Knowledge

Bio-MEMS

Source 📝

1681: 1718:
Weirs are shallow mesa-like sections used to restrict flow to narrow slots between layers without posts. One advantage of using weirs is that the absence of posts allows more effective recycling of retentate for flow across the filter to wash off clogged cells. Magnetic beads are used to aid in analyte separation. These microscopic beads are functionalized with target molecules and moved through microfluidic channels using a varying magnetic field. This serves as a quick method of harvesting targets for analysis. After this process is complete, a strong, stationary magnetic field is applied to immobilize the target-bound beads and wash away unbound beads. The H-filter is a microfluidic device with two inlets and two outlets that takes advantage of
531: 1996: 1136:
been found to change the Young's modulus of the cantilever. Changing cantilever stiffness will also change its resonant frequency, and thus the noise in the oscillation signal must be analyzed to determine whether the resonant frequency is also a function of changing elasticity. One common use for this technique is in detecting nucleotide mismatches in DNA because the variation in mass caused by the presence of an incorrect base is enough to change the resonant frequency of the cantilever and register a signal. Mass sensing is not as effective in fluids because the minimum detectable mass is much higher in
133: 737: 150: 835: 1008:. Screw valves, unlike Quake and ice valves, maintain their level of flow restriction without power input, and are thus ideal for situations where the valve position may remain mostly constant and actuation by a human operator is acceptable. Electromagnetic solenoid valves have similar actuation times compared to Quake valves, but have larger footprints and are not integrated into the device substrate. This is an issue when device dimensions are an issue, such as in implantable devices. 968:. The basic scheme involves two perpendicular flow conduits separated by an impermeable elastomeric membrane at their intersection. Controlled air flow passes through one conduit while the process fluid passes through the other. A pressure gradient between the two conduits, which is tuned by changing the control air flow rate, causes the membrane to deform and obstruct flow in the process channel. In MSL, the channels for both the process fluid and the control fluid are cast out of an 1336: 992:(TE) units are used to transport heat away from the plug. Because of the limited temperature difference that TE units can provide, multiple are often chained in series to produce subzero temperatures at the substrate-fluid interface, allowing for more rapid cooling. Current state of the art ice valve technology features short closing times (0.37 s at 10 μL/min) and also operates at high flow rates (1150 μL/min). Ice valves were first introduced in 1995 where pressurized liquid 2543: 2466: 1463:
analysis. Red dots mean that the corresponding gene was expressed at a higher level in the treated sample. Conversely, green dots mean that the corresponding gene was expressed at a higher level in the untreated sample. Yellow dots, as a result of the overlap between red and green dots, mean that the corresponding gene was expressed at relatively the same level in both samples, whereas dark spots indicate no or negligible expression in either sample.
1447: 2077:, and bone tissues. Conventional methods of studying oxygen effects relied on setting the entire incubator at a particular oxygen concentration, which limited analysis to pair-wise comparisons between normoxic and hypoxic conditions instead of the desired concentration-dependent characterization. Developed solutions include the use of continuous axial oxygen gradients and arrays of microfluidic cell culture chambers separated by thin 1026: 1853:, large fluid volumes (~0.1 – 2 mL per sample), and tedious human labour. The requirement of human labour also limits the number and length between time points for experiments. Microfluidic cell cultures are potentially a vast improvement because they can be automated, as well as yield lower overall cost, higher throughput, and more quantitative descriptions of single-cell behaviour variability. By including 952: 981: 2268: 17: 1861:. However, this type of continuous microfluidic cell culture operation presents its own unique challenges as well. Flow control is important when seeding cells into microchannels because flow needs to be stopped after the initial injection of cell suspension for cells to attach or become trapped in microwells, dielectrophoretic traps, micromagnetic traps, or 1693:
saliva, blood, or urine samples and in an integrated approach perform sample preconditioning, sample fractionation, signal amplification, analyte detection, data analysis, and result display. In particular, blood is a very common biological sample because it cycles through the body every few minutes and its contents can indicate many aspects of health.
2246:, but controlling local density is difficult and it is often difficult to decouple effects between soluble signals in the medium and physical cell–cell interactions. Micropatterning of cell adhesion proteins can be used in defining the spatial positions of different cells on a substrate to study human ESC proliferation. Seeding stem cells into 1561: 1630:, are optically transparent, not inhibitory, and can be used to coat an electrophoretic glass channel. Various other surface treatments also exist, including polyethylene glycol, bovine serum albumin, and silicon dioxide. There are stationary (chamber-based), dynamic (continuous flow-based), and microdroplet ( 1777:
Funding is scarce for tropical disease research. In addition, there are many regulatory hurdles that must be cleared before a medical device is approved, which can cost tens of millions of dollars. Thus, companies focusing on tropical diseases must often combine their research objectives for tropical
1625:
for rapid heating and cooling, but can poison the polymerase reaction. Silicon substrates are also opaque, prohibiting optical detection for qPCR, and electrically conductive, preventing electrophoretic transport through the channels. Meanwhile, glass is an ideal material for electrophoresis but also
1620:
distances. The advantages of PCR chips include shorter thermal-cycling time, more uniform temperature which enhances yield, and portability for point-of-care applications. Two challenges in microfluidic PCR chips are PCR inhibition and contamination due to the large surface-to-volume ratio increasing
1457:
microarrays are often used for large-scale screening and expression studies. In cDNA microarrays, mRNA from cells are collected and converted into cDNA by reverse transcription. Subsequently, cDNA molecules (each corresponding to one gene) are immobilized as ~100 μm diameter spots on a membrane,
1135:
as measured electrically or optically. When a biochemical reaction takes place and is captured on the cantilever, the mass of the cantilever changes, as does the resonant frequency. Analysis of this data can be slightly less straightforward, however, as adsorption of sample to the cantilever has also
816:
is the motion of uncharged particles due to induced polarization from nonuniform electric fields. Dielectrophoresis can be used in bio-MEMS for dielectrophoresis traps, concentrating specific particles at specific points on surfaces, and diverting particles from one flow stream to another for dynamic
1722:
and diffusion to separate components that diffuse across the interface between two inlet streams. By controlling the flow rate, diffusion distance, and residence time of the fluid in the filter, cells are excluded from the filtrate by virtue of their slower diffusion rate. The H-filter does not clog
1611:
through three different temperatures. Heating up and cooling down in conventional PCR devices are time-consuming and typical PCR reactions can take hours to complete. Other drawbacks of conventional PCR is the high consumption of expensive reagents, preference for amplifying short fragments, and the
1806:
to isolate various types of CTCs based on their specificities (Fan et al., 2013). Other notable advancements include the creation of nano-Velcro surfaces by Hsian-Rong Tseng's team at UCLA, designed to enhance cell capture efficiency through nanostructured polymer fiber meshes (Tseng et al., 2012),
1545:
Protein microarrays have stringent production, storage, and experimental conditions due to the low stability and necessity of considering the native folding on the immobilized proteins. Peptides, on the other hand, are more chemically resistant and can retain partial aspects of protein function. As
1769:
Most diagnostic devices on the market can only test for one disease. Moreover, most devices are binary output (yes/no) without nuanced information on the patient's condition. Thus, in addition to developing tests for more diseases, scientists are currently working to expand the complexity of these
2573:
with reduced tissue damage, reduced pain, and no bleeding. Microneedles can also be integrated with microfluidics for automated drug loading or multiplexing. From the user standpoint, microneedles can be incorporated into a patch format for self-administration, and do not constitute a sharp waste
1773:
It is difficult to manufacture MEMS diagnostic devices outside of the laboratory setting. Much of the research on these devices takes place in climate controlled laboratories, where the devices can be tested shortly after they are produced. However, as many of these devices are used to screen for
1359:
and their sequences. There are many different types of biological entities used in microarrays, but in general the microarray consists of an ordered collection of microspots each containing a single defined molecular species that interacts with the analyte for simultaneous testing of thousands of
677:
is the dependency of the rate of wicking on environmental conditions such as temperature and relative humidity. Paper-based analytical devices are particularly attractive for point-of-care diagnostics in developing countries for both the low material cost and emphasis on colorimetric assays which
1717:
must be separated. Sieves, weirs, inertial confinement, and flow diversion devices are some approaches used in preparing blood plasma for cell-free analysis. Sieves can be microfabricated with high-aspect-ratio columns or posts, but are only suitable for low loading to avoid clogging with cells.
1692:
The ability to perform medical diagnosis at the bedside or at the point-of-care is important in health care, especially in developing countries where access to centralized hospitals is limited and prohibitively expensive. To this end, point-of-care diagnostic bio-MEMS have been developed to take
1462:
chip by metallic pins. For detection, fluorescently-labelled single strand cDNA from cells hybridize to the molecules on the microarray and a differential comparison between a treated sample (labelled red, for example) and an untreated sample (labelled in another color such as green) is used for
5042:
Most of the new microfluidic devices rely on antibodies to capture or fluorescently label CTCs. But other options are available. Z. Hugh Fan, a professor at the University of Florida, uses ligand-binding nucleic acid sequences called aptamers, which he attaches to the channels in a microfluidic
1144:
samples around on the cantilever, without submerging the cantilever, minimally impacting its oscillation. This technology is in its infancy, however, and it is still not able to be used beyond a few, limited applications. The advantage of using cantilever sensors is that there is no need for an
1060:
through the use of parallel conduits of variable path length and or diameter. The net result of having a variety of parallel flow channels of varying length is that material initially at the edge of the laminar flow profile can be repeatedly redistributed to the opposite edge, thus drastically
2582:). Drug delivery by microneedles include coating the surface with therapeutic agents, loading drugs into porous or hollow microneedles, or fabricating the microneedles with drug and coating matrix for maximum drug loading. Microneedles for interstitial fluid extraction, blood extraction, and 2285:
test for stem cells and their size needs to be controlled to induce directed differentiation to specific lineages. High throughput formation of uniform sized embryoid bodies with microwells and microfluidics allows easy retrieval and more importantly, scale up for clinical contexts. Actively
6344:
Kim, D.-H.; Lu, N.; Ma, R.; Kim, Y.-S.; Kim, R.-H.; Wang, S.; Wu, J.; Won, S. M.; Tao, H.; Islam, A.; Yu, K. J.; Kim, T.-i.; Chowdhury, R.; Ying, M.; Xu, L.; Li, M.; Chung, H.-J.; Keum, H.; McCormick, M.; Liu, P.; Zhang, Y.-W.; Omenetto, F. G.; Huang, Y.; Coleman, T.; Rogers, J. A. (2011).
3531:
Venkat Chokkalingam, Jurjen Tel, Florian Wimmers, Xin Liu, Sergey Semenov, Julian Thiele, Carl G. Figdor, Wilhelm T.S. Huck, Probing cellular heterogeneity in cytokine-secreting immune cells using droplet-based microfluidics, Lab on a Chip, 13, 4740-4744, 2013, DOI: 10.1039/C3LC50945A,
65:) chips. In this definition, lab-on-a-chip devices do not strictly have biological applications, although most do or are amenable to be adapted for biological purposes. Similarly, micro total analysis systems may not have biological applications in mind, and are usually dedicated to 2254:
communications has also been studied using microfluidics whereby negative pressure generated by fluid flow in side channels flanking a central channel traps pairs of cells that are in direct contact or separated by a small gap. However, in general, the non-zero motility and short
1433:
with a photolabile protecting group are exposed to the entire surface and the chemical coupling process only occurs where light was exposed in the previous step. This process can be repeated to synthesize oligonucleotides of relatively short lengths on the surface, nucleotide by
2456:
which impinge on the piezocrystal, and extracellular voltage changes are backscattered ultrasonically by the piezocrystal, allowing for measurement. A network of so-called "neural dust" motes can map signals throughout a region of the body where the micro-sensors are implanted.
69:. A broad definition for bio-MEMS can be used to refer to the science and technology of operating at the microscale for biological and biomedical applications, which may or may not include any electronic or mechanical functions. The interdisciplinary nature of bio-MEMS combines 6174:
Hochberg, Leigh R.; Serruya, Mijail D.; Friehs, Gerhard M.; Mukand, Jon A.; Saleh, Maryam; Caplan, Abraham H.; Branner, Almut; Chen, David; Penn, Richard D.; Donoghue, John P. (2006). "Neuronal ensemble control of prosthetic devices by a human with tetraplegia".
2427:
to improve deeper insertion and better electrode-tissue contact for transduction of high-fidelity sounds. Integrating microelectronics onto thin, flexible substrates has led to the development of a cardiac patch that adheres to the curvilinear surface of the
1751:
flow. For continuous-flow separation, the general idea is to apply a field at an angle to the flow direction to deflect the sample flow path toward different channels. Examples of continuous-flow separation techniques include continuous-flow electrophoresis,
959:
One inexpensive method of producing valves with fast actuation times and variable flow restriction is multilayer soft lithography (MSL). Valves produced through this fabrication technique are called Quake valves, because they were first created in the lab of
1904:
with microfluidic cell cultures may help in this regard, but have inherently lower throughput due to the microscope probe having only a small field of view. The Berkeley Lights Beacon platform has resolved the issue of collection and detection by performing
942:
Lithographic methods for microfluidic device manufacturing are ineffective in forming the screw-type mechanisms used in macroscale valves. Therefore, microfluidic devices require alternative flow control techniques, a number of which are currently popular:
2489:
can improve existing functionality, add new capabilities for surgeons to develop new techniques and procedures, and improve surgical outcomes by lowering risk and providing real-time feedback during the operation. Micromachined surgical tools such as tiny
2031:
formation and organization. Bio-MEMS have been used to research how to optimize the culture and growth conditions of stem cells by controlling these factors. Assaying stem cells and their differentiated progeny is done with microarrays for studying how
881:
Microfluidic technology is relatively economical due to batch fabrication and high-throughput (parallelization and redundancy). This allows the production of disposable or single-use chips for improved ease of use and reduced probability of biological
2602:
transducers to liquid reservoirs can be used in these circumstances to generate narrow size distribution of aerosols for better drug delivery. Implantable drug delivery systems have also been developed to administer therapeutic agents that have poor
2341:
microenvironment with patterned topographic and biochemical surfaces for controlled spatiotemporal cell adhesion, as well as minimization of dead volumes. Micropumps and microvalves can automate tedious fluid-dispensing procedures and various
3393:
Ionescu, Mihail H.; Winton, Brad R.; Wexler, David; Siegele, Rainer N.; Deslantes, A.; Stelcer, Eduard; Atanacio, Armand J.; Cohen, David D. (2012). "Enhanced biocompatibility of PDMS (polydimethylsiloxane) polymer films by ion irradiation".
2631:
of the device, and device explantation. Most drugs also need to be delivered in relatively large quantities (milliliters or even greater), which makes implantable bio-MEMS drug delivery challenging due to their limited drug-holding capacity.
1309:
on metal or dielectric surfaces. The resonance changes when biomolecules are captured or adsorbed on the sensor surface and depends on the concentration of the analyte as well as its properties. Surface plasmon resonance has been used in
1016:
Despite the fact that diffusion times are significantly shorter in microfluidic systems due to small length scales, there are still challenges to removing concentration gradients at the time scales required for microfluidic technologies.
682:-style samples such as body fluids and soil), as well as its natural filtering properties that exclude cell debris, dirt, and other impurities in samples. Paper-based replicas have demonstrated the same effectiveness in performing common 5898:
Torisawa, Yu-suke; Chueh, Bor-han; Huh, Dongeun; Ramamurthy, Poornapriya; Roth, Therese M.; Barald, Kate F.; Takayama, Shuichi (2007). "Efficient formation of uniform-sized embryoid bodies using a compartmentalized microchannel device".
1819:, which improves cell capture via geometrical modifications (Soper et al., 2011). These innovations collectively enhance the sensitivity and specificity of CTC detection, providing valuable tools for cancer prognosis and treatment. 1236:
between two electrodes are measured as a result of a biomolecular reaction. Conductive measurements are simple and easy to use because there is no need for a specific reference electrode, and have been used to detect biochemicals,
5437:
Chung, Bong Geun; Flanagan, Lisa A.; Rhee, Seog Woo; Schwartz, Philip H.; Lee, Abraham P.; Monuki, Edwin S.; Jeon, Noo Li (2005). "Human neural stem cell growth and differentiation in a gradient-generating microfluidic device".
4259: 812:) perpendicular to the flow direction. Sorting and focusing of the species of interest is achieved because an electrophoretic force causes perpendicular migration until it flows along its respective isoelectric points. 2056:
Microfluidics can leverage its microscopic volume and laminar flow characteristics for spatiotemporal control of biochemical factors delivered to stem cells. Microfluidic gradient generators have been used to study
6079:
Clark, Sherrie G.; Haubert, Kathyrn; Beebe, David J.; Ferguson, C. Edward; Wheeler, Matthew B. (2005). "Reduction of polyspermic penetration using biomimetic microfluidic technology during in vitro fertilization".
281:-based microfabrication and this revolutionized the bio-MEMS field. Since then, the field of bio-MEMS has exploded. Selected major technical achievements during bio-MEMS development of the 1990s include: 862:
Microfluidic features can be fabricated on the cellular scale or smaller, which enables investigation of (sub)cellular phenomena, seeding and sorting of single cells, and recapitulation of physiological
1848:
in cell culture medium. Due to the need for cells to be fed periodically with fresh medium and passaged, even testing a few conditions requires a large number of cells and supplies, expensive and bulky
4972:
Foudeh, Amir M.; Didar, Fohid Fatanat; Veres, Teodor; Tabrizian, Maryam (2012). "Microfluidic designs and techniques using lab-on-a-chip devices for pathogen detection for point-of-care diagnostics".
4734:
Wanunu, Meni; Cao, Qingqing; Mahalanabis, Madhumita; Chang, Jessie; Carey, Brendan; Hsieh, Christopher; Stanley, Ahjegannie; Odell, Christine A.; Mitchell, Patricia; Feldman, James; Pollock, Nira R.;
2586:
are also being developed. The efficiency of microneedle drug delivery remains a challenge because it is difficult to ascertain if the microneedles effectively penetrated the skin. Some drugs, such as
1671:
and contamination by carrying out PCR in microdroplets or microchambers. PCR in droplets also prevents recombination of homologous gene fragments so synthesis of short chimeric products is eliminated.
1140:. Suspended microchannel resistors are a special type of cantilever design that are able to work around this limitation using microfluidic channels inside the cantilever. These channels can move 193:
in their seminal paper proposing the use of miniaturized total chemical analysis systems for chemical sensing. There have been three major motivating factors behind the concept of μTAS. Firstly,
2419:
via silicon and metals in the electrodes. Michigan probes have been used in large-scale recordings and network analysis of neuronal assemblies, and the Utah electrode array has been used as a
1119:
sensing and mass sensing, or micro- and nano-scale plates or membranes. In stress sensing, the biochemical reaction is performed selectively on one side of the cantilever to cause a change in
4926:
Toriello, Nicholas M.; Liu, Chung N.; Mathies, Richard A. (2006). "Multichannel Reverse Transcription-Polymerase Chain Reaction Microdevice for Rapid Gene Expression and Biomarker Analysis".
6036:
Cho, Brenda S.; Schuster, Timothy G.; Zhu, Xiaoyue; Chang, David; Smith, Gary D.; Takayama, Shuichi (2003). "Passively Driven Integrated Microfluidic System for Separation of Motile Sperm".
5597:
Lu, Hang; Koo, Lily Y.; Wang, Wechung M.; Lauffenburger, Douglas A.; Griffith, Linda G.; Jensen, Klavs F. (2004). "Microfluidic Shear Devices for Quantitative Analysis of Cell Adhesion".
678:
allow medical professionals to easily interpret the results by eye. Compared to traditional microfluidic channels, paper microchannels are accessible for sample introduction (especially
6575:
Lo, Ronalee; Li, Po-Ying; Saati, Saloomeh; Agrawal, Rajat; Humayun, Mark S.; Meng, Ellis (2008). "A refillable microfabricated drug delivery device for treatment of ocular diseases".
831:
Microfluidics refers to systems that manipulate small (μL, nL, pL, fL) amounts of fluids on microfabricated substrates. Microfluidic approaches to bio-MEMS confer several advantages:
1380:. They can be used for detection of mutations and expression monitoring, and gene discovery and mapping. The main methods for creating an oligonucleotide microarray are by gel pads ( 4183:
Martensis, TheodoreCosmo; Kusler, Brenda; Yaralioglu, Goksen (2005). "Microfluidic sonicator for real-time disruption of eukaryotic cells and bacterial spores for DNA analysis".
1040:
and externally located ultrasonic transducers. Sonication is also used widely for cell lysis and homogenization in both macro and microfluidic systems. The primary mechanism of
3653:
Lu, Yao; Shi, Weiwei; Qin, Jianhua; Lin, Bingcheng (2010). "Fabrication and Characterization of Paper-Based Microfluidics Prepared in Nitrocellulose Membrane By Wax Printing".
2105:
such as left-right asymmetry during development. Macro-scale studies do not allow quantitative analysis of shear stress to differentiation because they are performed using
1774:
tropical diseases, they must be robust enough to survive in hot, humid conditions. They must also be stored for long periods from the time of production to the time of use.
1874: 1727:. A lytic buffer stream can be introduced alongside a stream containing cells and by diffusion induces lysis prior to further analysis. Cell analysis is typically done by 6999: 5055:
Gómez-Sjöberg, Rafael; Leyrat, Anne A.; Pirone, Dana M.; Chen, Christopher S.; Quake, Stephen R. (2007). "Versatile, Fully Automated, Microfluidic Cell Culture System".
1036:
is often employed to provide local mixing of streams through the generation of ultra-high energy acoustics. Microfluidic chips utilizing sonication mixing can have both
1552:
to produce proteins of interest; whereas peptide microarrays use the SPOT technique (stepwise synthesis of peptides on cellulose) or photolithography to make peptides.
719: 5942:
Fung, Wai-To; Beyzavi, Ali; Abgrall, Patrick; Nguyen, Nam-Trung; Li, Hoi-Yeung (2009). "Microfluidic platform for controlling the differentiation of embryoid bodies".
6234:
Arcand, B. Y.; Bhatti, P. T.; Butala, N. V.; Wang, J.; Friedrich, C. R.; Wise, K. D. (2004). "Active positioning device for a perimodiolar cochlear electrode array".
4319:
Tamayo, Javier; Ramos, Daniel; Mertens, Johan; Calleja, Montserrat (2006). "Effect of the adsorbate stiffness on the resonance response of microcantilever sensors".
1004:
Prefabricated mechanical screw valves and solenoid valves require no advanced microfabrication processes and are easy to implement in soft substrate materials like
2157: 1507:
Functional protein arrays display folded and active proteins and are used for screening molecular interactions, studying protein pathways, identifying targets for
900:
for chemical detection, require less time for processes and reactions to complete, and produces less waste than conventional macrofluidic devices and experiments
5693:
Albrecht, Dirk R.; Tsang, Valerie Liu; Sah, Robert L.; Bhatia, Sangeeta N. (2005). "Photo- and electropatterning of hydrogel-encapsulated living cell arrays".
1889:. A handheld microfluidic cell culture incubator capable of heating and pumping cell culture solutions has also been developed. Due to the volume reduction in 6287:
Viventi, J.; Kim, D.-H.; Moss, J. D.; Kim, Y.-S.; Blanco, J. A.; Annetta, N.; Hicks, A.; Xiao, J.; Huang, Y.; Callans, D. J.; Rogers, J. A.; Litt, B. (2010).
702:
have been reproduced through photolithography on paper to achieve a slimmer profile and lower material cost while maintaining compatibility with conventional
5855:(2005). "Microfluidic application-specific integrated device for monitoring direct cell-cell communication via gap junctions between individual cell pairs". 3699:
Martinez, Andres W.; Phillips, Scott T.; Whitesides, George M. (2010). "Diagnostics for the Developing World: Microfluidic Paper-based Analytical Devices".
1029:
A passive flow mixing element. Laminar flow with axial concentration gradients flows in, and laminar flow with diminished concentration gradients flows out.
5098:
Futai, Nobuyuki; Gu, Wei; Song, Jonathan W.; Takayama, Shuichi (2006). "Handheld recirculation system and customized media for microfluidic cell culture".
1881:
and microvalves, where fluid metering is straightforward to determine as opposed to continuous flow systems by micromixers. A fully automated microfluidic
1537:
samples with different antibodies to study the changes in expression of specific proteins and protein modifications during disease progression, as well as
1213:
biosensors, measurements of electric potential at one electrode are made in reference to another electrode. Examples of potentiometric biosensors include
5186:
Bhatia, S.N.; Balis, U.J.; Yarmush, M.L.; Toner, M. (1998). "Probing heterotypic cell interactions: Hepatocyte function in microfabricated co-cultures".
1487:
cannot identify post-translational modification of proteins, which directly influences protein function. Thirdly, some bodily fluids such as urine lack
1596: 988:
Ice valves operate by transporting heat away from a single portion of a flow channel, causing the fluid to solidify and stop flow through that region.
6893: 5296:"Rat Bone Marrow-Derived Schwann-Like Cells Differentiated by the Optimal Inducers Combination on Microfluidic Chip and Their Functional Performance" 4529:
Huang, Ying; Hodko, Dalibor; Smolko, Daniel; Lidgard, Graham (2006). "Electronic Microarray Technology and Applications in Genomics and Proteomics".
1546:
such, peptide microarrays have been used to complement protein microarrays in proteomics research and diagnostics. Protein microarrays usually use
3820:"Label-Free Determination of the Number of Biomolecules Attached to Cells by Measurement of the Cell's Electrophoretic Mobility in a Microchannel" 1647: 1999:
An integrated microfluidic device with a concentration gradient generator and individual cell chambers for studying dose-dependent effects of
1661:. This approach uses less energy and has high throughput, but has large reagent consumption and gas bubbles can form inside the flow channels. 6831: 5394:
Toh, Yi-Chin; Blagović, Katarina; Voldman, Joel (2010). "Advancing stem cell research with microtechnologies: opportunities and challenges".
4260:"A novel silicon membrane-based biosensing platform using distributive sensing strategy and artificial neural networks for feature analysis" 1642:
device has been developed using this architecture integrating microvalves, microheaters, temperature sensors, 380-nL reaction chambers, and
1638:
Chamber-based architecture is the result of shrinking down of conventional PCR reactors, which is difficult to scale up. A four-layer glass-
3018:
Fodor, S.; Read, J.; Pirrung, M.; Stryer, L; Lu, A.; Solas, D (1991). "Light-directed, spatially addressable parallel chemical synthesis".
1898: 1816: 6408:
Seo, Dongjin; Neely, Ryan M.; Shen, Konlin; Singhal, Utkarsh; Alon, Elad; Rabaey, Jan M.; Carmena, Jose M.; Maharbiz, Michel M. (2016).
788:. Electrophoresis and microfluidics are highly synergistic because it is possible to use higher voltages in microchannels due to faster 5141:
Le, Kim; Tan, Christopher; Gupta, Shivani; Guhan, Trupti; Barkhordian, Hedieh; Lull, Jonathan; Stevens, Jennitte; Munro, Trent (2018).
1603:
sequences, which is useful for expanded use of rare samples e.g.: stem cells, biopsies, circulating tumor cells. The reaction involves
625:
are some methods used to pattern biological molecules onto surfaces. Cell micropatterning can be done using microcontact patterning of
185:
device containing paper and the first microfluidic product to market. In 1990, Andreas Manz and H. Michael Widmer from Ciba-Geigy (now
2452:
to a circuit of two recording electrodes and a single transistor on an implanted micro-device. An external transducer emits pulses of
6678: 3783:
Carrilho, Emanuel; Phillips, Scott T.; Vella, Sarah J.; Martinez, Andres W.; Whitesides, George M. (2009). "Paper Microzone Plates".
386:
and valves. However, there are some drawbacks to using silicon-based devices in biomedical applications such as their high cost and
5043:
device (Anal. Chem., DOI: 10.1021/ac3005633). Fan isolates different types of CTCs by using aptamers with different specificities.
6903: 2915:
Manz, A.; Graber, N.; Widmer, H.M. (1990). "Miniaturized total chemical analysis systems: A novel concept for chemical sensing".
1503:. In general, there are three types of protein microarrays: functional, analytical or capture, and reverse-phase protein arrays. 1222: 4017:
Unger, Marc; Chou, Hou-Pu; Thorsen, Todd (2000). "Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography".
1747:
or continuous-flow separation. In capillary electrophoresis, a long thin tube separates analytes by voltage as they migrate by
1723:
and can run indefinitely, but analytes are diluted by a factor of two. For cell analysis, cells can be studied intact or after
225:
supported a series of microfluidic research programs in the 1990s after realizing there was a need to develop field-deployable
4702: 4546: 4242: 3277: 2899: 1226: 441: 5737: 1278: 6908: 2503: 4685:
Tapia, Victor E.; Ay, Bernhard; Volkmer, Rudolf (2009). "Exploring and Profiling Protein Function with Peptide Arrays".
1131:
at the fixed edge of the cantilever) due to a change in surface stress. In mass sensing, the cantilever vibrates at its
653:
to manipulate fluid flow for different applications. Paper microfluidics have been applied in paper electrophoresis and
24:
microchip, which integrates a reagent multiplexer, a cell chamber with a thin-film heater layer, and a peristaltic pump.
6836: 1680: 21: 3178:
Takayama, S.; McDonald, J. C.; Ostuni, E.; Liang, M. N.; Kenis, P. J. A.; Ismagilov, R. F.; Whitesides, G. M. (1999).
2250:
microwells and flipping them onto a substrate or another cell layer is a method of achieving precise spatial control.
2713: 1631: 955:
Schematic of a quake valve, with process fluid channel perpendicular and out of plane with the control fluid channel.
530: 5027: 3959:"High response speed microfluidic ice valves with enhanced thermal conductivity and a movable refrigeration source" 2569:. Microneedles of approximately 100μm can penetrate the skin barrier and deliver drugs to the underlying cells and 2310: 1218: 699: 7004: 1612:
production of short chimeric molecules. PCR chips serve to miniaturize the reaction environment to achieve rapid
1508: 1084: 5143:"A Novel Mammalian Cell Line Development Platform Utilizing Nanofluidics and OptoElectro Positioning Technology" 3533: 2423:
for the paralyzed. Extracellular microelectrodes have been patterned onto an inflatable helix-shaped plastic in
257:
industry. At the time, the application of MEMS to biology was limited because this technology was optimized for
6734: 6698: 2082: 2058: 2019:. Differentiation in stem cells is dependent on many factors, including soluble and biochemical factors, fluid 1857:
and temperature control systems on chip, microfluidic cell culturing can eliminate the need for incubators and
839: 749: 371: 310: 226: 37: 1491:. A protein microarray consists of a protein library immobilized on a substrate chip, usually glass, silicon, 169:. After this first bio-MEMS study, subsequent development in the field was slow for around 20 years. In 1985, 6898: 6671: 6618:
Shawgo, Rebecca S; Richards Grayson, Amy C; Li, Yawen; Cima, Michael J (2002). "Bio-MEMS for drug delivery".
2290:
cell organization and architecture can also direct stem cell differentiation using microfluidic gradients of
1429:. The light removes photolabile protecting groups from the selected exposure areas. Following de-protection, 1181:
that is measured by a working electrode. Amperometric biosensors have been used in bio-MEMS for detection of
433: 2113:
in microfluidics allows shear stresses to be varied systematically using channel geometry and flow rate via
4429:
Homola, Jiří (2008). "Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species".
2420: 691: 5542:"Culturing Aerobic and Anaerobic Bacteria and Mammalian Cells with a Microfluidic Differential Oxygenator" 4569:
Talapatra, Anupam; Rouse, Richard; Hardiman, Gary (2002). "Protein microarrays: challenges and promises".
1103:. Common transducer techniques include mechanical detection, electrical detection, and optical detection. 6729: 3396:
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
2106: 1418:, negatively charged DNA and molecular probes can be concentrated on energized electrodes for interaction 1206: 601:
single cell analysis, precise control of cellular microenvironment, as well as controlled integration of
3818:
Rubinsky, Boris; Aki, Atsushi; Nair, Baiju G.; Morimoto, Hisao; Kumar, D. Sakthi; Maekawa, Toru (2010).
3124:
Kopp, M. U.; de Mello, A. J.; Manz, A. (1998). "Chemical Amplification: Continuous-Flow PCR on a Chip".
6949: 6805: 4879:"Miniaturized PCR chips for nucleic acid amplification and analysis: latest advances and future trends" 1426: 355: 2140:
interactions induce changes in differentiation and self-renewal by the stiffness of the substrate via
1075:
Biosensors are devices that consist of a biological recognition system, called the bioreceptor, and a
859:, as well as quantitative predictions of the biological environment of cells and biochemical reactions 197:
in the last decades leading up to the 1990s had been limited due to the time and cost of running many
2243: 2220: 2066: 1744: 1643: 1588: 1576: 1565: 1437:
Using inkjet technology, nucleotides are printed onto a surface drop by drop to form oligonucleotides
1286: 1281:) in optical signal indicates a reaction has occurred. Fluorescence-based detection has been used in 1270: 1083:
with the bioreceptor causes an effect that the transducer can convert into a measurement, such as an
657:, the most notable being the commercialized pregnancy test, ClearBlue. Advantages of using paper for 598: 507: 299: 214: 6468: 3734:
Osborn, Jennifer L.; Lutz, Barry; Fu, Elain; Kauffman, Peter; Stevens, Dean Y.; Yager, Paul (2010).
428:
in bio-MEMS is attractive because they can be easily fabricated, compatible with micromachining and
6989: 6939: 6664: 2271:
Murine embryoid bodies in suspension culture after 24 hours of formation from embryonic stem cells.
2185: 2000: 1735:
with lower fluid velocities and lower throughput than their conventional macroscopic counterparts.
1657:
Continuous flow-based architecture moves the sample through different temperature zones to achieve
1319: 1298: 1056:
In a passive mixing element, mixing is achieved by temporal and spatial redistribution of incoming
731: 622: 222: 4821: 3180:"Patterning cells and their environments using multiple laminar fluid flows in capillary networks" 2648:
Sieben, Vincent J.; Debes-Marun, Carina S.; Pilarski, Linda M.; Backhouse, Christopher J. (2008).
6724: 4740:"Microfluidic Chip for Molecular Amplification of Influenza A RNA in Human Respiratory Specimens" 4735: 2628: 2595: 2416: 2231: 1972: 1120: 457: 6289:"A Conformal, Bio-Interfaced Class of Silicon Electronics for Mapping Cardiac Electrophysiology" 4075:"Incorporation of prefabricated screw, pneumatic, and solenoid valves into microfluidic devices" 903:
Appropriate packaging of microfluidic devices can make them suitable for wearable applications,
6994: 6883: 6851: 6782: 6463: 3342:
Bashir, Rashid (2004). "Bio-MEMS: state-of-the-art in detection, opportunities and prospects".
2363: 989: 102: 90: 86: 5229:
Huh, D.; Matthews, B. D.; Mammoto, A.; Montoya-Zavala, M.; Hsin, H. Y.; Ingber, D. E. (2010).
3515: 2259:
time of stem cells often disrupt the spatial organization imposed by these microtechnologies.
1995: 1360:
parameters in a single experiment. Some applications of genomic and proteomic microarrays are
851:
Flow in microchannels is laminar, which allows selective treatment of cells in microchannels,
6787: 3503: 2623:. In implantable bio-MEMS for drug delivery, it is important to consider device rupture and 2396: 2177: 2118: 1894: 1862: 1795: 1792: 1365: 1128: 915: 687: 614: 190: 154: 118: 114: 46: 1483:
transcripts often correlate poorly with the actual amount of protein synthesized. Secondly,
6959: 6627: 6358: 6184: 5864: 5307: 5242: 4751: 4380: 4328: 4026: 3970: 3898: 3831: 3600: 3548:
Bhatia, Sangeeta N.; Chen, Christopher S. (1999). "Tissue engineering at the micro-scale".
3455: 3403: 3191: 3133: 3027: 2959: 2608: 2478: 2247: 2197: 2193: 2169: 2153: 2137: 2078: 2033: 2024: 1753: 1639: 1627: 1622: 1233: 1100: 1005: 793: 626: 511: 477: 333: 278: 270: 206: 126: 98: 1865:. Subsequently, flow needs to be resumed in a way that does not produce large forces that 132: 8: 6918: 6888: 2474: 2445: 2408: 2388: 2318: 2141: 1886: 1850: 1538: 1523: 965: 760:
Electrokinetics have been exploited in bio-MEMS for separating mixtures of molecules and
578: 94: 6631: 6362: 6188: 5868: 5311: 5246: 4755: 4384: 4332: 4030: 3974: 3902: 3835: 3604: 3459: 3407: 3195: 3137: 3031: 2963: 2097:
is relevant in the stem cell differentiation of cardiovascular lineages as well as late
6557: 6489: 6390: 6321: 6288: 6269: 6216: 6156: 5828: 5811: 5795: 5776: 5574: 5541: 5338: 5295: 5271: 5230: 5163: 5142: 4903: 4878: 4782: 4739: 4657: 4624: 4401: 4368: 4298: 4196: 4157: 4130: 4099: 4074: 4050: 3991: 3958: 3929: 3887:"Fast Benchtop Fabrication of Laminar Flow Chambers for Advanced Microscopy Techniques" 3886: 3862: 3819: 3760: 3735: 3632: 3573: 3486: 3445: 3433: 3375: 3106: 3073:(1998). "Microfabricated microneedles: A novel approach to transdermal drug delivery". 2991: 2570: 2562: 2523: 2448:. Wireless recording of electrophysiological signals is possible through addition of a 1930: 1527: 1476: 1472: 1361: 1210: 1116: 1037: 908: 904: 852: 590: 409: 274: 234: 122: 6639: 5662: 5645: 4486: 3736:"Microfluidics without pumps: reinventing the T-sensor and H-filter in paper networks" 2407:, which have increased electrodes per unit volume, while addressing problems of thick 1301:
are subtypes of chemiluminescence. Surface plasmon resonance sensors can be thin-film
736: 649:
Paper microfluidics (sometimes called lab on paper) is the use of paper substrates in
140:
outlining and contrasting some aspects of the fields of bio-MEMS, lab-on-a-chip, μTAS.
6643: 6600: 6592: 6549: 6541: 6481: 6431: 6382: 6374: 6326: 6308: 6261: 6208: 6200: 6148: 6140: 6105: 6097: 6061: 6053: 6018: 5977: 5969: 5924: 5916: 5880: 5833: 5815: 5768: 5760: 5718: 5710: 5675: 5667: 5622: 5614: 5579: 5561: 5522: 5514: 5473: 5465: 5419: 5411: 5343: 5325: 5276: 5258: 5211: 5203: 5168: 5123: 5115: 5080: 5072: 4989: 4951: 4943: 4908: 4852: 4844: 4787: 4769: 4716: 4708: 4698: 4662: 4644: 4594: 4586: 4542: 4511: 4454: 4446: 4406: 4290: 4282: 4238: 4200: 4162: 4104: 4042: 3996: 3934: 3916: 3867: 3849: 3800: 3765: 3716: 3678: 3670: 3624: 3616: 3577: 3565: 3491: 3473: 3367: 3359: 3273: 3227: 3222: 3209: 3179: 3157: 3149: 3098: 3090: 3051: 3043: 2995: 2983: 2975: 2932: 2928: 2895: 2709: 2681: 2673: 2575: 2550: 2499: 2437: 1910: 1858: 1592: 1421:
Using photolithography, a light exposure pattern is created on the substrate using a
1397: 1315: 1266: 887: 813: 801: 638: 429: 178: 74: 70: 66: 6273: 6160: 5780: 4302: 4054: 3636: 3379: 3110: 2514:
onto surgical tools also allows tactile feedback for the surgeon, identification of
2242:. Manipulating cell seeding density is a common biological technique in controlling 1983:
layer are cyclically stretched by applied vacuum on adjacent microchannels to mimic
1836:
technology is unable to efficiently allow combinatorial testing of drug candidates,
1408:
Using gel pads, prefabricated oligonucleotides are attached to patches of activated
149: 6954: 6826: 6635: 6584: 6561: 6533: 6493: 6473: 6421: 6366: 6316: 6300: 6251: 6243: 6220: 6192: 6132: 6089: 6045: 6008: 5959: 5951: 5908: 5872: 5852: 5823: 5807: 5752: 5702: 5657: 5606: 5569: 5553: 5504: 5455: 5447: 5403: 5333: 5315: 5266: 5250: 5195: 5158: 5150: 5107: 5064: 4981: 4935: 4898: 4890: 4836: 4777: 4759: 4690: 4652: 4636: 4578: 4534: 4501: 4438: 4396: 4388: 4344: 4336: 4274: 4230: 4192: 4152: 4142: 4094: 4086: 4034: 3986: 3978: 3924: 3906: 3857: 3839: 3792: 3755: 3747: 3708: 3662: 3608: 3557: 3481: 3463: 3411: 3351: 3265: 3217: 3199: 3141: 3082: 3035: 2967: 2924: 2665: 2599: 2527: 2515: 2470: 2449: 2441: 2424: 2400: 2322: 2239: 2216: 2189: 2181: 1548: 1389: 1178: 1158: 867: 834: 711: 670: 650: 610: 594: 586: 574: 519: 461: 449: 445: 387: 254: 246: 242: 230: 50: 41:. Bio-MEMS have considerable overlap, and is sometimes considered synonymous, with 6394: 5646:"Cell Shape, Cytoskeletal Tension, and RhoA Regulate Stem Cell Lineage Commitment" 3145: 2708:. Bellingham, Wash., USA: SPIE—The International Society for Optical Engineering. 2558: 2172:
interaction studies. It has been found by using micro-contact printing to control
2012: 332:
are key areas of research in improving bio-MEMS as replacements or complements to
6703: 6687: 6426: 6409: 6304: 6013: 5996: 5320: 4764: 4487:"An introduction to DNA chips: principles, technology, applications and analysis" 4038: 3911: 3844: 3468: 2604: 2507: 2433: 2347: 2161: 2149: 2110: 1980: 1976: 1968: 1964: 1960: 1926: 1917:
activated to manipulate cells across the chip. This platform has been adopted by
1914: 1812: 1757: 1522:
to profile protein or antibody expression in serum. These arrays can be used for
1415: 1385: 1377: 1306: 1294: 1162: 1123:. This results in bending of the cantilever that is measurable either optically ( 919: 773: 765: 741: 707: 662: 634: 630: 562: 537: 469: 465: 436:
and can be integrated into systems that use optical detection techniques such as
379: 286: 58: 4694: 4538: 4234: 3269: 1560: 1273:. Fluorescence-based optical techniques use markers that emit light at specific 914:
An interesting approach combining electrokinetic phenomena and microfluidics is
6841: 6810: 6759: 6708: 5641: 4258:
Wu, Z; Choudhury, Khujesta; Griffiths, Helen; Xu, Jinwu; Ma, Xianghong (2012).
3415: 3355: 3260:
Nguyen, Nam -Trung (2006). "5 Fabrication Issues of Biomedical Micro Devices".
3184:
Proceedings of the National Academy of Sciences of the United States of America
3070: 2650:"An integrated microfluidic chip for chromosome enumeration using fluorescence 2607:
or require localized release and exposure at a target site. Examples include a
2384: 2380: 2351: 1748: 1728: 1658: 1608: 1604: 1500: 1484: 1409: 993: 927: 871: 769: 761: 753: 666: 602: 570: 367: 363: 210: 198: 6477: 6247: 5012:
Patel, Prachi (2012). "Paper Diagnostic Tests Could Save Thousands of Lives".
4840: 4278: 3561: 2549:
microneedles patch is less invasive compared to conventional drug delivery by
1897:
measurements, but collection and detection is correspondingly more difficult.
1261:
in a miniaturized portable format on the bio-MEMS. Optical detection includes
6983: 6647: 6596: 6545: 6537: 6485: 6378: 6312: 6265: 6204: 6144: 6101: 6057: 5973: 5920: 5884: 5819: 5764: 5714: 5671: 5618: 5565: 5518: 5469: 5415: 5329: 5262: 5207: 5119: 5076: 4947: 4848: 4773: 4712: 4648: 4590: 4582: 4450: 4286: 3920: 3853: 3674: 3620: 3569: 3534:
http://pubs.rsc.org/en/content/articlelanding/2013/lc/c3lc50945a#!divAbstract
3477: 3432:
Barbosa, Mário A.; Mandal, Kalpana; Balland, Martial; Bureau, Lionel (2012).
3363: 3213: 3153: 3094: 3047: 2979: 2950:
Whitesides, George M. (2006). "The origins and the future of microfluidics".
2936: 2677: 2583: 2566: 2412: 2334: 2287: 2275: 2173: 2125: 2102: 2098: 2028: 1906: 1890: 1837: 1803: 1732: 1688:
count within 20 minutes using the Pima point-of-care CD4 analyzer, in Uganda.
1613: 1568: 1534: 1302: 1137: 961: 883: 856: 826: 789: 715: 683: 674: 658: 618: 476:
can also be modified for specific applications. Specifically, the surface of
329: 293: 194: 182: 166: 62: 54: 42: 6370: 5509: 5492: 5294:
Yang, Yanmin; Tian, Xiliang; Wang, Shouyu; Zhang, Zhen; Lv, Decheng (2012).
5254: 5199: 3204: 3039: 1335: 6913: 6604: 6553: 6435: 6386: 6330: 6212: 6152: 6109: 6065: 5981: 5928: 5837: 5772: 5722: 5679: 5626: 5583: 5526: 5477: 5423: 5347: 5280: 5172: 5127: 5084: 4993: 4955: 4912: 4856: 4791: 4720: 4666: 4598: 4515: 4506: 4458: 4410: 4294: 4204: 4166: 4108: 4073:
Hulme, S. Elizabeth; Shevkoplyas, Sergey S.; Whitesides, George M. (2009).
4046: 4000: 3938: 3871: 3804: 3769: 3720: 3682: 3628: 3495: 3371: 3231: 2987: 2685: 2624: 2620: 2542: 2282: 2251: 2094: 2070: 2048:, as well as measuring and sorting stem cells by their protein expression. 2020: 2016: 1882: 1866: 1854: 1841: 1833: 1778:
disease with research on other, more well-funded areas of medical research.
1719: 1714: 1572: 1262: 1257:
A challenge in optical detection is the need for integrating detectors and
1242: 1111:
Mechanical detection in bio-MEMS is achieved through micro- and nano-scale
1092: 1057: 926:
and selectively activated. Manipulation of small fluid droplets occurs via
843: 437: 306: 238: 137: 61:
and integration of laboratory processes and experiments into single (often
53:
technologies made suitable for biological applications. On the other hand,
6022: 5215: 4392: 3161: 3102: 3055: 2465: 2069:
and related signaling pathways, most notably in the development of blood,
1579:
channel. The application of this example bio-MEMS is for amplification of
557:
are spatially constrained to the geometry of the fibronectin micropattern.
6256: 5738:"An extracellular matrix microarray for probing cellular differentiation" 4894: 4147: 2616: 2612: 2546: 2495: 2314: 2212: 2041: 1788: 1664: 1580: 1492: 1311: 1198: 1166: 1045: 654: 554: 541: 481: 375: 325: 266: 202: 6196: 5997:"Applications of a microfabricated device for evaluating sperm function" 3086: 2971: 1621:
surface-reagent interactions. For example, silicon substrates have good
768:, a charged species in a liquid moves under the influence of an applied 6856: 6777: 6123:
Buzsáki, György (2004). "Large-scale recording of neuronal ensembles".
5995:
Kricka LJ, Nozaki O, Heyner S, Garside WT, Wilding P (September 1993).
5964: 5407: 4985: 4349: 2453: 2404: 2392: 2359: 2256: 2200: 2122: 1984: 1944: 1940: 1885:
system has been developed to study osteogenic differentiation of human
1845: 1724: 1668: 1430: 1393: 1348: 1282: 1274: 1258: 1112: 1076: 1033: 875: 745: 703: 695: 582: 497: 395: 359: 110: 33: 6346: 6049: 5876: 5610: 5557: 5460: 5154: 5068: 4939: 4442: 4340: 4129:
Yu, Chia-Yen; Chang, Chin-Lung; Wang, Wau-Nan; Quake, Stephen (2011).
3982: 3796: 3712: 3666: 2518:
type via strain and density during cutting operations, and diagnostic
2065:
is an important biochemical factor to consider in differentiation via
6964: 6588: 6524:
Nuxoll, E.; Siegel, R. (2009). "Bio-MEMS devices for drug delivery".
6093: 5955: 5912: 5796:"Cell patterning chip for controlling the stem cell microenvironment" 5756: 5706: 5451: 5111: 4640: 4090: 3751: 2669: 2235: 2165: 2114: 2045: 2008: 1975:
and the lungs. Organ-level lung functions have been reconstituted on
1878: 1808: 1702: 1651: 1617: 1422: 1229: 1186: 1132: 1070: 969: 923: 809: 797: 679: 485: 383: 174: 162: 3612: 3434:"Thermoresponsive Micropatterned Substrates for Single Cell Studies" 2321:
improve livestock. However, the efficiency of these technologies in
1782: 1616:
and fast mixing due to the larger surface-to-volume ratio and short
1446: 209:, which started in October 1990, created demand for improvements in 6769: 6136: 2649: 2587: 2519: 2299: 2295: 2291: 2204: 2145: 2074: 2037: 1922: 1710: 1706: 1519: 1381: 1344: 1246: 1088: 489: 408:, silicon-based bio-MEMS can be readily functionalized to minimize 317: 186: 106: 78: 6656: 3450: 2647: 2176:
area that that switch in osteogenic / adipogenic lineage in human
1943:
have been patterned to co-culture at specific cell densities with
1526:, monitoring of protein quantities, monitoring activity states in 2591: 2579: 2491: 2486: 2208: 2044:
modifications between stem cells and their daughter cells affect
1952: 1935: 1870: 1799: 1533:
Reverse-phase protein arrays test replicates of cell lysates and
1459: 1401: 1190: 1182: 1146: 1080: 931: 897: 893: 781: 566: 502: 473: 453: 425: 421: 404: 399: 321: 258: 170: 82: 5228: 1364:, identifying disease risk, and predicting therapy efficacy for 1025: 506:
applications. The most common polymers used in bio-MEMS include
6797: 6751: 2531: 2511: 2343: 2330: 2192:
can also be used to cross-link cell-seeded photo-polymerizable
2062: 1512: 1352: 1170: 1096: 1087:. The most common bioreceptors used in biosensing are based on 545: 4689:. Methods in Molecular Biology. Vol. 570. pp. 3–17. 1791:
and his team at the University of Florida involves the use of
951: 930:, which is the phenomenon where an electric field changes the 605:
into appropriate multi-cellular architectures to recapitulate
217:
thus became a focus for chemical and DNA separation. Thirdly,
6934: 5736:
Flaim, Christopher J; Chien, Shu; Bhatia, Sangeeta N (2005).
5639: 5054: 3782: 3068: 2429: 2355: 2011:
engineering is to be able to control the differentiation and
1948: 1925:
for cell line development in the biopharmaceutical industry.
1918: 1893:
cultures, the collected concentrations are higher for better
1290: 1238: 1214: 1174: 1124: 1041: 262: 218: 49:. Bio-MEMS is typically more focused on mechanical parts and 6617: 2337:
have been applied in these technologies to better mimic the
2117:, as demonstrated by using arrays of perfusion chambers for 1099:
interactions, cellular interactions, and interactions using
980: 972:
mold, making it an entirely additive manufacturing process.
752:
and cells are moved along the microchannel by an applied DC
269:
that were not compatible with biological material. In 1993,
161:
In 1967, S. B. Carter reported the use of shadow-evaporated
6944: 6173: 5493:"In Vitro Zonation and Toxicity in a Hepatocyte Bioreactor" 4625:"Protein microarrays: high-throughput tools for proteomics" 3177: 2369: 2267: 2262: 1971:
where multiple vascularized tissues interface, such as the
1956: 1496: 1488: 1480: 1454: 1356: 1355:
analysis faster and cheaper, as well as identify activated
1194: 1127:
reflection into a four-position detector) or electrically (
515: 493: 391: 250: 16: 6611: 5897: 5540:
Lam, Raymond H. W.; Kim, Min-Cheol; Thorsen, Todd (2009).
4623:
Stoevesandt, Oda; Taussig, Michael J; He, Mingyue (2009).
4072: 3698: 3431: 3392: 1963:
detoxification. Similarly, integrating microfluidics with
1518:
Analytical or capture protein arrays display antigens and
1339:
Affymetrix GeneChip is an example of a genomic microarray.
432:
methods, as well as have low cost. Many polymers are also
6454:
Rebello, K.J. (2004). "Applications of MEMS in Surgery".
6078: 5994: 5794:
Rosenthal, Adam; Macdonald, Alice; Voldman, Joel (2007).
5793: 5436: 4971: 4733: 4618: 4616: 4614: 4612: 4610: 4608: 4318: 4182: 1685: 1600: 1202: 1152: 785: 777: 292:
In 1998, the first solid microneedles were developed for
5941: 3885:
Ulijn, Rein; Courson, David S.; Rock, Ronald S. (2009).
3069:
Henry, Sebastien; McAllister, Devin V.; Allen, Mark G.;
1648:
reverse transcription polymerase chain reaction (RT-PCR)
412:, but the brittleness of silicon remains a major issue. 5851:
Lee, Philip J.; Hung, Paul J.; Shaw, Robin; Jan, Lily;
5185: 5048: 4528: 3817: 3694: 3692: 3591:
Voldman, Joel (2003). "Bio-MEMS: Building with cells".
2109:
or rotating cone apparatuses in on-off scenarios only.
1293:
generation by energy release from a chemical reaction.
805: 6233: 5787: 5692: 5596: 4605: 4568: 4257: 3173: 3171: 3017: 2403:
has led to the development of Michigan probes and the
1064: 1061:
shortening the characteristic diffusion length scale.
842:, they flow in separate flow lanes (no mixing) due to 378:, chemical detectors, separation capillaries, mixers, 6410:"Wireless Recording in the Peripheral Nervous System" 5231:"Reconstituting Organ-Level Lung Functions on a Chip" 4564: 4562: 4560: 4558: 2305: 2215:
on stem cells is more advantageous than conventional
984:
Diagram of an ice valve with Peltier cooling element.
892:
Microfluidic devices consume much smaller amounts of
6620:
Current Opinion in Solid State and Materials Science
4622: 3776: 3733: 3689: 3427: 3425: 2703: 2641: 2619:
and microchips with gold-capped drug reservoirs for
2302:-inducing factors, as well as self-renewal factors. 1330: 1305:
or gratings that measure the resonance behaviour of
1165:, especially in comparison to optical detection. In 398:
facilities, high material and processing costs make
6519: 6517: 6515: 6513: 6511: 6509: 6507: 6505: 6503: 6407: 6167: 6035: 5389: 5387: 5385: 5383: 5381: 5379: 5377: 5097: 4815: 4813: 4811: 4809: 4807: 4805: 4803: 4801: 4480: 4478: 4476: 4474: 4472: 4470: 4468: 4367:Arlett, J.L.; Myers, E.B. M.; Roukes, M.L. (2011). 3168: 2350:. Bio-MEMS devices have been developed to evaluate 1939:conditions and 3D natural structure. Specifically, 1675: 918:. In digital microfluidics, a substrate surface is 7000:Microelectronic and microelectromechanical systems 5393: 5375: 5373: 5371: 5369: 5367: 5365: 5363: 5361: 5359: 5357: 4967: 4965: 4925: 4555: 4362: 4360: 4314: 4312: 3062: 2411:causing damage during implantation and triggering 1929:co-cultures have also contributed to bio-MEMS for 1869:the cells off the substrate. Dispensing fluids by 1743:Microfluidic sample separation can be achieved by 1466: 390:. Due to being single-use only, larger than their 305:In 1999, the first demonstration of heterogeneous 181:still used today that can be considered the first 20:An example of a bio-MEMS device is this automated 6526:IEEE Engineering in Medicine and Biology Magazine 6286: 5891: 5686: 5644:; Bhadriraju, Kiran; Chen, Christopher S (2004). 5633: 5430: 5293: 4369:"Comparative advantages of mechanical biosensors" 4366: 4225:Vo-Dinh, Tuan (2006). "Biosensors and Biochips". 4178: 4176: 4068: 4066: 4064: 3543: 3541: 3422: 3386: 2706:Fundamentals of bio-MEMS and medical microdevices 2027:interactions, cell-cell interactions, as well as 1822: 1783:Circulating Tumor Cell (CTC) Capture Technologies 1530:, and profiling antibody repertories in diseases. 1161:detection are easily adapted for portability and 6981: 6574: 6500: 6227: 6072: 5735: 5188:Journal of Biomaterials Science, Polymer Edition 4872: 4870: 4868: 4866: 4798: 4465: 4128: 4016: 3884: 3878: 3123: 2914: 2188:can determine traction forces exerted on cells. 1277:and the presence or enhancement/reduction (e.g. 896:, can be made to require only a small amount of 874:, and microoptics onto the same platform allows 838:When multiple solutions are added into the same 6029: 5935: 5354: 5222: 5179: 5140: 4962: 4919: 4357: 4309: 3811: 3527: 3525: 3013: 3011: 3009: 3007: 3005: 2502:layer-by-layer microfabrication techniques for 1979:devices where a porous membrane and the seeded 1223:light-addressable potentiometric sensors (LAPS) 878:, which reduces human error and operation costs 354:Conventional micromachining techniques such as 6832:Radio-frequency microelectromechanical systems 6449: 6447: 6445: 6280: 5850: 5729: 4684: 4680: 4678: 4676: 4522: 4220: 4218: 4216: 4214: 4173: 4061: 3957:Si, Chaorun; Hu, Songtao; Wu, Weichao (2017). 3727: 3538: 3337: 3335: 3333: 3331: 3329: 3327: 3325: 3323: 3321: 3319: 3317: 3315: 3313: 3311: 3309: 2374: 1626:inhibits the reaction. Polymers, particularly 1215:ion-sensitive field effect transistors (ISFET) 402:-based bio-MEMS less economically attractive. 6672: 5539: 5149:. Advance online publication (6): 1438–1446. 4863: 4727: 4424: 4422: 4420: 3307: 3305: 3303: 3301: 3299: 3297: 3295: 3293: 3291: 3289: 3255: 3253: 3251: 3249: 3247: 3245: 3243: 3241: 2943: 2908: 2223:and lower requirement of expensive reagents. 1020: 673:action. A severe disadvantage of paper-based 597:. Biological micropatterning can be used for 6523: 6401: 5287: 5007: 5005: 5003: 4819: 4484: 4012: 4010: 3952: 3950: 3948: 3648: 3646: 3522: 3002: 2699: 2697: 2695: 2440:, and electronic tattoos for measuring skin 2067:hypoxia-induced transcription factors (HIFs) 1770:devices, in order to increase their utility. 1756:, continuous-flow magnetic separations, and 694:, and dilution; the common 96- and 384-well 6442: 6116: 5844: 5091: 4673: 4211: 4135:International Journal of Molecular Sciences 3652: 3584: 1684:A midwife draws blood to measure patients' 1325: 1044:by sonication is intense local heating and 6679: 6665: 6343: 5988: 5533: 5028:"Microfluidic Devices Capture Tumor Cells" 4417: 4124: 4122: 4120: 4118: 3547: 3286: 3238: 2949: 2234:is regulated by both interactions between 1450:Differential comparison in cDNA microarray 1106: 1051: 748:are set at both the inlet and outlet of a 358:, dry etching, deep reactive ion etching, 6847:Biological microelectromechanical systems 6467: 6425: 6337: 6320: 6255: 6012: 5963: 5827: 5661: 5590: 5573: 5508: 5484: 5459: 5337: 5319: 5270: 5162: 5134: 5000: 4902: 4876: 4822:"Microfluidic DNA amplification—A review" 4781: 4763: 4656: 4505: 4400: 4348: 4156: 4146: 4098: 4007: 3990: 3945: 3928: 3910: 3861: 3843: 3759: 3643: 3485: 3467: 3449: 3221: 3203: 2692: 2460: 2226: 1763: 1376:Oligonucleotide chips are microarrays of 641:, and electrochemically active surfaces. 105:. Some of its major applications include 6568: 2885: 2883: 2881: 2879: 2877: 2875: 2873: 2871: 2869: 2867: 2865: 2863: 2861: 2859: 2857: 2855: 2853: 2851: 2849: 2847: 2845: 2843: 2841: 2839: 2837: 2835: 2833: 2831: 2829: 2827: 2825: 2823: 2821: 2819: 2817: 2815: 2813: 2811: 2809: 2807: 2805: 2803: 2801: 2799: 2797: 2795: 2793: 2791: 2789: 2787: 2785: 2783: 2781: 2779: 2777: 2775: 2773: 2771: 2769: 2767: 2765: 2763: 2761: 2759: 2757: 2755: 2753: 2751: 2749: 2747: 2745: 2611:microfluidic device implanted under the 2541: 2464: 2370:Bio-MEMS in medical implants and surgery 2266: 2263:Embryoid body formation and organization 2238:and interactions between stem cells and 2131: 1994: 1990: 1802:, which are attached to the channels of 1679: 1559: 1445: 1371: 1351:microarrays are to make high-throughput 1334: 1289:on a chip devices. Chemiluminescence is 1024: 979: 950: 934:of an electrolyte droplet on a surface. 833: 735: 529: 415: 148: 131: 15: 6453: 6122: 4820:Zhang, Yonghao; Ozdemir, Pinar (2009). 4224: 4115: 3590: 3117: 2743: 2741: 2739: 2737: 2735: 2733: 2731: 2729: 2727: 2725: 2184:of microposts and measurement of their 1738: 999: 937: 525: 500:, allowing for better cell adhesion in 6982: 4428: 4251: 3956: 3341: 3259: 2615:for drug delivery to the eye to treat 2534:content, and chemical concentrations. 2164:, and mask spraying have been used in 2051: 1696: 1425:or virtual photomask projected from a 1279:fluorescence resonance energy transfer 1153:Electrical and electrochemical sensors 700:automated liquid handling and analysis 6660: 5490: 5011: 4531:BioMEMS and Biomedical Nanotechnology 4227:BioMEMS and Biomedical Nanotechnology 3262:BioMEMS and Biomedical Nanotechnology 2889: 2498:have been made possible by metal and 2203:to optimize combinatorial effects of 2196:for three-dimensional studies. Using 2088: 1967:co-cultures has enabled modelling of 1595:technique that enables the selective 1011: 577:have been used in the development of 394:counterparts, and the requirement of 251:microelectromechanical systems (MEMS) 189:), Switzerland first coined the term 153:Andreas Manz, one of the pioneers of 4185:Ultrasound in Medicine & Biology 2722: 2590:, are poorly soluble and need to be 349: 309:for selective treatment of cells in 6686: 2565:systems are bio-MEMS applicable to 1065:Bio-MEMS as Miniaturized Biosensors 776:has been used to fractionate small 690:, size-based molecular extraction, 370:have been used in bio-MEMS to make 298:In 1998, the first continuous-flow 47:micro total analysis systems (μTAS) 13: 6837:Microoptoelectromechanical systems 5812:10.1016/j.biomaterials.2007.03.023 5020: 4877:Zhang, Chunshun; Xing, Da (2007). 4197:10.1016/j.ultrasmedbio.2005.05.005 3075:Journal of Pharmaceutical Sciences 2391:signals to study disease, improve 2311:Assisted reproductive technologies 2306:Assisted reproductive technologies 1667:eliminates sample/reagent surface 1441: 1252: 1145:optically detectable label on the 804:. Isoelectric focusing requires a 725: 665:in bio-MEMS include its low cost, 229:for the detection of chemical and 191:micro total analysis system (μTAS) 14: 7016: 5640:McBeath, Rowena; Pirone, Dana M; 2917:Sensors and Actuators B: Chemical 1331:Genomic and proteomic microarrays 1219:Chemical field-effect transistors 1201:, as well as for applications in 1177:reaction causes a redox electron 808:gradient (usually generated with 2537: 2494:, microneedle arrays and tissue 2383:is to interface with the body's 2346:can be integrated for real-time 2148:interacting with ECM molecules. 1676:Point-of-care-diagnostic devices 1312:food quality and safety analysis 820: 744:experiment example: Two conical 565:of biological materials such as 277:chemist, introduced inexpensive 5032:Chemical & Engineering News 4131:"Microfluidic Mixing: A Review" 2015:of pluripotency stem cells for 1827: 1589:polymerase chain reaction (PCR) 1571:system with thin film heaters, 1509:post-translational modification 1467:Peptide and protein microarrays 1271:surface plasmon resonance (SPR) 996:was used as the cooling agent. 946: 907:, and portable applications in 796:is the separation of proteins, 6699:Microelectromechanical systems 6293:Science Translational Medicine 3344:Advanced Drug Delivery Reviews 2358:selection, as well as prevent 1823:Bio-MEMS in tissue engineering 460:for applications where strong 448:. Moreover, many polymers are 265:wafers and used solvent-based 129:and implantable microdevices. 38:microelectromechanical systems 1: 6640:10.1016/S1359-0286(02)00032-3 5663:10.1016/S1534-5807(04)00075-9 3146:10.1126/science.280.5366.1046 2704:Steven S. Saliterman (2006). 2635: 2180:can be cell shape dependent. 975: 780:, charged organic molecules, 339: 241:. Researchers started to use 6427:10.1016/j.neuron.2016.06.034 6305:10.1126/scitranslmed.3000738 5321:10.1371/journal.pone.0042804 4765:10.1371/journal.pone.0033176 4039:10.1126/science.288.5463.113 3912:10.1371/journal.pone.0006479 3845:10.1371/journal.pone.0015641 3469:10.1371/journal.pone.0037548 2929:10.1016/0925-4005(90)80209-I 2598:. Bio-MEMS technology using 2436:alone for measuring cardiac 2107:parallel-plate flow chambers 1951:-specific functions such as 1731:and can be implemented into 1583:RNA in respiratory specimens 1555: 764:using electrical fields. In 561:Microscale manipulation and 344: 157:at MicroTAS conference 2007. 7: 4695:10.1007/978-1-60327-394-7_1 4629:Expert Review of Proteomics 4539:10.1007/978-0-387-25843-0_1 4485:Gabig M, Wegrzyn G (2001). 4235:10.1007/978-0-387-25845-4_1 3270:10.1007/978-0-387-25845-4_5 2397:monitor clinical parameters 2375:Implantable microelectrodes 800:, and cells with different 10: 7021: 6806:Digital micromirror device 6014:10.1093/clinchem/39.9.1944 3416:10.1016/j.nimb.2011.07.065 3356:10.1016/j.addr.2004.03.002 2504:minimally invasive surgery 2473:with temperature sensors, 2387:for recording and sending 1427:digital micromirror device 1068: 1021:Sonication Mixing Elements 824: 729: 466:electrophoretic separation 207:Human Genome Project (HGP) 144: 6927: 6876: 6869: 6819: 6796: 6768: 6750: 6743: 6717: 6694: 6478:10.1109/JPROC.2003.820536 6248:10.1007/s00542-004-0376-5 4841:10.1016/j.aca.2009.02.038 4279:10.1007/s10544-011-9587-6 2894:. Boca Raton: CRC Press. 2596:intranasal administration 2040:determine cell fate, how 1745:capillary electrophoresis 1644:capillary electrophoresis 1471:The motivation for using 1079:. The interaction of the 623:self-assembled monolayers 300:polymerase chain reaction 215:Capillary electrophoresis 205:equipment. Secondly, the 119:point-of-care diagnostics 6940:Shallow trench isolation 6538:10.1109/MEMB.2008.931014 6236:Microsystem Technologies 4736:Klapperich, Catherine M. 4583:10.1517/14622416.3.4.527 2892:Introduction to bio-MEMS 2421:brain–computer interface 2379:The goal of implantable 2329:production of mammalian 2081:membranes to gas-filled 1607:of the DNA sequence and 1326:Bio-MEMS for diagnostics 1320:environmental monitoring 1299:electrochemiluminescence 876:automated device control 732:Electrokinetic phenomena 706:readers. Techniques for 644: 223:US Department of Defense 199:chromatographic analyses 6725:Interdigital transducer 6456:Proceedings of the IEEE 6371:10.1126/science.1206157 6347:"Epidermal Electronics" 5857:Applied Physics Letters 5255:10.1126/science.1188302 5200:10.1163/156856298X00695 4321:Applied Physics Letters 3562:10.1023/A:1009949704750 3550:Biomedical Microdevices 3205:10.1073/pnas.96.10.5545 3040:10.1126/science.1990438 2481:is a surgical bio-MEMS. 1909:culture on an array of 1807:and the development of 1269:-based techniques, and 1107:Micromechanical sensors 1052:Passive Mixing Elements 458:electrically insulating 450:biologically compatible 31:is an abbreviation for 7005:Biomedical engineering 6884:Surface micromachining 6783:Scratch drive actuator 5497:Toxicological Sciences 5147:Biotechnology Progress 4883:Nucleic Acids Research 4829:Analytica Chimica Acta 4507:10.18388/abp.2001_3896 2890:Folch, Albert (2013). 2554: 2482: 2461:Microtools for surgery 2364:in-vitro fertilization 2272: 2244:cell–cell interactions 2227:Cell–cell interactions 2178:mesenchymal stem cells 2158:micro-contact printing 2119:mesenchymal stem cells 2004: 1796:nucleic acid sequences 1764:Outstanding Challenges 1689: 1654:detection sensitivity. 1634:) chip architectures. 1584: 1575:, and continuous flow 1564:Continuous flow-based 1451: 1340: 1030: 985: 956: 853:mathematical modelling 847: 757: 722:, and wax patterning. 558: 484:with elements such as 464:are necessary such as 452:, chemically inert to 253:as inherited from the 158: 141: 103:biomedical engineering 91:mechanical engineering 87:electrical engineering 25: 5510:10.1093/toxsci/kfi052 5491:Allen, J. W. (2005). 4393:10.1038/nnano.2011.44 4373:Nature Nanotechnology 2629:fibrous encapsulation 2594:immediately prior to 2545: 2487:surgical applications 2468: 2413:foreign-body reaction 2270: 2132:Cell–ECM interactions 2034:transcription factors 1998: 1991:Stem-cell engineering 1895:signal-to-noise ratio 1877:can be replaced with 1683: 1563: 1449: 1372:Oligonucleotide chips 1366:personalized medicine 1338: 1028: 983: 954: 916:digital microfluidics 855:of flow patterns and 837: 739: 688:hydrodynamic focusing 615:microcontact printing 533: 434:optically transparent 416:Plastics and polymers 152: 135: 115:molecular diagnostics 19: 6960:Silicon on insulator 6038:Analytical Chemistry 5599:Analytical Chemistry 5546:Analytical Chemistry 5057:Analytical Chemistry 4928:Analytical Chemistry 4148:10.3390/ijms12053263 3785:Analytical Chemistry 3701:Analytical Chemistry 3655:Analytical Chemistry 2578:(if the material is 2405:Utah electrode array 1887:embryonic stem cells 1859:tissue culture hoods 1804:microfluidic devices 1754:isoelectric focusing 1739:Sample fractionation 1623:thermal conductivity 1513:enzymatic activities 1234:electrical impedance 1101:biomimetic materials 1000:Prefabricated Valves 938:BioMEMs Flow Control 909:developing countries 794:Isoelectric focusing 718:, ink jet printing, 627:extracellular matrix 526:Biological materials 496:to decrease surface 271:George M. Whitesides 233:that were potential 127:single cell analysis 99:chemical engineering 6919:3D microfabrication 6889:Bulk micromachining 6632:2002COSSM...6..329S 6363:2011Sci...333..838K 6197:10.1038/nature04970 6189:2006Natur.442..164H 6125:Nature Neuroscience 5869:2005ApPhL..86v3902L 5396:Integrative Biology 5312:2012PLoSO...742804T 5247:2010Sci...328.1662H 5241:(5986): 1662–1668. 5014:Scientific American 4756:2012PLoSO...733176C 4687:Peptide Microarrays 4385:2011NatNa...6..203A 4333:2006ApPhL..89v4104T 4267:Biomed Microdevices 4031:2000Sci...288..113U 3975:2017NatSR...740570S 3903:2009PLoSO...4.6479C 3836:2010PLoSO...515641A 3605:2003NatMa...2..433V 3460:2012PLoSO...737548M 3408:2012NIMPB.273..161I 3264:. pp. 93–115. 3196:1999PNAS...96.5545T 3138:1998Sci...280.1046K 3132:(5366): 1046–1048. 3032:1991Sci...251..767F 2972:10.1038/nature05058 2964:2006Natur.442..368W 2510:. Incorporation of 2475:electrocardiography 2142:mechanotransduction 2052:Biochemical factors 1973:blood–brain barrier 1701:In blood analysis, 1697:Sample conditioning 1539:biomarker discovery 1528:signalling pathways 1524:biomarker discovery 1479:is firstly because 1477:protein microarrays 1316:medical diagnostics 1265:-based techniques, 1121:surface free energy 966:Stanford University 884:cross contamination 686:operations such as 629:proteins, cellular 285:In 1991, the first 95:optical engineering 43:lab-on-a-chip (LOC) 6894:HAR micromachining 5650:Developmental Cell 5408:10.1039/c0ib00004c 4986:10.1039/c2lc40630f 4895:10.1093/nar/gkm389 3963:Scientific Reports 3514:has generic name ( 3071:Prausnitz, Mark R. 2571:interstitial fluid 2555: 2483: 2454:ultrasonic energy} 2273: 2089:Fluid shear stress 2005: 1931:tissue engineering 1863:hydrodynamic traps 1690: 1585: 1452: 1362:neonatal screening 1341: 1133:resonant frequency 1031: 1012:Micro-scale Mixing 986: 957: 848: 802:isoelectric points 758: 591:tissue engineering 559: 410:protein adsorption 388:bioincompatibility 302:chip was developed 289:chip was developed 159: 142: 123:tissue engineering 57:is concerned with 26: 6977: 6976: 6973: 6972: 6865: 6864: 6357:(6044): 838–843. 6183:(7099): 164–171. 6050:10.1021/ac020579e 5877:10.1063/1.1938253 5806:(21): 3208–3216. 5642:Nelson, Celeste M 5611:10.1021/ac049837t 5605:(18): 5257–5264. 5558:10.1021/ac9006864 5552:(14): 5918–5924. 5194:(11): 1137–1160. 5155:10.1002/btpr.2690 5069:10.1021/ac071311w 5063:(22): 8557–8563. 4980:(18): 3249–3266. 4940:10.1021/ac061058k 4934:(23): 7997–8003. 4889:(13): 4223–4237. 4704:978-1-60327-393-0 4548:978-0-387-25564-4 4533:. pp. 3–21. 4494:Acta Biochim. Pol 4443:10.1021/cr068107d 4341:10.1063/1.2388925 4244:978-0-387-25566-8 4229:. pp. 1–20. 4025:(5463): 113–116. 3983:10.1038/srep40570 3797:10.1021/ac900847g 3791:(15): 5990–5998. 3746:(20): 2659–2665. 3713:10.1021/ac9013989 3667:10.1021/ac9020193 3350:(11): 1565–1586. 3279:978-0-387-25566-8 3190:(10): 5545–5548. 3087:10.1021/js980042+ 3026:(4995): 767–773. 2958:(7101): 368–373. 2901:978-1-4398-1839-8 2551:hypodermic needle 2438:electrophysiology 2425:cochlear implants 2240:membrane proteins 2221:higher throughput 2003:inducing factors. 1902:microscopy assays 1875:robotic pipetting 1758:molecular sieving 1703:white blood cells 1593:molecular biology 1591:is a fundamental 1398:inkjet technology 1267:chemiluminescence 1207:DNA hybridization 1149:or bioreceptors. 1085:electrical signal 888:rapid prototyping 814:Dielectrophoresis 639:dielectrophoresis 595:artificial organs 579:cell-based arrays 470:Surface chemistry 462:electrical fields 442:UV/Vis absorbance 430:rapid prototyping 350:Silicon and glass 239:terrorist threats 231:biological agents 75:clinical sciences 71:material sciences 67:chemical analysis 7012: 6955:Photolithography 6874: 6873: 6827:Millipede memory 6788:Thermal actuator 6748: 6747: 6718:Basic structures 6681: 6674: 6667: 6658: 6657: 6652: 6651: 6615: 6609: 6608: 6589:10.1039/b804690e 6572: 6566: 6565: 6521: 6498: 6497: 6471: 6451: 6440: 6439: 6429: 6405: 6399: 6398: 6341: 6335: 6334: 6324: 6284: 6278: 6277: 6259: 6242:(6–7): 478–483. 6231: 6225: 6224: 6171: 6165: 6164: 6120: 6114: 6113: 6094:10.1039/b504397m 6076: 6070: 6069: 6044:(7): 1671–1675. 6033: 6027: 6026: 6016: 5992: 5986: 5985: 5967: 5956:10.1039/b903753e 5939: 5933: 5932: 5913:10.1039/b618439a 5895: 5889: 5888: 5848: 5842: 5841: 5831: 5791: 5785: 5784: 5757:10.1038/nmeth736 5742: 5733: 5727: 5726: 5707:10.1039/b406953f 5690: 5684: 5683: 5665: 5637: 5631: 5630: 5594: 5588: 5587: 5577: 5537: 5531: 5530: 5512: 5488: 5482: 5481: 5463: 5452:10.1039/b417651k 5434: 5428: 5427: 5391: 5352: 5351: 5341: 5323: 5291: 5285: 5284: 5274: 5226: 5220: 5219: 5183: 5177: 5176: 5166: 5138: 5132: 5131: 5112:10.1039/b510901a 5095: 5089: 5088: 5052: 5046: 5045: 5039: 5038: 5024: 5018: 5017: 5009: 4998: 4997: 4969: 4960: 4959: 4923: 4917: 4916: 4906: 4874: 4861: 4860: 4826: 4817: 4796: 4795: 4785: 4767: 4731: 4725: 4724: 4682: 4671: 4670: 4660: 4641:10.1586/epr.09.2 4620: 4603: 4602: 4571:Pharmacogenomics 4566: 4553: 4552: 4526: 4520: 4519: 4509: 4491: 4482: 4463: 4462: 4431:Chemical Reviews 4426: 4415: 4414: 4404: 4364: 4355: 4354: 4352: 4316: 4307: 4306: 4264: 4255: 4249: 4248: 4222: 4209: 4208: 4191:(9): 1265–1277. 4180: 4171: 4170: 4160: 4150: 4141:(5): 3263–3287. 4126: 4113: 4112: 4102: 4091:10.1039/b809673b 4070: 4059: 4058: 4014: 4005: 4004: 3994: 3954: 3943: 3942: 3932: 3914: 3882: 3876: 3875: 3865: 3847: 3815: 3809: 3808: 3780: 3774: 3773: 3763: 3752:10.1039/c004821f 3731: 3725: 3724: 3696: 3687: 3686: 3650: 3641: 3640: 3593:Nature Materials 3588: 3582: 3581: 3545: 3536: 3529: 3520: 3519: 3513: 3509: 3507: 3499: 3489: 3471: 3453: 3429: 3420: 3419: 3390: 3384: 3383: 3339: 3284: 3283: 3257: 3236: 3235: 3225: 3207: 3175: 3166: 3165: 3121: 3115: 3114: 3066: 3060: 3059: 3015: 3000: 2999: 2947: 2941: 2940: 2923:(1–6): 244–248. 2912: 2906: 2905: 2887: 2720: 2719: 2701: 2690: 2689: 2670:10.1039/b812443d 2645: 2471:balloon catheter 2401:Microfabrication 2323:cryopreservation 2190:Photolithography 2182:Microfabrication 2144:, and different 1933:to recapitulate 1915:optoelectrically 1549:Escherichia coli 1511:, and analyzing 1390:photolithography 1378:oligonucleotides 1221:(chem-FET), and 1089:antibody–antigen 868:microelectronics 846:characteristics. 720:plasma treatment 712:photolithography 667:biodegradability 651:microfabrication 611:Photolithography 587:microfabrication 324:, biocompatible 255:microelectronics 247:microfabrication 243:photolithography 51:microfabrication 36:(or biological) 7020: 7019: 7015: 7014: 7013: 7011: 7010: 7009: 6990:Microtechnology 6980: 6979: 6978: 6969: 6923: 6861: 6815: 6792: 6764: 6739: 6713: 6704:Microtechnology 6690: 6688:Microtechnology 6685: 6655: 6616: 6612: 6573: 6569: 6522: 6501: 6469:10.1.1.121.5772 6452: 6443: 6406: 6402: 6342: 6338: 6285: 6281: 6232: 6228: 6172: 6168: 6121: 6117: 6088:(11): 1229–32. 6077: 6073: 6034: 6030: 5993: 5989: 5940: 5936: 5896: 5892: 5849: 5845: 5792: 5788: 5740: 5734: 5730: 5691: 5687: 5638: 5634: 5595: 5591: 5538: 5534: 5489: 5485: 5435: 5431: 5402:(7–8): 305–25. 5392: 5355: 5292: 5288: 5227: 5223: 5184: 5180: 5139: 5135: 5096: 5092: 5053: 5049: 5036: 5034: 5026: 5025: 5021: 5010: 5001: 4970: 4963: 4924: 4920: 4875: 4864: 4824: 4818: 4799: 4732: 4728: 4705: 4683: 4674: 4621: 4606: 4567: 4556: 4549: 4527: 4523: 4489: 4483: 4466: 4427: 4418: 4365: 4358: 4317: 4310: 4262: 4256: 4252: 4245: 4223: 4212: 4181: 4174: 4127: 4116: 4071: 4062: 4015: 4008: 3955: 3946: 3883: 3879: 3816: 3812: 3781: 3777: 3732: 3728: 3697: 3690: 3651: 3644: 3613:10.1038/nmat936 3589: 3585: 3546: 3539: 3530: 3523: 3511: 3510: 3501: 3500: 3430: 3423: 3391: 3387: 3340: 3287: 3280: 3258: 3239: 3176: 3169: 3122: 3118: 3067: 3063: 3016: 3003: 2948: 2944: 2913: 2909: 2902: 2888: 2723: 2716: 2702: 2693: 2646: 2642: 2638: 2617:ocular diseases 2605:bioavailability 2540: 2520:catheterization 2508:robotic surgery 2463: 2434:surface tension 2381:microelectrodes 2377: 2372: 2348:quality control 2308: 2276:Embryoid bodies 2265: 2229: 2174:cell attachment 2162:inkjet printing 2150:Micropatterning 2134: 2111:Poiseuille flow 2091: 2061:relationships. 2054: 2001:differentiation 1993: 1981:epithelial cell 1959:synthesis, and 1911:photoconductors 1830: 1825: 1817:UNC Chapel Hill 1813:Steven A. Soper 1785: 1766: 1749:electro-osmotic 1741: 1699: 1678: 1659:thermal cycling 1605:thermal cycling 1558: 1485:DNA microarrays 1469: 1444: 1442:cDNA microarray 1416:microelectrodes 1386:microelectrodes 1374: 1333: 1328: 1307:surface plasmon 1295:Bioluminescence 1255: 1253:Optical sensors 1247:bacterial cells 1169:biosensors, an 1163:miniaturization 1159:electrochemical 1157:Electrical and 1155: 1109: 1073: 1067: 1054: 1023: 1014: 1002: 978: 949: 940: 866:Integration of 829: 823: 817:concentration. 774:Electrophoresis 766:electrophoresis 742:electrophoresis 734: 728: 726:Electrokinetics 708:micropatterning 663:electrophoresis 647: 635:optical tweezer 631:electrophoresis 599:high-throughput 549: 538:Micropatterning 528: 418: 352: 347: 342: 287:oligonucleotide 201:in parallel on 173:commercialized 167:cell attachment 147: 59:miniaturization 12: 11: 5: 7018: 7008: 7007: 7002: 6997: 6992: 6975: 6974: 6971: 6970: 6968: 6967: 6962: 6957: 6952: 6947: 6942: 6937: 6931: 6929: 6925: 6924: 6922: 6921: 6916: 6911: 6906: 6901: 6896: 6891: 6886: 6880: 6878: 6871: 6867: 6866: 6863: 6862: 6860: 6859: 6854: 6849: 6844: 6842:Microphotonics 6839: 6834: 6829: 6823: 6821: 6817: 6816: 6814: 6813: 6811:Optical switch 6808: 6802: 6800: 6794: 6793: 6791: 6790: 6785: 6780: 6774: 6772: 6766: 6765: 6763: 6762: 6760:Microbolometer 6756: 6754: 6745: 6741: 6740: 6738: 6737: 6732: 6727: 6721: 6719: 6715: 6714: 6712: 6711: 6709:Micromachinery 6706: 6701: 6695: 6692: 6691: 6684: 6683: 6676: 6669: 6661: 6654: 6653: 6626:(4): 329–334. 6610: 6583:(7): 1027–30. 6567: 6499: 6441: 6420:(3): 529–539. 6400: 6336: 6299:(24): 24ra22. 6279: 6226: 6166: 6137:10.1038/nn1233 6131:(5): 446–451. 6115: 6071: 6028: 5987: 5950:(17): 2591–5. 5934: 5890: 5863:(22): 223902. 5843: 5786: 5751:(2): 119–125. 5745:Nature Methods 5728: 5685: 5656:(4): 483–495. 5632: 5589: 5532: 5503:(1): 110–119. 5483: 5429: 5353: 5286: 5221: 5178: 5133: 5090: 5047: 5019: 4999: 4961: 4918: 4862: 4835:(2): 115–125. 4797: 4726: 4703: 4672: 4635:(2): 145–157. 4604: 4577:(4): 527–536. 4554: 4547: 4521: 4464: 4437:(2): 462–493. 4416: 4379:(4): 203–215. 4356: 4327:(22): 224104. 4308: 4250: 4243: 4210: 4172: 4114: 4060: 4006: 3944: 3877: 3830:(12): e15641. 3810: 3775: 3726: 3688: 3661:(1): 329–335. 3642: 3599:(7): 433–434. 3583: 3556:(2): 131–144. 3537: 3521: 3421: 3385: 3285: 3278: 3237: 3167: 3116: 3081:(8): 922–925. 3061: 3001: 2942: 2907: 2900: 2721: 2714: 2691: 2664:(12): 2151–6. 2654:hybridization" 2639: 2637: 2634: 2557:Microneedles, 2539: 2536: 2462: 2459: 2446:bioelectricity 2415:and electrode 2385:nervous system 2376: 2373: 2371: 2368: 2352:sperm motility 2313:help to treat 2307: 2304: 2264: 2261: 2228: 2225: 2133: 2130: 2090: 2087: 2053: 2050: 1992: 1989: 1977:lung-on-a-chip 1965:micropatterned 1927:Micropatterned 1838:growth factors 1829: 1826: 1824: 1821: 1793:ligand-binding 1784: 1781: 1780: 1779: 1775: 1771: 1765: 1762: 1740: 1737: 1729:flow cytometry 1698: 1695: 1677: 1674: 1673: 1672: 1662: 1655: 1609:DNA polymerase 1557: 1554: 1543: 1542: 1531: 1516: 1501:nitrocellulose 1468: 1465: 1443: 1440: 1439: 1438: 1435: 1419: 1412: 1410:polyacrylamide 1373: 1370: 1332: 1329: 1327: 1324: 1303:refractometers 1254: 1251: 1227:conductometric 1211:potentiometric 1205:detection and 1154: 1151: 1138:damped mediums 1129:piezo-resistor 1108: 1105: 1095:interactions, 1091:interactions, 1069:Main article: 1066: 1063: 1053: 1050: 1022: 1019: 1013: 1010: 1001: 998: 994:carbon dioxide 990:Thermoelectric 977: 974: 948: 945: 939: 936: 928:electrowetting 920:micropatterned 912: 911: 901: 890: 879: 872:micromechanics 864: 860: 857:concentrations 825:Main article: 822: 819: 770:electric field 754:electric field 730:Main article: 727: 724: 710:paper include 669:, and natural 646: 643: 621:delivery, and 548:glass surface. 527: 524: 498:hydrophobicity 482:ion-irradiated 417: 414: 368:fusion bonding 364:anodic bonding 351: 348: 346: 343: 341: 338: 314: 313: 303: 296: 290: 245:equipment for 211:DNA sequencing 195:drug discovery 179:pregnancy test 146: 143: 9: 6: 4: 3: 2: 7017: 7006: 7003: 7001: 6998: 6996: 6995:Microfluidics 6993: 6991: 6988: 6987: 6985: 6966: 6963: 6961: 6958: 6956: 6953: 6951: 6948: 6946: 6943: 6941: 6938: 6936: 6933: 6932: 6930: 6926: 6920: 6917: 6915: 6912: 6910: 6907: 6905: 6902: 6900: 6897: 6895: 6892: 6890: 6887: 6885: 6882: 6881: 6879: 6875: 6872: 6868: 6858: 6855: 6853: 6852:Microfluidics 6850: 6848: 6845: 6843: 6840: 6838: 6835: 6833: 6830: 6828: 6825: 6824: 6822: 6818: 6812: 6809: 6807: 6804: 6803: 6801: 6799: 6795: 6789: 6786: 6784: 6781: 6779: 6776: 6775: 6773: 6771: 6767: 6761: 6758: 6757: 6755: 6753: 6749: 6746: 6742: 6736: 6733: 6731: 6728: 6726: 6723: 6722: 6720: 6716: 6710: 6707: 6705: 6702: 6700: 6697: 6696: 6693: 6689: 6682: 6677: 6675: 6670: 6668: 6663: 6662: 6659: 6649: 6645: 6641: 6637: 6633: 6629: 6625: 6621: 6614: 6606: 6602: 6598: 6594: 6590: 6586: 6582: 6578: 6577:Lab on a Chip 6571: 6563: 6559: 6555: 6551: 6547: 6543: 6539: 6535: 6531: 6527: 6520: 6518: 6516: 6514: 6512: 6510: 6508: 6506: 6504: 6495: 6491: 6487: 6483: 6479: 6475: 6470: 6465: 6461: 6457: 6450: 6448: 6446: 6437: 6433: 6428: 6423: 6419: 6415: 6411: 6404: 6396: 6392: 6388: 6384: 6380: 6376: 6372: 6368: 6364: 6360: 6356: 6352: 6348: 6340: 6332: 6328: 6323: 6318: 6314: 6310: 6306: 6302: 6298: 6294: 6290: 6283: 6275: 6271: 6267: 6263: 6258: 6257:2027.42/47852 6253: 6249: 6245: 6241: 6237: 6230: 6222: 6218: 6214: 6210: 6206: 6202: 6198: 6194: 6190: 6186: 6182: 6178: 6170: 6162: 6158: 6154: 6150: 6146: 6142: 6138: 6134: 6130: 6126: 6119: 6111: 6107: 6103: 6099: 6095: 6091: 6087: 6083: 6082:Lab on a Chip 6075: 6067: 6063: 6059: 6055: 6051: 6047: 6043: 6039: 6032: 6024: 6020: 6015: 6010: 6007:(9): 1944–7. 6006: 6002: 5998: 5991: 5983: 5979: 5975: 5971: 5966: 5961: 5957: 5953: 5949: 5945: 5944:Lab on a Chip 5938: 5930: 5926: 5922: 5918: 5914: 5910: 5906: 5902: 5901:Lab on a Chip 5894: 5886: 5882: 5878: 5874: 5870: 5866: 5862: 5858: 5854: 5847: 5839: 5835: 5830: 5825: 5821: 5817: 5813: 5809: 5805: 5801: 5797: 5790: 5782: 5778: 5774: 5770: 5766: 5762: 5758: 5754: 5750: 5746: 5739: 5732: 5724: 5720: 5716: 5712: 5708: 5704: 5700: 5696: 5695:Lab on a Chip 5689: 5681: 5677: 5673: 5669: 5664: 5659: 5655: 5651: 5647: 5643: 5636: 5628: 5624: 5620: 5616: 5612: 5608: 5604: 5600: 5593: 5585: 5581: 5576: 5571: 5567: 5563: 5559: 5555: 5551: 5547: 5543: 5536: 5528: 5524: 5520: 5516: 5511: 5506: 5502: 5498: 5494: 5487: 5479: 5475: 5471: 5467: 5462: 5457: 5453: 5449: 5445: 5441: 5440:Lab on a Chip 5433: 5425: 5421: 5417: 5413: 5409: 5405: 5401: 5397: 5390: 5388: 5386: 5384: 5382: 5380: 5378: 5376: 5374: 5372: 5370: 5368: 5366: 5364: 5362: 5360: 5358: 5349: 5345: 5340: 5335: 5331: 5327: 5322: 5317: 5313: 5309: 5306:(8): e42804. 5305: 5301: 5297: 5290: 5282: 5278: 5273: 5268: 5264: 5260: 5256: 5252: 5248: 5244: 5240: 5236: 5232: 5225: 5217: 5213: 5209: 5205: 5201: 5197: 5193: 5189: 5182: 5174: 5170: 5165: 5160: 5156: 5152: 5148: 5144: 5137: 5129: 5125: 5121: 5117: 5113: 5109: 5106:(1): 149–54. 5105: 5101: 5100:Lab on a Chip 5094: 5086: 5082: 5078: 5074: 5070: 5066: 5062: 5058: 5051: 5044: 5033: 5029: 5023: 5015: 5008: 5006: 5004: 4995: 4991: 4987: 4983: 4979: 4975: 4974:Lab on a Chip 4968: 4966: 4957: 4953: 4949: 4945: 4941: 4937: 4933: 4929: 4922: 4914: 4910: 4905: 4900: 4896: 4892: 4888: 4884: 4880: 4873: 4871: 4869: 4867: 4858: 4854: 4850: 4846: 4842: 4838: 4834: 4830: 4823: 4816: 4814: 4812: 4810: 4808: 4806: 4804: 4802: 4793: 4789: 4784: 4779: 4775: 4771: 4766: 4761: 4757: 4753: 4750:(3): e33176. 4749: 4745: 4741: 4737: 4730: 4722: 4718: 4714: 4710: 4706: 4700: 4696: 4692: 4688: 4681: 4679: 4677: 4668: 4664: 4659: 4654: 4650: 4646: 4642: 4638: 4634: 4630: 4626: 4619: 4617: 4615: 4613: 4611: 4609: 4600: 4596: 4592: 4588: 4584: 4580: 4576: 4572: 4565: 4563: 4561: 4559: 4550: 4544: 4540: 4536: 4532: 4525: 4517: 4513: 4508: 4503: 4500:(3): 615–22. 4499: 4495: 4488: 4481: 4479: 4477: 4475: 4473: 4471: 4469: 4460: 4456: 4452: 4448: 4444: 4440: 4436: 4432: 4425: 4423: 4421: 4412: 4408: 4403: 4398: 4394: 4390: 4386: 4382: 4378: 4374: 4370: 4363: 4361: 4351: 4346: 4342: 4338: 4334: 4330: 4326: 4322: 4315: 4313: 4304: 4300: 4296: 4292: 4288: 4284: 4280: 4276: 4272: 4268: 4261: 4254: 4246: 4240: 4236: 4232: 4228: 4221: 4219: 4217: 4215: 4206: 4202: 4198: 4194: 4190: 4186: 4179: 4177: 4168: 4164: 4159: 4154: 4149: 4144: 4140: 4136: 4132: 4125: 4123: 4121: 4119: 4110: 4106: 4101: 4096: 4092: 4088: 4084: 4080: 4079:Lab on a Chip 4076: 4069: 4067: 4065: 4056: 4052: 4048: 4044: 4040: 4036: 4032: 4028: 4024: 4020: 4013: 4011: 4002: 3998: 3993: 3988: 3984: 3980: 3976: 3972: 3968: 3964: 3960: 3953: 3951: 3949: 3940: 3936: 3931: 3926: 3922: 3918: 3913: 3908: 3904: 3900: 3896: 3892: 3888: 3881: 3873: 3869: 3864: 3859: 3855: 3851: 3846: 3841: 3837: 3833: 3829: 3825: 3821: 3814: 3806: 3802: 3798: 3794: 3790: 3786: 3779: 3771: 3767: 3762: 3757: 3753: 3749: 3745: 3741: 3740:Lab on a Chip 3737: 3730: 3722: 3718: 3714: 3710: 3706: 3702: 3695: 3693: 3684: 3680: 3676: 3672: 3668: 3664: 3660: 3656: 3649: 3647: 3638: 3634: 3630: 3626: 3622: 3618: 3614: 3610: 3606: 3602: 3598: 3594: 3587: 3579: 3575: 3571: 3567: 3563: 3559: 3555: 3551: 3544: 3542: 3535: 3528: 3526: 3517: 3505: 3497: 3493: 3488: 3483: 3479: 3475: 3470: 3465: 3461: 3457: 3452: 3447: 3444:(5): e37548. 3443: 3439: 3435: 3428: 3426: 3417: 3413: 3409: 3405: 3401: 3397: 3389: 3381: 3377: 3373: 3369: 3365: 3361: 3357: 3353: 3349: 3345: 3338: 3336: 3334: 3332: 3330: 3328: 3326: 3324: 3322: 3320: 3318: 3316: 3314: 3312: 3310: 3308: 3306: 3304: 3302: 3300: 3298: 3296: 3294: 3292: 3290: 3281: 3275: 3271: 3267: 3263: 3256: 3254: 3252: 3250: 3248: 3246: 3244: 3242: 3233: 3229: 3224: 3219: 3215: 3211: 3206: 3201: 3197: 3193: 3189: 3185: 3181: 3174: 3172: 3163: 3159: 3155: 3151: 3147: 3143: 3139: 3135: 3131: 3127: 3120: 3112: 3108: 3104: 3100: 3096: 3092: 3088: 3084: 3080: 3076: 3072: 3065: 3057: 3053: 3049: 3045: 3041: 3037: 3033: 3029: 3025: 3021: 3014: 3012: 3010: 3008: 3006: 2997: 2993: 2989: 2985: 2981: 2977: 2973: 2969: 2965: 2961: 2957: 2953: 2946: 2938: 2934: 2930: 2926: 2922: 2918: 2911: 2903: 2897: 2893: 2886: 2884: 2882: 2880: 2878: 2876: 2874: 2872: 2870: 2868: 2866: 2864: 2862: 2860: 2858: 2856: 2854: 2852: 2850: 2848: 2846: 2844: 2842: 2840: 2838: 2836: 2834: 2832: 2830: 2828: 2826: 2824: 2822: 2820: 2818: 2816: 2814: 2812: 2810: 2808: 2806: 2804: 2802: 2800: 2798: 2796: 2794: 2792: 2790: 2788: 2786: 2784: 2782: 2780: 2778: 2776: 2774: 2772: 2770: 2768: 2766: 2764: 2762: 2760: 2758: 2756: 2754: 2752: 2750: 2748: 2746: 2744: 2742: 2740: 2738: 2736: 2734: 2732: 2730: 2728: 2726: 2717: 2715:0-8194-5977-1 2711: 2707: 2700: 2698: 2696: 2687: 2683: 2679: 2675: 2671: 2667: 2663: 2659: 2658:Lab on a Chip 2655: 2653: 2644: 2640: 2633: 2630: 2626: 2622: 2618: 2614: 2610: 2606: 2601: 2600:piezoelectric 2597: 2593: 2589: 2585: 2584:gene delivery 2581: 2577: 2572: 2568: 2567:drug delivery 2564: 2561:systems, and 2560: 2552: 2548: 2544: 2538:Drug delivery 2535: 2533: 2529: 2526:, pressures, 2525: 2521: 2517: 2513: 2509: 2505: 2501: 2497: 2493: 2488: 2485:Bio-MEMS for 2480: 2477:sensors, and 2476: 2472: 2467: 2458: 2455: 2451: 2447: 2443: 2439: 2435: 2431: 2426: 2422: 2418: 2417:encapsulation 2414: 2410: 2406: 2402: 2398: 2394: 2390: 2389:bioelectrical 2386: 2382: 2367: 2365: 2361: 2357: 2353: 2349: 2345: 2340: 2336: 2335:Microfluidics 2332: 2328: 2324: 2320: 2316: 2312: 2303: 2301: 2297: 2293: 2289: 2288:embryoid body 2284: 2281: 2278:are a common 2277: 2269: 2260: 2258: 2253: 2249: 2245: 2241: 2237: 2233: 2224: 2222: 2218: 2214: 2210: 2206: 2202: 2199: 2195: 2191: 2187: 2183: 2179: 2175: 2171: 2167: 2163: 2159: 2155: 2151: 2147: 2143: 2139: 2129: 2127: 2126:cell adhesion 2124: 2120: 2116: 2112: 2108: 2104: 2103:organogenesis 2100: 2099:embryogenesis 2096: 2086: 2084: 2083:microchannels 2080: 2076: 2072: 2068: 2064: 2060: 2059:dose-response 2049: 2047: 2043: 2039: 2035: 2030: 2029:embryoid body 2026: 2022: 2018: 2014: 2010: 2002: 1997: 1988: 1986: 1982: 1978: 1974: 1970: 1966: 1962: 1958: 1954: 1950: 1946: 1942: 1938: 1937: 1932: 1928: 1924: 1920: 1916: 1913:which can be 1912: 1908: 1903: 1901: 1896: 1892: 1888: 1884: 1880: 1876: 1872: 1868: 1864: 1860: 1856: 1852: 1847: 1844:, genes, and 1843: 1842:neuropeptides 1839: 1835: 1832:Conventional 1820: 1818: 1814: 1810: 1805: 1801: 1797: 1794: 1790: 1776: 1772: 1768: 1767: 1761: 1759: 1755: 1750: 1746: 1736: 1734: 1733:microfluidics 1730: 1726: 1721: 1716: 1712: 1708: 1704: 1694: 1687: 1682: 1670: 1666: 1663: 1660: 1656: 1653: 1649: 1646:channels for 1645: 1641: 1637: 1636: 1635: 1633: 1629: 1624: 1619: 1615: 1614:heat transfer 1610: 1606: 1602: 1598: 1597:amplification 1594: 1590: 1582: 1578: 1574: 1570: 1567: 1562: 1553: 1551: 1550: 1540: 1536: 1532: 1529: 1525: 1521: 1517: 1514: 1510: 1506: 1505: 1504: 1502: 1498: 1494: 1490: 1486: 1482: 1478: 1474: 1464: 1461: 1456: 1448: 1436: 1432: 1428: 1424: 1420: 1417: 1413: 1411: 1407: 1406: 1405: 1403: 1399: 1395: 1391: 1387: 1383: 1379: 1369: 1367: 1363: 1358: 1354: 1350: 1346: 1343:The goals of 1337: 1323: 1321: 1317: 1313: 1308: 1304: 1300: 1296: 1292: 1288: 1284: 1280: 1276: 1272: 1268: 1264: 1260: 1250: 1248: 1244: 1243:nucleic acids 1240: 1235: 1232:, changes in 1231: 1228: 1224: 1220: 1216: 1212: 1208: 1204: 1200: 1196: 1192: 1188: 1184: 1180: 1176: 1172: 1168: 1164: 1160: 1150: 1148: 1143: 1139: 1134: 1130: 1126: 1122: 1118: 1114: 1104: 1102: 1098: 1094: 1090: 1086: 1082: 1078: 1072: 1062: 1059: 1049: 1047: 1043: 1039: 1035: 1027: 1018: 1009: 1007: 997: 995: 991: 982: 973: 971: 967: 963: 962:Stephen Quake 953: 944: 935: 933: 929: 925: 921: 917: 910: 906: 902: 899: 895: 891: 889: 886:, as well as 885: 880: 877: 873: 869: 865: 861: 858: 854: 850: 849: 845: 841: 836: 832: 828: 827:Microfluidics 821:Microfluidics 818: 815: 811: 807: 803: 799: 795: 791: 787: 783: 779: 775: 771: 767: 763: 755: 751: 747: 743: 738: 733: 723: 721: 717: 716:laser cutting 713: 709: 705: 701: 697: 693: 689: 685: 681: 676: 675:microfluidics 672: 668: 664: 660: 659:microfluidics 656: 652: 642: 640: 636: 632: 628: 624: 620: 616: 612: 608: 604: 600: 596: 592: 588: 584: 580: 576: 572: 568: 564: 556: 552: 547: 543: 539: 536: 532: 523: 521: 517: 513: 509: 505: 504: 499: 495: 491: 487: 483: 479: 475: 471: 467: 463: 459: 455: 451: 447: 443: 439: 435: 431: 427: 423: 413: 411: 407: 406: 401: 397: 393: 389: 385: 381: 377: 373: 372:flow channels 369: 365: 361: 357: 337: 335: 331: 330:self-assembly 327: 323: 319: 312: 311:microchannels 308: 307:laminar flows 304: 301: 297: 295: 294:drug delivery 291: 288: 284: 283: 282: 280: 276: 272: 268: 264: 260: 256: 252: 248: 244: 240: 236: 232: 228: 224: 220: 216: 212: 208: 204: 200: 196: 192: 188: 184: 180: 176: 172: 168: 164: 156: 151: 139: 134: 130: 128: 124: 120: 116: 112: 108: 104: 100: 96: 92: 88: 84: 80: 76: 72: 68: 64: 60: 56: 55:lab-on-a-chip 52: 48: 44: 40: 39: 35: 30: 23: 18: 6914:Wire bonding 6846: 6744:Applications 6735:Microchannel 6623: 6619: 6613: 6580: 6576: 6570: 6532:(1): 31–39. 6529: 6525: 6462:(1): 43–55. 6459: 6455: 6417: 6413: 6403: 6354: 6350: 6339: 6296: 6292: 6282: 6239: 6235: 6229: 6180: 6176: 6169: 6128: 6124: 6118: 6085: 6081: 6074: 6041: 6037: 6031: 6004: 6000: 5990: 5947: 5943: 5937: 5907:(6): 770–6. 5904: 5900: 5893: 5860: 5856: 5853:Lee, Luke P. 5846: 5803: 5800:Biomaterials 5799: 5789: 5748: 5744: 5731: 5701:(1): 111–8. 5698: 5694: 5688: 5653: 5649: 5635: 5602: 5598: 5592: 5549: 5545: 5535: 5500: 5496: 5486: 5446:(4): 401–6. 5443: 5439: 5432: 5399: 5395: 5303: 5299: 5289: 5238: 5234: 5224: 5191: 5187: 5181: 5146: 5136: 5103: 5099: 5093: 5060: 5056: 5050: 5041: 5035:. Retrieved 5031: 5022: 5013: 4977: 4973: 4931: 4927: 4921: 4886: 4882: 4832: 4828: 4747: 4743: 4729: 4686: 4632: 4628: 4574: 4570: 4530: 4524: 4497: 4493: 4434: 4430: 4376: 4372: 4324: 4320: 4273:(1): 83–93. 4270: 4266: 4253: 4226: 4188: 4184: 4138: 4134: 4085:(1): 79–86. 4082: 4078: 4022: 4018: 3966: 3962: 3897:(8): e6479. 3894: 3890: 3880: 3827: 3823: 3813: 3788: 3784: 3778: 3743: 3739: 3729: 3704: 3700: 3658: 3654: 3596: 3592: 3586: 3553: 3549: 3512:|last4= 3504:cite journal 3441: 3437: 3399: 3395: 3388: 3347: 3343: 3261: 3187: 3183: 3129: 3125: 3119: 3078: 3074: 3064: 3023: 3019: 2955: 2951: 2945: 2920: 2916: 2910: 2891: 2705: 2661: 2657: 2651: 2643: 2625:dose dumping 2621:osteoporosis 2556: 2528:temperatures 2484: 2450:piezocrystal 2378: 2338: 2326: 2309: 2286:controlling 2283:pluripotency 2279: 2274: 2252:Gap junction 2230: 2156:proteins by 2135: 2095:shear stress 2092: 2055: 2021:shear stress 2017:cell therapy 2013:self-renewal 2007:The goal of 2006: 1947:to maintain 1934: 1907:microfluidic 1899: 1891:microfluidic 1883:cell culture 1855:gas exchange 1846:retroviruses 1834:cell culture 1831: 1828:Cell culture 1815:'s group at 1811:channels by 1787:The work of 1786: 1742: 1720:laminar flow 1700: 1691: 1586: 1573:syringe pump 1569:microfluidic 1547: 1544: 1470: 1453: 1375: 1342: 1263:fluorescence 1256: 1167:amperometric 1156: 1141: 1110: 1093:nucleic acid 1074: 1058:laminar flow 1055: 1046:shear forces 1032: 1015: 1003: 987: 958: 947:Quake Valves 941: 913: 844:laminar flow 840:microchannel 830: 790:heat removal 759: 750:microchannel 692:micro-mixing 684:microfluidic 655:immunoassays 648: 619:microfluidic 617:, selective 609:conditions. 606: 560: 550: 534: 501: 446:Raman method 438:fluorescence 419: 403: 376:flow sensors 353: 326:photoresists 315: 267:photoresists 227:microsystems 183:microfluidic 171:Unipath Inc. 165:islands for 160: 138:Venn diagram 63:microfluidic 32: 28: 27: 6904:Lithography 5965:10072/62154 4350:10261/18033 3707:(1): 3–10. 3402:: 161–163. 2613:conjunctiva 2592:aerosolized 2563:implantable 2559:formulation 2547:Transdermal 2524:blood flows 2522:to measure 2442:temperature 2319:genetically 2315:infertility 2219:due to its 2217:well plates 2213:fibronectin 2201:microarrays 2071:vasculature 1955:secretion, 1945:fibroblasts 1941:hepatocytes 1789:Z. Hugh Fan 1665:Digital PCR 1632:digital PCR 1581:influenza A 1493:polystyrene 1434:nucleotide. 1431:nucleotides 1388:(Nanogen), 1283:microarrays 1275:wavelengths 1259:photodiodes 1199:cholesterol 1173:-catalyzed 1113:cantilevers 970:elastomeric 932:wettability 696:microplates 583:microarrays 555:fibroblasts 551:B) & C) 542:fibronectin 356:wet etching 203:macroscopic 6984:Categories 6899:Deposition 6857:Micropower 6778:Comb drive 6730:Cantilever 6001:Clin. Chem 5461:10371/7986 5037:2024-08-01 2636:References 2469:A cardiac 2409:substrates 2393:prostheses 2360:polyspermy 2354:, perform 2257:cell cycle 2236:stem cells 2186:deflection 2123:fibroblast 2115:micropumps 2046:phenotypes 2042:epigenetic 1985:inhalation 1879:micropumps 1851:incubators 1809:sinusoidal 1669:adsorption 1520:antibodies 1458:glass, or 1394:Affymetrix 1230:biosensors 1077:transducer 1042:cell lysis 1038:integrated 1034:Sonication 976:Ice Valves 924:electrodes 863:parameters 810:electrodes 798:organelles 746:electrodes 704:microplate 563:patterning 396:clean room 384:micropumps 360:sputtering 340:Approaches 213:capacity. 111:proteomics 34:biomedical 6965:Smart cut 6870:Processes 6770:Actuators 6648:1359-0286 6597:1473-0197 6546:0739-5175 6486:0018-9219 6464:CiteSeerX 6379:0036-8075 6313:1946-6234 6266:0946-7076 6205:0028-0836 6145:1097-6256 6102:1473-0197 6058:0003-2700 5974:1473-0197 5921:1473-0197 5885:0003-6951 5820:0142-9612 5765:1548-7091 5715:1473-0197 5672:1534-5807 5619:0003-2700 5566:0003-2700 5519:1096-0929 5470:1473-0197 5416:1757-9694 5330:1932-6203 5263:0036-8075 5208:0920-5063 5120:1473-0197 5077:0003-2700 4948:0003-2700 4849:0003-2670 4774:1932-6203 4713:1064-3745 4649:1478-9450 4591:1462-2416 4451:0009-2665 4287:1572-8781 3969:: 40570. 3921:1932-6203 3854:1932-6203 3675:0003-2700 3621:1476-1122 3578:134893731 3570:1387-2176 3478:1932-6203 3451:1111.2510 3364:0169-409X 3214:0027-8424 3154:0036-8075 3095:0022-3549 3048:0036-8075 2996:205210989 2980:0028-0836 2937:0925-4005 2678:1473-0197 2580:polymeric 2576:biohazard 2496:debriders 2232:Cell fate 2166:stem cell 2146:integrins 2128:studies. 2075:placental 2009:stem cell 1798:known as 1707:platelets 1652:attomolar 1650:that has 1618:diffusion 1556:PCR chips 1423:photomask 1349:proteomic 1187:galactose 1097:enzymatic 1071:Biosensor 486:magnesium 345:Materials 318:hydrogels 175:ClearBlue 163:palladium 6950:Lift-off 6928:Specific 6798:Switches 6605:18584074 6554:19150769 6436:27497221 6387:21836009 6331:20375008 6274:27730520 6213:16838014 6161:18538341 6153:15114356 6110:16234945 6066:12705601 5982:19680583 5929:17538720 5838:17434582 5781:14718135 5773:15782209 5723:15616749 5680:15068789 5627:15362881 5584:19601655 5527:15590888 5478:15791337 5424:20593104 5348:22880114 5300:PLOS ONE 5281:20576885 5173:30009534 5128:16372083 5085:17953452 4994:22859057 4956:17134132 4913:17576684 4857:19327449 4792:22457740 4744:PLOS ONE 4738:(2012). 4721:19649587 4667:19385942 4599:12164775 4516:11833770 4459:18229953 4411:21441911 4303:22924829 4295:21915644 4205:16176793 4167:21686184 4109:19209338 4055:14028193 4047:10753110 4001:28084447 3939:19649241 3891:PLOS ONE 3872:21206908 3824:PLOS ONE 3805:19572563 3770:20680208 3721:20000334 3683:20000582 3637:40983796 3629:12876566 3496:22701519 3438:PLOS ONE 3380:17302369 3372:15350289 3232:10318920 3111:14917073 2988:16871203 2686:19023479 2588:diazepam 2333:is low. 2327:in vitro 2325:and the 2300:ectoderm 2296:mesoderm 2292:endoderm 2280:in vitro 2205:collagen 1923:Novartis 1800:aptamers 1711:bacteria 1382:Motorola 905:implants 898:analytes 894:reagents 782:proteins 680:forensic 637:arrays, 567:proteins 490:tantalum 474:polymers 454:solvents 426:polymers 422:plastics 320:such as 235:military 187:Novartis 107:genomics 79:medicine 29:Bio-MEMS 6909:Etching 6877:General 6752:Sensors 6628:Bibcode 6562:8396550 6494:1226935 6359:Bibcode 6351:Science 6322:3039774 6221:4347367 6185:Bibcode 6023:8375079 5865:Bibcode 5829:1929166 5575:2710860 5339:3411850 5308:Bibcode 5272:8335790 5243:Bibcode 5235:Science 5216:9860177 5164:6585769 4904:1934988 4783:3310856 4752:Bibcode 4658:7105755 4402:3839312 4381:Bibcode 4329:Bibcode 4158:3116190 4100:3065121 4027:Bibcode 4019:Science 3992:5234026 3971:Bibcode 3930:2714461 3899:Bibcode 3863:3012060 3832:Bibcode 3761:4892122 3601:Bibcode 3487:3365108 3456:Bibcode 3404:Bibcode 3192:Bibcode 3162:9582111 3134:Bibcode 3126:Science 3103:9687334 3056:1990438 3028:Bibcode 3020:Science 2960:Bibcode 2652:in situ 2512:sensors 2500:ceramic 2492:forceps 2344:sensors 2339:in vivo 2331:embryos 2209:laminin 2023:, cell- 1953:albumin 1936:in vivo 1900:In situ 1473:peptide 1460:silicon 1402:Agilent 1396:), and 1345:genomic 1191:lactose 1183:glucose 1179:current 1147:analyte 1142:in situ 1081:analyte 671:wicking 607:in vivo 575:tissues 553:Single 516:OSTEmer 503:in vivo 480:can be 405:In vivo 400:silicon 380:filters 322:agarose 316:Today, 275:Harvard 259:silicon 221:of the 145:History 83:surgery 6646:  6603:  6595:  6560:  6552:  6544:  6492:  6484:  6466:  6434:  6414:Neuron 6395:426960 6393:  6385:  6377:  6329:  6319:  6311:  6272:  6264:  6219:  6211:  6203:  6177:Nature 6159:  6151:  6143:  6108:  6100:  6064:  6056:  6021:  5980:  5972:  5927:  5919:  5883:  5836:  5826:  5818:  5779:  5771:  5763:  5721:  5713:  5678:  5670:  5625:  5617:  5582:  5572:  5564:  5525:  5517:  5476:  5468:  5422:  5414:  5346:  5336:  5328:  5279:  5269:  5261:  5214:  5206:  5171:  5161:  5126:  5118:  5083:  5075:  4992:  4954:  4946:  4911:  4901:  4855:  4847:  4790:  4780:  4772:  4719:  4711:  4701:  4665:  4655:  4647:  4597:  4589:  4545:  4514:  4457:  4449:  4409:  4399:  4301:  4293:  4285:  4241:  4203:  4165:  4155:  4107:  4097:  4053:  4045:  3999:  3989:  3937:  3927:  3919:  3870:  3860:  3852:  3803:  3768:  3758:  3719:  3681:  3673:  3635:  3627:  3619:  3576:  3568:  3494:  3484:  3476:  3378:  3370:  3362:  3276:  3230:  3220:  3212:  3160:  3152:  3109:  3101:  3093:  3054:  3046:  2994:  2986:  2978:  2952:Nature 2935:  2898:  2712:  2684:  2676:  2532:oxygen 2516:tissue 2395:, and 2298:- and 2211:, and 2093:Fluid 2063:Oxygen 2038:miRNAs 1969:organs 1871:manual 1715:plasma 1713:, and 1414:Using 1353:genome 1318:, and 1245:, and 1239:toxins 1197:, and 1171:enzyme 1117:stress 784:, and 593:, and 589:based 546:PNIPAM 492:, and 456:, and 420:Using 366:, and 328:, and 101:, and 6935:LOCOS 6820:Other 6558:S2CID 6490:S2CID 6391:S2CID 6270:S2CID 6217:S2CID 6157:S2CID 5777:S2CID 5741:(PDF) 4825:(PDF) 4490:(PDF) 4299:S2CID 4263:(PDF) 4051:S2CID 3633:S2CID 3574:S2CID 3446:arXiv 3376:S2CID 3223:21896 3107:S2CID 2992:S2CID 2430:heart 2356:sperm 2136:Cell- 1949:liver 1919:Amgen 1867:shear 1725:lysis 1535:serum 1499:, or 1357:genes 1291:light 1225:. In 1209:. In 1175:redox 1125:laser 922:with 762:cells 645:Paper 603:cells 571:cells 478:PDMSs 444:, or 263:glass 219:DARPA 6945:LIGA 6644:ISSN 6601:PMID 6593:ISSN 6550:PMID 6542:ISSN 6482:ISSN 6432:PMID 6383:PMID 6375:ISSN 6327:PMID 6309:ISSN 6262:ISSN 6209:PMID 6201:ISSN 6149:PMID 6141:ISSN 6106:PMID 6098:ISSN 6062:PMID 6054:ISSN 6019:PMID 5978:PMID 5970:ISSN 5925:PMID 5917:ISSN 5881:ISSN 5834:PMID 5816:ISSN 5769:PMID 5761:ISSN 5719:PMID 5711:ISSN 5676:PMID 5668:ISSN 5623:PMID 5615:ISSN 5580:PMID 5562:ISSN 5523:PMID 5515:ISSN 5474:PMID 5466:ISSN 5420:PMID 5412:ISSN 5344:PMID 5326:ISSN 5277:PMID 5259:ISSN 5212:PMID 5204:ISSN 5169:PMID 5124:PMID 5116:ISSN 5081:PMID 5073:ISSN 4990:PMID 4952:PMID 4944:ISSN 4909:PMID 4853:PMID 4845:ISSN 4788:PMID 4770:ISSN 4717:PMID 4709:ISSN 4699:ISBN 4663:PMID 4645:ISSN 4595:PMID 4587:ISSN 4543:ISBN 4512:PMID 4455:PMID 4447:ISSN 4407:PMID 4291:PMID 4283:ISSN 4239:ISBN 4201:PMID 4163:PMID 4105:PMID 4043:PMID 3997:PMID 3935:PMID 3917:ISSN 3868:PMID 3850:ISSN 3801:PMID 3766:PMID 3717:PMID 3679:PMID 3671:ISSN 3625:PMID 3617:ISSN 3566:ISSN 3516:help 3492:PMID 3474:ISSN 3368:PMID 3360:ISSN 3274:ISBN 3228:PMID 3210:ISSN 3158:PMID 3150:ISSN 3099:PMID 3091:ISSN 3052:PMID 3044:ISSN 2984:PMID 2976:ISSN 2933:ISSN 2896:ISBN 2710:ISBN 2682:PMID 2674:ISSN 2609:PDMS 2506:and 2479:LEDs 2444:and 2317:and 2248:PDMS 2121:and 2101:and 2079:PDMS 2036:and 1961:p450 1957:urea 1921:and 1640:PDMS 1628:PDMS 1587:The 1497:PVDF 1489:mRNA 1481:mRNA 1475:and 1455:cDNA 1347:and 1297:and 1285:and 1195:urea 1115:for 1006:PDMS 778:ions 698:for 661:and 573:and 520:SU-8 518:and 512:PDMS 508:PMMA 494:iron 424:and 392:MEMS 334:PDMS 279:PDMS 273:, a 237:and 177:, a 155:μTAS 45:and 22:FISH 6636:doi 6585:doi 6534:doi 6474:doi 6422:doi 6367:doi 6355:333 6317:PMC 6301:doi 6252:hdl 6244:doi 6193:doi 6181:442 6133:doi 6090:doi 6046:doi 6009:doi 5960:hdl 5952:doi 5909:doi 5873:doi 5824:PMC 5808:doi 5753:doi 5703:doi 5658:doi 5607:doi 5570:PMC 5554:doi 5505:doi 5456:hdl 5448:doi 5404:doi 5334:PMC 5316:doi 5267:PMC 5251:doi 5239:328 5196:doi 5159:PMC 5151:doi 5108:doi 5065:doi 4982:doi 4936:doi 4899:PMC 4891:doi 4837:doi 4833:638 4778:PMC 4760:doi 4691:doi 4653:PMC 4637:doi 4579:doi 4535:doi 4502:doi 4439:doi 4435:108 4397:PMC 4389:doi 4345:hdl 4337:doi 4275:doi 4231:doi 4193:doi 4153:PMC 4143:doi 4095:PMC 4087:doi 4035:doi 4023:288 3987:PMC 3979:doi 3925:PMC 3907:doi 3858:PMC 3840:doi 3793:doi 3756:PMC 3748:doi 3709:doi 3663:doi 3609:doi 3558:doi 3482:PMC 3464:doi 3412:doi 3400:273 3352:doi 3266:doi 3218:PMC 3200:doi 3142:doi 3130:280 3083:doi 3036:doi 3024:251 2968:doi 2956:442 2925:doi 2666:doi 2432:by 2362:in 2294:-, 2198:ECM 2194:ECM 2170:ECM 2154:ECM 2152:of 2138:ECM 2025:ECM 1873:or 1686:CD4 1601:DNA 1599:of 1577:PCR 1566:PCR 1404:). 1384:), 1287:PCR 1203:gas 964:at 786:DNA 740:An 544:on 540:of 472:of 261:or 249:of 6986:: 6642:. 6634:. 6622:. 6599:. 6591:. 6579:. 6556:. 6548:. 6540:. 6530:28 6528:. 6502:^ 6488:. 6480:. 6472:. 6460:92 6458:. 6444:^ 6430:. 6418:91 6416:. 6412:. 6389:. 6381:. 6373:. 6365:. 6353:. 6349:. 6325:. 6315:. 6307:. 6295:. 6291:. 6268:. 6260:. 6250:. 6240:10 6238:. 6215:. 6207:. 6199:. 6191:. 6179:. 6155:. 6147:. 6139:. 6127:. 6104:. 6096:. 6084:. 6060:. 6052:. 6042:75 6040:. 6017:. 6005:39 6003:. 5999:. 5976:. 5968:. 5958:. 5946:. 5923:. 5915:. 5903:. 5879:. 5871:. 5861:86 5859:. 5832:. 5822:. 5814:. 5804:28 5802:. 5798:. 5775:. 5767:. 5759:. 5747:. 5743:. 5717:. 5709:. 5697:. 5674:. 5666:. 5652:. 5648:. 5621:. 5613:. 5603:76 5601:. 5578:. 5568:. 5560:. 5550:81 5548:. 5544:. 5521:. 5513:. 5501:84 5499:. 5495:. 5472:. 5464:. 5454:. 5442:. 5418:. 5410:. 5398:. 5356:^ 5342:. 5332:. 5324:. 5314:. 5302:. 5298:. 5275:. 5265:. 5257:. 5249:. 5237:. 5233:. 5210:. 5202:. 5190:. 5167:. 5157:. 5145:. 5122:. 5114:. 5102:. 5079:. 5071:. 5061:79 5059:. 5040:. 5030:. 5002:^ 4988:. 4978:12 4976:. 4964:^ 4950:. 4942:. 4932:78 4930:. 4907:. 4897:. 4887:35 4885:. 4881:. 4865:^ 4851:. 4843:. 4831:. 4827:. 4800:^ 4786:. 4776:. 4768:. 4758:. 4746:. 4742:. 4715:. 4707:. 4697:. 4675:^ 4661:. 4651:. 4643:. 4631:. 4627:. 4607:^ 4593:. 4585:. 4573:. 4557:^ 4541:. 4510:. 4498:48 4496:. 4492:. 4467:^ 4453:. 4445:. 4433:. 4419:^ 4405:. 4395:. 4387:. 4375:. 4371:. 4359:^ 4343:. 4335:. 4325:89 4323:. 4311:^ 4297:. 4289:. 4281:. 4271:14 4269:. 4265:. 4237:. 4213:^ 4199:. 4189:31 4187:. 4175:^ 4161:. 4151:. 4139:12 4137:. 4133:. 4117:^ 4103:. 4093:. 4081:. 4077:. 4063:^ 4049:. 4041:. 4033:. 4021:. 4009:^ 3995:. 3985:. 3977:. 3965:. 3961:. 3947:^ 3933:. 3923:. 3915:. 3905:. 3893:. 3889:. 3866:. 3856:. 3848:. 3838:. 3826:. 3822:. 3799:. 3789:81 3787:. 3764:. 3754:. 3744:10 3742:. 3738:. 3715:. 3705:82 3703:. 3691:^ 3677:. 3669:. 3659:82 3657:. 3645:^ 3631:. 3623:. 3615:. 3607:. 3595:. 3572:. 3564:. 3552:. 3540:^ 3524:^ 3508:: 3506:}} 3502:{{ 3490:. 3480:. 3472:. 3462:. 3454:. 3440:. 3436:. 3424:^ 3410:. 3398:. 3374:. 3366:. 3358:. 3348:56 3346:. 3288:^ 3272:. 3240:^ 3226:. 3216:. 3208:. 3198:. 3188:96 3186:. 3182:. 3170:^ 3156:. 3148:. 3140:. 3128:. 3105:. 3097:. 3089:. 3079:87 3077:. 3050:. 3042:. 3034:. 3022:. 3004:^ 2990:. 2982:. 2974:. 2966:. 2954:. 2931:. 2919:. 2724:^ 2694:^ 2680:. 2672:. 2660:. 2656:. 2627:, 2530:, 2399:. 2366:. 2207:, 2160:, 2085:. 2073:, 1987:. 1840:, 1760:. 1709:, 1705:, 1495:, 1368:. 1322:. 1314:, 1249:. 1241:, 1217:, 1193:, 1189:, 1185:, 1048:. 870:, 806:pH 792:. 772:. 714:, 633:, 613:, 585:, 581:, 569:, 535:A) 522:. 514:, 510:, 488:, 468:. 440:, 382:, 374:, 362:, 336:. 136:A 125:, 121:, 117:, 113:, 109:, 97:, 93:, 89:, 85:, 81:, 77:, 73:, 6680:e 6673:t 6666:v 6650:. 6638:: 6630:: 6624:6 6607:. 6587:: 6581:8 6564:. 6536:: 6496:. 6476:: 6438:. 6424:: 6397:. 6369:: 6361:: 6333:. 6303:: 6297:2 6276:. 6254:: 6246:: 6223:. 6195:: 6187:: 6163:. 6135:: 6129:7 6112:. 6092:: 6086:5 6068:. 6048:: 6025:. 6011:: 5984:. 5962:: 5954:: 5948:9 5931:. 5911:: 5905:7 5887:. 5875:: 5867:: 5840:. 5810:: 5783:. 5755:: 5749:2 5725:. 5705:: 5699:5 5682:. 5660:: 5654:6 5629:. 5609:: 5586:. 5556:: 5529:. 5507:: 5480:. 5458:: 5450:: 5444:5 5426:. 5406:: 5400:2 5350:. 5318:: 5310:: 5304:7 5283:. 5253:: 5245:: 5218:. 5198:: 5192:9 5175:. 5153:: 5130:. 5110:: 5104:6 5087:. 5067:: 5016:. 4996:. 4984:: 4958:. 4938:: 4915:. 4893:: 4859:. 4839:: 4794:. 4762:: 4754:: 4748:7 4723:. 4693:: 4669:. 4639:: 4633:6 4601:. 4581:: 4575:3 4551:. 4537:: 4518:. 4504:: 4461:. 4441:: 4413:. 4391:: 4383:: 4377:6 4353:. 4347:: 4339:: 4331:: 4305:. 4277:: 4247:. 4233:: 4207:. 4195:: 4169:. 4145:: 4111:. 4089:: 4083:9 4057:. 4037:: 4029:: 4003:. 3981:: 3973:: 3967:7 3941:. 3909:: 3901:: 3895:4 3874:. 3842:: 3834:: 3828:5 3807:. 3795:: 3772:. 3750:: 3723:. 3711:: 3685:. 3665:: 3639:. 3611:: 3603:: 3597:2 3580:. 3560:: 3554:2 3518:) 3498:. 3466:: 3458:: 3448:: 3442:7 3418:. 3414:: 3406:: 3382:. 3354:: 3282:. 3268:: 3234:. 3202:: 3194:: 3164:. 3144:: 3136:: 3113:. 3085:: 3058:. 3038:: 3030:: 2998:. 2970:: 2962:: 2939:. 2927:: 2921:1 2904:. 2718:. 2688:. 2668:: 2662:8 2553:. 2168:- 1541:. 1515:. 1400:( 1392:( 756:.

Index


FISH
biomedical
microelectromechanical systems
lab-on-a-chip (LOC)
micro total analysis systems (μTAS)
microfabrication
lab-on-a-chip
miniaturization
microfluidic
chemical analysis
material sciences
clinical sciences
medicine
surgery
electrical engineering
mechanical engineering
optical engineering
chemical engineering
biomedical engineering
genomics
proteomics
molecular diagnostics
point-of-care diagnostics
tissue engineering
single cell analysis

Venn diagram

μTAS

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.