Knowledge

Bidirectional reflectance distribution function

Source đź“ť

2170:
is limited by the camera being used; this can be as low as 8 bits for older image sensors or as high as 32 bits for the newer automotive image sensors. The other disadvantage is that for BRDF measurements the beam must pass from an external light source, bounce off a pellicle and pass in reverse through the first few elements of the conoscope before being scattered by the sample. Each of these elements is antireflection-coated, but roughly 0.3% of the light is reflected at each air-glass interface. These reflections will show up in the image as a spurious signal. For scattering surfaces with a large signal, this is not a problem, but for Lambertian surfaces it is.
656: 1970:, NASA uses a BRDF model to characterise surface reflectance anisotropy. For a given land area, the BRDF is established based on selected multiangular observations of surface reflectance. While single observations depend on view geometry and solar angle, the MODIS BRDF/Albedo product describes intrinsic surface properties in several spectral bands, at a resolution of 500 meters. The BRDF/Albedo product can be used to model surface 2032: 2056: 2044: 31: 428: 2218: 2159:
Unfortunately, using such a device to densely measure the BRDF is very time-consuming. One of the first improvements on these techniques used a half-silvered mirror and a digital camera to take many BRDF samples of a planar target at once. Since this work, many researchers have developed other devices for efficiently acquiring BRDFs from real world samples, and it remains an active area of research.
651:{\displaystyle f_{\text{r}}(\omega _{\text{i}},\,\omega _{\text{r}})\,=\,{\frac {\mathrm {d} L_{\text{r}}(\omega _{\text{r}})}{\mathrm {d} E_{\text{i}}(\omega _{\text{i}})}}\,=\,{\frac {\mathrm {d} L_{\text{r}}(\omega _{\text{r}})}{L_{\text{i}}(\omega _{\text{i}})\cos \theta _{\text{i}}\mathrm {d} \omega _{\text{i}}}}} 1913: 2214:
This procedure starts with sampling the BRDF distribution and generating it with microfacet geometry then the surfaced is optimized in terms of smoothness and continuity to meet the limitations of the milling machine. The final BRDF distribution is the convolution of the substrate and the geometry of
2169:
A fast way to measure BRDF or BTDF is a conoscopic scatterometer The advantage of this measurement instrument is that a near-hemispheric measurement can be captured in a fraction of a second with resolution of roughly 0.1°. This instrument has two disadvantages. The first is that the dynamic range
2240:
In addition to color and specularity, real-world objects also contain texture. A 3D printer can be used to manufacture the geometry and cover the surface with a suitable ink; by optimally creating the facets and choosing the ink combination, this method can give us a higher degree of freedom in
2233:
to achieve the targeted BRDF. Given a set of metallic inks with known BRDF an algorithm proposed to linearly combine them to produce the targeted distribution.  So far printing only means gray-scale or color printing but real-world surfaces can exhibit different amounts of specularity that
2158:
employ one or more goniometric arms to position a light source and a detector at various directions from a flat sample of the material to be measured. To measure a full BRDF, this process must be repeated many times, moving the light source each time to measure a different incidence angle.
1789: 1504: 1409: 1309: 2847:
E. Lafortune, S. Foo, K. Torrance, and D. Greenberg, Non-linear approximation of reflectance functions. In Turner Whitted, editor, SIGGRAPH 97 Conference Proceedings, Annual Conference Series, pp. 117–126. ACM SIGGRAPH, Addison Wesley, August
2094:, physically motivated approximation of the radiative transfer solution for a porous, irregular, and particulate surface. Often used in astronomy for planet/small body surface reflection simulations. Multiple versions and modifications exist. 2178:
BRDF fabrication refers to the process of implementing a surface based on the measured or synthesized information of a target BRDF. There exist three ways to perform such a task, but in general, it can be summarized as the following steps:
1796: 1175: 1608: 2922:
Marschner S.R., Westin S.H., Lafortune E.P.F., Torrance K.E., Greenberg D.P. (1999) Image-Based BRDF Measurement Including Human Skin. In: Lischinski D., Larson G.W. (eds) Rendering Techniques’ 99. Eurographics. Springer,
1683: 958: 175: 1210:) is appropriate for modeling non-flat surfaces, and has the same parameterization as the SVBRDF; however in contrast, the BTF includes non-local scattering effects like shadowing, masking, interreflections or 1097: 1049: 901: 1544: 1694: 1001: 2067:
Three elemental components that can be used to model a variety of light-surface interactions. The incoming light ray is shown in black, the reflected ray(s) modeled by the BRDF in gray.
1418: 1329: 3009:
Matusik, Wojciech; Ajdin, Boris; Gu, Jinwei; Lawrence, Jason; Lensch, Hendrik P. A.; Pellacini, Fabio; Rusinkiewicz, Szymon (2009-12-01). "Printing spatially-varying reflectance".
1232: 3128:
Schaepman-Strub, G.; M. E. Schaepman; T. H. Painter; S. Dangel; J. V. Martonchik (2006-07-15). "Reflectance quantities in optical remote sensing: definitions and case studies".
776: 749: 336: 305: 245: 218: 86: 59: 1197: 802: 270: 2838:
X. He, K. Torrance, F. Sillon, and D. Greenberg, A comprehensive physical model for light reflection, Computer Graphics 25 (1991), no. Annual Conference Series, 175–186.
846: 824: 2415:"Photovoltaic System Performance Enhancement with Nontracking Planar Concentrators: Experimental Results and Bidirectional Reflectance Function (BDRF)-Based Modeling" 405: 356: 1908:{\displaystyle \forall \omega _{\text{i}},\,\int _{\Omega }f_{\text{r}}(\omega _{\text{i}},\,\omega _{\text{r}})\,\cos {\theta _{\text{r}}}d\omega _{\text{r}}\leq 1} 382: 714: 678: 106: 1114: 2951: 2121:, a specular-microfacet model with an elliptical-Gaussian distribution function dependent on surface tangent orientation (in addition to surface normal). 1549: 1625: 2256: 1226: 906: 123: 2963:
Weyrich, Tim; Peers, Pieter; Matusik, Wojciech; Rusinkiewicz, Szymon (2009). "Fabricating microgeometry for custom surface reflectance".
2518: 2345:
Duvenhage, Bernardt (2013). "Numerical verification of bidirectional reflectance distribution functions for physical plausibility".
2362:"Photovoltaic system performance enhancement with non-tracking planar concentrators: Experimental results and BDRF based modelling" 2501: 2361: 2136:
Fitted Lafortune model, a generalization of Phong with multiple specular lobes, and intended for parametric fits of measured data.
1054: 1006: 858: 3118: 3095: 2861: 2559: 2389: 1509: 2023:
W. Matusik et al. found that interpolating between measured samples produced realistic results and was easy to understand.
1784:{\displaystyle f_{\text{r}}(\omega _{\text{i}},\,\omega _{\text{r}})=f_{\text{r}}(\omega _{\text{r}},\,\omega _{\text{i}})} 2935: 2964: 2130:
Ashikhmin–Shirley model, allowing for anisotropic reflectance, along with a diffuse substrate under a specular surface.
2234:
affects their final appearance, as a result this novel method can help us print images even more realistically.  
1546:: that is, it will only emit light at wavelength equal to the incoming light. In this case it can be parameterized as 963: 2985: 2650: 2368: 2118: 2952:
https://www.photonicsspectra-digital.com/photonicsspectra/september 2020/MobilePagedReplica.action?pm=2&folio=56
2166:. The standard algorithm is to measure the BRDF point cloud from images and optimize it by one of the BRDF models. 1499:{\displaystyle f_{\text{r}}(\lambda _{\text{i}},\,\omega _{\text{i}},\,\lambda _{\text{r}},\,\omega _{\text{r}})=0} 2109:
Torrance–Sparrow model, a general model representing surfaces as distributions of perfectly specular microfacets.
1404:{\displaystyle f_{\text{r}}(\lambda _{\text{i}},\,\omega _{\text{i}},\,\lambda _{\text{r}},\,\omega _{\text{r}})} 855:
and not directly as a quotient between the undifferentiated quantities, is because irradiating light other than
3178: 1207: 1304:{\displaystyle S(\mathbf {x} _{\text{i}},\,\omega _{\text{i}},\,\mathbf {x} _{\text{r}},\,\omega _{\text{r}})} 2878: 2765:
Nayar, S. K.; Oren, M. (1995). "Generalization of the Lambertian Model and Implications for Machine Vision".
2103: 1932: 2106:, resembling Phong, but allowing for certain quantities to be interpolated, reducing computational overhead. 1318:
of light has been ignored. In reality, the BRDF is wavelength dependent, and to account for effects such as
2347:
Proceedings of the South African Institute for Computer Scientists and Information Technologists Conference
2124: 1982:
BRDFs can be measured directly from real objects using calibrated cameras and lightsources; however, many
359: 3158: 754: 727: 314: 283: 223: 196: 64: 37: 3036:
Lan, Yanxiang; Dong, Yue; Pellacini, Fabio; Tong, Xin (2013-07-01). "Bi-scale appearance fabrication".
2286: 2163: 852: 2229:
In order to generate spatially varying BRDF (svBRDF) it has been proposed to use gamut mapping and
2127:, a "directed-diffuse" microfacet model, with perfectly diffuse (rather than specular) microfacets. 2115:, a specular-microfacet model (Torrance–Sparrow) accounting for wavelength and thus color shifting. 2200:
Optimize the continuity and smoothness of the surface with respect to the manufacturing procedure.
1180: 785: 253: 3193: 2674:
Torrance, K.; Sparrow, E. (1967). "Theory for Off-Specular Reflection from Roughened Surfaces".
829: 807: 177:, is a function of four real variables that defines how light from a source is reflected off an 2271: 2097: 1991: 1983: 1618:
Physically realistic BRDFs for reciprocal linear optics have additional properties, including,
2478: 1994:
model frequently assumed in computer graphics. Some useful features of recent models include:
3173: 2079: 1688: 1211: 390: 341: 2906:
Church E., Takacs P., Leonard T., The prediction of BSDFs from surface profile measurements
3137: 2683: 2539: 2319: 407:, therefore the BRDF as a whole is a function of 4 variables. The BRDF has units sr, with 367: 17: 8: 3188: 2209: 1311:
in which light entering the surface may scatter internally and exit at another location.
3141: 2687: 2635:
Proceedings of the 4th annual conference on Computer graphics and interactive techniques
2543: 2323: 27:
Function of four real variables that defines how light is reflected at an opaque surface
3061: 2991: 2891: 2821: 2782: 2656: 2633:
James F. Blinn (1977). "Models of light reflection for computer synthesized pictures".
2615: 2498: 2434: 2395: 2310:
Nicodemus, Fred (1965). "Directional reflectance and emissivity of an opaque surface".
2291: 2261: 2155: 2016: 1960: 1948: 1936: 699: 663: 91: 3114: 3091: 3053: 2981: 2646: 2575: 2555: 2385: 2112: 2009: 1928: 248: 186: 3127: 2995: 2859:
Image-based modelling of material reflective properties of flat objects (In Russian)
2825: 2438: 2399: 1170:{\displaystyle f_{\text{r}}(\omega _{\text{i}},\,\omega _{\text{r}},\,\mathbf {x} )} 3145: 3065: 3045: 3018: 2973: 2907: 2817: 2813: 2786: 2774: 2747: 2722: 2691: 2660: 2638: 2619: 2605: 2547: 2426: 2377: 2327: 2266: 2204:
Many approaches have been proposed for manufacturing the BRDF of the target :
2091: 178: 2858: 3183: 3110: 2939: 2865: 2505: 2430: 2085: 1956: 1944: 1940: 685: 190: 2133:
HTSG (He, Torrance, Sillion, Greenberg), a comprehensive physically based model.
1603:{\displaystyle f_{\text{r}}(\lambda ,\,\omega _{\text{i}},\,\omega _{\text{r}})} 1214:. The functions defined by the BTF at each point on the surface are thus called 2533: 1987: 1967: 779: 693: 34:
Diagram showing vectors used to define the BRDF. All vectors are unit length.
3149: 2950:
Eckhardt S, Lunda K., Digital Age Sees New Demand for the Venerable Conoscope
2932: 2381: 3167: 3057: 2801: 2551: 2452: 1412: 423:
The BRDF was first defined by Fred Nicodemus around 1965. The definition is:
362: 3049: 3022: 2977: 2186:
Sample this distribution to discretize it and make the fabrication feasible.
2695: 1678:{\displaystyle f_{\text{r}}(\omega _{\text{i}},\,\omega _{\text{r}})\geq 0} 1323: 385: 2751: 2742:
Ward, Gregory J. (1992). "Measuring and modeling anisotropic reflection".
2727: 2710: 2642: 2610: 2593: 2221:
The final BRDF is the aggregated effect of the geometry and ink selection.
2281: 1999: 1924: 1319: 689: 412: 2331: 2778: 2497:
Wojciech Matusik, Hanspeter Pfister, Matt Brand, and Leonard McMillan.
2276: 2190: 1952: 1315: 717: 308: 3159:
An intuitive introduction to the concept of reflection model and BRDF.
2911: 2082:, representing perfectly diffuse (matte) surfaces by a constant BRDF. 953:{\displaystyle f_{\text{r}}(\omega _{\text{i}},\,\omega _{\text{r}})} 408: 170:{\displaystyle f_{\text{r}}(\omega _{\text{i}},\,\omega _{\text{r}})} 2414: 2230: 2194: 681: 277: 2893:
A Study of Scattering Characteristics for Microscale Rough Surface
1223:
Bidirectional Surface Scattering Reflectance Distribution Function
960:, might illuminate the surface which would unintentionally affect 1109:
Spatially Varying Bidirectional Reflectance Distribution Function
2962: 2251: 2031: 1971: 1411:. Note that in the typical case where all optical elements are 182: 30: 2217: 2055: 2043: 2413:
Andrews, Rob W.; Pollard, Andrew; Pearce, Joshua M. (2015).
2360:
Andrews, Rob W.; Pollard, Andrew; Pearce, Joshua M. (2013).
2100:, a phenomenological model akin to plastic-like specularity. 1092:{\displaystyle \mathrm {d} E_{\text{i}}(\omega _{\text{i}})} 1044:{\displaystyle \mathrm {d} L_{\text{r}}(\omega _{\text{r}})} 896:{\displaystyle \mathrm {d} E_{\text{i}}(\omega _{\text{i}})} 193:
algorithms. The function takes an incoming light direction,
2370:
2013 IEEE 39th Photovoltaic Specialists Conference (PVSC)
1951:. BRDF has also been used for modeling light trapping in 2189:
Design a geometry that produces this distribution (with
851:
The reason the function is defined as a quotient of two
2896:(Master's thesis). Rose-Hulman Institute of Technology. 2538:(2 ed.). Cambridge University Press. p. 323. 2479:"A Survey of BRDF Representation for Computer Graphics" 2183:
Measuring or synthesizing the target BRDF distribution.
1539:{\displaystyle \lambda _{\text{i}}=\lambda _{\text{r}}} 3008: 2162:
There is an alternative way to measure BRDF based on
2139:
Lebedev model for analytical-grid BRDF approximation.
2005:
editable using a small number of intuitive parameters
1799: 1697: 1628: 1552: 1512: 1421: 1332: 1235: 1183: 1117: 1057: 1009: 966: 909: 861: 832: 810: 788: 757: 730: 702: 666: 431: 393: 370: 344: 317: 286: 256: 226: 199: 126: 94: 67: 40: 3035: 2972:. New York, New York, USA: ACM Press. pp. 1–6. 2879:
Approximated Scatter Models for Stray Light Analysis
2412: 2359: 1326:
the dependence on wavelength must be made explicit:
2857:Ilyin A., Lebedev A., Sinyavsky V., Ignatenko, A., 1229:), is a further generalized 8-dimensional function 3104: 3081: 2576:"Fundamentals of the Planetary Spectrum Generator" 1907: 1783: 1677: 1602: 1538: 1498: 1403: 1303: 1199:describes a 2D location over an object's surface. 1191: 1169: 1091: 1043: 995: 952: 895: 840: 818: 796: 770: 743: 708: 672: 650: 399: 376: 350: 330: 299: 264: 239: 212: 169: 100: 80: 53: 3165: 2799: 2535:Theory of Reflectance and Emittance Spectroscopy 996:{\displaystyle L_{\text{r}}(\omega _{\text{r}})} 2673: 2154:Traditionally, BRDF measurement devices called 114:bidirectional reflectance distribution function 2632: 2594:"Illumination for computer generated pictures" 2667: 2511: 2338: 2303: 2708: 2476: 826:indicates incident light, whereas the index 2804:(2000). "An Anisotropic Phong BRDF Model". 2711:"A reflectance model for computer graphics" 2508:. ACM Transactions on Graphics. 22(3) 2002. 276:-axis), and returns the ratio of reflected 2241:design and more accurate BRDF fabrication. 1314:In all these cases, the dependence on the 2764: 2735: 2726: 2676:Journal of the Optical Society of America 2609: 2344: 2309: 1867: 1853: 1816: 1767: 1724: 1655: 1613: 1586: 1572: 1476: 1462: 1448: 1387: 1373: 1359: 1287: 1271: 1257: 1158: 1144: 936: 551: 547: 476: 472: 458: 153: 3082:Lubin, Dan; Robert Massom (2006-02-10). 2868:. In: GraphiCon'2009.; 2009. p. 198-201. 2767:International Journal of Computer Vision 2216: 247:(taken in a coordinate system where the 29: 3090:(1st ed.). Springer. p. 756. 311:incident on the surface from direction 14: 3166: 1610:, with only one wavelength parameter. 1111:(SVBRDF) is a 6-dimensional function, 2591: 2531: 1974:depending on atmospheric scattering. 3105:Matt, Pharr; Greg Humphreys (2004). 2741: 1927:concept, and accordingly is used in 1102: 692:-in-the-direction-of-a-ray per unit 2889: 2173: 88:points toward the viewer (camera). 24: 3075: 2637:. Vol. 11. pp. 192–198. 1822: 1800: 1059: 1011: 863: 771:{\displaystyle \omega _{\text{i}}} 744:{\displaystyle \theta _{\text{i}}} 631: 556: 514: 481: 331:{\displaystyle \omega _{\text{i}}} 300:{\displaystyle \omega _{\text{r}}} 240:{\displaystyle \omega _{\text{r}}} 213:{\displaystyle \omega _{\text{i}}} 81:{\displaystyle \omega _{\text{r}}} 54:{\displaystyle \omega _{\text{i}}} 25: 3205: 2457:NASA, Goddard Space Flight Center 1990:have been proposed including the 2238:Combination of Ink and Geometry: 2073: 2054: 2042: 2030: 1274: 1244: 1185: 1160: 790: 258: 61:points toward the light source. 3029: 3002: 2956: 2944: 2926: 2916: 2900: 2883: 2871: 2851: 2841: 2832: 2793: 2758: 2709:Cook, R.; Torrance, K. (1981). 2702: 2626: 2585: 2568: 2499:A Data-Driven Reflectance Model 2088:, lunar and Martian reflection. 1918: 903:, which are of no interest for 181:surface. It is employed in the 2818:10.1080/10867651.2000.10487522 2715:ACM SIGGRAPH Computer Graphics 2525: 2491: 2470: 2445: 2406: 2353: 2149: 1864: 1837: 1778: 1751: 1735: 1708: 1666: 1639: 1597: 1563: 1487: 1432: 1398: 1343: 1298: 1239: 1204:Bidirectional Texture Function 1164: 1128: 1086: 1073: 1038: 1025: 990: 977: 947: 920: 890: 877: 611: 598: 583: 570: 541: 528: 508: 495: 469: 442: 164: 137: 13: 1: 3130:Remote Sensing of Environment 2519:"mental ray Layering Shaders" 2419:IEEE Journal of Photovoltaics 2297: 1935:of synthetic scenes (see the 418: 3038:ACM Transactions on Graphics 3011:ACM Transactions on Graphics 2431:10.1109/JPHOTOV.2015.2478064 1966:In the context of satellite 1192:{\displaystyle \mathbf {x} } 797:{\displaystyle \mathbf {n} } 265:{\displaystyle \mathbf {n} } 7: 2245: 848:indicates reflected light. 696:-perpendicular-to-the-ray, 10: 3210: 3107:Physically Based Rendering 1923:The BRDF is a fundamental 841:{\displaystyle {\text{r}}} 819:{\displaystyle {\text{i}}} 220:, and outgoing direction, 3150:10.1016/j.rse.2006.03.002 2806:Journal of Graphics Tools 2598:Communications of the ACM 2382:10.1109/PVSC.2013.6744136 2145:K-correlation (ABC) model 1977: 1415:, the function will obey 2966:ACM SIGGRAPH 2009 papers 2552:10.1017/CBO9781139025683 1933:photorealistic rendering 185:of real-world light, in 3050:10.1145/2461912.2461989 3023:10.1145/1618452.1618474 2978:10.1145/1576246.1531338 2744:Proceedings of SIGGRAPH 2287:Schlick's approximation 2098:Phong reflectance model 1959:) or low concentration 400:{\displaystyle \theta } 351:{\displaystyle \omega } 2877:Richard N. Pfisterer, 2696:10.1364/JOSA.57.001105 2376:. pp. 0229–0234. 2272:Photometry (astronomy) 2222: 2092:Hapke scattering model 1992:Lambertian reflectance 1909: 1785: 1679: 1614:Physically based BRDFs 1604: 1540: 1500: 1405: 1305: 1193: 1171: 1093: 1045: 997: 954: 897: 842: 820: 798: 772: 745: 710: 674: 652: 401: 378: 352: 332: 301: 266: 241: 214: 171: 109: 108:is the surface normal. 102: 82: 55: 3179:Astrophysics concepts 3088:Atmosphere and Oceans 2890:Won, Yonghee (2014). 2752:10.1145/133994.134078 2728:10.1145/965161.806819 2643:10.1145/563858.563893 2611:10.1145/360825.360839 2592:Phong, B. T. (1975). 2532:Hapke, Bruce (2012). 2220: 2015:being well-suited to 1910: 1786: 1689:Helmholtz reciprocity 1680: 1605: 1541: 1501: 1406: 1306: 1212:subsurface scattering 1194: 1172: 1094: 1046: 998: 955: 898: 843: 821: 799: 773: 751:is the angle between 746: 711: 675: 653: 411:(sr) being a unit of 402: 379: 377:{\displaystyle \phi } 353: 333: 302: 267: 242: 215: 172: 103: 83: 56: 33: 3084:Polar Remote Sensing 2800:Ashikhmin, Michael; 2746:. pp. 265–272. 1797: 1695: 1626: 1550: 1510: 1419: 1330: 1233: 1181: 1115: 1055: 1051:is only affected by 1007: 964: 907: 859: 830: 808: 786: 755: 728: 720:, or power per unit 700: 664: 429: 391: 368: 342: 315: 284: 254: 224: 197: 124: 92: 65: 38: 3142:2006RSEnv.103...27S 2688:1967JOSA...57.1105T 2544:2012tres.book.....H 2349:. pp. 200–208. 2332:10.1364/AO.4.000767 2324:1965ApOpt...4..767N 2215:the milled surface. 2156:gonioreflectometers 2113:Cook–Torrance model 2017:Monte Carlo methods 1793:conserving energy: 189:algorithms, and in 2938:2011-07-06 at the 2864:2011-07-06 at the 2779:10.1007/BF01679684 2504:2018-07-21 at the 2292:Specular highlight 2262:Gonioreflectometer 2227:Printing the BRDF: 2223: 1961:solar photovoltaic 1949:object recognition 1937:rendering equation 1905: 1781: 1675: 1600: 1536: 1496: 1401: 1301: 1189: 1167: 1089: 1041: 993: 950: 893: 838: 816: 794: 768: 741: 706: 670: 648: 397: 374: 348: 328: 297: 262: 237: 210: 167: 110: 98: 78: 51: 3120:978-0-12-553180-1 3097:978-3-540-43097-1 2933:BRDFRecon project 2912:10.1117/12.962842 2561:978-0-521-88349-8 2477:Rusinkiewicz, S. 2391:978-1-4799-3299-3 2104:Blinn–Phong model 2012:at grazing angles 1939:), as well as in 1929:computer graphics 1896: 1882: 1861: 1847: 1834: 1810: 1775: 1761: 1748: 1732: 1718: 1705: 1663: 1649: 1636: 1594: 1580: 1560: 1533: 1520: 1484: 1470: 1456: 1442: 1429: 1395: 1381: 1367: 1353: 1340: 1295: 1281: 1265: 1251: 1152: 1138: 1125: 1103:Related functions 1083: 1070: 1035: 1022: 987: 974: 944: 930: 917: 887: 874: 836: 814: 765: 738: 709:{\displaystyle E} 673:{\displaystyle L} 646: 642: 627: 608: 595: 580: 567: 545: 538: 525: 505: 492: 466: 452: 439: 338:. Each direction 325: 294: 234: 207: 187:computer graphics 161: 147: 134: 101:{\displaystyle n} 75: 48: 16:(Redirected from 3201: 3153: 3124: 3113:. p. 1019. 3109:(1st ed.). 3101: 3070: 3069: 3033: 3027: 3026: 3006: 3000: 2999: 2971: 2960: 2954: 2948: 2942: 2930: 2924: 2920: 2914: 2904: 2898: 2897: 2887: 2881: 2875: 2869: 2855: 2849: 2845: 2839: 2836: 2830: 2829: 2797: 2791: 2790: 2762: 2756: 2755: 2739: 2733: 2732: 2730: 2706: 2700: 2699: 2682:(9): 1105–1114. 2671: 2665: 2664: 2630: 2624: 2623: 2613: 2589: 2583: 2582: 2580: 2572: 2566: 2565: 2529: 2523: 2522: 2515: 2509: 2495: 2489: 2488: 2486: 2485: 2474: 2468: 2467: 2465: 2463: 2449: 2443: 2442: 2425:(6): 1626–1635. 2410: 2404: 2403: 2375: 2366: 2357: 2351: 2350: 2342: 2336: 2335: 2307: 2267:Opposition spike 2174:BRDF fabrication 2125:Oren–Nayar model 2080:Lambertian model 2058: 2046: 2034: 1984:phenomenological 1955:(e.g. using the 1945:inverse problems 1914: 1912: 1911: 1906: 1898: 1897: 1894: 1885: 1884: 1883: 1880: 1863: 1862: 1859: 1849: 1848: 1845: 1836: 1835: 1832: 1826: 1825: 1812: 1811: 1808: 1790: 1788: 1787: 1782: 1777: 1776: 1773: 1763: 1762: 1759: 1750: 1749: 1746: 1734: 1733: 1730: 1720: 1719: 1716: 1707: 1706: 1703: 1684: 1682: 1681: 1676: 1665: 1664: 1661: 1651: 1650: 1647: 1638: 1637: 1634: 1609: 1607: 1606: 1601: 1596: 1595: 1592: 1582: 1581: 1578: 1562: 1561: 1558: 1545: 1543: 1542: 1537: 1535: 1534: 1531: 1522: 1521: 1518: 1505: 1503: 1502: 1497: 1486: 1485: 1482: 1472: 1471: 1468: 1458: 1457: 1454: 1444: 1443: 1440: 1431: 1430: 1427: 1410: 1408: 1407: 1402: 1397: 1396: 1393: 1383: 1382: 1379: 1369: 1368: 1365: 1355: 1354: 1351: 1342: 1341: 1338: 1310: 1308: 1307: 1302: 1297: 1296: 1293: 1283: 1282: 1279: 1277: 1267: 1266: 1263: 1253: 1252: 1249: 1247: 1198: 1196: 1195: 1190: 1188: 1176: 1174: 1173: 1168: 1163: 1154: 1153: 1150: 1140: 1139: 1136: 1127: 1126: 1123: 1098: 1096: 1095: 1090: 1085: 1084: 1081: 1072: 1071: 1068: 1062: 1050: 1048: 1047: 1042: 1037: 1036: 1033: 1024: 1023: 1020: 1014: 1002: 1000: 999: 994: 989: 988: 985: 976: 975: 972: 959: 957: 956: 951: 946: 945: 942: 932: 931: 928: 919: 918: 915: 902: 900: 899: 894: 889: 888: 885: 876: 875: 872: 866: 847: 845: 844: 839: 837: 834: 825: 823: 822: 817: 815: 812: 803: 801: 800: 795: 793: 777: 775: 774: 769: 767: 766: 763: 750: 748: 747: 742: 740: 739: 736: 715: 713: 712: 707: 679: 677: 676: 671: 657: 655: 654: 649: 647: 645: 644: 643: 640: 634: 629: 628: 625: 610: 609: 606: 597: 596: 593: 586: 582: 581: 578: 569: 568: 565: 559: 553: 546: 544: 540: 539: 536: 527: 526: 523: 517: 511: 507: 506: 503: 494: 493: 490: 484: 478: 468: 467: 464: 454: 453: 450: 441: 440: 437: 406: 404: 403: 398: 383: 381: 380: 375: 360:parameterized by 357: 355: 354: 349: 337: 335: 334: 329: 327: 326: 323: 306: 304: 303: 298: 296: 295: 292: 271: 269: 268: 263: 261: 246: 244: 243: 238: 236: 235: 232: 219: 217: 216: 211: 209: 208: 205: 176: 174: 173: 168: 163: 162: 159: 149: 148: 145: 136: 135: 132: 107: 105: 104: 99: 87: 85: 84: 79: 77: 76: 73: 60: 58: 57: 52: 50: 49: 46: 21: 3209: 3208: 3204: 3203: 3202: 3200: 3199: 3198: 3164: 3163: 3121: 3111:Morgan Kaufmann 3098: 3078: 3076:Further reading 3073: 3034: 3030: 3007: 3003: 2988: 2969: 2961: 2957: 2949: 2945: 2940:Wayback Machine 2931: 2927: 2921: 2917: 2905: 2901: 2888: 2884: 2876: 2872: 2866:Wayback Machine 2856: 2852: 2846: 2842: 2837: 2833: 2798: 2794: 2763: 2759: 2740: 2736: 2707: 2703: 2672: 2668: 2653: 2631: 2627: 2590: 2586: 2578: 2574: 2573: 2569: 2562: 2530: 2526: 2517: 2516: 2512: 2506:Wayback Machine 2496: 2492: 2483: 2481: 2475: 2471: 2461: 2459: 2451: 2450: 2446: 2411: 2407: 2392: 2373: 2364: 2358: 2354: 2343: 2339: 2308: 2304: 2300: 2248: 2176: 2152: 2086:Lommel–Seeliger 2076: 2071: 2070: 2069: 2068: 2064: 2063: 2062: 2059: 2051: 2050: 2047: 2039: 2038: 2035: 2010:Fresnel effects 2008:accounting for 1988:analytic models 1980: 1957:OPTOS formalism 1941:computer vision 1921: 1893: 1889: 1879: 1875: 1874: 1858: 1854: 1844: 1840: 1831: 1827: 1821: 1817: 1807: 1803: 1798: 1795: 1794: 1772: 1768: 1758: 1754: 1745: 1741: 1729: 1725: 1715: 1711: 1702: 1698: 1696: 1693: 1692: 1660: 1656: 1646: 1642: 1633: 1629: 1627: 1624: 1623: 1616: 1591: 1587: 1577: 1573: 1557: 1553: 1551: 1548: 1547: 1530: 1526: 1517: 1513: 1511: 1508: 1507: 1481: 1477: 1467: 1463: 1453: 1449: 1439: 1435: 1426: 1422: 1420: 1417: 1416: 1392: 1388: 1378: 1374: 1364: 1360: 1350: 1346: 1337: 1333: 1331: 1328: 1327: 1292: 1288: 1278: 1273: 1272: 1262: 1258: 1248: 1243: 1242: 1234: 1231: 1230: 1184: 1182: 1179: 1178: 1159: 1149: 1145: 1135: 1131: 1122: 1118: 1116: 1113: 1112: 1105: 1080: 1076: 1067: 1063: 1058: 1056: 1053: 1052: 1032: 1028: 1019: 1015: 1010: 1008: 1005: 1004: 984: 980: 971: 967: 965: 962: 961: 941: 937: 927: 923: 914: 910: 908: 905: 904: 884: 880: 871: 867: 862: 860: 857: 856: 833: 831: 828: 827: 811: 809: 806: 805: 789: 787: 784: 783: 762: 758: 756: 753: 752: 735: 731: 729: 726: 725: 701: 698: 697: 665: 662: 661: 639: 635: 630: 624: 620: 605: 601: 592: 588: 587: 577: 573: 564: 560: 555: 554: 552: 535: 531: 522: 518: 513: 512: 502: 498: 489: 485: 480: 479: 477: 463: 459: 449: 445: 436: 432: 430: 427: 426: 421: 392: 389: 388: 369: 366: 365: 343: 340: 339: 322: 318: 316: 313: 312: 291: 287: 285: 282: 281: 272:lies along the 257: 255: 252: 251: 231: 227: 225: 222: 221: 204: 200: 198: 195: 194: 191:computer vision 158: 154: 144: 140: 131: 127: 125: 122: 121: 93: 90: 89: 72: 68: 66: 63: 62: 45: 41: 39: 36: 35: 28: 23: 22: 15: 12: 11: 5: 3207: 3197: 3196: 3194:Remote sensing 3191: 3186: 3181: 3176: 3162: 3161: 3155: 3154: 3125: 3119: 3102: 3096: 3077: 3074: 3072: 3071: 3028: 3001: 2986: 2955: 2943: 2925: 2915: 2899: 2882: 2870: 2850: 2840: 2831: 2802:Shirley, Peter 2792: 2773:(3): 227–251. 2757: 2734: 2721:(3): 301–316. 2701: 2666: 2651: 2625: 2604:(6): 311–317. 2584: 2567: 2560: 2524: 2510: 2490: 2469: 2444: 2405: 2390: 2352: 2337: 2318:(7): 767–775. 2312:Applied Optics 2301: 2299: 2296: 2295: 2294: 2289: 2284: 2279: 2274: 2269: 2264: 2259: 2254: 2247: 2244: 2243: 2242: 2235: 2224: 2202: 2201: 2198: 2187: 2184: 2175: 2172: 2151: 2148: 2147: 2146: 2143: 2140: 2137: 2134: 2131: 2128: 2122: 2116: 2110: 2107: 2101: 2095: 2089: 2083: 2075: 2072: 2066: 2065: 2060: 2053: 2052: 2048: 2041: 2040: 2036: 2029: 2028: 2027: 2026: 2025: 2021: 2020: 2013: 2006: 2003: 1998:accommodating 1979: 1976: 1968:remote sensing 1920: 1917: 1916: 1915: 1904: 1901: 1892: 1888: 1878: 1873: 1870: 1866: 1857: 1852: 1843: 1839: 1830: 1824: 1820: 1815: 1806: 1802: 1791: 1780: 1771: 1766: 1757: 1753: 1744: 1740: 1737: 1728: 1723: 1714: 1710: 1701: 1685: 1674: 1671: 1668: 1659: 1654: 1645: 1641: 1632: 1615: 1612: 1599: 1590: 1585: 1576: 1571: 1568: 1565: 1556: 1529: 1525: 1516: 1495: 1492: 1489: 1480: 1475: 1466: 1461: 1452: 1447: 1438: 1434: 1425: 1400: 1391: 1386: 1377: 1372: 1363: 1358: 1349: 1345: 1336: 1300: 1291: 1286: 1276: 1270: 1261: 1256: 1246: 1241: 1238: 1216:Apparent BRDFs 1187: 1166: 1162: 1157: 1148: 1143: 1134: 1130: 1121: 1104: 1101: 1088: 1079: 1075: 1066: 1061: 1040: 1031: 1027: 1018: 1013: 992: 983: 979: 970: 949: 940: 935: 926: 922: 913: 892: 883: 879: 870: 865: 792: 780:surface normal 761: 734: 705: 694:projected-area 669: 638: 633: 623: 619: 616: 613: 604: 600: 591: 585: 576: 572: 563: 558: 550: 543: 534: 530: 521: 516: 510: 501: 497: 488: 483: 475: 471: 462: 457: 448: 444: 435: 420: 417: 396: 373: 347: 321: 290: 280:exiting along 260: 249:surface normal 230: 203: 166: 157: 152: 143: 139: 130: 97: 71: 44: 26: 9: 6: 4: 3: 2: 3206: 3195: 3192: 3190: 3187: 3185: 3182: 3180: 3177: 3175: 3172: 3171: 3169: 3160: 3157: 3156: 3151: 3147: 3143: 3139: 3135: 3131: 3126: 3122: 3116: 3112: 3108: 3103: 3099: 3093: 3089: 3085: 3080: 3079: 3067: 3063: 3059: 3055: 3051: 3047: 3043: 3039: 3032: 3024: 3020: 3016: 3012: 3005: 2997: 2993: 2989: 2987:9781605587264 2983: 2979: 2975: 2968: 2967: 2959: 2953: 2947: 2941: 2937: 2934: 2929: 2919: 2913: 2909: 2903: 2895: 2894: 2886: 2880: 2874: 2867: 2863: 2860: 2854: 2844: 2835: 2827: 2823: 2819: 2815: 2811: 2807: 2803: 2796: 2788: 2784: 2780: 2776: 2772: 2768: 2761: 2753: 2749: 2745: 2738: 2729: 2724: 2720: 2716: 2712: 2705: 2697: 2693: 2689: 2685: 2681: 2677: 2670: 2662: 2658: 2654: 2652:9781450373555 2648: 2644: 2640: 2636: 2629: 2621: 2617: 2612: 2607: 2603: 2599: 2595: 2588: 2577: 2571: 2563: 2557: 2553: 2549: 2545: 2541: 2537: 2536: 2528: 2520: 2514: 2507: 2503: 2500: 2494: 2480: 2473: 2458: 2454: 2453:"BRDF/Albedo" 2448: 2440: 2436: 2432: 2428: 2424: 2420: 2416: 2409: 2401: 2397: 2393: 2387: 2383: 2379: 2372: 2371: 2363: 2356: 2348: 2341: 2333: 2329: 2325: 2321: 2317: 2313: 2306: 2302: 2293: 2290: 2288: 2285: 2283: 2280: 2278: 2275: 2273: 2270: 2268: 2265: 2263: 2260: 2258: 2255: 2253: 2250: 2249: 2239: 2236: 2232: 2228: 2225: 2219: 2213: 2211: 2207: 2206: 2205: 2199: 2196: 2192: 2188: 2185: 2182: 2181: 2180: 2171: 2167: 2165: 2160: 2157: 2144: 2141: 2138: 2135: 2132: 2129: 2126: 2123: 2120: 2117: 2114: 2111: 2108: 2105: 2102: 2099: 2096: 2093: 2090: 2087: 2084: 2081: 2078: 2077: 2074:Some examples 2057: 2045: 2033: 2024: 2018: 2014: 2011: 2007: 2004: 2001: 1997: 1996: 1995: 1993: 1989: 1985: 1975: 1973: 1969: 1964: 1962: 1958: 1954: 1950: 1946: 1942: 1938: 1934: 1930: 1926: 1902: 1899: 1890: 1886: 1876: 1871: 1868: 1855: 1850: 1841: 1828: 1818: 1813: 1804: 1792: 1769: 1764: 1755: 1742: 1738: 1726: 1721: 1712: 1699: 1690: 1686: 1672: 1669: 1657: 1652: 1643: 1630: 1621: 1620: 1619: 1611: 1588: 1583: 1574: 1569: 1566: 1554: 1527: 1523: 1514: 1493: 1490: 1478: 1473: 1464: 1459: 1450: 1445: 1436: 1423: 1414: 1389: 1384: 1375: 1370: 1361: 1356: 1347: 1334: 1325: 1321: 1317: 1312: 1289: 1284: 1268: 1259: 1254: 1236: 1228: 1224: 1219: 1217: 1213: 1209: 1205: 1200: 1155: 1146: 1141: 1132: 1119: 1110: 1100: 1077: 1064: 1029: 1016: 981: 968: 938: 933: 924: 911: 881: 868: 854: 853:differentials 849: 781: 759: 732: 723: 719: 703: 695: 691: 687: 683: 667: 658: 636: 621: 617: 614: 602: 589: 574: 561: 548: 532: 519: 499: 486: 473: 460: 455: 446: 433: 424: 416: 414: 410: 394: 387: 371: 364: 363:azimuth angle 361: 345: 319: 310: 288: 279: 275: 250: 228: 201: 192: 188: 184: 180: 155: 150: 141: 128: 119: 115: 95: 69: 42: 32: 19: 3174:3D rendering 3136:(1): 27–42. 3133: 3129: 3106: 3087: 3086:. Volume I: 3083: 3041: 3037: 3031: 3014: 3010: 3004: 2965: 2958: 2946: 2928: 2918: 2902: 2892: 2885: 2873: 2853: 2843: 2834: 2812:(2): 25–32. 2809: 2805: 2795: 2770: 2766: 2760: 2743: 2737: 2718: 2714: 2704: 2679: 2675: 2669: 2634: 2628: 2601: 2597: 2587: 2570: 2534: 2527: 2513: 2493: 2482:. Retrieved 2472: 2460:. Retrieved 2456: 2447: 2422: 2418: 2408: 2369: 2355: 2346: 2340: 2315: 2311: 2305: 2237: 2226: 2208: 2203: 2177: 2168: 2161: 2153: 2022: 1981: 1965: 1922: 1919:Applications 1622:positivity: 1617: 1506:except when 1324:luminescence 1313: 1222: 1220: 1215: 1203: 1201: 1108: 1106: 850: 804:. The index 722:surface area 721: 659: 425: 422: 386:zenith angle 273: 117: 113: 111: 3044:(4): 1–12. 2282:Reflectance 2150:Acquisition 2000:anisotropic 1953:solar cells 1925:radiometric 1320:iridescence 690:solid-angle 413:solid angle 3189:Radiometry 3168:Categories 3017:(5): 1–9. 2484:2007-09-05 2298:References 2277:Radiometry 2231:halftoning 2195:halftoning 2191:microfacet 2164:HDR images 2119:Ward model 2002:reflection 1316:wavelength 1003:, whereas 718:irradiance 419:Definition 409:steradians 358:is itself 309:irradiance 120:), symbol 3058:0730-0301 2212:the BRDF: 2142:ABg model 1963:systems. 1943:for many 1900:≤ 1891:ω 1877:θ 1872:⁡ 1856:ω 1842:ω 1823:Ω 1819:∫ 1805:ω 1801:∀ 1770:ω 1756:ω 1727:ω 1713:ω 1670:≥ 1658:ω 1644:ω 1589:ω 1575:ω 1567:λ 1528:λ 1515:λ 1479:ω 1465:λ 1451:ω 1437:λ 1390:ω 1376:λ 1362:ω 1348:λ 1290:ω 1260:ω 1147:ω 1133:ω 1078:ω 1030:ω 982:ω 939:ω 925:ω 882:ω 760:ω 733:θ 688:per unit 637:ω 622:θ 618:⁡ 603:ω 575:ω 533:ω 500:ω 461:ω 447:ω 395:θ 372:ϕ 346:ω 320:ω 289:ω 229:ω 202:ω 156:ω 142:ω 70:ω 43:ω 2996:13932018 2936:Archived 2862:Archived 2826:18520447 2502:Archived 2462:March 9, 2439:40828010 2400:32127698 2246:See also 1947:such as 1687:obeying 1177:, where 778:and the 682:radiance 278:radiance 3138:Bibcode 3066:4960068 2787:2367943 2684:Bibcode 2661:8043767 2620:1439868 2540:Bibcode 2320:Bibcode 2210:Milling 2037:Diffuse 307:to the 3184:Optics 3117:  3094:  3064:  3056:  2994:  2984:  2923:Vienna 2824:  2785:  2659:  2649:  2618:  2558:  2437:  2398:  2388:  2252:Albedo 2061:Mirror 2049:Glossy 1978:Models 1972:albedo 1413:linear 1227:BSSRDF 724:, and 660:where 183:optics 179:opaque 3062:S2CID 2992:S2CID 2970:(PDF) 2848:1997. 2822:S2CID 2783:S2CID 2657:S2CID 2616:S2CID 2579:(PDF) 2435:S2CID 2396:S2CID 2374:(PDF) 2365:(PDF) 686:power 684:, or 3115:ISBN 3092:ISBN 3054:ISSN 2982:ISBN 2647:ISBN 2556:ISBN 2464:2017 2386:ISBN 2257:BSDF 1986:and 1931:for 1221:The 1202:The 1107:The 384:and 118:BRDF 112:The 18:BRDF 3146:doi 3134:103 3046:doi 3019:doi 2974:doi 2908:doi 2814:doi 2775:doi 2748:doi 2723:doi 2692:doi 2639:doi 2606:doi 2548:doi 2427:doi 2378:doi 2328:doi 1869:cos 1322:or 1208:BTF 716:is 680:is 615:cos 3170:: 3144:. 3132:. 3060:. 3052:. 3042:32 3040:. 3015:28 3013:. 2990:. 2980:. 2820:. 2808:. 2781:. 2771:14 2769:. 2719:15 2717:. 2713:. 2690:. 2680:57 2678:. 2655:. 2645:. 2614:. 2602:18 2600:. 2596:. 2554:. 2546:. 2455:. 2433:. 2421:. 2417:. 2394:. 2384:. 2367:. 2326:. 2314:. 2197:). 2193:, 1691:: 1218:. 1099:. 782:, 415:. 3152:. 3148:: 3140:: 3123:. 3100:. 3068:. 3048:: 3025:. 3021:: 2998:. 2976:: 2910:: 2828:. 2816:: 2810:5 2789:. 2777:: 2754:. 2750:: 2731:. 2725:: 2698:. 2694:: 2686:: 2663:. 2641:: 2622:. 2608:: 2581:. 2564:. 2550:: 2542:: 2521:. 2487:. 2466:. 2441:. 2429:: 2423:5 2402:. 2380:: 2334:. 2330:: 2322:: 2316:4 2019:. 1903:1 1895:r 1887:d 1881:r 1865:) 1860:r 1851:, 1846:i 1838:( 1833:r 1829:f 1814:, 1809:i 1779:) 1774:i 1765:, 1760:r 1752:( 1747:r 1743:f 1739:= 1736:) 1731:r 1722:, 1717:i 1709:( 1704:r 1700:f 1673:0 1667:) 1662:r 1653:, 1648:i 1640:( 1635:r 1631:f 1598:) 1593:r 1584:, 1579:i 1570:, 1564:( 1559:r 1555:f 1532:r 1524:= 1519:i 1494:0 1491:= 1488:) 1483:r 1474:, 1469:r 1460:, 1455:i 1446:, 1441:i 1433:( 1428:r 1424:f 1399:) 1394:r 1385:, 1380:r 1371:, 1366:i 1357:, 1352:i 1344:( 1339:r 1335:f 1299:) 1294:r 1285:, 1280:r 1275:x 1269:, 1264:i 1255:, 1250:i 1245:x 1240:( 1237:S 1225:( 1206:( 1186:x 1165:) 1161:x 1156:, 1151:r 1142:, 1137:i 1129:( 1124:r 1120:f 1087:) 1082:i 1074:( 1069:i 1065:E 1060:d 1039:) 1034:r 1026:( 1021:r 1017:L 1012:d 991:) 986:r 978:( 973:r 969:L 948:) 943:r 934:, 929:i 921:( 916:r 912:f 891:) 886:i 878:( 873:i 869:E 864:d 835:r 813:i 791:n 764:i 737:i 704:E 668:L 641:i 632:d 626:i 612:) 607:i 599:( 594:i 590:L 584:) 579:r 571:( 566:r 562:L 557:d 549:= 542:) 537:i 529:( 524:i 520:E 515:d 509:) 504:r 496:( 491:r 487:L 482:d 474:= 470:) 465:r 456:, 451:i 443:( 438:r 434:f 324:i 293:r 274:z 259:n 233:r 206:i 165:) 160:r 151:, 146:i 138:( 133:r 129:f 116:( 96:n 74:r 47:i 20:)

Index

BRDF

opaque
optics
computer graphics
computer vision
surface normal
radiance
irradiance
parameterized by
azimuth angle
zenith angle
steradians
solid angle
radiance
power
solid-angle
projected-area
irradiance
surface normal
differentials
BTF
subsurface scattering
BSSRDF
wavelength
iridescence
luminescence
linear
Helmholtz reciprocity
radiometric

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑