Knowledge

Atomic electron transition

Source đź“ť

20: 493:
is small over the atom (or equivalently, the radiation wavelength is much greater than the size of an atom) and this term can be ignored. This is called the dipole approximation. The atom can also interact with the oscillating magnetic field produced by the radiation, although much more weakly.
705: 285: 101:
in the form of a photon. Electrons can also absorb passing photons, which drives a quantum jump to a level of higher n. The larger the energy separation between the electron's initial and final state, the shorter the photons'
1063:
Minev, Z. K.; Mundhada, S. O.; Shankar, S.; Reinhold, P.; Gutiérrez-Jáuregui, R.; Schoelkopf, R. J..; Mirrahimi, M.; Carmichael, H. J.; Devoret, M. H. (June 3, 2019). "To catch and reverse a quantum jump mid-flight".
567: 457: 554: 408: 491: 342: 172: 362: 731:, that the evolution of some jumps is continuous, coherent, deterministic, and reversible. On the other hand, other quantum jumps are inherently unpredictable. 707:
The dipole matrix element can be decomposed into the product of the radial integral and the angular integral. The angular integral is zero unless the
980: 1234: 700:{\displaystyle Rate\propto |eE_{0}|^{2}\times |\langle 2|{\textbf {r}}\cdot {\hat {\textbf {e}}}_{\mathrm {rad} }|1\rangle |^{2}} 413: 500: 1047: 367: 557: 462: 48:. The energy of an electron is determined by its orbit around the atom. The n = 0 orbit, commonly referred to as the 816:
Vijay, R; Slichter, D. H; Siddiqi, I (2011). "Observation of Quantum Jumps in a Superconducting Artificial Atom".
761: 497:
The Hamiltonian for this interaction, analogous to the energy of a classical dipole in an electric field, is
756: 306: 126: 87: 878: 1252: 98: 1280: 1275: 746: 280:{\displaystyle E(t)=|{\textbf {E}}_{0}|Re(e^{-i{\omega }t}{\hat {\textbf {e}}}_{\mathrm {rad} })} 1219: 1214: 1190: 561: 1013: 347: 145: 1253:"Surface plasmon at a metal-dielectric interface with an epsilon-near-zero transition layer" 1126: 1148: 1083: 953: 900: 835: 777: 1186: 8: 803: 782: 137: 123: 1152: 1087: 957: 904: 839: 1164: 1138: 1107: 1073: 890: 859: 825: 86:. The time scale of a quantum jump has not been measured experimentally. However, the 1168: 1160: 1099: 1043: 988: 916: 851: 149: 863: 1205: 1156: 1111: 1091: 961: 912: 908: 847: 843: 938: 767: 720: 708: 83: 965: 59: 28: 1209: 1095: 118:
first theorized that electrons can perform quantum jumps in 1913. Soon after,
1269: 992: 920: 19: 1103: 855: 772: 751: 133: 119: 75: 49: 1125:
Snizhko, Kyrylo; Kumar, Parveen; Romito, Alessandro (September 29, 2020).
741: 70:(also called an atomic transition, quantum jump, or quantum leap) is an 877:
de la Peña, L.; Cetto, A. M.; Valdés-Hernández, A. (December 4, 2020).
115: 103: 91: 24: 719:
In 2019, it was demonstrated in an experiment with a superconducting
63: 1143: 1078: 895: 724: 71: 830: 939:"Early observations of macroscopic quantum jumps in single atoms" 876: 728: 141: 45: 1235:"Quantum Leaps, Long Assumed to Be Instantaneous, Take Time" 1062: 452:{\displaystyle (\omega t-{\textbf {k}}\cdot {\textbf {r}})} 153: 79: 981:"PHYSICISTS FINALLY GET TO SEE QUANTUM JUMP WITH OWN EYES" 549:{\displaystyle H_{I}=e{\textbf {r}}\cdot {\textbf {E}}(t)} 16:
Change of an electron between energy levels within an atom
556:. The stimulated transition rate can be calculated using 937:
Itano, W. M.; Bergquist, J. C.; Wineland, D. J. (2015).
90:
binds the upper limit of this parameter to the order of
164:
An atom interacts with the oscillating electric field:
1220:"There are no quantum jumps, nor are there particles!" 936: 52:, has the lowest energy of all states in the system. 727:
placed inside a readout resonator cavity at 15 m
570: 503: 465: 416: 403:{\displaystyle {\hat {\textbf {e}}}_{\mathrm {rad} }} 370: 350: 309: 175: 97:
Electrons jumping to energy levels of smaller n emit
815: 132:
The observability of quantum jumps was predicted by
1124: 699: 548: 485: 451: 402: 356: 336: 279: 1198:The British Journal for the Philosophy of Science 1267: 1014:"Franck-Hertz experiment | physics | Britannica" 486:{\displaystyle {\textbf {k}}\cdot {\textbf {r}}} 560:; however, the result can be summarized using 682: 624: 136:in 1975, and they were first observed using 1185: 459:. However, in many cases, the variation of 946:International Journal of Mass Spectrometry 806:University of Oregon Department of Physics 1142: 1077: 894: 829: 711:for the atomic transition are satisfied. 129:that atoms have quantized energy states. 1037: 18: 1127:"Quantum Zeno effect appears in stages" 1268: 978: 723:consisting of two strongly-hybridized 714: 1232: 932: 930: 166: 650: 637: 532: 522: 478: 468: 441: 431: 376: 337:{\displaystyle |{\textbf {E}}_{0}|} 318: 250: 199: 13: 979:Gleick, James (October 21, 1986). 668: 665: 662: 558:time-dependent perturbation theory 394: 391: 388: 268: 265: 262: 14: 1292: 1191:"Are there quantum jumps? Part I" 1179: 927: 1161:10.1103/PhysRevResearch.2.033512 410:. Note that the actual phase is 762:Molecular electronic transition 1118: 1056: 1031: 1006: 972: 913:10.1016/j.physleta.2020.126880 870: 848:10.1103/PhysRevLett.106.110502 809: 796: 687: 675: 654: 631: 620: 606: 587: 543: 537: 446: 417: 380: 330: 311: 274: 254: 221: 211: 192: 185: 179: 1: 1255:by Kevin Roccapriore et al., 1233:Ball, Philip (June 5, 2019). 879:"How fast is a quantum jump?" 789: 757:Glowing pickle demonstration 7: 1042:. Oxford University Press. 734: 293: 10: 1297: 966:10.1016/j.ijms.2014.07.005 364:, and polarization vector 109: 68:atomic electron transition 1096:10.1038/s41586-019-1287-z 159: 99:electromagnetic radiation 1131:Physical Review Research 1210:10.1093/bjps/iii.10.109 818:Physical Review Letters 747:Ensemble interpretation 357:{\displaystyle \omega } 88:Franck–Condon principle 701: 550: 487: 453: 404: 358: 338: 281: 53: 702: 551: 488: 454: 405: 359: 339: 282: 146:University of Hamburg 127:proved experimentally 78:to another within an 22: 778:Spontaneous emission 568: 501: 463: 414: 368: 348: 344:, angular frequency 307: 173: 1153:2020PhRvR...2c3512S 1088:2019Natur.570..200M 958:2015IJMSp.377..403I 905:2020PhLA..38426880D 840:2011PhRvL.106k0502V 783:Stimulated emission 562:Fermi's golden rule 124:Gustav Ludwig Hertz 1187:Schrödinger, Erwin 1018:www.britannica.com 985:The New York Times 802:Schombert, James. 715:Recent discoveries 697: 546: 483: 449: 400: 354: 334: 277: 74:changing from one 54: 27:atom, moving from 1262:, L161404 (2021). 1257:Physical Review B 1072:(7760): 200–204. 1049:978-0-19-850696-6 1038:Foot, CJ (2004). 883:Physics Letters A 804:"Quantum physics" 657: 652: 639: 534: 524: 480: 470: 443: 433: 383: 378: 320: 301: 300: 257: 252: 201: 114:Danish physicist 23:An electron in a 1288: 1249: 1247: 1245: 1213: 1195: 1173: 1172: 1146: 1122: 1116: 1115: 1081: 1060: 1054: 1053: 1035: 1029: 1028: 1026: 1024: 1010: 1004: 1003: 1001: 999: 976: 970: 969: 943: 934: 925: 924: 898: 874: 868: 867: 833: 813: 807: 800: 706: 704: 703: 698: 696: 695: 690: 678: 673: 672: 671: 659: 658: 653: 648: 641: 640: 634: 623: 615: 614: 609: 603: 602: 590: 555: 553: 552: 547: 536: 535: 526: 525: 513: 512: 492: 490: 489: 484: 482: 481: 472: 471: 458: 456: 455: 450: 445: 444: 435: 434: 409: 407: 406: 401: 399: 398: 397: 385: 384: 379: 374: 363: 361: 360: 355: 343: 341: 340: 335: 333: 328: 327: 322: 321: 314: 295: 286: 284: 283: 278: 273: 272: 271: 259: 258: 253: 248: 244: 243: 239: 214: 209: 208: 203: 202: 195: 167: 44:and releasing a 43: 36: 1296: 1295: 1291: 1290: 1289: 1287: 1286: 1285: 1281:Electron states 1266: 1265: 1243: 1241: 1239:Quanta Magazine 1224:Physics Letters 1204:(10): 109–123. 1193: 1189:(August 1952). 1182: 1177: 1176: 1123: 1119: 1061: 1057: 1050: 1036: 1032: 1022: 1020: 1012: 1011: 1007: 997: 995: 977: 973: 941: 935: 928: 875: 871: 814: 810: 801: 797: 792: 787: 768:Phosphorescence 764:, for molecules 737: 725:transmon qubits 721:artificial atom 717: 709:selection rules 691: 686: 685: 674: 661: 660: 649: 647: 646: 645: 636: 635: 630: 619: 610: 605: 604: 598: 594: 586: 569: 566: 565: 531: 530: 521: 520: 508: 504: 502: 499: 498: 477: 476: 467: 466: 464: 461: 460: 440: 439: 430: 429: 415: 412: 411: 387: 386: 375: 373: 372: 371: 369: 366: 365: 349: 346: 345: 329: 323: 317: 316: 315: 310: 308: 305: 304: 303:with amplitude 261: 260: 249: 247: 246: 245: 235: 228: 224: 210: 204: 198: 197: 196: 191: 174: 171: 170: 162: 112: 84:artificial atom 38: 31: 17: 12: 11: 5: 1294: 1284: 1283: 1278: 1276:Atomic physics 1264: 1263: 1250: 1230: 1222:by H. D. Zeh, 1217: 1181: 1180:External links 1178: 1175: 1174: 1117: 1055: 1048: 1040:Atomic Physics 1030: 1005: 971: 926: 889:(34): 126880. 869: 824:(11): 110502. 808: 794: 793: 791: 788: 786: 785: 780: 775: 770: 765: 759: 754: 749: 744: 738: 736: 733: 716: 713: 694: 689: 684: 681: 677: 670: 667: 664: 656: 644: 633: 629: 626: 622: 618: 613: 608: 601: 597: 593: 589: 585: 582: 579: 576: 573: 545: 542: 539: 529: 519: 516: 511: 507: 475: 448: 438: 428: 425: 422: 419: 396: 393: 390: 382: 353: 332: 326: 313: 299: 298: 289: 287: 276: 270: 267: 264: 256: 242: 238: 234: 231: 227: 223: 220: 217: 213: 207: 194: 190: 187: 184: 181: 178: 161: 158: 111: 108: 60:atomic physics 15: 9: 6: 4: 3: 2: 1293: 1282: 1279: 1277: 1274: 1273: 1271: 1261: 1258: 1254: 1251: 1240: 1236: 1231: 1229:, 189 (1993). 1228: 1225: 1221: 1218: 1216: 1211: 1207: 1203: 1199: 1192: 1188: 1184: 1183: 1170: 1166: 1162: 1158: 1154: 1150: 1145: 1140: 1137:(3): 033512. 1136: 1132: 1128: 1121: 1113: 1109: 1105: 1101: 1097: 1093: 1089: 1085: 1080: 1075: 1071: 1067: 1059: 1051: 1045: 1041: 1034: 1019: 1015: 1009: 994: 990: 986: 982: 975: 967: 963: 959: 955: 951: 947: 940: 933: 931: 922: 918: 914: 910: 906: 902: 897: 892: 888: 884: 880: 873: 865: 861: 857: 853: 849: 845: 841: 837: 832: 827: 823: 819: 812: 805: 799: 795: 784: 781: 779: 776: 774: 771: 769: 766: 763: 760: 758: 755: 753: 750: 748: 745: 743: 740: 739: 732: 730: 726: 722: 712: 710: 692: 679: 642: 627: 616: 611: 599: 595: 591: 583: 580: 577: 574: 571: 563: 559: 540: 527: 517: 514: 509: 505: 495: 473: 436: 426: 423: 420: 351: 324: 297: 290: 288: 240: 236: 232: 229: 225: 218: 215: 205: 188: 182: 176: 169: 168: 165: 157: 155: 151: 147: 143: 139: 135: 130: 128: 125: 121: 117: 107: 105: 100: 95: 93: 89: 85: 81: 77: 73: 69: 65: 61: 56: 51: 47: 41: 34: 30: 29:quantum level 26: 21: 1259: 1256: 1242:. Retrieved 1238: 1226: 1223: 1201: 1197: 1134: 1130: 1120: 1069: 1065: 1058: 1039: 1033: 1021:. Retrieved 1017: 1008: 996:. Retrieved 984: 974: 949: 945: 886: 882: 872: 821: 817: 811: 798: 773:Quantum jump 752:Fluorescence 718: 496: 302: 291: 163: 138:trapped ions 134:Hans Dehmelt 131: 120:James Franck 113: 96: 76:energy level 67: 57: 55: 50:ground state 39: 32: 1023:December 6, 998:December 6, 742:Burst noise 92:attoseconds 1270:Categories 1144:2003.10476 1079:1803.00545 896:2009.02426 790:References 116:Niels Bohr 104:wavelength 25:Bohr model 1169:214623209 993:0362-4331 921:0375-9601 831:1009.2969 683:⟩ 655:^ 643:⋅ 625:⟨ 617:× 584:∝ 528:⋅ 474:⋅ 437:⋅ 427:− 421:ω 381:^ 352:ω 255:^ 237:ω 230:− 156:in 1986. 64:chemistry 1104:31160725 864:35070320 856:21469850 735:See also 72:electron 1244:June 6, 1149:Bibcode 1112:3739562 1084:Bibcode 954:Bibcode 952:: 403. 901:Bibcode 836:Bibcode 150:mercury 110:History 1215:Part 2 1167:  1110:  1102:  1066:Nature 1046:  991:  919:  862:  854:  160:Theory 142:barium 46:photon 1194:(PDF) 1165:S2CID 1139:arXiv 1108:S2CID 1074:arXiv 942:(PDF) 891:arXiv 860:S2CID 826:arXiv 66:, an 1246:2019 1227:A172 1100:PMID 1044:ISBN 1025:2021 1000:2021 989:ISSN 917:ISSN 852:PMID 154:NIST 148:and 122:and 80:atom 62:and 1260:103 1206:doi 1157:doi 1092:doi 1070:570 962:doi 950:377 909:doi 887:384 844:doi 822:106 152:at 144:at 140:of 82:or 58:In 42:= 2 37:to 35:= 3 1272:: 1237:. 1200:. 1196:. 1163:. 1155:. 1147:. 1133:. 1129:. 1106:. 1098:. 1090:. 1082:. 1068:. 1016:. 987:. 983:. 960:. 948:. 944:. 929:^ 915:. 907:. 899:. 885:. 881:. 858:. 850:. 842:. 834:. 820:. 564:: 106:. 94:. 1248:. 1212:. 1208:: 1202:3 1171:. 1159:: 1151:: 1141:: 1135:2 1114:. 1094:: 1086:: 1076:: 1052:. 1027:. 1002:. 968:. 964:: 956:: 923:. 911:: 903:: 893:: 866:. 846:: 838:: 828:: 729:K 693:2 688:| 680:1 676:| 669:d 666:a 663:r 651:e 638:r 632:| 628:2 621:| 612:2 607:| 600:0 596:E 592:e 588:| 581:e 578:t 575:a 572:R 544:) 541:t 538:( 533:E 523:r 518:e 515:= 510:I 506:H 479:r 469:k 447:) 442:r 432:k 424:t 418:( 395:d 392:a 389:r 377:e 331:| 325:0 319:E 312:| 296:) 294:1 292:( 275:) 269:d 266:a 263:r 251:e 241:t 233:i 226:e 222:( 219:e 216:R 212:| 206:0 200:E 193:| 189:= 186:) 183:t 180:( 177:E 40:n 33:n

Index


Bohr model
quantum level
photon
ground state
atomic physics
chemistry
electron
energy level
atom
artificial atom
Franck–Condon principle
attoseconds
electromagnetic radiation
wavelength
Niels Bohr
James Franck
Gustav Ludwig Hertz
proved experimentally
Hans Dehmelt
trapped ions
barium
University of Hamburg
mercury
NIST
time-dependent perturbation theory
Fermi's golden rule
selection rules
artificial atom
transmon qubits

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑