Knowledge

Bacterial transcription

Source 📝

479:(σ-factor). The sigma factor functions in aiding in promoter recognition, correct placement of RNA polymerase, and beginning unwinding at the start site. After the sigma factor performs its required function, it dissociates, while the catalytic portion remains on the DNA and continues transcription. Additionally, RNA polymerase contains a core Mg+ ion that assists the enzyme with its catalytic properties. RNA polymerase works by catalyzing the nucleophilic attack of 3’ OH of RNA to the alpha phosphate of a complementary NTP molecule to create a growing strand of RNA from the template strand of DNA. Furthermore, RNA polymerase also displays exonuclease activities, meaning that if improper base pairing is detected, it can cut out the incorrect bases and replace them with the proper, correct one. 33: 361: 630:(rho factor) is a terminator protein that attaches to the RNA strand and follows behind the polymerase during elongation. Once the polymerase nears the end of the gene it is transcribing, it encounters a series of G nucleotides which causes it to stall. This stalling allows the rho factor to catch up to the RNA polymerase. The rho protein then pulls the RNA transcript from the DNA template and the newly synthesized mRNA is released, ending transcription. Rho factor is a protein complex that also displays 202: 541:
the tighter RNA polymerase will be able to bind. This binding contributes to the stability of elongation stage of transcription and overall results in more efficient functioning. Additionally, RNA polymerase and σ-factors are in limited supply within any given bacterial cell. Consequently, σ-factor binding to the promoter is affected by these limitations. All promoter regions contain sequences that are considered non-consensus and this helps to distribute σ-factors across the entirety of the genome.
316: 411:. The binding of the σ-factor to the promoter is the first step in initiation. Once the σ-factor releases from the polymerase, elongation proceeds. The polymerase continues down the double stranded DNA, unwinding it and synthesizing the new mRNA strand until it reaches a termination site. There are two termination mechanisms that are discussed in further detail below. Termination is required at specific sites for proper 533: 435:. The work of the Jones team in Jones et al 2014 explains some of the underlying causes of bursts and other variability, including stability of the resulting mRNA, the strength of promotion encoded in the relevant promoter and the duration of transcription due to strength of the TF binding site. They also found that bacterial TFs linger too briefly for 524:" nucleotide sequences approximately 10 base pairs long are produced. These short sequences are nonfunctional pieces of RNA that are produced and then released. Generally, this nucleotide sequence consists of about twelve base pairs and aids in contributing to the stability of RNA polymerase so it is able to continue along the strand of DNA. 586:
Multiple RNA polymerases can be active at once, meaning many strands of mRNA can be produced very quickly. RNA polymerase moves down the DNA rapidly at approximately 40 bases per second. Due to the quick nature of this process, DNA is continually unwound ahead of RNA polymerase and then rewound once
554:
mechanism of RNA polymerase. Additionally, RNA polymerase increases the overall stability of this process by acting as a link between the RNA and DNA strands. New nucleotides that are complementary to the DNA template strand are added to the 3' end of the RNA strand. The newly formed RNA strand is
540:
The promoter region is a prime regulator of transcription. Promoter regions regulate transcription of all genes within bacteria. As a result of their involvement, the sequence of base pairs within the promoter region is significant; the more similar the promoter region is to the consensus sequence,
491:
that tell the σ-factor on RNA polymerase where to bind to the DNA. The promoters are usually located 15 to 19 bases apart and are most commonly found upstream of the genes they control. RNA polymerase is made up of 4 subunits, which include two alphas, a beta, and a beta prime (α, α, β, and β'). A
496:
be present for initiation to occur. When all σ-factor is present, RNA polymerase is in its active form and is referred to as the holoenzyme. When the σ-factor detaches, it is in core polymerase form. The σ-factor recognizes promoter sequences at -35 and -10 regions and transcription begins at the
474:
RNA polymerase is composed of a core and a holoenzyme structure. The core enzymes contains the catalytic properties of RNA polymerase and is made up of ββ′α2ω subunits. This sequence is conserved across all bacterial species. The holoenzyme is composed of a specific component known as the
394:
The process occurs in three main steps: initiation, elongation, and termination; and the end result is a strand of mRNA that is complementary to a single strand of DNA. Generally, the transcribed region accounts for more than one gene. In fact, many prokaryotic genes occur in
465:
Overall, transcription within bacteria is a highly regulated process that is controlled by the integration of many signals at a given time. Bacteria heavily rely on transcription and translation to generate proteins that help them respond specifically to their environment.
527:
The σ-factor is needed to initiate transcription but is not needed to continue transcribing the DNA. The σ-factor dissociates from the core enzyme and elongation proceeds. This signals the end of the initiation phase and the holoenzyme is now in core polymerase
457:
and translation occurs in the cytoplasm. There is only one type of bacterial RNA polymerase whereas eukaryotes have 3 types. Bacteria have a σ-factor that detects and binds to promoter sites but eukaryotes do not need a σ-factor. Instead, eukaryotes have
1471: 508:
Once the σ-factor binds, the remaining subunits of the polymerase attach to the site. The high concentration of adenine-thymine bonds at the -10 region facilitates the unwinding of the DNA. At this point, the holoenzyme is called the
634:
activities (is able to unwind the nucleic acid strands). It will bind to the DNA in cytosine rich regions and when RNA polymerase encounters it, a trapped complex will form causing the dissociation of all molecules involved and end
583:). The attachment of NTPs onto the 3' end of the RNA transcript provides the energy required for this synthesis. NTPs are also energy producing molecules that provide the fuel that drives chemical reactions in the cell. 549:
During elongation, RNA polymerase slides down the double stranded DNA, unwinding it and transcribing (copying) its nucleotide sequence into newly synthesized RNA. The movement of the RNA-DNA complex is essential for the
618:
that causes the strand to loop which stalls the RNA polymerase. Generally, this type of termination follows the same standard procedure. A pause will occur due to a polyuridine sequence that allows the formation of a
1385: 639:
The termination of DNA transcription in bacteria may be stopped by certain mechanisms wherein the RNA polymerase will ignore the terminator sequence until the next one is reached. This phenomenon is known as
587:
RNA polymerase moves along further. The polymerase has a proofreading mechanism that limits mistakes to about 1 in 10,000 nucleotides transcribed. RNA polymerase has lower fidelity (accuracy) and speed than
559:
identical to the DNA coding strand (sense strand or non-template strand), except it has uracil substituting thymine, and a ribose sugar backbone instead of a deoxyribose sugar backbone. Because
492:
fifth subunit, sigma (called the σ-factor), is only present during initiation and detaches prior to elongation. Each subunit plays a role in the initiation of transcription, and the σ-factor
907:
El-Mansi, E. M. T.; Nielsen, Jens; Mousdale, David; Allman, Tony; Carlson, Ross (2019). El-Mansi, Mansi; Nielsen, Jens; Mousdale, David M.; Allman, Tony; Carlson, Ross (eds.).
1722: 623:. This hairpin loop will aid in forming a trapped complex, which will ultimately cause the dissociation of RNA polymerase from the template DNA strand and halt transcription. 595:, which contributes to the higher fidelity. The consequence of an error during RNA synthesis is usually harmless, where as an error in DNA synthesis could be detrimental. 839: 427:. Transcription factors work to recognize specific DNA sequences and based on the cells needs, promote or inhibit additional transcription. Similar to other 1543: 684: 517:. Only one strand of DNA, called the template strand (also called the noncoding strand or nonsense/antisense strand), gets transcribed. 347: 1670: 611: 606:
In order for proper gene expression to occur, transcription must stop at specific sites. Two termination mechanisms are well known:
415:
to occur. Gene expression determines how much gene product, such as protein, is made by the gene. Transcription is carried out by
2057: 2203: 1838: 1610: 959: 932: 736: 399:, which are a series of genes that work together to code for the same protein or gene product and are controlled by a single 2435: 1702: 564: 1573: 1810: 753: 1637: 1170:
Bashor, Caleb J.; Collins, James J. (2018-05-20). "Understanding Biological Regulation Through Synthetic Biology".
1044: 2407: 1964: 1908: 2460: 1903: 340: 2402: 220: 1991: 1922: 1663: 1551: 1727: 2050: 1172: 1112: 1110:
Typas, Athanasios; Sourjik, Victor (2015-08-10). "Bacterial protein networks: properties and functions".
497:
start site (+1). The sequence of the -10 region is TATAAT and the sequence of the -35 region is TTGACA.
2083: 1942: 1181: 563:(NTPs) need to attach to the OH- molecule on the 3' end of the RNA, transcription always occurs in the 109: 2280: 2216: 2186: 2164: 1302: 1255: 403:. Bacterial RNA polymerase is made up of four subunits and when a fifth subunit attaches, called the 333: 782: 2500: 2074: 2066: 1986: 1774: 1687: 1656: 614:): Specific DNA nucleotide sequences signal the RNA polymerase to stop. The sequence is commonly a 501:
The σ-factor binds to the -35 promoter region. At this point, the holoenzyme is referred to as the
446: 127: 2381: 1947: 1749: 1324: 1246: 1052: 560: 383:
is the process in which a segment of bacterial DNA is copied into a newly synthesized strand of
2290: 2043: 1952: 1877: 1769: 572: 568: 1496:
Browning DF, Busby SJ (January 2004). "The regulation of bacterial transcription initiation".
2474: 2469: 2337: 2239: 1867: 1852: 1732: 580: 432: 300: 280: 245: 157: 152: 977:"What's Luck Got to Do with It: Single Cells, Multiple Fates, and Biological Nondeterminism" 449:
in several ways. In bacteria, transcription and translation can occur simultaneously in the
2371: 2285: 2251: 2145: 1974: 1872: 1790: 1259: 615: 598:
The promoter sequence determines the frequency of transcription of its corresponding gene.
576: 514: 459: 424: 1189: 8: 2354: 2322: 2208: 2182: 1800: 521: 420: 408: 400: 360: 275: 255: 190: 147: 141: 132: 104: 2035: 1263: 32: 2123: 1935: 1818: 1521: 1443: 1418: 1358: 1319: 1288: 1241: 1219: 1149: 1089: 1015: 976: 946: 770: 488: 407:(σ-factor), the polymerase can recognize specific binding sequences in the DNA, called 270: 265: 240: 162: 2505: 2442: 1616: 1606: 1513: 1448: 1363: 1345: 1293: 1275: 1211: 1203: 1141: 1133: 1081: 1073: 1020: 1002: 955: 950: 938: 928: 886: 732: 487:
Initiation of transcription requires promoter regions, which are specific nucleotide
320: 205: 84: 2019: 1153: 1093: 2364: 2347: 1599: 1505: 1438: 1430: 1353: 1337: 1333: 1283: 1271: 1267: 1223: 1193: 1185: 1125: 1121: 1065: 1061: 1010: 994: 920: 876: 212: 1525: 2228: 1996: 1833: 1679: 998: 812: 641: 412: 2438: 2426: 2376: 1823: 1795: 981: 816: 588: 416: 388: 260: 185: 1643: 1434: 1341: 1069: 942: 881: 864: 2494: 2140: 2024: 1711: 1620: 1349: 1279: 1207: 1137: 1077: 1006: 645: 384: 373: 1240:
Xu, Heng; Skinner, Samuel O.; Sokac, Anna Marie; Golding, Ido (2016-09-13).
1898: 1828: 1697: 1517: 1452: 1367: 1297: 1215: 1145: 1085: 1024: 890: 620: 591:. DNA polymerase has a very different proofreading mechanism that includes 476: 454: 404: 250: 924: 442:
binding characteristics to explain the sustained transcription of bursts.
2327: 2295: 2198: 2001: 1930: 1198: 592: 1129: 2479: 2173: 2128: 2118: 2113: 2108: 2103: 1959: 1509: 990: 912: 627: 505:
because the DNA is still double stranded (connected by hydrogen bonds).
180: 94: 74: 49: 2135: 916: 551: 450: 137: 2342: 2332: 1979: 1969: 1893: 727:
Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2008).
631: 532: 196: 79: 69: 24: 1648: 685:"Prokaryotic Transcription and Translation | Biology for Majors I" 2302: 2169: 1715: 1318:
Eling, Nils; Morgan, Michael D.; Marioni, John C. (2019-05-21).
2098: 453:
of the cell, whereas in eukaryotes transcription occurs in the
396: 89: 64: 2359: 2211: 1737: 1605:(10th ed.). Sudbury, Massachusetts: Jones and Bartlett. 1596: 1472:"7.6C: Prokaryotic Transcription and Translation Are Coupled" 906: 865:"Bacterial Transcription Factors: Regulation by Pick "N" Mix" 428: 1320:"Challenges in measuring and understanding biological noise" 810: 2430: 2260: 2191: 1574:"What is the error rate in transcription and translation?" 462:
that allow the recognition and binding of promoter sites.
2065: 1707: 369: 365: 59: 54: 1597:
Lewin B, Krebs JE, Goldstein ES, Kilpatrick ST (2011).
726: 419:
but its specificity is controlled by sequence-specific
1419:"Fidelity of DNA replication-a matter of proofreading" 1165: 1163: 1416: 1239: 1105: 1103: 536:
Abortive cycling occurs prior to sigma factor release
1313: 1311: 1160: 1038: 1036: 1034: 862: 1598: 1380: 1378: 1317: 1100: 970: 968: 902: 900: 863:Browning DF, Butala M, Busby SJ (September 2019). 2492: 1308: 1235: 1233: 1045:"The causes of evolvability and their evolution" 1043:Payne, Joshua L.; Wagner, Andreas (2018-11-01). 1031: 1412: 1410: 1408: 1406: 1375: 965: 897: 567:. The four NTPs are adenosine-5'-triphosphate ( 722: 720: 718: 716: 714: 712: 710: 708: 706: 704: 2051: 1664: 1495: 1489: 1466: 1464: 1462: 1230: 1169: 811:Lodish H, Berk A, Zipursky SL, Matsudaira P, 806: 804: 802: 800: 798: 796: 794: 792: 731:(Sixth ed.). New York: Garland Science. 341: 1417:Bębenek A, Ziuzia-Graczyk I (October 2018). 1403: 1109: 856: 1042: 909:Fermentation Microbiology and Biotechnology 701: 2058: 2044: 1819:Precursor mRNA (pre-mRNA / hnRNA) 1671: 1657: 1459: 974: 789: 348: 334: 1442: 1357: 1287: 1197: 1014: 880: 1571: 531: 364:Transcription is the process of copying 359: 1644:Video animation summarizing the process 679: 677: 675: 673: 671: 669: 667: 665: 663: 661: 513:. This open complex is also called the 2493: 834: 832: 830: 751: 2204:Histone acetylation and deacetylation 2039: 1839:Histone acetylation and deacetylation 1652: 1541: 1537: 1535: 1190:10.1146/annurev-biophys-070816-033903 975:Symmons, Orsolya; Raj, Arjun (2016). 445:Bacterial transcription differs from 1904:Ribosome-nascent chain complex (RNC) 1242:"Stochastic Kinetics of Nascent RNA" 817:"Bacterial Transcription Initiation" 658: 1678: 1550:. BC Open Textbooks. Archived from 827: 758:. Open Oregon Educational Resources 610:Intrinsic termination (also called 13: 1532: 14: 2517: 1631: 1386:"15.2: Prokaryotic Transcription" 579:), and cytidine-5'-triphosphate ( 469: 2455: 1542:Clark, Mary Ann (5 March 2018). 520:Transcription begins and short " 315: 314: 201: 200: 31: 2423: 2408:Archaeal transcription factor B 2397: 1909:Post-translational modification 1590: 1565: 1272:10.1103/physrevlett.117.128101 745: 601: 571:), guanoside-5'-triphosphate ( 387:(mRNA) with use of the enzyme 1: 729:Molecular Biology of the Cell 651: 544: 482: 1498:Nature Reviews. Microbiology 999:10.1016/j.molcel.2016.05.023 869:Journal of Molecular Biology 575:), uridine-5'-triphosphate ( 7: 1578:Cell Biology by the Numbers 1544:"Prokaryotic Transcription" 1173:Annual Review of Biophysics 1113:Nature Reviews Microbiology 644:and is utilized by certain 626:Rho-dependent termination: 612:Rho-independent termination 10: 2522: 2084:Transcriptional regulation 1476:General Biology (OpenStax) 1390:General Biology (OpenStax) 2451: 2416: 2390: 2315: 2281:Transcription coregulator 2273: 2250: 2227: 2217:Histone acetyltransferase 2187:Histone methyltransferase 2165:Histone-modifying enzymes 2163: 2156: 2091: 2082: 2012: 1921: 1886: 1860: 1851: 1809: 1783: 1757: 1748: 1686: 1435:10.1007/s00294-018-0820-1 1342:10.1038/s41576-019-0130-6 1256:American Physical Society 1070:10.1038/s41576-018-0069-z 882:10.1016/j.jmb.2019.04.011 840:"Stages of transcription" 755:Prokaryotic Transcription 689:courses.lumenlearning.com 1970:sequestration (P-bodies) 1478:. LibreTexts. 2017-05-17 1392:. LibreTexts. 2015-11-02 561:nucleoside triphosphates 447:eukaryotic transcription 2382:Internal control region 1948:Gene regulatory network 1638:Bacterial Transcription 1325:Nature Reviews Genetics 1247:Physical Review Letters 1053:Nature Reviews Genetics 433:bursts of transcription 381:Bacterial transcription 1953:cis-regulatory element 821:Molecular Cell Biology 537: 431:, bacteria experience 377: 2475:Intrinsic termination 2240:DNA methyltransferase 925:10.1201/9780429506987 815:, Darnel l J (2000). 535: 460:transcription factors 425:transcription factors 363: 301:Personalized medicine 295:Personalized medicine 158:Quantitative genetics 153:Mendelian inheritance 2252:Chromatin remodeling 1975:alternative splicing 1965:Post-transcriptional 1791:Transcription factor 1572:Milo R, Phillips R. 919:. pp. xix+419. 616:palindromic sequence 593:exonuclease activity 515:transcription bubble 421:DNA binding proteins 221:Branches of genetics 2209:Histone deacetylase 2199:Histone demethylase 2183:Histone methylation 1899:Transfer RNA (tRNA) 1264:2016PhRvL.117l8101X 1130:10.1038/nrmicro3508 489:consensus sequences 191:Genetic engineering 148:Population genetics 19:Part of a series on 2013:Influential people 1992:Post-translational 1811:Post-transcription 1510:10.1038/nrmicro787 565:5' to 3' direction 538: 378: 163:Molecular genetics 122:History and topics 2488: 2487: 2443:RNA polymerase II 2311: 2310: 2269: 2268: 2033: 2032: 1917: 1916: 1847: 1846: 1723:Special transfers 1612:978-0-7637-6632-0 960:978-0-429-50698-7 934:978-1-138-58102-9 875:(20): 4067–4077. 752:Bartee L (2017). 738:978-0-8153-4524-4 358: 357: 85:Genetic variation 2513: 2365:Response element 2348:Response element 2161: 2160: 2089: 2088: 2060: 2053: 2046: 2037: 2036: 1858: 1857: 1755: 1754: 1673: 1666: 1659: 1650: 1649: 1625: 1624: 1604: 1594: 1588: 1587: 1585: 1584: 1569: 1563: 1562: 1560: 1559: 1539: 1530: 1529: 1493: 1487: 1486: 1484: 1483: 1468: 1457: 1456: 1446: 1423:Current Genetics 1414: 1401: 1400: 1398: 1397: 1382: 1373: 1371: 1361: 1334:Nature Portfolio 1315: 1306: 1301: 1291: 1237: 1228: 1227: 1201: 1167: 1158: 1157: 1122:Nature Portfolio 1107: 1098: 1097: 1062:Nature Portfolio 1049: 1040: 1029: 1028: 1018: 972: 963: 954: 904: 895: 894: 884: 860: 854: 853: 851: 850: 836: 825: 824: 808: 787: 786: 780: 776: 774: 766: 764: 763: 749: 743: 742: 724: 699: 698: 696: 695: 681: 440: 350: 343: 336: 323: 318: 317: 213:Medical genetics 209: 204: 203: 35: 16: 15: 2521: 2520: 2516: 2515: 2514: 2512: 2511: 2510: 2501:Gene expression 2491: 2490: 2489: 2484: 2459: 2453: 2447: 2412: 2386: 2307: 2265: 2246: 2229:DNA methylation 2223: 2167: 2152: 2078: 2064: 2034: 2029: 2008: 1943:Transcriptional 1913: 1882: 1843: 1834:Polyadenylation 1805: 1779: 1744: 1738:Protein→Protein 1689: 1682: 1680:Gene expression 1677: 1634: 1629: 1628: 1613: 1601:Lewin's genes X 1595: 1591: 1582: 1580: 1570: 1566: 1557: 1555: 1540: 1533: 1494: 1490: 1481: 1479: 1470: 1469: 1460: 1415: 1404: 1395: 1393: 1384: 1383: 1376: 1316: 1309: 1238: 1231: 1168: 1161: 1108: 1101: 1047: 1041: 1032: 973: 966: 935: 905: 898: 861: 857: 848: 846: 838: 837: 828: 823:(4th ed.). 809: 790: 778: 777: 768: 767: 761: 759: 750: 746: 739: 725: 702: 693: 691: 683: 682: 659: 654: 642:antitermination 604: 547: 485: 472: 438: 413:gene expression 354: 313: 306: 305: 296: 288: 287: 286: 285: 234: 226: 225: 217: 195: 176: 168: 167: 123: 115: 114: 101: 100: 99: 43: 12: 11: 5: 2519: 2509: 2508: 2503: 2486: 2485: 2483: 2482: 2477: 2472: 2466: 2464: 2449: 2448: 2446: 2445: 2439:RNA polymerase 2433: 2427:RNA polymerase 2420: 2418: 2414: 2413: 2411: 2410: 2405: 2400: 2394: 2392: 2388: 2387: 2385: 2384: 2379: 2374: 2369: 2368: 2367: 2362: 2352: 2351: 2350: 2345: 2340: 2335: 2330: 2319: 2317: 2313: 2312: 2309: 2308: 2306: 2305: 2300: 2299: 2298: 2293: 2288: 2277: 2275: 2271: 2270: 2267: 2266: 2264: 2263: 2257: 2255: 2248: 2247: 2245: 2244: 2243: 2242: 2234: 2232: 2225: 2224: 2222: 2221: 2220: 2219: 2214: 2201: 2196: 2195: 2194: 2179: 2177: 2158: 2154: 2153: 2151: 2150: 2149: 2148: 2143: 2133: 2132: 2131: 2126: 2121: 2116: 2111: 2106: 2095: 2093: 2086: 2080: 2079: 2063: 2062: 2055: 2048: 2040: 2031: 2030: 2028: 2027: 2022: 2020:François Jacob 2016: 2014: 2010: 2009: 2007: 2006: 2005: 2004: 1999: 1989: 1984: 1983: 1982: 1977: 1972: 1962: 1957: 1956: 1955: 1950: 1940: 1939: 1938: 1927: 1925: 1919: 1918: 1915: 1914: 1912: 1911: 1906: 1901: 1896: 1890: 1888: 1884: 1883: 1881: 1880: 1875: 1870: 1864: 1862: 1855: 1849: 1848: 1845: 1844: 1842: 1841: 1836: 1831: 1826: 1821: 1815: 1813: 1807: 1806: 1804: 1803: 1798: 1796:RNA polymerase 1793: 1787: 1785: 1781: 1780: 1778: 1777: 1772: 1767: 1761: 1759: 1752: 1746: 1745: 1743: 1742: 1741: 1740: 1735: 1730: 1720: 1719: 1718: 1700: 1694: 1692: 1684: 1683: 1676: 1675: 1668: 1661: 1653: 1647: 1646: 1641: 1633: 1632:External links 1630: 1627: 1626: 1611: 1589: 1564: 1531: 1488: 1458: 1429:(5): 985–996. 1402: 1374: 1307: 1229: 1182:Annual Reviews 1159: 1099: 1030: 982:Molecular Cell 964: 933: 911:(4 ed.). 896: 855: 826: 788: 744: 737: 700: 656: 655: 653: 650: 646:bacteriophages 637: 636: 635:transcription. 624: 603: 600: 589:DNA polymerase 546: 543: 530: 529: 525: 518: 506: 503:closed complex 484: 481: 471: 470:RNA polymerase 468: 417:RNA polymerase 389:RNA polymerase 356: 355: 353: 352: 345: 338: 330: 327: 326: 325: 324: 308: 307: 304: 303: 297: 294: 293: 290: 289: 284: 283: 278: 273: 268: 263: 261:Immunogenetics 258: 253: 248: 243: 237: 236: 235: 232: 231: 228: 227: 224: 223: 216: 215: 210: 193: 188: 186:DNA sequencing 183: 177: 174: 173: 170: 169: 166: 165: 160: 155: 150: 145: 135: 130: 124: 121: 120: 117: 116: 113: 112: 107: 98: 97: 92: 87: 82: 77: 72: 67: 62: 57: 52: 46: 45: 44: 42:Key components 41: 40: 37: 36: 28: 27: 21: 20: 9: 6: 4: 3: 2: 2518: 2507: 2504: 2502: 2499: 2498: 2496: 2481: 2478: 2476: 2473: 2471: 2468: 2467: 2465: 2462: 2457: 2450: 2444: 2440: 2437: 2434: 2432: 2428: 2425: 2422: 2421: 2419: 2415: 2409: 2406: 2404: 2401: 2399: 2396: 2395: 2393: 2389: 2383: 2380: 2378: 2375: 2373: 2370: 2366: 2363: 2361: 2358: 2357: 2356: 2353: 2349: 2346: 2344: 2341: 2339: 2336: 2334: 2331: 2329: 2326: 2325: 2324: 2321: 2320: 2318: 2314: 2304: 2301: 2297: 2294: 2292: 2289: 2287: 2284: 2283: 2282: 2279: 2278: 2276: 2272: 2262: 2259: 2258: 2256: 2253: 2249: 2241: 2238: 2237: 2236: 2235: 2233: 2230: 2226: 2218: 2215: 2213: 2210: 2207: 2206: 2205: 2202: 2200: 2197: 2193: 2190: 2189: 2188: 2184: 2181: 2180: 2178: 2175: 2171: 2166: 2162: 2159: 2155: 2147: 2146:trp repressor 2144: 2142: 2141:lac repressor 2139: 2138: 2137: 2134: 2130: 2127: 2125: 2122: 2120: 2117: 2115: 2112: 2110: 2107: 2105: 2102: 2101: 2100: 2097: 2096: 2094: 2090: 2087: 2085: 2081: 2076: 2072: 2068: 2067:Transcription 2061: 2056: 2054: 2049: 2047: 2042: 2041: 2038: 2026: 2025:Jacques Monod 2023: 2021: 2018: 2017: 2015: 2011: 2003: 2000: 1998: 1995: 1994: 1993: 1990: 1988: 1987:Translational 1985: 1981: 1978: 1976: 1973: 1971: 1968: 1967: 1966: 1963: 1961: 1958: 1954: 1951: 1949: 1946: 1945: 1944: 1941: 1937: 1934: 1933: 1932: 1929: 1928: 1926: 1924: 1920: 1910: 1907: 1905: 1902: 1900: 1897: 1895: 1892: 1891: 1889: 1885: 1879: 1876: 1874: 1871: 1869: 1866: 1865: 1863: 1859: 1856: 1854: 1850: 1840: 1837: 1835: 1832: 1830: 1827: 1825: 1822: 1820: 1817: 1816: 1814: 1812: 1808: 1802: 1799: 1797: 1794: 1792: 1789: 1788: 1786: 1782: 1776: 1773: 1771: 1768: 1766: 1763: 1762: 1760: 1756: 1753: 1751: 1750:Transcription 1747: 1739: 1736: 1734: 1731: 1729: 1726: 1725: 1724: 1721: 1717: 1713: 1709: 1706: 1705: 1704: 1703:Central dogma 1701: 1699: 1696: 1695: 1693: 1691: 1685: 1681: 1674: 1669: 1667: 1662: 1660: 1655: 1654: 1651: 1645: 1642: 1639: 1636: 1635: 1622: 1618: 1614: 1608: 1603: 1602: 1593: 1579: 1575: 1568: 1554:on 2019-11-14 1553: 1549: 1545: 1538: 1536: 1527: 1523: 1519: 1515: 1511: 1507: 1503: 1499: 1492: 1477: 1473: 1467: 1465: 1463: 1454: 1450: 1445: 1440: 1436: 1432: 1428: 1424: 1420: 1413: 1411: 1409: 1407: 1391: 1387: 1381: 1379: 1369: 1365: 1360: 1355: 1351: 1347: 1343: 1339: 1335: 1331: 1327: 1326: 1321: 1314: 1312: 1304: 1299: 1295: 1290: 1285: 1281: 1277: 1273: 1269: 1265: 1261: 1257: 1253: 1249: 1248: 1243: 1236: 1234: 1225: 1221: 1217: 1213: 1209: 1205: 1200: 1199:1721.1/119222 1195: 1191: 1187: 1183: 1179: 1175: 1174: 1166: 1164: 1155: 1151: 1147: 1143: 1139: 1135: 1131: 1127: 1123: 1119: 1115: 1114: 1106: 1104: 1095: 1091: 1087: 1083: 1079: 1075: 1071: 1067: 1063: 1059: 1055: 1054: 1046: 1039: 1037: 1035: 1026: 1022: 1017: 1012: 1008: 1004: 1000: 996: 992: 988: 984: 983: 978: 971: 969: 961: 957: 952: 948: 944: 940: 936: 930: 926: 922: 918: 914: 910: 903: 901: 892: 888: 883: 878: 874: 870: 866: 859: 845: 841: 835: 833: 831: 822: 818: 814: 807: 805: 803: 801: 799: 797: 795: 793: 784: 772: 757: 756: 748: 740: 734: 730: 723: 721: 719: 717: 715: 713: 711: 709: 707: 705: 690: 686: 680: 678: 676: 674: 672: 670: 668: 666: 664: 662: 657: 649: 647: 643: 633: 629: 625: 622: 617: 613: 609: 608: 607: 599: 596: 594: 590: 584: 582: 578: 574: 570: 566: 562: 558: 553: 542: 534: 526: 523: 519: 516: 512: 507: 504: 500: 499: 498: 495: 490: 480: 478: 467: 463: 461: 456: 452: 448: 443: 441: 434: 430: 426: 422: 418: 414: 410: 406: 402: 398: 392: 390: 386: 385:messenger RNA 382: 375: 371: 367: 362: 351: 346: 344: 339: 337: 332: 331: 329: 328: 322: 312: 311: 310: 309: 302: 299: 298: 292: 291: 282: 279: 277: 274: 272: 269: 267: 264: 262: 259: 257: 254: 252: 249: 247: 244: 242: 239: 238: 230: 229: 222: 219: 218: 214: 211: 207: 198: 194: 192: 189: 187: 184: 182: 179: 178: 172: 171: 164: 161: 159: 156: 154: 151: 149: 146: 143: 139: 136: 134: 131: 129: 126: 125: 119: 118: 111: 108: 106: 103: 102: 96: 93: 91: 88: 86: 83: 81: 78: 76: 73: 71: 68: 66: 63: 61: 58: 56: 53: 51: 48: 47: 39: 38: 34: 30: 29: 26: 23: 22: 18: 17: 2070: 2002:irreversible 1887:Key elements 1784:Key elements 1764: 1698:Genetic code 1688:Introduction 1600: 1592: 1581:. Retrieved 1577: 1567: 1556:. Retrieved 1552:the original 1547: 1504:(1): 57–65. 1501: 1497: 1491: 1480:. Retrieved 1475: 1426: 1422: 1394:. Retrieved 1389: 1372:EMSID: 85286 1329: 1323: 1251: 1245: 1177: 1171: 1117: 1111: 1057: 1051: 986: 980: 908: 872: 868: 858: 847:. Retrieved 844:Khan Academy 843: 820: 760:. Retrieved 754: 747: 728: 692:. Retrieved 688: 638: 621:hairpin loop 605: 597: 585: 556: 548: 539: 511:open complex 510: 502: 493: 486: 477:sigma factor 473: 464: 444: 436: 405:sigma factor 393: 380: 379: 281:Quantitative 251:Cytogenetics 246:Conservation 128:Introduction 2452:Termination 2328:Pribnow box 2296:Corepressor 2291:Coactivator 2092:prokaryotic 1853:Translation 1690:to genetics 1640:– animation 1336:: 536–548. 1184:: 399–423. 1124:: 559–572. 993:: 788–802. 813:Baltimore D 779:|work= 602:Termination 557:practically 2495:Categories 2480:Rho factor 2470:Terminator 2461:eukaryotic 2436:eukaryotic 2417:Elongation 2403:Eukaryotic 2391:Initiation 2174:nucleosome 2157:eukaryotic 2129:gal operon 2124:ara operon 2119:Gua Operon 2114:gab operon 2109:trp operon 2104:lac operon 2075:Eukaryotic 1997:reversible 1960:lac operon 1936:imprinting 1931:Epigenetic 1923:Regulation 1878:Eukaryotic 1824:5' capping 1775:Eukaryotic 1583:2019-11-15 1558:2019-11-29 1548:Biology 2e 1482:2019-10-07 1396:2019-10-08 1258:: 128101. 991:Cell Press 943:1080190329 913:Boca Raton 849:2019-10-07 762:2019-10-08 694:2019-10-06 652:References 545:Elongation 483:Initiation 372:, usually 276:Population 256:Ecological 181:Geneticist 95:Amino acid 75:Nucleotide 50:Chromosome 2456:bacterial 2424:bacterial 2398:Bacterial 2372:Insulator 2316:Promotion 2286:Activator 2136:Repressor 2071:Bacterial 1868:Bacterial 1765:Bacterial 1621:456641931 1350:1471-0056 1280:0031-9007 1208:1936-122X 1138:1740-1526 1078:1471-0056 1064:: 24–38. 1007:1097-2765 951:220766937 917:CRC Press 781:ignored ( 771:cite book 552:catalytic 451:cytoplasm 409:promoters 271:Molecular 266:Microbial 241:Classical 142:molecular 138:Evolution 2506:Bacteria 2377:Silencer 2355:Enhancer 2343:CAAT box 2333:TATA box 2323:Promoter 1980:microRNA 1894:Ribosome 1873:Archaeal 1829:Splicing 1801:Promoter 1770:Archaeal 1714: → 1710: → 1518:15035009 1453:29500597 1368:31114032 1298:27667861 1216:29547341 1154:12498094 1146:26256789 1094:53204518 1086:30385867 1025:27259209 891:30998934 632:helicase 628:ρ factor 522:abortive 401:promoter 321:Category 206:template 197:Genomics 175:Research 80:Mutation 70:Heredity 25:Genetics 2303:Inducer 2170:histone 1733:RNA→DNA 1728:RNA→RNA 1716:Protein 1444:6153641 1359:7611518 1305:816487. 1289:5033037 1260:Bibcode 1224:3888755 1016:4900469 455:nucleus 423:called 397:operons 133:History 105:Outline 2099:Operon 1619:  1609:  1526:680370 1524:  1516:  1451:  1441:  1366:  1356:  1348:  1296:  1286:  1278:  1254:(12). 1222:  1214:  1206:  1152:  1144:  1136:  1092:  1084:  1076:  1023:  1013:  1005:  958:  949:  941:  931:  889:  735:  319:  233:Fields 90:Allele 65:Genome 2360:E-box 2212:HDAC1 1861:Types 1758:Types 1522:S2CID 1332:(9). 1303:NIHMS 1220:S2CID 1180:(1). 1150:S2CID 1120:(9). 1090:S2CID 1060:(1). 1048:(PDF) 989:(5). 947:S2CID 528:form. 439:' 368:into 110:Index 2431:rpoB 2274:both 2261:CHD7 2192:EZH2 1617:OCLC 1607:ISBN 1514:PMID 1449:PMID 1364:PMID 1346:ISSN 1294:PMID 1276:ISSN 1212:PMID 1204:ISSN 1142:PMID 1134:ISSN 1082:PMID 1074:ISSN 1021:PMID 1003:ISSN 956:ISBN 939:OCLC 929:ISBN 887:PMID 783:help 733:ISBN 494:must 429:taxa 374:mRNA 2338:BRE 1712:RNA 1708:DNA 1506:doi 1439:PMC 1431:doi 1354:PMC 1338:doi 1284:PMC 1268:doi 1252:117 1194:hdl 1186:doi 1126:doi 1066:doi 1011:PMC 995:doi 921:doi 877:doi 873:431 581:CTP 577:UTP 573:GTP 569:ATP 437:TFs 370:RNA 366:DNA 60:RNA 55:DNA 2497:: 2441:: 2429:: 2176:): 2073:, 1615:. 1576:. 1546:. 1534:^ 1520:. 1512:. 1500:. 1474:. 1461:^ 1447:. 1437:. 1427:64 1425:. 1421:. 1405:^ 1388:. 1377:^ 1362:. 1352:. 1344:. 1330:20 1328:. 1322:. 1310:^ 1292:. 1282:. 1274:. 1266:. 1250:. 1244:. 1232:^ 1218:. 1210:. 1202:. 1192:. 1178:47 1176:. 1162:^ 1148:. 1140:. 1132:. 1118:13 1116:. 1102:^ 1088:. 1080:. 1072:. 1058:20 1056:. 1050:. 1033:^ 1019:. 1009:. 1001:. 987:62 985:. 979:. 967:^ 945:. 937:. 927:. 915:: 899:^ 885:. 871:. 867:. 842:. 829:^ 819:. 791:^ 775:: 773:}} 769:{{ 703:^ 687:. 660:^ 648:. 391:. 2463:) 2458:, 2454:( 2254:: 2231:: 2185:/ 2172:/ 2168:( 2077:) 2069:( 2059:e 2052:t 2045:v 1672:e 1665:t 1658:v 1623:. 1586:. 1561:. 1528:. 1508:: 1502:2 1485:. 1455:. 1433:: 1399:. 1370:. 1340:: 1300:. 1270:: 1262:: 1226:. 1196:: 1188:: 1156:. 1128:: 1096:. 1068:: 1027:. 997:: 962:. 953:. 923:: 893:. 879:: 852:. 785:) 765:. 741:. 697:. 376:. 349:e 342:t 335:v 208:) 199:( 144:) 140:(

Index

Genetics

Chromosome
DNA
RNA
Genome
Heredity
Nucleotide
Mutation
Genetic variation
Allele
Amino acid
Outline
Index
Introduction
History
Evolution
molecular
Population genetics
Mendelian inheritance
Quantitative genetics
Molecular genetics
Geneticist
DNA sequencing
Genetic engineering
Genomics
template
Medical genetics
Branches of genetics
Classical

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.