Knowledge

Alpha decay

Source 📝

822: 1315:). However, since the mass numbers of most alpha-emitting radioisotopes exceed 210, far greater than the mass number of the alpha particle (4), the fraction of the energy going to the recoil of the nucleus is generally quite small, less than 2%. Nevertheless, the recoil energy (on the scale of keV) is still much larger than the strength of chemical bonds (on the scale of eV), so the daughter nuclide will break away from the chemical environment the parent was in. The energies and ratios of the alpha particles can be used to identify the radioactive parent via 1354:
probability that it will tunnel its way out. An alpha particle with a speed of 1.5×10 m/s within a nuclear diameter of approximately 10 m will collide with the barrier more than 10 times per second. However, if the probability of escape at each collision is very small, the half-life of the radioisotope will be very long, since it is the time required for the total probability of escape to reach 50%. As an extreme example, the half-life of the isotope
835: 50: 31: 1152:, while the electromagnetic force has an unlimited range. The strength of the attractive nuclear force keeping a nucleus together is thus proportional to the number of the nucleons, but the total disruptive electromagnetic force of proton-proton repulsion trying to break the nucleus apart is roughly proportional to the square of its atomic number. A nucleus with 210 or more nucleons is so large that the 1327:
of about 25 MeV. An alpha particle within the nucleus can be thought of as being inside a potential barrier whose walls are 25 MeV above the potential at infinity. However, decay alpha particles only have energies of around 4 to 9 MeV above the potential at infinity, far less than the energy needed to overcome the barrier and escape.
1590:) divided by the weight of the parent (typically about 200 Da) times the total energy of the alpha. By some estimates, this might account for most of the internal radiation damage, as the recoil nucleus is part of an atom that is much larger than an alpha particle, and causes a very dense trail of ionization; the atom is typically a 1533:
to the DNA in cases of internal contamination, when ingested, inhaled, injected or introduced through the skin. Otherwise, touching an alpha source is typically not harmful, as alpha particles are effectively shielded by a few centimeters of air, a piece of paper, or the thin layer of dead skin cells
1348:
It has hitherto been necessary to postulate some special arbitrary 'instability' of the nucleus, but in the following note, it is pointed out that disintegration is a natural consequence of the laws of quantum mechanics without any special hypothesis... Much has been written of the explosive violence
1343:
in 1928, was hailed as a very striking confirmation of quantum theory. Essentially, the alpha particle escapes from the nucleus not by acquiring enough energy to pass over the wall confining it, but by tunneling through the wall. Gurney and Condon made the following observation in their paper on it:
1326:
created by the interplay between the strong nuclear and the electromagnetic force, which prevents the alpha particle from escaping. The energy needed to bring an alpha particle from infinity to a point near the nucleus just outside the range of the nuclear force's influence is generally in the range
1353:
The theory supposes that the alpha particle can be considered an independent particle within a nucleus, that is in constant motion but held within the nucleus by strong interaction. At each collision with the repulsive potential barrier of the electromagnetic force, there is a small non-zero
1605:, a naturally occurring, radioactive gas found in soil and rock. If the gas is inhaled, some of the radon particles may attach to the inner lining of the lung. These particles continue to decay, emitting alpha particles, which can damage cells in the lung tissue. The death of 978:
is no longer a maximum and the nuclides are therefore unstable toward spontaneous fission-type processes. In practice, this mode of decay has only been observed in nuclides considerably heavier than nickel, with the lightest known alpha emitter being the second lightest
1613:
was probably caused by prolonged exposure to high doses of ionizing radiation, but it is not clear if this was due to alpha radiation or X-rays. Curie worked extensively with radium, which decays into radon, along with other radioactive materials that emit
1294:
is the mass of the emitted (alpha-)particle, one finds that in certain cases it is positive and so alpha particle emission is possible, whereas other decay modes would require energy to be added. For example, performing the calculation for
1175:
of the alpha particle, which means that its mass is less than the sum of the masses of two free protons and two free neutrons. This increases the disintegration energy. Computing the total disintegration energy given by the
1265: 959:, this is not usually shown because a nuclear equation describes a nuclear reaction without considering the electrons – a convention that does not imply that the nuclei necessarily occur in neutral atoms. 1156:
holding it together can just barely counterbalance the electromagnetic repulsion between the protons it contains. Alpha decay occurs in such nuclei as a means of increasing stability by reducing size.
1443:
Working out the details of the theory leads to an equation relating the half-life of a radioisotope to the decay energy of its alpha particles, a theoretical derivation of the empirical
1335:
Quantum mechanics, however, allows the alpha particle to escape via quantum tunneling. The quantum tunneling theory of alpha decay, independently developed by George Gamow and by
1622:. However, Curie also worked with unshielded X-ray tubes during World War I, and analysis of her skeleton during a reburial showed a relatively low level of radioisotope burden. 1051:
and relatively low velocity, alpha particles are very likely to interact with other atoms and lose their energy, and their forward motion can be stopped by a few centimeters of
2074: 1349:
with which the α-particle is hurled from its place in the nucleus. But from the process pictured above, one would rather say that the α-particle almost slips away unnoticed.
1124:
and appearing on the other side to escape the nucleus. Gamow solved a model potential for the nucleus and derived, from first principles, a relationship between the
1036:
have a typical kinetic energy of 5 MeV (or ≈ 0.13% of their total energy, 110 TJ/kg) and have a speed of about 15,000,000 m/s, or 5% of the
1182: 1564:
of travel by the alpha particle. The RBE has been set at the value of 20 for alpha radiation by various government regulations. The RBE is set at 10 for
1478:
flows through the ionized air. Smoke particles from the fire that enter the chamber reduce the current, triggering the smoke detector's alarm.
1685: 2130: 1663: 866: 780: 2007: 1159:
One curiosity is why alpha particles, helium nuclei, should be preferentially emitted as opposed to other particles like a single
1010:
collection of nucleons, leaving another defined product behind. It is the most common form because of the combined extremely high
1104:
had solved the theory of alpha decay via tunneling. The alpha particle is trapped inside the nucleus by an attractive nuclear
2026: 1492: 2040: 129: 1980: 1598:. In some studies, this has resulted in an RBE approaching 1,000 instead of the value used in governmental regulations. 1044:
of the half-life of this process on the energy produced. Because of their relatively large mass, the electric charge of
1579:
of the parent nucleus (alpha recoil) gives it a significant amount of energy, which also causes ionization damage (see
1819:
Belli, P.; Bernabei, R.; Danevich, F. A.; et al. (2019). "Experimental searches for rare alpha and beta decays".
1880: 1698: 1545: 1128:
of the decay, and the energy of the emission, which had been previously discovered empirically and was known as the
433: 821: 2123: 1945: 1148:
between the protons. However, the nuclear force is also short-range, dropping quickly in strength beyond about 3
625: 17: 330: 859: 1091: 1014:
and relatively small mass of the alpha particle. Like other cluster decays, alpha decay is fundamentally a
1316: 1299:
shows that alpha particle emission releases 5.4 MeV of energy, while a single proton emission would
1177: 643: 613: 114: 2116: 690: 240: 1370: 1112:. Classically, it is forbidden to escape, but according to the (then) newly discovered principles of 576: 1730: 1728:
G. Gamow (1928). "Zur Quantentheorie des Atomkernes (On the quantum theory of the atomic nucleus)".
2398: 1704: 1308: 852: 839: 571: 275: 2282: 2247: 2227: 2182: 1591: 566: 463: 428: 124: 2403: 2277: 2267: 1557: 1444: 1144:
holding an atomic nucleus together is very strong, in general much stronger than the repulsive
1129: 1041: 1011: 620: 270: 235: 2085: 1667: 1548:(RBE) quantifies the ability of radiation to cause certain biological effects, notably either 1513:, an alpha emitter, to ionize the air, allowing the "static cling" to dissipate more rapidly. 1336: 1145: 1027: 745: 630: 522: 685: 2272: 2262: 1838: 1791: 1739: 1626: 1500: 1153: 988: 755: 730: 547: 1503:. Alpha decay is much more easily shielded against than other forms of radioactive decay. 8: 2326: 2217: 2197: 2192: 1630: 1530: 650: 529: 423: 366: 359: 349: 290: 285: 119: 1842: 1795: 1743: 2005: 1862: 1828: 1755: 1580: 1437: 593: 588: 403: 2207: 2177: 2147: 2024: 1962: 1866: 1854: 1759: 1694: 1506: 1374: 1323: 1322:
These disintegration energies, however, are substantially smaller than the repulsive
1121: 1117: 1113: 1109: 1097: 1015: 925: 887: 765: 760: 720: 598: 337: 325: 308: 280: 250: 91: 2059:
These other decay modes, while possible, are extremely rare compared to alpha decay.
902:
nucleus) and thereby transforms or "decays" into a different atomic nucleus, with a
2237: 2202: 2187: 2139: 1954: 1846: 1799: 1782: 1747: 1475: 1401: 1164: 785: 775: 705: 458: 376: 344: 164: 96: 2393: 2347: 2242: 2212: 2030: 2011: 1850: 1610: 1160: 950: 770: 750: 725: 655: 542: 470: 416: 381: 41: 1958: 2368: 2352: 1526: 1463: 1405: 1400: ≥ 165 are theorized to undergo alpha decay. All other mass numbers ( 1304: 1172: 1105: 1096:
Alpha particles were first described in the investigations of radioactivity by
1037: 1033: 971: 895: 891: 826: 680: 675: 554: 487: 295: 230: 207: 194: 181: 81: 59: 1560:(LET) coefficient, which is about one ionization of a molecule/atom for every 1488:. It is used in the treatment of skeletal metastases (cancers in the bones). 2387: 2257: 2172: 1984: 1858: 1586: 1576: 1485: 1459: 1455: 1340: 1312: 1168: 1141: 1023: 1007: 999: 934: 907: 805: 800: 795: 790: 740: 398: 371: 215: 154: 107: 86: 2331: 2023:
Health Physics Society, "Did Marie Curie die of a radiation overexposure?"
1634: 1510: 1101: 910:
that is reduced by two. An alpha particle is identical to the nucleus of a
735: 710: 695: 440: 388: 245: 1966: 1892: 1542:
radio daughters, and both are often accompanied by gamma photon emission.
2103: 1606: 1496: 1471: 1428:) are very short, unlike the half-lives for all other such nuclides with 1425: 1378: 1355: 1296: 1149: 1079: 992: 943: 939: 903: 700: 393: 168: 1914: 1416:, and those with mass 8 decay to two helium-4 nuclei; their half-lives ( 2308: 2162: 2098: 1751: 1615: 1595: 1569: 1539: 1481: 1019: 670: 660: 517: 497: 320: 190: 2303: 2295: 2287: 2252: 2167: 1804: 1777: 1775: 1619: 1535: 1525:
of energy within a small volume of material, along with a very short
1421: 1260:{\displaystyle E_{di}=(m_{\text{i}}-m_{\text{f}}-m_{\text{p}})c^{2},} 1125: 715: 665: 492: 480: 475: 354: 2108: 2078: 1833: 1561: 1553: 1417: 1311:, part of the energy goes to the recoil of the nucleus itself (see 1040:. There is surprisingly small variation around this energy, due to 984: 966:. Theoretically, it can occur only in nuclei somewhat heavier than 911: 1943:
Winters TH, Franza JR (1982). "Radioactivity in Cigarette Smoke".
49: 1565: 1413: 1075: 1071: 1067: 980: 975: 963: 919: 177: 150: 142: 74: 64: 1818: 1556:, for equivalent radiation exposure. Alpha radiation has a high 2073: 1549: 1467: 1409: 1100:
in 1899, and by 1907 they were identified as He ions. By 1928,
1059: 967: 915: 899: 69: 30: 1684:
Arthur Beiser (2003). "Chapter 12: Nuclear Transformations".
1602: 1521:
Highly charged and heavy, alpha particles lose their several
1063: 1601:
The largest natural contributor to public radiation dose is
1303:
6.1 MeV. Most of the disintegration energy becomes the
1066:
is the result of the alpha decay of underground deposits of
1922: 1888: 1432: ≤ 209, which are very long. (Such nuclides with 1003: 1981:"ANS: Public Information: Resources: Radiation Dose Chart" 1078:. The helium is brought to the surface as a by-product of 1522: 1052: 1285:
is the mass of the nucleus after particle emission, and
1538:; however, many alpha sources are also accompanied by 1942: 1185: 2004:EPA Radiation Information: Radon. October 6, 2006, 1583:). This energy is roughly the weight of the alpha ( 1022:, it is governed by the interplay between both the 1259: 1092:Alpha particle § History of discovery and use 2385: 2041:Alpha emitters by increasing energy (Appendix 1) 1653:F.G. Kondev et al 2021 Chinese Phys. C 45 030001 1491:Alpha decay can provide a safe power source for 1778:"Wave Mechanics and Radioactive Disintegration" 1771: 1769: 1693:(6th ed.). McGraw-Hill. pp. 432–434. 1116:, it has a tiny (but non-zero) probability of " 1776:Ronald W. Gurney & Edw. U. Condon (1928). 998:Alpha decay is by far the most common form of 2124: 1683: 962:Alpha decay typically occurs in the heaviest 860: 1766: 1408:. Those with mass 5 decay to helium-4 and a 1307:of the alpha particle, although to fulfill 2131: 2117: 867: 853: 1832: 1812: 1803: 1633:is thought to have been carried out with 1727: 1679: 1677: 29: 1881:"Radioisotope Thermoelectric Generator" 14: 2386: 1594:, which preferentially collect on the 1493:radioisotope thermoelectric generators 2138: 2112: 1674: 1373:that are also stable with regards to 2086:Alpha decay with 3 animated examples 1915:"Nuclear-Powered Cardiac Pacemakers" 1330: 1276:is the initial mass of the nucleus, 34:Visual representation of alpha decay 24: 1392: ≤ 155, 160 ≤  25: 2415: 2079:The LIVEChart of Nuclides - IAEA 2066: 1666:. 6 November 1996. Archived from 1546:Relative biological effectiveness 1404:) have exactly one theoretically 1171:. Part of the reason is the high 2072: 1919:Off-Site Source Recovery Project 1388: = 8, 143 ≤  1108:and a repulsive electromagnetic 970:(element 28), where the overall 834: 833: 820: 48: 2017: 1998: 1973: 1946:New England Journal of Medicine 1936: 1529:. This increases the chance of 995:decays to two alpha particles. 906:that is reduced by four and an 2088:showing the recoil of daughter 2053: 1907: 1873: 1721: 1656: 1647: 1241: 1202: 13: 1: 1664:"Gamow theory of alpha decay" 1640: 949:While alpha particles have a 2014:, Accessed December 6, 2006, 1135: 914:atom, which consists of two 7: 2092: 1959:10.1056/NEJM198202113060613 1821:European Physical Journal A 1516: 1501:artificial heart pacemakers 614:High-energy nuclear physics 10: 2420: 2082:with filter on alpha decay 1851:10.1140/epja/i2019-12823-2 1687:Concepts of Modern Physics 1568:irradiation, and at 1 for 1089: 1085: 991:. Exceptionally, however, 2361: 2340: 2317: 2226: 2146: 1371:beta-decay stable isobars 1058:Approximately 99% of the 27:Type of radioactive decay 2046: 1885:Solar System Exploration 1309:conservation of momentum 2183:Double electron capture 1450: 125:Interacting boson model 1731:Zeitschrift für Physik 1572:and ionizing photons. 1558:linear energy transfer 1466:. The alpha particles 1396: ≤ 162, and 1351: 1261: 1146:electromagnetic forces 1012:nuclear binding energy 35: 1625:The Russian defector 1436: ≤ 209 are 1346: 1337:Ronald Wilfred Gurney 1262: 1042:the strong dependence 1028:electromagnetic force 922:. It has a charge of 512:High-energy processes 210:– equal all the above 108:Models of the nucleus 33: 1670:on 24 February 2009. 1637:, an alpha emitter. 1627:Alexander Litvinenko 1531:double-strand breaks 1183: 1154:strong nuclear force 1024:strong nuclear force 548:nuclear astrophysics 2327:Photodisintegration 2248:Proton–proton chain 2218:Spontaneous fission 2198:Isomeric transition 2193:Internal conversion 1843:2019EPJA...55..140B 1796:1928Natur.122..439G 1744:1928ZPhy...51..204G 1631:radiation poisoning 1438:primordial nuclides 1169:other atomic nuclei 1002:, where the parent 530:Photodisintegration 453:Capturing processes 367:Spontaneous fission 360:Internal conversion 291:Valley of stability 286:Island of stability 120:Nuclear shell model 2029:2007-10-19 at the 2010:2006-04-26 at the 1827:(8): 140–1–140–7. 1752:10.1007/BF01343196 1629:'s 2006 murder by 1581:ionizing radiation 1507:Static eliminators 1499:and were used for 1445:Geiger–Nuttall law 1317:alpha spectrometry 1257: 1130:Geiger–Nuttall law 827:Physics portal 621:Quark–gluon plasma 404:Radiogenic nuclide 36: 2381: 2380: 2377: 2376: 2208:Positron emission 2178:Double beta decay 2140:Nuclear processes 1534:that make up the 1375:double beta decay 1331:Quantum tunneling 1324:potential barrier 1238: 1225: 1212: 1114:quantum mechanics 1110:potential barrier 1098:Ernest Rutherford 1016:quantum tunneling 1006:ejects a defined 888:radioactive decay 877: 876: 563: 309:Radioactive decay 265:Nuclear stability 92:Nuclear structure 16:(Redirected from 2411: 2338: 2337: 2238:Deuterium fusion 2203:Neutron emission 2188:Electron capture 2133: 2126: 2119: 2110: 2109: 2076: 2060: 2057: 2033: 2021: 2015: 2002: 1996: 1995: 1993: 1992: 1983:. Archived from 1977: 1971: 1970: 1940: 1934: 1933: 1931: 1929: 1911: 1905: 1904: 1902: 1900: 1895:on 7 August 2012 1891:. Archived from 1877: 1871: 1870: 1836: 1816: 1810: 1809: 1807: 1805:10.1038/122439a0 1773: 1764: 1763: 1725: 1719: 1718: 1716: 1715: 1709: 1703:. Archived from 1692: 1681: 1672: 1671: 1660: 1654: 1651: 1589: 1384: = 5, 1369:The isotopes in 1365: 1363: 1293: 1284: 1275: 1266: 1264: 1263: 1258: 1253: 1252: 1240: 1239: 1236: 1227: 1226: 1223: 1214: 1213: 1210: 1198: 1197: 1050: 1018:process. Unlike 958: 937: 930: 869: 862: 855: 842: 837: 836: 829: 825: 824: 701:Skłodowska-Curie 561: 377:Neutron emission 145:' classification 97:Nuclear reaction 52: 38: 37: 21: 2419: 2418: 2414: 2413: 2412: 2410: 2409: 2408: 2399:Nuclear physics 2384: 2383: 2382: 2373: 2357: 2348:Neutron capture 2336: 2319: 2313: 2230:nucleosynthesis 2229: 2222: 2213:Proton emission 2168:Gamma radiation 2149: 2142: 2137: 2095: 2069: 2064: 2063: 2058: 2054: 2049: 2037: 2036: 2031:Wayback Machine 2022: 2018: 2012:Wayback Machine 2003: 1999: 1990: 1988: 1979: 1978: 1974: 1941: 1937: 1927: 1925: 1913: 1912: 1908: 1898: 1896: 1879: 1878: 1874: 1817: 1813: 1774: 1767: 1726: 1722: 1713: 1711: 1707: 1701: 1690: 1682: 1675: 1662: 1661: 1657: 1652: 1648: 1643: 1611:aplastic anemia 1609:at age 66 from 1584: 1519: 1470:air in an open 1464:smoke detectors 1453: 1361: 1359: 1333: 1292: 1286: 1283: 1277: 1274: 1268: 1248: 1244: 1235: 1231: 1222: 1218: 1209: 1205: 1190: 1186: 1184: 1181: 1180: 1138: 1094: 1088: 1045: 1034:Alpha particles 953: 942:decays to form 938:. For example, 932: 923: 873: 832: 819: 818: 811: 810: 646: 636: 635: 616: 606: 605: 550: 546: 543:Nucleosynthesis 535: 534: 513: 505: 504: 454: 446: 445: 419: 417:Nuclear fission 409: 408: 382:Proton emission 311: 301: 300: 266: 258: 257: 159: 146: 135: 134: 110: 42:Nuclear physics 28: 23: 22: 18:Alpha radiation 15: 12: 11: 5: 2417: 2407: 2406: 2401: 2396: 2379: 2378: 2375: 2374: 2372: 2371: 2369:(n-p) reaction 2365: 2363: 2359: 2358: 2356: 2355: 2353:Proton capture 2350: 2344: 2342: 2335: 2334: 2329: 2323: 2321: 2315: 2314: 2312: 2311: 2306: 2301: 2293: 2285: 2280: 2275: 2270: 2265: 2260: 2255: 2250: 2245: 2240: 2234: 2232: 2224: 2223: 2221: 2220: 2215: 2210: 2205: 2200: 2195: 2190: 2185: 2180: 2175: 2170: 2165: 2160: 2154: 2152: 2144: 2143: 2136: 2135: 2128: 2121: 2113: 2107: 2106: 2101: 2094: 2091: 2090: 2089: 2083: 2068: 2067:External links 2065: 2062: 2061: 2051: 2050: 2048: 2045: 2044: 2043: 2035: 2034: 2016: 1997: 1972: 1953:(6): 364–365. 1935: 1906: 1872: 1811: 1765: 1738:(3): 204–212. 1720: 1699: 1673: 1655: 1645: 1644: 1642: 1639: 1570:beta radiation 1527:mean free path 1518: 1515: 1509:typically use 1452: 1449: 1406:stable nuclide 1332: 1329: 1305:kinetic energy 1290: 1281: 1272: 1256: 1251: 1247: 1243: 1234: 1230: 1221: 1217: 1208: 1204: 1201: 1196: 1193: 1189: 1173:binding energy 1137: 1134: 1120:" through the 1106:potential well 1087: 1084: 1038:speed of light 972:binding energy 931:and a mass of 896:alpha particle 892:atomic nucleus 875: 874: 872: 871: 864: 857: 849: 846: 845: 844: 843: 830: 813: 812: 809: 808: 803: 798: 793: 788: 783: 778: 773: 768: 763: 758: 753: 748: 743: 738: 733: 728: 723: 718: 713: 708: 703: 698: 693: 688: 683: 678: 673: 668: 663: 658: 653: 647: 642: 641: 638: 637: 634: 633: 628: 623: 617: 612: 611: 608: 607: 604: 603: 602: 601: 596: 591: 582: 581: 580: 579: 574: 569: 558: 557: 555:Nuclear fusion 551: 541: 540: 537: 536: 533: 532: 527: 526: 525: 514: 511: 510: 507: 506: 503: 502: 501: 500: 495: 485: 484: 483: 478: 468: 467: 466: 455: 452: 451: 448: 447: 444: 443: 438: 437: 436: 426: 420: 415: 414: 411: 410: 407: 406: 401: 396: 391: 385: 384: 379: 374: 369: 364: 363: 362: 357: 347: 342: 341: 340: 335: 334: 333: 318: 312: 307: 306: 303: 302: 299: 298: 296:Stable nuclide 293: 288: 283: 278: 273: 271:Binding energy 267: 264: 263: 260: 259: 256: 255: 254: 253: 243: 238: 233: 227: 226: 212: 211: 204: 203: 187: 186: 174: 173: 161: 160: 147: 141: 140: 137: 136: 133: 132: 127: 122: 117: 111: 106: 105: 102: 101: 100: 99: 94: 89: 84: 82:Nuclear matter 79: 78: 77: 72: 62: 54: 53: 45: 44: 26: 9: 6: 4: 3: 2: 2416: 2405: 2404:Radioactivity 2402: 2400: 2397: 2395: 2392: 2391: 2389: 2370: 2367: 2366: 2364: 2360: 2354: 2351: 2349: 2346: 2345: 2343: 2339: 2333: 2330: 2328: 2325: 2324: 2322: 2316: 2310: 2307: 2305: 2302: 2300: 2298: 2294: 2292: 2290: 2286: 2284: 2281: 2279: 2276: 2274: 2271: 2269: 2266: 2264: 2261: 2259: 2256: 2254: 2251: 2249: 2246: 2244: 2241: 2239: 2236: 2235: 2233: 2231: 2225: 2219: 2216: 2214: 2211: 2209: 2206: 2204: 2201: 2199: 2196: 2194: 2191: 2189: 2186: 2184: 2181: 2179: 2176: 2174: 2173:Cluster decay 2171: 2169: 2166: 2164: 2161: 2159: 2156: 2155: 2153: 2151: 2145: 2141: 2134: 2129: 2127: 2122: 2120: 2115: 2114: 2111: 2105: 2102: 2100: 2097: 2096: 2087: 2084: 2081: 2080: 2075: 2071: 2070: 2056: 2052: 2042: 2039: 2038: 2032: 2028: 2025: 2020: 2013: 2009: 2006: 2001: 1987:on 2018-07-15 1986: 1982: 1976: 1968: 1964: 1960: 1956: 1952: 1948: 1947: 1939: 1924: 1920: 1916: 1910: 1894: 1890: 1886: 1882: 1876: 1868: 1864: 1860: 1856: 1852: 1848: 1844: 1840: 1835: 1830: 1826: 1822: 1815: 1806: 1801: 1797: 1793: 1790:(3073): 439. 1789: 1785: 1784: 1779: 1772: 1770: 1761: 1757: 1753: 1749: 1745: 1741: 1737: 1733: 1732: 1724: 1710:on 2016-10-04 1706: 1702: 1700:0-07-244848-2 1696: 1689: 1688: 1680: 1678: 1669: 1665: 1659: 1650: 1646: 1638: 1636: 1632: 1628: 1623: 1621: 1617: 1612: 1608: 1604: 1599: 1597: 1593: 1588: 1582: 1578: 1575:However, the 1573: 1571: 1567: 1563: 1559: 1555: 1551: 1547: 1543: 1541: 1540:beta-emitting 1537: 1532: 1528: 1524: 1514: 1512: 1508: 1504: 1502: 1498: 1494: 1489: 1487: 1486:alpha emitter 1483: 1479: 1477: 1473: 1469: 1465: 1462:, is used in 1461: 1460:alpha emitter 1457: 1456:Americium-241 1448: 1446: 1441: 1439: 1435: 1431: 1427: 1423: 1419: 1415: 1411: 1407: 1403: 1399: 1395: 1391: 1387: 1383: 1380: 1376: 1372: 1367: 1364:10 years 1357: 1350: 1345: 1342: 1341:Edward Condon 1338: 1328: 1325: 1320: 1318: 1314: 1313:atomic recoil 1310: 1306: 1302: 1298: 1289: 1280: 1271: 1254: 1249: 1245: 1232: 1228: 1219: 1215: 1206: 1199: 1194: 1191: 1187: 1179: 1174: 1170: 1166: 1162: 1157: 1155: 1151: 1147: 1143: 1142:nuclear force 1133: 1131: 1127: 1123: 1119: 1115: 1111: 1107: 1103: 1099: 1093: 1083: 1081: 1077: 1073: 1069: 1065: 1061: 1056: 1054: 1049: 1043: 1039: 1035: 1031: 1029: 1025: 1021: 1017: 1013: 1009: 1005: 1001: 1000:cluster decay 996: 994: 990: 986: 982: 977: 973: 969: 965: 960: 957: 952: 947: 945: 941: 936: 929: 928: 921: 917: 913: 909: 908:atomic number 905: 901: 897: 893: 889: 886:is a type of 885: 881: 870: 865: 863: 858: 856: 851: 850: 848: 847: 841: 831: 828: 823: 817: 816: 815: 814: 807: 804: 802: 799: 797: 794: 792: 789: 787: 784: 782: 779: 777: 774: 772: 769: 767: 764: 762: 759: 757: 754: 752: 749: 747: 744: 742: 739: 737: 734: 732: 729: 727: 724: 722: 719: 717: 714: 712: 709: 707: 704: 702: 699: 697: 694: 692: 689: 687: 684: 682: 679: 677: 674: 672: 669: 667: 664: 662: 659: 657: 654: 652: 649: 648: 645: 640: 639: 632: 629: 627: 624: 622: 619: 618: 615: 610: 609: 600: 597: 595: 592: 590: 587: 586: 584: 583: 578: 575: 573: 570: 568: 565: 564: 560: 559: 556: 553: 552: 549: 544: 539: 538: 531: 528: 524: 523:by cosmic ray 521: 520: 519: 516: 515: 509: 508: 499: 496: 494: 491: 490: 489: 486: 482: 479: 477: 474: 473: 472: 469: 465: 462: 461: 460: 457: 456: 450: 449: 442: 439: 435: 434:pair breaking 432: 431: 430: 427: 425: 422: 421: 418: 413: 412: 405: 402: 400: 399:Decay product 397: 395: 392: 390: 387: 386: 383: 380: 378: 375: 373: 372:Cluster decay 370: 368: 365: 361: 358: 356: 353: 352: 351: 348: 346: 343: 339: 336: 332: 329: 328: 327: 324: 323: 322: 319: 317: 314: 313: 310: 305: 304: 297: 294: 292: 289: 287: 284: 282: 279: 277: 274: 272: 269: 268: 262: 261: 252: 249: 248: 247: 244: 242: 239: 237: 234: 232: 229: 228: 225: 221: 217: 216:Mirror nuclei 214: 213: 209: 206: 205: 202: 201: 198: −  197: 192: 189: 188: 185: 184: 179: 176: 175: 172: 171: 166: 163: 162: 158: 157: 152: 149: 148: 144: 139: 138: 131: 128: 126: 123: 121: 118: 116: 113: 112: 109: 104: 103: 98: 95: 93: 90: 88: 87:Nuclear force 85: 83: 80: 76: 73: 71: 68: 67: 66: 63: 61: 58: 57: 56: 55: 51: 47: 46: 43: 40: 39: 32: 19: 2332:Photofission 2296: 2288: 2157: 2077: 2055: 2019: 2000: 1989:. Retrieved 1985:the original 1975: 1950: 1944: 1938: 1926:. Retrieved 1918: 1909: 1897:. Retrieved 1893:the original 1884: 1875: 1824: 1820: 1814: 1787: 1781: 1735: 1729: 1723: 1712:. Retrieved 1705:the original 1686: 1668:the original 1658: 1649: 1635:polonium-210 1624: 1600: 1574: 1544: 1520: 1511:polonium-210 1505: 1497:space probes 1490: 1480: 1474:and a small 1454: 1442: 1440:except Sm.) 1433: 1429: 1397: 1393: 1389: 1385: 1381: 1368: 1352: 1347: 1334: 1321: 1300: 1287: 1278: 1269: 1158: 1139: 1102:George Gamow 1095: 1082:production. 1062:produced on 1057: 1047: 1032: 997: 961: 955: 948: 926: 890:in which an 883: 879: 878: 441:Photofission 389:Decay energy 316:Alpha α 315: 223: 219: 199: 195: 182: 169: 155: 2158:Alpha decay 2148:Radioactive 2104:Gamma decay 1607:Marie Curie 1596:chromosomes 1592:heavy metal 1484:is also an 1472:ion chamber 1426:beryllium-8 1379:mass number 1356:bismuth-209 1297:uranium-232 1150:femtometers 1080:natural gas 1070:containing 993:beryllium-8 944:thorium-234 940:uranium-238 904:mass number 880:Alpha decay 746:Oppenheimer 424:Spontaneous 394:Decay chain 345:K/L capture 321:Beta β 191:Isodiaphers 115:Liquid drop 2388:Categories 2309:rp-process 2283:Si burning 2273:Ne burning 2243:Li burning 2163:Beta decay 2099:Beta decay 1991:2007-10-31 1834:1908.11458 1714:2016-07-03 1641:References 1620:gamma rays 1554:cell-death 1482:Radium-223 1090:See also: 1020:beta decay 776:Strassmann 766:Rutherford 644:Scientists 599:Artificial 594:Cosmogenic 589:Primordial 585:Nuclides: 562:Processes: 518:Spallation 2320:processes 2304:p-process 2278:O burning 2268:C burning 2258:α process 2253:CNO cycle 1867:201664098 1859:1434-601X 1760:120684789 1536:epidermis 1495:used for 1422:lithium-5 1229:− 1216:− 1136:Mechanism 1126:half-life 1118:tunneling 894:emits an 781:Świątecki 696:Pi. Curie 691:Fr. Curie 686:Ir. Curie 681:Cockcroft 656:Becquerel 577:Supernova 281:Drip line 276:p–n ratio 251:Borromean 130:Ab initio 2362:Exchange 2299:-process 2291:-process 2263:Triple-α 2093:See also 2027:Archived 2008:Archived 1928:25 March 1899:25 March 1562:angstrom 1517:Toxicity 1418:helium-5 1178:equation 1068:minerals 1046:+2  1026:and the 1008:daughter 985:antimony 964:nuclides 954:+2  924:+2  920:neutrons 918:and two 912:helium-4 840:Category 741:Oliphant 726:Lawrence 706:Davisson 676:Chadwick 572:Big Bang 459:electron 429:Products 350:Isomeric 241:Even/odd 218: – 193:– equal 180:– equal 178:Isotones 167:– equal 153:– equal 151:Isotopes 143:Nuclides 65:Nucleons 2341:Capture 2228:Stellar 1967:7054712 1839:Bibcode 1792:Bibcode 1740:Bibcode 1585:4  1566:neutron 1476:current 1414:neutron 1402:isobars 1301:require 1165:neutron 1122:barrier 1086:History 1076:thorium 1072:uranium 981:isotope 976:nucleon 933:4  916:protons 884:α-decay 796:Thomson 786:Szilárd 756:Purcell 736:Meitner 671:N. Bohr 666:A. Bohr 651:Alvarez 567:Stellar 471:neutron 355:Gamma γ 208:Isomers 165:Isobars 60:Nucleus 2394:Helium 1965:  1865:  1857:  1783:Nature 1758:  1697:  1577:recoil 1550:cancer 1468:ionize 1424:, and 1410:proton 1267:where 1161:proton 1060:helium 968:nickel 951:charge 900:helium 838:  806:Wigner 801:Walton 791:Teller 721:Jensen 488:proton 231:Stable 2318:Other 2150:decay 2047:Notes 1863:S2CID 1829:arXiv 1756:S2CID 1708:(PDF) 1691:(PDF) 1603:radon 1458:, an 1412:or a 1377:with 1064:Earth 771:Soddy 751:Proca 731:Mayer 711:Fermi 661:Bethe 236:Magic 1963:PMID 1930:2013 1923:LANL 1901:2013 1889:NASA 1855:ISSN 1695:ISBN 1618:and 1616:beta 1451:Uses 1360:2.01 1339:and 1140:The 1004:atom 974:per 761:Rabi 716:Hahn 626:RHIC 246:Halo 1955:doi 1951:306 1847:doi 1800:doi 1788:122 1748:doi 1552:or 1523:MeV 1358:is 1167:or 1163:or 1074:or 1053:air 983:of 882:or 631:LHC 545:and 2390:: 1961:. 1949:. 1921:. 1917:. 1887:. 1883:. 1861:. 1853:. 1845:. 1837:. 1825:55 1823:. 1798:. 1786:. 1780:. 1768:^ 1754:. 1746:. 1736:51 1734:. 1676:^ 1587:Da 1447:. 1420:, 1366:. 1319:. 1132:. 1055:. 1030:. 989:Sb 987:, 946:. 935:Da 498:rp 464:2× 331:0v 326:2β 222:↔ 2297:s 2289:r 2132:e 2125:t 2118:v 1994:. 1969:. 1957:: 1932:. 1903:. 1869:. 1849:: 1841:: 1831:: 1808:. 1802:: 1794:: 1762:. 1750:: 1742:: 1717:. 1434:A 1430:A 1398:A 1394:A 1390:A 1386:A 1382:A 1362:× 1291:p 1288:m 1282:f 1279:m 1273:i 1270:m 1255:, 1250:2 1246:c 1242:) 1237:p 1233:m 1224:f 1220:m 1211:i 1207:m 1203:( 1200:= 1195:i 1192:d 1188:E 1048:e 956:e 927:e 898:( 868:e 861:t 854:v 493:p 481:r 476:s 338:β 224:N 220:Z 200:Z 196:N 183:N 170:A 156:Z 75:n 70:p 20:)

Index

Alpha radiation

Nuclear physics

Nucleus
Nucleons
p
n
Nuclear matter
Nuclear force
Nuclear structure
Nuclear reaction
Models of the nucleus
Liquid drop
Nuclear shell model
Interacting boson model
Ab initio
Nuclides
Isotopes
Z
Isobars
A
Isotones
N
Isodiaphers
N − Z
Isomers
Mirror nuclei
Stable
Magic

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.