Knowledge

Astrophysical jet

Source 📝

489: 473: 434: 454: 20: 403: 391:). X-ray observations have been obtained, but there is no detected radio signature nor accretion disk. Initially, this pulsar was presumed to be rapidly spinning, but later measurements indicate the spin rate is only 15.9 Hz. Such a slow spin rate and lack of accretion material suggest the jet is neither rotation nor accretion powered, though it appears aligned with the pulsar rotation axis and perpendicular to the pulsar's true motion. 419: 372: 234: 337:. However, the frequency of high-energy astrophysical sources with jets suggests combinations of different mechanisms indirectly identified with the energy within the associated accretion disk and X-ray emissions from the generating source. Two early theories have been used to explain how energy can be transferred from a black hole into an astrophysical jet: 325:, while others are consistent with jets composed of positron–electron plasma. Trace nuclei swept up in a relativistic positron–electron jet would be expected to have extremely high energy, as these heavier nuclei should attain velocity equal to the positron and electron velocity. 344:. This theory explains the extraction of energy from magnetic fields around an accretion disk, which are dragged and twisted by the spin of the black hole. Relativistic material is then feasibly launched by the tightening of the field lines. 488: 472: 433: 1028:
Georganopoulos, M.; Kazanas, D.; Perlman, E.; Stecker, F. W. (2005). "Bulk Comptonization of the Cosmic Microwave Background by Extragalactic Jets as a Probe of Their Matter Content".
358:
to be able to extract relativistic particle energy and momentum, and subsequently shown to be a possible mechanism for jet formation. This effect includes using general relativistic
271:. Beam lengths may extend between several thousand, hundreds of thousands or millions of parsecs. Jet velocities when approaching the speed of light show significant effects of the 247:
Relativistic jets are beams of ionised matter accelerated close to the speed of light. Most have been observationally associated with central black holes of some
669: 313:
Mechanisms behind the composition of jets remain uncertain, though some studies favour models where jets are composed of an electrically neutral mixture of
453: 1174: 282:
Massive central black holes in galaxies have the most powerful jets, but their structure and behaviours are similar to those of smaller galactic
1336:
Williams, R. K. (2004). "Collimated Escaping Vortical Polar e−e+Jets Intrinsically Produced by Rotating Black Holes and Penrose Processes".
1590:
Blandford, Roger; Agol, Eric; Broderick, Avery; Heyl, Jeremy; Koopmans, Leon; Lee, Hee-Won (2001). "Compact Objects and Accretion Disks".
1083:
Hirotani, K.; Iguchi, S.; Kimura, M.; Wajima, K. (2000). "Pair Plasma Dominance in the Parsec-Scale Relativistic Jet of 3C 345".
818: 1639: 1608: 1291:(1995). "Extracting X-rays, Ύ-rays, and relativistic ee pairs from supermassive Kerr black holes using the Penrose mechanism". 402: 333:
Because of the enormous amount of energy needed to launch a relativistic jet, some jets are possibly powered by spinning
1245: 144:
are organised to aim two diametrically opposing beams away from the central source by angles only several degrees wide
418: 120:
The formation and powering of astrophysical jets are highly complex phenomena that are associated with many types of
822: 537:, elliptical galaxy located 600 million light-years from Earth, known for having the longest galactic jet discovered 953:
Dereli-Bégué, Hüsne; Pe’er, Asaf; Ryde, Felix; Oates, Samantha R.; Zhang, Bing; Dainotti, Maria G. (2022-09-24).
482:, an extragalactic jet of material moving at nearly the speed of light can be seen at the three o'clock position. 1150: 1634: 1521:
Halpern, J. P.; et al. (2014). "Discovery of X-ray Pulsations from the INTEGRAL Source IGR J11014-6103".
50: 519: 341: 1467: 777: 905:"Jet Velocity in SS 433: Its Anticorrelation with Precession-Cone Angle and Dependence on Orbital Phase" 620: 1523: 1338: 1223: 1085: 1030: 180: 58: 566: 1584: 1579: 307: 248: 164: 160: 46: 35: 1624: 628: 574: 524: 241: 196: 191:(GRB). Jets on a much smaller scale (~parsecs) may be found in star forming regions, including 1459: 1243:
Penrose, R. (2002). ""Golden Oldie": Gravitational Collapse: The Role of General Relativity".
237: 121: 1490: 1428: 1629: 1542: 1486: 1424: 1357: 1302: 1254: 1232: 1193: 1104: 1049: 976: 861: 749: 694: 633: 579: 276: 8: 200: 1546: 1361: 1306: 1258: 1236: 1197: 1108: 1053: 980: 865: 753: 698: 637: 583: 1591: 1558: 1532: 1502: 1476: 1440: 1414: 1373: 1347: 1270: 1183: 1120: 1094: 1065: 1039: 1005: 966: 955:"A wind environment and Lorentz factors of tens explain gamma-ray bursts X-ray plateau" 954: 916: 885: 851: 718: 684: 272: 260: 149: 114: 1554: 1562: 1506: 1318: 1274: 1010: 992: 904: 877: 842: 722: 710: 670:"A rapidly changing jet orientation in the stellar-mass black-hole system V404 Cygni" 355: 128:, whose active processes are commonly connected with compact central objects such as 70: 1444: 1124: 1069: 1550: 1494: 1432: 1391: 1377: 1365: 1310: 1262: 1201: 1112: 1057: 1000: 984: 926: 889: 869: 757: 702: 641: 587: 440: 359: 216: 24: 1498: 1436: 1293: 1137: 540: 529: 514: 444: 380: 347: 303: 204: 188: 1405:
Pavan, L.; et al. (2015). "A closer view of the IGR J11014-6103 outflows".
804: 988: 509: 351: 314: 299: 220: 153: 141: 125: 106: 16:
Beam of ionized matter flowing along the axis of a rotating astronomical object
1604: 1266: 1221:
Penrose, R. (1969). "Gravitational Collapse: The Role of General Relativity".
1206: 1169: 762: 737: 706: 1618: 1314: 1288: 996: 283: 873: 498:, which contains the highest concentration of jets known anywhere in the sky 379:
Jets may also be observed from spinning neutron stars. An example is pulsar
1596: 1392:"Chandra :: Photo Album :: IGR J11014-6103 :: June 28, 2012" 1322: 1014: 881: 714: 534: 264: 252: 192: 184: 172: 133: 38: 821:. Yale University – Office of Public Affairs. 20 June 2006. Archived from 447:(the viewing field is larger and rotated with respect to the above image.) 1352: 1188: 1099: 1044: 921: 856: 460: 424: 291: 199:; these objects are partially formed by the interaction of jets with the 27: 19: 646: 592: 375:
The pulsar IGR J11014-6103 with supernova remnant origin, nebula and jet
334: 287: 129: 98: 31: 545: 384: 208: 94: 82: 837: 371: 1419: 1369: 1116: 1061: 1027: 971: 931: 689: 495: 479: 322: 318: 212: 102: 1537: 1481: 105:. When this greatly accelerated matter in the beam approaches the 409: 1460:"The long helical jet of the Lighthouse nebula, IGR J11014-6103" 387:, and whose velocity is estimated at 80% the speed of light (0.8 179:
in length. Other astronomical objects that contain jets include
819:"Evidence for Ultra-Energetic Particles in Jet from Black Hole" 464: 295: 268: 256: 176: 168: 137: 74: 66: 54: 42: 1170:"Electromagnetic extraction of energy from Kerr black holes" 175:
or within galaxy clusters. Such jets can exceed millions of
1154: 78: 62: 1589: 1082: 952: 233: 73:(WFI) on the MPG/ESO 2.2 m telescope located at La Silla, 350:. Here energy is extracted from a rotating black hole by 1605:
Hubble Video Shows Shock Collision inside Black Hole Jet
159:
Most of the largest and most active jets are created by
835: 805:"Hubble Detects Faster-Than-Light Motion in Galaxy M87" 366: 302:. Relativistic jet formation may also explain observed 1585:
SPACE.com – Twisted Physics: How Black Holes Spout Off
1580:
NASA – Ask an Astrophysicist: Black Hole Bipolar Jets
621:"A Uniform Description of All the Astrophysical Jets" 328: 306:, which have the most relativistic jets known, being 124:. They likely arise from dynamic interactions within 1138:
Electron–positron Jets Associated with Quasar 3C 279
838:"Simulations of Jets Driven by Black Hole Rotation" 383:, which has the largest jet so far observed in the 1175:Monthly Notices of the Royal Astronomical Society 1151:"Vast Cloud of Antimatter Traced to Binary Stars" 1616: 836:Semenov, V.; Dyadechkin, S.; Punsly, B. (2004). 30:, with its plasma jets extending over a million 1167: 101:matter are emitted as extended beams along the 298:jet, for example, has a mean velocity of 0.26 1511:Long helical jet of Lighthouse nebula page 7 1131: 667: 240:emitting a relativistic jet, as seen by the 279:that changes the apparent beam brightness. 1148: 354:, which was later theoretically proven by 1595: 1536: 1480: 1418: 1351: 1205: 1187: 1098: 1043: 1004: 970: 930: 920: 855: 761: 688: 645: 591: 1335: 1287: 1168:Blandford, R. D.; Znajek, R. L. (1977). 902: 370: 232: 18: 1520: 1242: 1220: 802: 614: 612: 610: 1617: 427:in x-rays showing the relativistic jet 294:and show a large range of velocities. 290:. These SMBH systems are often called 1457: 1404: 903:Blundell, Katherine (December 2008). 735: 618: 564: 1142: 607: 367:Relativistic jets from neutron stars 226: 1149:Naeye, R.; Gutro, R. (2008-01-09). 13: 1246:General Relativity and Gravitation 778:"Star sheds via reverse whirlpool" 668:Miller-Jones, James (April 2019). 408:Illustration of the dynamics of a 329:Rotation as possible energy source 140:. One explanation is that tangled 14: 1651: 1573: 742:Acta Polytechnica CTU Proceedings 463:image of the relativistic jet in 148:Jets may also be influenced by a 738:"A review of Astrophysical Jets" 567:"A Review of Astrophysical Jets" 487: 471: 452: 432: 417: 401: 122:high-energy astronomical sources 81:and the galaxy's characteristic 1514: 1458:Pavan, L.; et al. (2014). 1451: 1398: 1384: 1329: 1281: 1214: 1161: 1076: 1021: 946: 394: 34:, is considered as the closest 896: 829: 811: 796: 770: 729: 661: 558: 53:on APEX, are shown in orange. 1: 1640:Stellar astrophysics concepts 551: 97:phenomenon where outflows of 1468:Astronomy & Astrophysics 1407:Astronomy & Astrophysics 273:special theory of relativity 207:may also be associated with 109:, astrophysical jets become 7: 1555:10.1088/2041-8205/795/2/L27 1499:10.1051/0004-6361/201322588 1437:10.1051/0004-6361/201527703 503: 459:Hubble Legacy Archive Near- 10: 1656: 989:10.1038/s41467-022-32881-1 803:Biretta, J. (6 Jan 1999). 181:cataclysmic variable stars 113:as they show effects from 85:in close to "true colour". 1524:The Astrophysical Journal 1339:The Astrophysical Journal 1224:Rivista del Nuovo Cimento 1086:The Astrophysical Journal 1031:The Astrophysical Journal 909:The Astrophysical Journal 763:10.14311/APP.2014.01.0259 707:10.1038/s41586-019-1152-0 59:Chandra X-ray Observatory 1315:10.1103/PhysRevD.51.5387 520:Blandford–Znajek process 439:The M87 jet seen by the 342:Blandford–Znajek process 163:(SMBH) in the centre of 161:supermassive black holes 1491:2014A&A...562A.122P 1429:2016A&A...591A..91P 1267:10.1023/A:1016578408204 1207:10.1093/mnras/179.3.433 874:10.1126/science.1100638 259:, and also by galactic 629:Proceedings of Science 575:Proceedings of Science 376: 244: 242:Hubble Space Telescope 86: 77:, show the background 1635:Concepts in astronomy 959:Nature Communications 565:Beall, J. H. (2015). 374: 238:Elliptical galaxy M87 236: 22: 736:Beall, J. H (2014). 494:Some of the jets in 277:relativistic beaming 1547:2014ApJ...795L..27H 1362:2004ApJ...611..952W 1307:1995PhRvD..51.5387W 1259:2002GReGr..34.1141P 1237:1969NCimR...1..252P 1198:1977MNRAS.179..433B 1109:2000ApJ...545..100H 1054:2005ApJ...625..656G 981:2022NatCo..13.5611D 866:2004Sci...305..978S 754:2014mbhe.conf..259B 699:2019Natur.569..374M 647:10.22323/1.246.0058 638:2015mbhe.confE..58B 593:10.22323/1.246.0058 584:2015mbhe.confE..58B 261:stellar black holes 201:interstellar medium 197:Herbig–Haro objects 1597:astro-ph/0107228v1 784:. 27 December 2007 619:Kundt, W. (2014). 525:Herbig–Haro object 377: 245: 211:, or with evolved 150:general relativity 115:special relativity 87: 1301:(10): 5387–5427. 850:(5686): 978–980. 683:(7756): 374–377. 412:, including a jet 356:Reva Kay Williams 348:Penrose mechanism 308:ultrarelativistic 227:Relativistic jets 217:planetary nebulae 111:relativistic jets 91:astrophysical jet 71:Wide Field Imager 45:. The 870-micron 1647: 1601: 1599: 1567: 1566: 1540: 1518: 1512: 1510: 1484: 1464: 1455: 1449: 1448: 1422: 1402: 1396: 1395: 1388: 1382: 1381: 1355: 1353:astro-ph/0404135 1333: 1327: 1326: 1285: 1279: 1278: 1253:(7): 1141–1165. 1240: 1218: 1212: 1211: 1209: 1191: 1189:astro-ph/0506302 1165: 1159: 1158: 1146: 1140: 1135: 1129: 1128: 1102: 1100:astro-ph/0005394 1080: 1074: 1073: 1047: 1045:astro-ph/0502201 1025: 1019: 1018: 1008: 974: 950: 944: 943: 941: 939: 934: 924: 922:astro-ph/0410457 900: 894: 893: 859: 857:astro-ph/0408371 833: 827: 826: 815: 809: 808: 800: 794: 793: 791: 789: 774: 768: 767: 765: 733: 727: 726: 692: 674: 665: 659: 658: 656: 654: 649: 625: 616: 605: 604: 602: 600: 595: 571: 562: 491: 475: 456: 441:Very Large Array 436: 421: 405: 360:gravitomagnetism 304:gamma-ray bursts 205:Bipolar outflows 189:gamma-ray bursts 152:effect known as 147: 103:axis of rotation 25:starburst galaxy 1655: 1654: 1650: 1649: 1648: 1646: 1645: 1644: 1615: 1614: 1576: 1571: 1570: 1519: 1515: 1462: 1456: 1452: 1403: 1399: 1390: 1389: 1385: 1334: 1330: 1294:Physical Review 1289:Williams, R. K. 1286: 1282: 1219: 1215: 1166: 1162: 1147: 1143: 1136: 1132: 1081: 1077: 1026: 1022: 951: 947: 937: 935: 901: 897: 834: 830: 817: 816: 812: 801: 797: 787: 785: 776: 775: 771: 734: 730: 672: 666: 662: 652: 650: 623: 617: 608: 598: 596: 569: 563: 559: 554: 541:Gamma-ray burst 530:Penrose process 515:Bipolar outflow 506: 499: 492: 483: 476: 467: 457: 448: 445:radio frequency 437: 428: 422: 413: 406: 397: 381:IGR J11014-6103 369: 331: 275:; for example, 249:active galaxies 229: 221:bipolar nebulae 165:active galaxies 145: 142:magnetic fields 126:accretion disks 17: 12: 11: 5: 1653: 1643: 1642: 1637: 1632: 1627: 1613: 1612: 1602: 1587: 1582: 1575: 1574:External links 1572: 1569: 1568: 1513: 1450: 1397: 1383: 1370:10.1086/422304 1346:(2): 952–963. 1328: 1280: 1241:Reprinted in: 1213: 1160: 1141: 1130: 1117:10.1086/317769 1093:(1): 100–106. 1075: 1062:10.1086/429558 1038:(2): 656–666. 1020: 945: 932:10.1086/429663 895: 828: 825:on 2008-05-13. 810: 795: 769: 748:(1): 259–264. 728: 660: 606: 556: 555: 553: 550: 549: 548: 543: 538: 532: 527: 522: 517: 512: 510:Accretion disk 505: 502: 501: 500: 493: 486: 484: 477: 470: 468: 458: 451: 449: 438: 431: 429: 423: 416: 414: 407: 400: 396: 393: 368: 365: 364: 363: 352:frame dragging 345: 330: 327: 253:radio galaxies 228: 225: 185:X-ray binaries 173:radio galaxies 154:frame-dragging 107:speed of light 69:data from the 57:data from the 15: 9: 6: 4: 3: 2: 1652: 1641: 1638: 1636: 1633: 1631: 1628: 1626: 1625:Space plasmas 1623: 1622: 1620: 1610: 1606: 1603: 1598: 1593: 1588: 1586: 1583: 1581: 1578: 1577: 1564: 1560: 1556: 1552: 1548: 1544: 1539: 1534: 1530: 1526: 1525: 1517: 1508: 1504: 1500: 1496: 1492: 1488: 1483: 1478: 1475:(562): A122. 1474: 1470: 1469: 1461: 1454: 1446: 1442: 1438: 1434: 1430: 1426: 1421: 1416: 1412: 1408: 1401: 1393: 1387: 1379: 1375: 1371: 1367: 1363: 1359: 1354: 1349: 1345: 1341: 1340: 1332: 1324: 1320: 1316: 1312: 1308: 1304: 1300: 1296: 1295: 1290: 1284: 1276: 1272: 1268: 1264: 1260: 1256: 1252: 1248: 1247: 1238: 1234: 1230: 1226: 1225: 1217: 1208: 1203: 1199: 1195: 1190: 1185: 1181: 1177: 1176: 1171: 1164: 1156: 1152: 1145: 1139: 1134: 1126: 1122: 1118: 1114: 1110: 1106: 1101: 1096: 1092: 1088: 1087: 1079: 1071: 1067: 1063: 1059: 1055: 1051: 1046: 1041: 1037: 1033: 1032: 1024: 1016: 1012: 1007: 1002: 998: 994: 990: 986: 982: 978: 973: 968: 964: 960: 956: 949: 933: 928: 923: 918: 914: 910: 906: 899: 891: 887: 883: 879: 875: 871: 867: 863: 858: 853: 849: 845: 844: 839: 832: 824: 820: 814: 806: 799: 783: 782:Astronomy.com 779: 773: 764: 759: 755: 751: 747: 743: 739: 732: 724: 720: 716: 712: 708: 704: 700: 696: 691: 686: 682: 678: 671: 664: 648: 643: 639: 635: 631: 630: 622: 615: 613: 611: 594: 589: 585: 581: 577: 576: 568: 561: 557: 547: 544: 542: 539: 536: 533: 531: 528: 526: 523: 521: 518: 516: 513: 511: 508: 507: 497: 490: 485: 481: 474: 469: 466: 462: 455: 450: 446: 442: 435: 430: 426: 420: 415: 411: 404: 399: 398: 392: 390: 386: 382: 373: 361: 357: 353: 349: 346: 343: 340: 339: 338: 336: 326: 324: 320: 316: 311: 309: 305: 301: 297: 293: 289: 285: 284:neutron stars 280: 278: 274: 270: 266: 265:neutron stars 262: 258: 254: 250: 243: 239: 235: 231: 224: 222: 218: 214: 210: 206: 202: 198: 194: 193:T Tauri stars 190: 186: 182: 178: 174: 170: 166: 162: 157: 155: 151: 146:(c. > 1%). 143: 139: 135: 134:neutron stars 131: 127: 123: 118: 116: 112: 108: 104: 100: 96: 92: 84: 80: 76: 72: 68: 67:Visible light 64: 61:are shown in 60: 56: 52: 48: 47:submillimetre 44: 40: 37: 33: 29: 26: 21: 1528: 1522: 1516: 1472: 1466: 1453: 1410: 1406: 1400: 1386: 1343: 1337: 1331: 1298: 1292: 1283: 1250: 1244: 1228: 1222: 1216: 1179: 1173: 1163: 1144: 1133: 1090: 1084: 1078: 1035: 1029: 1023: 962: 958: 948: 936:. Retrieved 912: 908: 898: 847: 841: 831: 823:the original 813: 798: 786:. Retrieved 781: 772: 745: 741: 731: 680: 676: 663: 651:. Retrieved 627: 597:. Retrieved 573: 560: 535:CGCG 049-033 395:Other images 388: 378: 332: 312: 292:microquasars 281: 246: 230: 158: 119: 110: 95:astronomical 90: 88: 39:radio galaxy 1630:Black holes 1231:: 252–276. 965:(1): 5611. 653:19 February 599:19 February 425:Centaurus A 335:black holes 288:black holes 130:black holes 49:data, from 32:light years 28:Centaurus A 1619:Categories 1531:(2): L27. 1420:1511.01944 1182:(3): 433. 972:2207.11066 938:15 January 915:(2): 129. 690:1906.05400 552:References 209:protostars 1563:118637856 1538:1410.2332 1507:118845324 1482:1309.6792 1275:117459073 997:2041-1723 723:139106116 546:Solar jet 385:Milky Way 323:positrons 319:electrons 83:dust lane 1445:59522014 1323:10018300 1125:17274015 1070:39743397 1015:36153328 882:15310894 715:31036949 504:See also 496:HH 24-26 480:NGC 3862 213:post-AGB 167:such as 1609:Article 1543:Bibcode 1487:Bibcode 1425:Bibcode 1413:: A91. 1378:1350543 1358:Bibcode 1303:Bibcode 1255:Bibcode 1233:Bibcode 1194:Bibcode 1105:Bibcode 1050:Bibcode 1006:9509382 977:Bibcode 890:1590734 862:Bibcode 843:Science 750:Bibcode 695:Bibcode 634:Bibcode 580:Bibcode 478:Galaxy 410:proplyd 269:pulsars 257:quasars 215:stars, 177:parsecs 169:quasars 138:pulsars 99:ionised 1561:  1505:  1443:  1376:  1321:  1273:  1123:  1068:  1013:  1003:  995:  888:  880:  788:26 May 721:  713:  677:Nature 632:: 58. 578:: 58. 465:3C 66B 321:, and 315:nuclei 296:SS 433 93:is an 51:LABOCA 36:active 1592:arXiv 1559:S2CID 1533:arXiv 1503:S2CID 1477:arXiv 1463:(PDF) 1441:S2CID 1415:arXiv 1374:S2CID 1348:arXiv 1271:S2CID 1184:arXiv 1121:S2CID 1095:arXiv 1066:S2CID 1040:arXiv 967:arXiv 917:arXiv 886:S2CID 852:arXiv 719:S2CID 685:arXiv 673:(PDF) 624:(PDF) 570:(PDF) 79:stars 75:Chile 55:X-ray 43:Earth 1319:PMID 1155:NASA 1011:PMID 993:ISSN 940:2021 878:PMID 790:2015 711:PMID 655:2017 601:2017 286:and 219:and 195:and 187:and 171:and 63:blue 23:The 1551:doi 1529:795 1495:doi 1473:562 1433:doi 1411:591 1366:doi 1344:611 1311:doi 1263:doi 1202:doi 1180:179 1113:doi 1091:545 1058:doi 1036:625 1001:PMC 985:doi 927:doi 913:622 870:doi 848:305 758:doi 703:doi 681:569 642:doi 588:doi 443:in 267:or 255:or 136:or 89:An 41:to 1621:: 1557:. 1549:. 1541:. 1527:. 1501:. 1493:. 1485:. 1471:. 1465:. 1439:. 1431:. 1423:. 1409:. 1372:. 1364:. 1356:. 1342:. 1317:. 1309:. 1299:51 1297:. 1269:. 1261:. 1251:34 1249:. 1227:. 1200:. 1192:. 1178:. 1172:. 1153:. 1119:. 1111:. 1103:. 1089:. 1064:. 1056:. 1048:. 1034:. 1009:. 999:. 991:. 983:. 975:. 963:13 961:. 957:. 925:. 911:. 907:. 884:. 876:. 868:. 860:. 846:. 840:. 780:. 756:. 744:. 740:. 717:. 709:. 701:. 693:. 679:. 675:. 640:. 626:. 609:^ 586:. 572:. 461:UV 317:, 310:. 263:, 251:, 223:. 203:. 183:, 156:. 132:, 117:. 65:. 1611:) 1607:( 1600:. 1594:: 1565:. 1553:: 1545:: 1535:: 1509:. 1497:: 1489:: 1479:: 1447:. 1435:: 1427:: 1417:: 1394:. 1380:. 1368:: 1360:: 1350:: 1325:. 1313:: 1305:: 1277:. 1265:: 1257:: 1239:. 1235:: 1229:1 1210:. 1204:: 1196:: 1186:: 1157:. 1127:. 1115:: 1107:: 1097:: 1072:. 1060:: 1052:: 1042:: 1017:. 987:: 979:: 969:: 942:. 929:: 919:: 892:. 872:: 864:: 854:: 807:. 792:. 766:. 760:: 752:: 746:1 725:. 705:: 697:: 687:: 657:. 644:: 636:: 603:. 590:: 582:: 389:c 362:. 300:c

Index


starburst galaxy
Centaurus A
light years
active
radio galaxy
Earth
submillimetre
LABOCA
X-ray
Chandra X-ray Observatory
blue
Visible light
Wide Field Imager
Chile
stars
dust lane
astronomical
ionised
axis of rotation
speed of light
special relativity
high-energy astronomical sources
accretion disks
black holes
neutron stars
pulsars
magnetic fields
general relativity
frame-dragging

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.