229265 3792:25066525 3479:26779680 3428:10104005 3370:25610850 3259:46254118 3251:17443395 3126:30288019 3067:30288019 3005:32123302 2948:26694936 2858:26894284 2782:73489194 2774:30826478 2620:July 11, 2597:20143194 2548:18440630 2384:16393128 2337:34070157 2214:33728690 2206:26017603 2171:26229409 2120:24385943 2112:15542222 2077:20278355 2069:20971780 2024:27770965 1856:36446962 1801:27877935 1744:11031294 1658:33117780 1520:98107080 1464:Archived 1400:origin". 1352:Hydrogel 1341:See also 1311:peptides 1307:proteins 1295:polymers 1274:Collagen 1264:Matrigel 1259:Alginate 1219:fissures 1211:porosity 1207:cavities 1175:lattices 948:fracture 938:, e.g., 922:cerebral 781:Hardness 651:polymers 640:in vitro 609:Toxicity 436:clinical 272:collagen 219:micelles 215:colloids 200:in vitro 142:ceramics 138:polymers 120:Material 75:medicine 3870:9271562 3850:Science 3815:Bibcode 3783:4933503 3451:Bibcode 3400:Bibcode 3361:4295219 3117:6161720 3058:6161720 2996:7468530 2939:4790726 2849:4853000 2738:2015044 2691:3279314 2588:2844517 2328:8158510 2162:4524825 1908:2222831 1792:5099804 1771:Bibcode 1724:Bibcode 1701:1962191 1681:Bibcode 1673:Science 1649:7578266 1420:polymer 1347:Bionics 1122:polymer 1114:ceramic 960:implant 885:tensile 871:at the 776:Density 735:surface 709:(PES), 705:(PVC), 693:(COC), 636:in vivo 620:in vivo 541:in vivo 516:in vivo 311:abalone 300:osteons 292:fibrils 160:coated 79:biology 3981:  3973:  3938:  3903:  3868:  3833:  3790:  3780:  3772:  3585:  3508:  3485:  3477:  3469:  3426:  3418:  3368:  3358:  3350:  3280:  3257:  3249:  3202:  3149:  3124:  3114:  3106:  3065:  3055:  3047:  3003:  2993:  2985:  2946:  2936:  2928:  2881:  2856:  2846:  2838:  2780:  2772:  2736:  2728:  2689:  2681:  2595:  2585:  2546:  2538:  2501:  2473:  2463:  2416:  2382:  2374:  2335:  2325:  2317:  2239:  2212:  2204:  2169:  2159:  2118:  2110:  2075:  2067:  2049:  2022:  1979:  1940:  1930:  1905:  1862:  1854:  1846:  1799:  1789:  1742:  1699:  1656:  1646:  1605:  1518:  1456:  1333:, and 1327:sugars 1313:, and 1303:starch 1269:Fibrin 1217:, and 1108:, and 1006:strain 1002:tissue 968:deform 893:stress 713:(PE), 697:(PC), 655:silica 653:, and 577:tissue 405:Stents 329:chitin 3979:S2CID 3936:S2CID 3483:S2CID 3424:S2CID 3388:(PDF) 3255:S2CID 2778:S2CID 2471:S2CID 2210:S2CID 2116:S2CID 2073:S2CID 1860:S2CID 1824:(PDF) 1603:S2CID 1585:arXiv 1516:S2CID 1120:, or 1118:metal 1070:atoms 325:Crabs 113:IUPAC 3971:PMID 3901:PMID 3866:PMID 3831:PMID 3788:PMID 3770:ISSN 3583:ISBN 3506:ISBN 3475:PMID 3467:ISSN 3416:ISSN 3366:PMID 3348:ISSN 3278:ISBN 3247:PMID 3200:ISBN 3147:ISBN 3122:PMID 3104:ISSN 3063:PMID 3045:ISSN 3001:PMID 2983:ISSN 2944:PMID 2926:ISSN 2879:ISBN 2854:PMID 2836:ISSN 2770:PMID 2734:PMID 2726:ISSN 2687:PMID 2679:ISSN 2622:2023 2593:PMID 2544:PMID 2536:ISSN 2499:ISBN 2461:ISBN 2434:link 2414:ISBN 2380:PMID 2372:ISSN 2333:PMID 2315:ISSN 2202:PMID 2167:PMID 2108:PMID 2065:PMID 2020:PMID 1977:ISBN 1956:link 1938:OCLC 1928:ISBN 1852:PMID 1844:ISSN 1797:PMID 1740:PMID 1697:PMID 1654:PMID 1472:2016 1454:ISBN 1317:and 1309:and 1301:and 1140:The 1074:ions 1072:and 920:and 914:load 910:fail 887:and 737:and 638:and 539:The 501:and 440:drug 268:wool 266:and 264:hair 229:and 98:bone 89:and 3963:doi 3928:doi 3893:doi 3858:doi 3854:277 3823:doi 3778:PMC 3762:doi 3459:doi 3408:doi 3356:PMC 3338:doi 3239:doi 3112:PMC 3094:doi 3053:PMC 3035:doi 2991:PMC 2975:doi 2934:PMC 2918:doi 2844:PMC 2828:doi 2762:doi 2718:doi 2671:doi 2667:318 2583:PMC 2575:doi 2528:doi 2453:doi 2410:452 2364:doi 2323:PMC 2305:doi 2274:doi 2247:doi 2194:doi 2190:135 2157:PMC 2147:doi 2100:doi 2057:doi 2010:doi 1903:PMC 1895:doi 1836:doi 1787:PMC 1779:doi 1732:doi 1689:doi 1677:254 1644:PMC 1634:doi 1595:doi 1558:doi 1506:doi 1413:or 1319:RNA 1315:DNA 1124:). 1008:), 591:or 497:of 172:or 144:or 69:or 4368:: 4338:, 4334:: 4318:, 4314:, 4249:, 4233:, 4215:, 4211:, 4195:, 4191:, 4187:, 4183:, 4179:, 4150:, 4146:, 4142:, 4126:, 4087:, 4083:, 4079:, 3977:. 3969:. 3957:. 3934:. 3922:. 3899:. 3889:44 3887:. 3864:. 3852:. 3829:. 3821:. 3809:. 3786:. 3776:. 3768:. 3758:10 3756:. 3752:. 3707:. 3683:. 3659:. 3635:. 3611:. 3553:. 3529:. 3481:. 3473:. 3465:. 3457:. 3447:28 3445:. 3422:. 3414:. 3406:. 3394:. 3390:. 3364:. 3354:. 3346:. 3332:. 3328:. 3316:^ 3300:. 3253:. 3245:. 3235:18 3233:. 3229:. 3169:. 3120:. 3110:. 3102:. 3090:12 3088:. 3084:. 3061:. 3051:. 3043:. 3031:12 3029:. 3025:. 3013:^ 2999:. 2989:. 2981:. 2971:41 2969:. 2965:. 2942:. 2932:. 2924:. 2914:16 2912:. 2908:. 2852:. 2842:. 2834:. 2824:16 2822:. 2818:. 2799:. 2776:. 2768:. 2758:89 2756:. 2732:. 2724:. 2714:12 2712:. 2708:. 2685:. 2677:. 2665:. 2661:. 2642:. 2630:^ 2613:. 2591:. 2581:. 2571:12 2569:. 2565:. 2542:. 2534:. 2524:29 2522:. 2483:^ 2469:. 2459:. 2430:}} 2426:{{ 2412:. 2392:^ 2378:. 2370:. 2360:15 2358:. 2354:. 2331:. 2321:. 2313:. 2301:26 2299:. 2295:. 2270:54 2268:. 2245:. 2233:53 2231:. 2208:. 2200:. 2188:. 2165:. 2155:. 2143:21 2141:. 2137:. 2114:. 2106:. 2096:29 2094:. 2071:. 2063:. 2055:. 2043:25 2041:. 2018:. 2006:70 2004:. 2000:. 1952:}} 1948:{{ 1936:. 1901:. 1891:16 1889:. 1885:. 1858:. 1850:. 1842:. 1832:22 1830:. 1826:. 1795:. 1785:. 1777:. 1765:. 1761:. 1738:. 1730:. 1720:51 1718:. 1695:. 1687:. 1675:. 1652:. 1642:. 1628:. 1624:. 1601:. 1593:. 1581:38 1579:. 1554:22 1552:. 1514:. 1502:84 1500:. 1496:. 1480:^ 1462:. 1448:. 1329:, 1305:, 1209:, 1181:. 1116:, 1104:, 992:. 942:, 926:Pa 741:. 649:, 626:, 505:. 217:, 168:, 140:, 93:. 85:, 81:, 77:, 49:A 41:A 4050:e 4043:t 4036:v 3985:. 3965:: 3959:5 3942:. 3930:: 3924:2 3907:. 3895:: 3872:. 3860:: 3837:. 3825:: 3817:: 3811:8 3794:. 3764:: 3737:. 3717:. 3693:. 3669:. 3645:. 3621:. 3597:. 3564:. 3539:. 3514:. 3489:. 3461:: 3453:: 3430:. 3410:: 3402:: 3396:1 3372:. 3340:: 3334:3 3310:. 3286:. 3261:. 3241:: 3214:. 3179:. 3155:. 3128:. 3096:: 3069:. 3037:: 3007:. 2977:: 2950:. 2920:: 2893:. 2860:. 2830:: 2803:. 2784:. 2764:: 2740:. 2720:: 2693:. 2673:: 2646:. 2624:. 2599:. 2577:: 2550:. 2530:: 2507:. 2477:. 2455:: 2436:) 2422:. 2386:. 2366:: 2339:. 2307:: 2280:. 2276:: 2253:. 2249:: 2216:. 2196:: 2173:. 2149:: 2122:. 2102:: 2079:. 2059:: 2026:. 2012:: 1985:. 1958:) 1944:. 1911:. 1897:: 1879:" 1866:. 1838:: 1803:. 1781:: 1773:: 1767:9 1746:. 1734:: 1726:: 1703:. 1691:: 1683:: 1660:. 1636:: 1630:8 1609:. 1597:: 1587:: 1564:. 1560:: 1522:. 1508:: 1474:. 1026:h 1022:h 1012:( 989:D 856:E 319:3 34:. 20:)

Index

Biomaterials
Biomaterials (journal)

hip implant
engineered
biological systems
diagnostic
medicine
biology
chemistry
tissue engineering
materials science
bone
biological system
biocompatible
IUPAC
synthesized
polymers
ceramics
composite materials
heart valve
bioactive
hydroxy-apatite
hip implants
autograft
allograft
xenograft
transplant
bioactive glasses
hydroxyapatite

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.