Knowledge

Algebraic torus

Source đź“ť

6475: 3788:. This classification is equivalent to that of connected algebraic groups over the complex field, and Cartan subalgebras correspond to maximal tori in these. In fact the classification carries over to the case of an arbitrary base field under the assumption that there exists a split maximal torus (which is automatically satisfied over an algebraically closed field). Without the splitness assumption things become much more complicated and a more detailed theory has to be developed, which is still based in part on the study of adjoint actions of tori. 5848:. These provide representations of fundamental groupoids of the base with respect the fpqc topology. If the torus is locally trivializable with respect to a weaker topology such as the etale topology, then the sheaves of groups descend to the same topologies and these representations factor through the respective quotient groupoids. In particular, an etale sheaf gives rise to a quasi-isotrivial torus, and if 2530: 6462:
The notion of invariant given above generalizes naturally to tori over arbitrary base schemes, with functions taking values in more general rings. While the order of the extension group is a general invariant, the other two invariants above do not seem to have interesting analogues outside the realm
3147:
th power map on the multiplicative group. The functor given by taking weights is an antiequivalence of categories between tori and free abelian groups, and the coweight functor is an equivalence. In particular, maps of tori are characterized by linear transformations on weights or coweights, and
6038:
Since taking a weight lattice is an equivalence of categories, short exact sequences of tori correspond to short exact sequences of the corresponding weight lattices. In particular, extensions of tori are classified by Ext sheaves. These are naturally isomorphic to the flat cohomology groups
3447:
is the multiplicative group, then this gives the restriction of scalars a permutation module structure. Tori whose weight lattices are permutation modules for the Galois group are called quasi-split, and all quasi-split tori are finite products of restrictions of scalars.
2368: 3438: 6157: 1323: 6434: 3914: 577: 4936:. It is in fact a maximal flat subspace and all maximal such are obtained as orbits of split tori in this way. Thus there is a geometric definition of the real rank, as the maximal dimension of a flat subspace in 3254: 3081: 1032: 2791:-torus of rank one is either split or isomorphic to the kernel of the norm of a quadratic extension. The two examples above are special cases of this: the compact real torus is the kernel of the field norm of 4113: 2271: 295: 6328:
T. Ono showed that the Tamagawa number of a torus over a number field is such an invariant. Furthermore, he showed that it is a quotient of two cohomological invariants, namely the order of the group
5711: 2026: 1779: 1738: 3953: 1495: 2903: 3263:) and arbitrary abelian groups, and such a generalization can be convenient if one wants to work in a well-behaved category, since the category of tori doesn't have kernels or filtered colimits. 6022: 5810: 4657: 4700: 4160: 5944: 5883:
for which their base extensions are isomorphic, i.e., it is a torus of the same rank. Isomorphism classes of twisted forms of a split torus are parametrized by nonabelian flat cohomology
436: 3137: 729: 363: 219: 150: 56: 932: 5749: 2821: 332: 2227: 2089: 5169: 4766: 4394:
This reduces the classification problem to anisotropic groups, and to determining which Tits indices can occur for a given Dynkin diagram. The latter problem has been solved in
4308: 4273: 1082: 4199: 1851: 5486: 5373: 2850: 2311: 2194: 2162: 1805: 85: 3004: 2957: 2125: 1207: 1137: 3319: 6607: 5508: 5437: 5395: 5344: 5308: 5283: 5241: 5219: 5137: 5115: 5070: 5048: 5026: 5004: 4569: 4547: 4330: 4015: 3833: 3811: 3712: 3553: 3499: 2056: 1633: 1611: 1563: 1537: 1403: 1232: 188: 107: 4359: 4044: 804: 4874: 4801: 6024:
with trivial Galois action on the coefficients. In the one-dimensional case, the coefficients form a group of order two, and isomorphism classes of twisted forms of
5093: 2739: 1349: 6042: 4239: 4219: 3853: 833: 392: 4726: 2769: 2560: 2363: 2337: 1438: 879: 757: 2525:{\displaystyle \left\{{\begin{pmatrix}t&du\\u&t\end{pmatrix}}:t,u\in \mathbb {F} _{q},t^{2}-du^{2}=1\right\}\subset \mathrm {SL} _{2}(\mathbb {F} _{q}).} 5830: 5457: 5415: 5261: 5193: 4982: 4954: 4934: 4914: 4894: 4848: 4824: 4609: 4589: 4521: 4488: 4464: 4444: 4420: 4387: 3993: 3973: 3756: 3732: 3686: 3662: 3642: 3620: 3597: 3573: 3519: 2789: 2704: 2684: 2664: 2644: 2624: 2604: 2580: 1891: 1871: 1680: 1653: 1587: 1515: 1373: 1252: 1180: 1158: 1110: 853: 777: 698: 674: 637: 617: 597: 499: 479: 504: 441:
Tori are of fundamental importance in the theory of algebraic groups and Lie groups and in the study of the geometric objects associated to them such as
2706:-rank 1 (note that restriction of scalars over an inseparable field extension will yield a commutative algebraic group that is not a torus). The kernel 1257: 3152:. The quasi-inverse of the weights functor is given by a dualization functor from free abelian groups to tori, defined by its functor of points as: 6331: 3286:
with algebraic homomorphisms and the category of finitely generated torsion free abelian groups with an action of the absolute Galois group of
3858: 3274:
are defined as the respective lattices over the separable closure. This induces canonical continuous actions of the absolute Galois group of
3158: 3020: 4332:(the latter is only a reductive group). As its name indicates it is an anisotropic group, and its absolute type is uniquely determined by 5754: 461:(for example finite or characteristic zero). This hypothesis is required to have a smooth group scheme, since for an algebraic group 4049: 2232: 227: 6534: 5664: 1896: 1699:
if there exists an isogeny from the first to the second. Isogenies between tori are particularly well-behaved: for any isogeny
6648: 3919: 3278:
on the lattices. The weights and coweights that are fixed by this action are precisely the maps that are defined over 
1443: 2855: 6168: 1743: 1702: 5957: 4614: 3017:. These are both free abelian groups whose rank is that of the torus, and they have a canonical nondegenerate pairing 937: 4662: 4389:-algebraic groups are isomorphic if and only if they have the same Tits indices and isomorphic anisotropic kernels. 4118: 6667: 6628:
Tits, Jacques (1966). "Classification of algebraic semisimple groups". In Borel, Armand; Mostow, George D. (eds.).
5886: 397: 3086: 703: 337: 193: 124: 30: 884: 5719: 3461:
As seen in the examples above tori can be represented as linear groups. An alternative definition for tori is:
2918: 2794: 300: 3259:
This equivalence can be generalized to pass between groups of multiplicative type (a distinguished class of
2203: 2065: 6159:. Over a field, the extensions are parametrized by elements of the corresponding Galois cohomology group. 5640: 5142: 6172: 4731: 4282: 4247: 1037: 6456: 4169: 3433:{\displaystyle X^{\bullet }(\mathrm {Res} _{L/K}T)\cong \mathrm {Ind} _{G_{L}}^{G_{K}}X^{\bullet }(T).} 1823: 6175:
introduced a type of functorial invariants of tori over finite separable extensions of a chosen field
5462: 5349: 2826: 2287: 2170: 2133: 1784: 806:. To define it properly as an algebraic group one can take the affine variety defined by the equation 61: 5946:, where the coefficient group forms a constant sheaf. In particular, twisted forms of a split torus 2973: 2926: 2099: 1185: 1115: 6498: 3466:
A linear algebraic group is a torus if and only if it is diagonalisable over an algebraic closure.
5639:. In general, the multiplicity of this product (i.e., the dimension of the scheme) is called the 5491: 5420: 5378: 5327: 5291: 5266: 5224: 5202: 5120: 5098: 5053: 5031: 5009: 4987: 4552: 4530: 4313: 3998: 3816: 3794: 3695: 3536: 3482: 2039: 1616: 1594: 1546: 1520: 1386: 1215: 171: 90: 4335: 4020: 782: 4853: 4279:: this is the semisimple algebraic group obtained as the derived subgroup of the centraliser of 6152:{\displaystyle H^{1}(S,\mathrm {Hom} _{\mathbb {Z} }(X^{\bullet }(T_{1}),X^{\bullet }(T_{2})))} 5860:
asserts that any torus of finite type is quasi-isotrivial, i.e., split by an etale surjection.
5319: 4771: 3773: 446: 1695:
between algebraic groups is a surjective morphism with finite kernel; two tori are said to be
5078: 2709: 1328: 5853: 5524: 4224: 4204: 3838: 651: 809: 368: 8: 6672: 5310:-rank of any lattice in a semisimple Lie group, as the dimension of its asymptotic cone. 4705: 3282:. The functor of taking weights is an antiequivalence between the category of tori over 2748: 2537: 2342: 2316: 2165: 1415: 858: 734: 153: 6632:. Proceedings of symposia in pure math. Vol. 9. American math. soc. pp. 33–62. 4221:. The Tits index is a "relative" version of the "absolute" Dynkin diagram associated to 6480: 5815: 5442: 5400: 5246: 5196: 5178: 4967: 4939: 4919: 4899: 4879: 4833: 4809: 4594: 4574: 4506: 4473: 4449: 4429: 4405: 4372: 4241:; obviously, only finitely many Tits indices can correspond to a given Dynkin diagram. 4166:
is a way to encode the properties of this map and of the action of the Galois group of
3978: 3958: 3741: 3717: 3671: 3647: 3627: 3605: 3582: 3558: 3504: 2774: 2689: 2669: 2649: 2629: 2609: 2589: 2565: 1876: 1856: 1807:
is a power map. In particular being isogenous is an equivalence relation between tori.
1665: 1638: 1572: 1500: 1358: 1237: 1165: 1143: 1095: 838: 762: 683: 659: 622: 602: 582: 484: 464: 6644: 6527: 6474: 5714: 4423: 4399: 3777: 3471:
The torus is split over a field if and only if it is diagonalisable over this field.
2200:
Any real torus is isogenous to a finite sum of those two; for example the real torus
121:. Higher dimensional algebraic tori can be modelled as a product of algebraic groups 114: 5073: 2583: 2128: 1318:{\displaystyle \mathbf {T} ({\overline {F}})\cong ({\overline {F}}^{\times })^{r}} 5172: 4827: 2921: 442: 165: 110: 4470:
of this quasi-split group, and those are classified by the Galois cohomology of
6488: 3785: 118: 5844:, weights and coweights are defined as fpqc sheaves of free abelian groups on 5650:
Most notions defined for tori over fields carry to this more general setting.
6661: 6429:{\displaystyle H^{1}(G_{k},X^{\bullet }(T))\cong Ext^{1}(T,\mathbb {G} _{m})} 5543: 3310: 2164:. It is an anisotropic torus. As a Lie group, it is also isomorphic to the 1- 2094: 458: 5546:
isomorphic to a finite product of copies of the multiplicative group scheme
642:
In general one has to use separable closures instead of algebraic closures.
6503: 6437: 5857: 5535: 3260: 2282: 881:. The multiplication is then given by restricting the regular rational map 222: 3270:
is not separably closed, the weight and coweight lattices of a torus over
5659: 3781: 20: 5072:
has also a geometric significance. To get to it one has to introduce an
3909:{\displaystyle V=X^{*}(\mathbf {T} )\otimes _{\mathbb {Z} }\mathbb {R} } 2196:, which explains the picture of diagonalisable algebraic groups as tori. 1853:
there is up to isomorphism a unique torus of any given rank. For a rank
6179:. Such an invariant is a collection of positive real-valued functions 4467: 4163: 3767: 2742: 572:{\displaystyle (\cdot )^{p^{r}}:{\mathcal {O}}(G)\to {\mathcal {O}}(G)} 5622:
an algebraic group whose extension to some finite separable extension
4364:
The first step towards a classification is then the following theorem
3148:
the automorphism group of a torus is a general linear group over 
6463:
of fraction fields of one-dimensional domains and their completions.
6031:
are in natural bijection with separable quadratic extensions of 
3249:{\displaystyle D(M)_{S}(X):=\mathrm {Hom} (M,\mathbb {G} _{m,S}(X)).} 3076:{\displaystyle X^{\bullet }(T)\times X_{\bullet }(T)\to \mathbb {Z} } 161: 5171:, which is a Riemannian orbifold and hence a metric space. Then any 3692:
if and only if equality holds (that is, there is a maximal torus in
5954:
are parametrized by elements of the Galois cohomology pointed set
5856:), the torus is isotrivial. As a partial converse, a theorem of 4422:. More precisely to each Tits index there is associated a unique 1692: 5513: 3835:
then over the algebraic closure it gives rise to a root system
1034:
and the inverse is the restriction of the regular rational map
6555:. Translations of mathematical monographs. American Math. Soc. 6528:"Algebraic Groups: The Theory of Group Schemes of Finite Type" 4498: 4108:{\displaystyle X^{*}(\mathbf {T} )\to X^{*}(_{F}\mathbf {T} )} 6493: 4876:
is a maximal split torus then there exists a unique orbit of
4571:-algebraic group whose group of real points is isomorphic to 2266:{\displaystyle \mathbb {R} ^{\times }\times \mathbb {T} ^{1}} 6638: 6559: 5751:. Then, with the origin removed, the induced projection map 5658:
One common example of an algebraic torus is to consider the
290:{\displaystyle \mathbb {C} ^{*}={\text{Spec}}(\mathbb {C} )} 2273:. This gives an example of isogenous, non-isomorphic tori. 1209:
to a finite product of copies of the multiplicative group.
2058:
there are exactly (up to isomorphism) two tori of rank 1:
1351:. The basic terminology associated to tori is as follows. 365:-action on a complex vector space can be pulled back to a 297:, which is the scheme theoretic analogue of the Lie group 6583: 6571: 6313:
whose weight lattice is a projective Galois module, then
5706:{\displaystyle {\text{Aff}}(X)\subset \mathbb {A} ^{n+1}} 5397:
correspond to the apartments of the Bruhat-Tits building
5199:
with top-dimensional simplices of dimension equal to the
2313:
there are two rank-1 tori: the split one, of cardinality
2021:{\displaystyle \mathbf {G} _{m}^{n}={\text{Spec}}_{k}(k)} 27:, where a one dimensional torus is typically denoted by 5643:
of the torus, and it is a locally constant function on
5563:. In other words, there exists a faithfully flat map 5155: 3948:{\displaystyle {}_{F}\mathbf {T} \subset \mathbf {T} } 3761: 2382: 1490:{\displaystyle \mathbf {T} (E)\cong (E^{\times })^{r}} 6334: 6045: 5960: 5889: 5818: 5757: 5722: 5667: 5494: 5465: 5445: 5423: 5403: 5381: 5352: 5330: 5294: 5269: 5249: 5227: 5205: 5181: 5145: 5123: 5101: 5081: 5056: 5034: 5012: 4990: 4984:
is obtained as the real points of an algebraic group
4970: 4942: 4922: 4902: 4882: 4856: 4836: 4812: 4774: 4734: 4708: 4665: 4617: 4597: 4577: 4555: 4533: 4509: 4476: 4452: 4432: 4408: 4375: 4338: 4316: 4285: 4250: 4227: 4207: 4172: 4121: 4052: 4023: 4001: 3981: 3961: 3922: 3861: 3841: 3819: 3797: 3744: 3720: 3698: 3674: 3650: 3630: 3608: 3585: 3561: 3539: 3507: 3485: 3322: 3161: 3089: 3023: 2976: 2929: 2898:{\displaystyle \mathbb {F} _{q^{2}}/\mathbb {F} _{q}} 2858: 2829: 2797: 2777: 2751: 2712: 2692: 2672: 2652: 2632: 2612: 2592: 2568: 2540: 2371: 2345: 2319: 2290: 2235: 2206: 2173: 2136: 2102: 2068: 2042: 1899: 1879: 1859: 1826: 1815: 1787: 1746: 1705: 1668: 1641: 1619: 1597: 1575: 1549: 1523: 1503: 1446: 1418: 1389: 1361: 1331: 1260: 1240: 1218: 1188: 1168: 1146: 1118: 1098: 1040: 940: 887: 861: 841: 812: 785: 765: 737: 706: 686: 662: 625: 605: 585: 507: 487: 467: 400: 371: 340: 303: 230: 196: 174: 127: 93: 64: 33: 6470: 3813:is a maximal torus in a semisimple algebraic group 3474: 1774:{\displaystyle \psi :\mathbf {T} '\to \mathbf {T} } 1733:{\displaystyle \phi :\mathbf {T} \to \mathbf {T} '} 6428: 6151: 6016: 5938: 5852:is locally noetherian and normal (more generally, 5824: 5804: 5743: 5705: 5502: 5480: 5451: 5431: 5409: 5389: 5367: 5338: 5302: 5277: 5255: 5235: 5213: 5187: 5163: 5131: 5117:, which roughly is the group of integer points of 5109: 5087: 5064: 5042: 5020: 4998: 4976: 4948: 4928: 4908: 4888: 4868: 4842: 4818: 4795: 4760: 4720: 4694: 4651: 4603: 4583: 4563: 4541: 4515: 4482: 4458: 4438: 4414: 4381: 4353: 4324: 4302: 4267: 4233: 4213: 4193: 4154: 4107: 4038: 4009: 3987: 3967: 3947: 3908: 3847: 3827: 3805: 3780:play a fundamental rĂ´le in the classification via 3750: 3726: 3706: 3680: 3656: 3636: 3614: 3591: 3567: 3547: 3513: 3493: 3432: 3248: 3131: 3075: 2998: 2951: 2897: 2844: 2815: 2783: 2763: 2745:is also a torus, which is anisotropic and of rank 2733: 2698: 2678: 2658: 2638: 2618: 2598: 2574: 2554: 2524: 2357: 2331: 2305: 2265: 2221: 2188: 2156: 2119: 2083: 2050: 2020: 1885: 1865: 1845: 1799: 1773: 1732: 1674: 1647: 1627: 1605: 1581: 1557: 1531: 1509: 1489: 1432: 1397: 1367: 1343: 1317: 1246: 1226: 1201: 1174: 1152: 1131: 1104: 1076: 1026: 926: 873: 847: 827: 798: 771: 751: 723: 692: 668: 645: 631: 611: 591: 571: 493: 473: 430: 386: 357: 326: 289: 213: 182: 144: 101: 79: 50: 6017:{\displaystyle H^{1}(G_{K},GL_{n}(\mathbb {Z} ))} 5805:{\displaystyle \pi :({\text{Aff}}(X)-\{0\})\to X} 4652:{\displaystyle (\mathbb {R} ^{\times })^{r}\to G} 3456: 2365:. The latter can be realised as the matrix group 457:In most places we suppose that the base field is 6659: 6553:Algebraic groups and their birational invariants 4775: 4244:Another invariant associated to the split torus 3668:Obviously the rank is greater than or equal the 3555:(note that all maximal tori are conjugated over 1497:. There is a unique minimal finite extension of 1027:{\displaystyle ((x,y),(x',y'))\mapsto (xx',yy')} 599:, meaning the image of the corresponding map on 5812:gives the structure of an algebraic torus over 4695:{\displaystyle \mathrm {SL} _{n}(\mathbb {R} )} 2093:the compact form, which can be realised as the 579:must be geometrically reduced for large enough 6272:Restriction: For a finite separable extension 4155:{\displaystyle \Phi \to {}_{F}\Phi \cup \{0\}} 6550: 5939:{\displaystyle H^{1}(S,GL_{n}(\mathbb {Z} ))} 4916:which is a totally geodesic flat subspace in 3624:) is the maximal rank of a torus subgroup in 3533:) is the rank of a maximal torus subgroup in 3501:is a semisimple algebraic group over a field 3006:is the group of algebraic homomorphisms  2229:is doubly covered by (but not isomorphic to) 452: 6636: 6589: 6577: 5790: 5784: 5514:Algebraic tori over an arbitrary base scheme 4149: 4143: 3451: 1613:is the maximal rank of a split sub-torus of 431:{\displaystyle U(1)\subset \mathbb {C} ^{*}} 6298:evaluated on its restriction of scalars to 5610:. One particularly important case is when 5579:whose image is an open affine subscheme of 4499:Flat subspaces and rank of symmetric spaces 3132:{\displaystyle (f,g)\mapsto \deg(f\circ g)} 724:{\displaystyle \mathbf {G} _{\mathbf {m} }} 358:{\displaystyle \mathbf {G} _{\mathbf {m} }} 214:{\displaystyle \mathbf {G} _{\mathbf {m} }} 145:{\displaystyle \mathbf {G} _{\mathbf {m} }} 51:{\displaystyle \mathbf {G} _{\mathbf {m} }} 5879:for which there exists a fpqc covering of 3143:such that the composition is equal to the 927:{\displaystyle F^{2}\times F^{2}\to F^{2}} 6630:Algebraic groups and discontinuous groups 6413: 6194:runs over finite separable extensions of 6079: 6004: 5926: 5744:{\displaystyle X\subset \mathbb {P} ^{n}} 5731: 5687: 5468: 5355: 5207: 5036: 5014: 4685: 4623: 4557: 4535: 3902: 3895: 3293:Given a finite separable field extension 3215: 3069: 2885: 2861: 2832: 2816:{\displaystyle \mathbb {C} /\mathbb {R} } 2809: 2799: 2506: 2433: 2339:, and the anisotropic one of cardinality 2293: 2253: 2238: 2209: 2071: 2044: 418: 320: 255: 233: 176: 168:). For example, over the complex numbers 156:were named by analogy with the theory of 95: 67: 6622:On the Tamagawa number of algebraic tori 6162: 4490:with coefficients in the adjoint group. 2959:is the group of algebraic homomorphisms 2908: 2031: 327:{\displaystyle U(1)\subset \mathbb {C} } 3738:if it contains no split tori (i.e. its 2913:Over a separably closed field, a torus 6660: 5575:has a quasi-compact open neighborhood 2562:is a finite field extension of degree 2276: 2222:{\displaystyle \mathbb {C} ^{\times }} 2084:{\displaystyle \mathbb {R} ^{\times }} 1635:. A torus is split if and only if its 5587:yields a finite product of copies of 5164:{\displaystyle M=\Gamma \backslash X} 4959: 6627: 6565: 6521: 6519: 6186:on isomorphism classes of tori over 5288:Note that this allows to define the 4611:such that there exists an embedding 4493: 4395: 1820:Over any algebraically closed field 1254:-group it is a torus if and only if 779:-points are isomorphic to the group 4523:is a semisimple Lie group then its 3762:Classification of semisimple groups 2917:admits two primary invariants. The 2852:is the kernel of the field norm of 1162:is an algebraic group defined over 13: 6624:Annals of Mathematics 78 (1) 1963. 6073: 6070: 6067: 5152: 5082: 4761:{\displaystyle \mathrm {SO} (p,q)} 4739: 4736: 4671: 4668: 4348: 4303:{\displaystyle {}_{F}\mathbf {T} } 4268:{\displaystyle {}_{F}\mathbf {T} } 4228: 4208: 4137: 4122: 4033: 4017:gives rise to another root system 3842: 3379: 3376: 3373: 3344: 3341: 3338: 3200: 3197: 3194: 2491: 2488: 2141: 2138: 1893:this is given by the group scheme 1816:Over an algebraically closed field 1391: 1112:be a field with algebraic closure 1077:{\displaystyle (x,y)\mapsto (y,x)} 731:such that for any field extension 555: 536: 109:, is a type of commutative affine 14: 6684: 6640:Introduction to Arithmetic Groups 6525: 6516: 6436:(sometimes mistakenly called the 6202:Multiplicativity: Given two tori 5875:, a twisted form is a torus over 5626:is a finite product of copies of 5439:. In particular the dimension of 4466:-group with the same index is an 4194:{\displaystyle {\overline {F}}/F} 1846:{\displaystyle k={\overline {k}}} 481:to be smooth over characteristic 6643:. Deductive Press. p. 492. 6540:from the original on 2016-03-07. 6473: 5496: 5481:{\displaystyle \mathbb {Q} _{p}} 5425: 5383: 5368:{\displaystyle \mathbb {Q} _{p}} 5332: 5296: 5271: 5229: 5125: 5103: 5058: 4992: 4659:. For example, the real rank of 4549:-rank as defined above (for any 4318: 4296: 4261: 4098: 4067: 4003: 3941: 3933: 3882: 3821: 3799: 3700: 3541: 3487: 3475:Split rank of a semisimple group 2845:{\displaystyle \mathbb {F} _{q}} 2306:{\displaystyle \mathbb {F} _{q}} 2189:{\displaystyle \mathbf {T} ^{1}} 2176: 2157:{\displaystyle \mathrm {SO} (2)} 2104: 1902: 1800:{\displaystyle \psi \circ \phi } 1767: 1755: 1722: 1713: 1621: 1599: 1551: 1525: 1448: 1262: 1220: 715: 709: 349: 343: 205: 199: 136: 130: 80:{\displaystyle \mathbb {G} _{m}} 42: 36: 6444:, although it doesn't classify 6198:, satisfying three properties: 5518: 4398:. The former is related to the 3975:-split torus its action on the 2999:{\displaystyle X_{\bullet }(T)} 2952:{\displaystyle X^{\bullet }(T)} 2823:and the anisotropic torus over 2626:of the multiplicative group of 2120:{\displaystyle \mathbf {U} (1)} 2036:Over the field of real numbers 1655:-rank equals its absolute rank. 1202:{\displaystyle {\overline {F}}} 1132:{\displaystyle {\overline {F}}} 646:Multiplicative group of a field 6544: 6423: 6402: 6380: 6377: 6371: 6345: 6146: 6143: 6140: 6127: 6111: 6098: 6085: 6056: 6011: 6008: 6000: 5971: 5933: 5930: 5922: 5900: 5796: 5793: 5778: 5772: 5764: 5679: 5673: 4790: 4778: 4755: 4743: 4689: 4681: 4643: 4634: 4618: 4591:), in other words the maximal 4125: 4102: 4088: 4074: 4071: 4063: 3886: 3878: 3457:Linear representations of tori 3424: 3418: 3365: 3333: 3240: 3237: 3231: 3204: 3187: 3181: 3172: 3165: 3126: 3114: 3105: 3102: 3090: 3065: 3062: 3056: 3040: 3034: 2993: 2987: 2946: 2940: 2516: 2501: 2151: 2145: 2114: 2108: 2015: 2012: 1938: 1932: 1763: 1740:there exists a "dual" isogeny 1717: 1539:is split, which is called the 1478: 1464: 1458: 1452: 1306: 1285: 1279: 1266: 1071: 1059: 1056: 1053: 1041: 1021: 993: 990: 987: 984: 962: 956: 944: 941: 911: 566: 560: 550: 547: 541: 515: 508: 410: 404: 381: 375: 313: 307: 284: 281: 259: 251: 1: 6599: 6551:Voskresenskii, V. S. (1998). 5653: 3575:so the rank is well-defined); 3139:, where degree is the number 1087: 115:projective algebraic geometry 6457:Tate–Shafarevich group 5503:{\displaystyle \mathbf {G} } 5432:{\displaystyle \mathbf {G} } 5390:{\displaystyle \mathbf {G} } 5339:{\displaystyle \mathbf {G} } 5313: 5303:{\displaystyle \mathbf {Q} } 5278:{\displaystyle \mathbf {G} } 5236:{\displaystyle \mathbf {G} } 5214:{\displaystyle \mathbb {Q} } 5195:is homeomorphic to a finite 5132:{\displaystyle \mathbf {G} } 5110:{\displaystyle \mathbf {G} } 5065:{\displaystyle \mathbf {G} } 5043:{\displaystyle \mathbb {Q} } 5021:{\displaystyle \mathbb {Q} } 4999:{\displaystyle \mathbf {G} } 4564:{\displaystyle \mathbb {R} } 4542:{\displaystyle \mathbb {R} } 4325:{\displaystyle \mathbf {G} } 4178: 4010:{\displaystyle \mathbf {G} } 3828:{\displaystyle \mathbf {G} } 3806:{\displaystyle \mathbf {T} } 3707:{\displaystyle \mathbf {G} } 3548:{\displaystyle \mathbf {G} } 3494:{\displaystyle \mathbf {G} } 2051:{\displaystyle \mathbb {R} } 1838: 1686: 1628:{\displaystyle \mathbf {T} } 1606:{\displaystyle \mathbf {T} } 1558:{\displaystyle \mathbf {T} } 1532:{\displaystyle \mathbf {T} } 1398:{\displaystyle \mathrm {T} } 1294: 1274: 1227:{\displaystyle \mathbf {T} } 1194: 1124: 183:{\displaystyle \mathbb {C} } 102:{\displaystyle \mathbb {T} } 7: 6637:Witte-Morris, Dave (2015). 6466: 5614:is the spectrum of a field 5583:, such that base change to 5346:is a semisimple group over 4354:{\displaystyle {}_{F}\Phi } 4039:{\displaystyle {}_{F}\Phi } 3776:over the complex field the 3772:In the classical theory of 3688:-rank; the group is called 2970:, and the coweight lattice 1810: 799:{\displaystyle E^{\times }} 619:is smooth for large enough 394:-action from the inclusion 10: 6689: 6305:Projective triviality: If 5840:For a general base scheme 5835: 5530:, an algebraic torus over 5375:the maximal split tori in 5317: 5263:is compact if and only if 4869:{\displaystyle T\subset G} 3765: 649: 453:Algebraic tori over fields 5854:geometrically unibranched 5139:, and the quotient space 4796:{\displaystyle \min(p,q)} 3452:Tori in semisimple groups 1182:which is isomorphic over 835:in the affine plane over 6509: 6499:Torus based cryptography 6455:), and the order of the 5006:over the rational field 3916:. On the other hand, if 1408:The torus is said to be 16:Specific algebraic group 6668:Linear algebraic groups 5571:such that any point in 5088:{\displaystyle \Gamma } 4728:, and the real rank of 3774:semisimple Lie algebras 3734:). The group is called 2734:{\displaystyle N_{E/F}} 1412:over a field extension 1344:{\displaystyle r\geq 1} 700:is the algebraic group 6430: 6153: 6018: 5940: 5826: 5806: 5745: 5707: 5618:, making a torus over 5504: 5482: 5453: 5433: 5411: 5391: 5369: 5340: 5320:Building (mathematics) 5304: 5279: 5257: 5237: 5215: 5189: 5165: 5133: 5111: 5089: 5066: 5044: 5022: 5000: 4978: 4950: 4930: 4910: 4890: 4870: 4844: 4820: 4797: 4762: 4722: 4696: 4653: 4605: 4585: 4565: 4543: 4517: 4484: 4460: 4440: 4416: 4383: 4355: 4326: 4304: 4269: 4235: 4215: 4195: 4156: 4109: 4046:. The restriction map 4040: 4011: 3989: 3969: 3949: 3910: 3849: 3829: 3807: 3752: 3728: 3708: 3682: 3658: 3638: 3616: 3593: 3569: 3549: 3515: 3495: 3434: 3250: 3133: 3077: 3000: 2953: 2899: 2846: 2817: 2785: 2765: 2735: 2700: 2680: 2660: 2640: 2620: 2600: 2576: 2556: 2526: 2359: 2333: 2307: 2267: 2223: 2190: 2158: 2121: 2085: 2052: 2022: 1887: 1867: 1847: 1801: 1775: 1734: 1676: 1658:A torus is said to be 1649: 1629: 1607: 1583: 1559: 1533: 1511: 1491: 1434: 1399: 1369: 1345: 1319: 1248: 1228: 1203: 1176: 1154: 1133: 1106: 1078: 1028: 928: 875: 849: 829: 800: 773: 753: 725: 694: 670: 633: 613: 593: 573: 495: 475: 432: 388: 359: 328: 291: 215: 184: 146: 103: 81: 52: 6431: 6163:Arithmetic invariants 6154: 6019: 5941: 5827: 5807: 5746: 5708: 5505: 5483: 5454: 5434: 5412: 5392: 5370: 5341: 5305: 5280: 5258: 5238: 5216: 5190: 5166: 5134: 5112: 5090: 5067: 5045: 5023: 5001: 4979: 4951: 4931: 4911: 4891: 4871: 4845: 4821: 4798: 4763: 4723: 4697: 4654: 4606: 4586: 4566: 4544: 4518: 4485: 4461: 4441: 4417: 4384: 4356: 4327: 4305: 4270: 4236: 4234:{\displaystyle \Phi } 4216: 4214:{\displaystyle \Phi } 4196: 4157: 4110: 4041: 4012: 3990: 3970: 3950: 3911: 3850: 3848:{\displaystyle \Phi } 3830: 3808: 3753: 3729: 3709: 3683: 3659: 3639: 3617: 3594: 3570: 3550: 3516: 3496: 3435: 3251: 3134: 3078: 3001: 2954: 2909:Weights and coweights 2900: 2847: 2818: 2786: 2766: 2736: 2701: 2681: 2661: 2641: 2621: 2601: 2577: 2557: 2527: 2360: 2334: 2308: 2268: 2224: 2191: 2159: 2122: 2086: 2053: 2032:Over the real numbers 2023: 1888: 1873:algebraic torus over 1868: 1848: 1802: 1776: 1735: 1677: 1650: 1630: 1608: 1584: 1560: 1534: 1512: 1492: 1435: 1400: 1370: 1346: 1320: 1249: 1229: 1204: 1177: 1155: 1134: 1107: 1079: 1029: 929: 876: 850: 830: 801: 774: 754: 726: 695: 671: 634: 614: 594: 574: 496: 476: 433: 389: 360: 329: 292: 221:is isomorphic to the 216: 185: 147: 104: 82: 53: 6332: 6043: 5958: 5887: 5816: 5755: 5720: 5665: 5492: 5463: 5443: 5421: 5401: 5379: 5350: 5328: 5292: 5267: 5247: 5225: 5203: 5179: 5143: 5121: 5099: 5079: 5054: 5032: 5010: 4988: 4968: 4940: 4920: 4900: 4880: 4854: 4834: 4810: 4772: 4732: 4706: 4663: 4615: 4595: 4575: 4553: 4531: 4507: 4474: 4450: 4430: 4406: 4373: 4336: 4314: 4283: 4248: 4225: 4205: 4170: 4119: 4050: 4021: 3999: 3979: 3959: 3920: 3859: 3855:in the vector space 3839: 3817: 3795: 3742: 3718: 3714:which is split over 3696: 3672: 3648: 3644:which is split over 3628: 3606: 3583: 3559: 3537: 3505: 3483: 3320: 3159: 3087: 3021: 2974: 2927: 2856: 2827: 2795: 2775: 2749: 2710: 2690: 2670: 2650: 2630: 2610: 2590: 2566: 2538: 2369: 2343: 2317: 2288: 2233: 2204: 2171: 2134: 2100: 2066: 2040: 1897: 1877: 1857: 1824: 1785: 1744: 1703: 1666: 1639: 1617: 1595: 1573: 1547: 1521: 1501: 1444: 1416: 1387: 1359: 1329: 1258: 1238: 1216: 1186: 1166: 1144: 1116: 1096: 1038: 938: 885: 859: 839: 828:{\displaystyle xy=1} 810: 783: 763: 735: 704: 684: 678:multiplicative group 676:is a field then the 660: 652:Multiplicative group 623: 603: 583: 505: 485: 465: 398: 387:{\displaystyle U(1)} 369: 338: 301: 228: 194: 190:the algebraic torus 172: 125: 91: 62: 31: 6616:On Tamagawa Numbers 5534:is defined to be a 4721:{\displaystyle n-1} 3407: 2764:{\displaystyle d-1} 2555:{\displaystyle E/F} 2534:More generally, if 2358:{\displaystyle q+1} 2332:{\displaystyle q-1} 2277:Over a finite field 2011: 1971: 1916: 1433:{\displaystyle E/F} 1212:In other words, if 874:{\displaystyle x,y} 752:{\displaystyle E/F} 438:as real manifolds. 6481:Mathematics portal 6426: 6291:torus is equal to 6149: 6014: 5936: 5822: 5802: 5741: 5703: 5500: 5478: 5449: 5429: 5407: 5387: 5365: 5336: 5300: 5275: 5253: 5233: 5211: 5197:simplicial complex 5185: 5161: 5129: 5107: 5085: 5062: 5040: 5018: 4996: 4974: 4960:Q-rank of lattices 4946: 4926: 4906: 4886: 4866: 4840: 4816: 4793: 4758: 4718: 4692: 4649: 4601: 4581: 4561: 4539: 4513: 4480: 4456: 4436: 4412: 4379: 4351: 4322: 4300: 4277:anisotropic kernel 4265: 4231: 4211: 4191: 4152: 4105: 4036: 4007: 3985: 3965: 3945: 3906: 3845: 3825: 3803: 3778:Cartan subalgebras 3748: 3724: 3704: 3678: 3654: 3634: 3612: 3601:(sometimes called 3589: 3565: 3545: 3511: 3491: 3430: 3371: 3246: 3129: 3073: 2996: 2949: 2895: 2842: 2813: 2781: 2761: 2731: 2696: 2676: 2656: 2636: 2616: 2596: 2572: 2552: 2522: 2410: 2355: 2329: 2303: 2263: 2219: 2186: 2154: 2127:or as the special 2117: 2081: 2048: 2018: 1994: 1954: 1900: 1883: 1863: 1843: 1797: 1771: 1730: 1672: 1645: 1625: 1603: 1579: 1555: 1529: 1507: 1487: 1430: 1395: 1365: 1341: 1315: 1244: 1224: 1199: 1172: 1150: 1129: 1102: 1074: 1024: 924: 871: 845: 825: 796: 769: 749: 721: 690: 666: 629: 609: 589: 569: 491: 471: 428: 384: 355: 324: 287: 211: 180: 142: 113:commonly found in 99: 77: 48: 6650:978-0-9865716-0-2 6611:Exp. VIII–X 6605:A. Grothendieck, 6590:Witte-Morris 2015 6578:Witte-Morris 2015 5825:{\displaystyle X} 5770: 5715:projective scheme 5671: 5452:{\displaystyle X} 5410:{\displaystyle X} 5256:{\displaystyle M} 5243:. In particular, 5188:{\displaystyle M} 4977:{\displaystyle G} 4964:If the Lie group 4949:{\displaystyle X} 4929:{\displaystyle X} 4909:{\displaystyle X} 4889:{\displaystyle T} 4843:{\displaystyle G} 4819:{\displaystyle X} 4604:{\displaystyle r} 4584:{\displaystyle G} 4516:{\displaystyle G} 4494:Tori and geometry 4483:{\displaystyle F} 4459:{\displaystyle F} 4439:{\displaystyle F} 4424:quasi-split group 4415:{\displaystyle F} 4400:Galois cohomology 4382:{\displaystyle F} 4181: 3988:{\displaystyle F} 3968:{\displaystyle F} 3751:{\displaystyle F} 3727:{\displaystyle F} 3681:{\displaystyle F} 3657:{\displaystyle F} 3637:{\displaystyle G} 3615:{\displaystyle F} 3592:{\displaystyle F} 3568:{\displaystyle F} 3514:{\displaystyle F} 2784:{\displaystyle F} 2699:{\displaystyle F} 2679:{\displaystyle d} 2659:{\displaystyle F} 2639:{\displaystyle E} 2619:{\displaystyle F} 2599:{\displaystyle E} 2575:{\displaystyle d} 1924: 1886:{\displaystyle k} 1866:{\displaystyle n} 1841: 1675:{\displaystyle F} 1648:{\displaystyle F} 1582:{\displaystyle F} 1510:{\displaystyle F} 1368:{\displaystyle r} 1297: 1277: 1247:{\displaystyle F} 1197: 1175:{\displaystyle F} 1153:{\displaystyle F} 1127: 1105:{\displaystyle F} 855:with coordinates 848:{\displaystyle F} 772:{\displaystyle E} 693:{\displaystyle F} 669:{\displaystyle F} 632:{\displaystyle r} 612:{\displaystyle G} 592:{\displaystyle r} 494:{\displaystyle p} 474:{\displaystyle G} 249: 6680: 6654: 6633: 6593: 6587: 6581: 6575: 6569: 6568:, Theorem 2.7.1. 6563: 6557: 6556: 6548: 6542: 6541: 6539: 6532: 6523: 6483: 6478: 6477: 6435: 6433: 6432: 6427: 6422: 6421: 6416: 6401: 6400: 6370: 6369: 6357: 6356: 6344: 6343: 6309:is a torus over 6287:evaluated on an 6169:Tamagawa numbers 6158: 6156: 6155: 6150: 6139: 6138: 6126: 6125: 6110: 6109: 6097: 6096: 6084: 6083: 6082: 6076: 6055: 6054: 6023: 6021: 6020: 6015: 6007: 5999: 5998: 5983: 5982: 5970: 5969: 5945: 5943: 5942: 5937: 5929: 5921: 5920: 5899: 5898: 5831: 5829: 5828: 5823: 5811: 5809: 5808: 5803: 5771: 5768: 5750: 5748: 5747: 5742: 5740: 5739: 5734: 5712: 5710: 5709: 5704: 5702: 5701: 5690: 5672: 5669: 5509: 5507: 5506: 5501: 5499: 5487: 5485: 5484: 5479: 5477: 5476: 5471: 5459:is equal to the 5458: 5456: 5455: 5450: 5438: 5436: 5435: 5430: 5428: 5416: 5414: 5413: 5408: 5396: 5394: 5393: 5388: 5386: 5374: 5372: 5371: 5366: 5364: 5363: 5358: 5345: 5343: 5342: 5337: 5335: 5309: 5307: 5306: 5301: 5299: 5285:is anisotropic. 5284: 5282: 5281: 5276: 5274: 5262: 5260: 5259: 5254: 5242: 5240: 5239: 5234: 5232: 5220: 5218: 5217: 5212: 5210: 5194: 5192: 5191: 5186: 5170: 5168: 5167: 5162: 5138: 5136: 5135: 5130: 5128: 5116: 5114: 5113: 5108: 5106: 5094: 5092: 5091: 5086: 5074:arithmetic group 5071: 5069: 5068: 5063: 5061: 5049: 5047: 5046: 5041: 5039: 5027: 5025: 5024: 5019: 5017: 5005: 5003: 5002: 4997: 4995: 4983: 4981: 4980: 4975: 4955: 4953: 4952: 4947: 4935: 4933: 4932: 4927: 4915: 4913: 4912: 4907: 4895: 4893: 4892: 4887: 4875: 4873: 4872: 4867: 4849: 4847: 4846: 4841: 4825: 4823: 4822: 4817: 4802: 4800: 4799: 4794: 4767: 4765: 4764: 4759: 4742: 4727: 4725: 4724: 4719: 4701: 4699: 4698: 4693: 4688: 4680: 4679: 4674: 4658: 4656: 4655: 4650: 4642: 4641: 4632: 4631: 4626: 4610: 4608: 4607: 4602: 4590: 4588: 4587: 4582: 4570: 4568: 4567: 4562: 4560: 4548: 4546: 4545: 4540: 4538: 4522: 4520: 4519: 4514: 4489: 4487: 4486: 4481: 4465: 4463: 4462: 4457: 4445: 4443: 4442: 4437: 4421: 4419: 4418: 4413: 4388: 4386: 4385: 4380: 4360: 4358: 4357: 4352: 4347: 4346: 4341: 4331: 4329: 4328: 4323: 4321: 4309: 4307: 4306: 4301: 4299: 4294: 4293: 4288: 4274: 4272: 4271: 4266: 4264: 4259: 4258: 4253: 4240: 4238: 4237: 4232: 4220: 4218: 4217: 4212: 4200: 4198: 4197: 4192: 4187: 4182: 4174: 4161: 4159: 4158: 4153: 4136: 4135: 4130: 4114: 4112: 4111: 4106: 4101: 4096: 4095: 4086: 4085: 4070: 4062: 4061: 4045: 4043: 4042: 4037: 4032: 4031: 4026: 4016: 4014: 4013: 4008: 4006: 3995:-Lie algebra of 3994: 3992: 3991: 3986: 3974: 3972: 3971: 3966: 3954: 3952: 3951: 3946: 3944: 3936: 3931: 3930: 3925: 3915: 3913: 3912: 3907: 3905: 3900: 3899: 3898: 3885: 3877: 3876: 3854: 3852: 3851: 3846: 3834: 3832: 3831: 3826: 3824: 3812: 3810: 3809: 3804: 3802: 3758:-rank is zero). 3757: 3755: 3754: 3749: 3733: 3731: 3730: 3725: 3713: 3711: 3710: 3705: 3703: 3687: 3685: 3684: 3679: 3663: 3661: 3660: 3655: 3643: 3641: 3640: 3635: 3621: 3619: 3618: 3613: 3598: 3596: 3595: 3590: 3574: 3572: 3571: 3566: 3554: 3552: 3551: 3546: 3544: 3520: 3518: 3517: 3512: 3500: 3498: 3497: 3492: 3490: 3439: 3437: 3436: 3431: 3417: 3416: 3406: 3405: 3404: 3394: 3393: 3392: 3382: 3361: 3360: 3356: 3347: 3332: 3331: 3255: 3253: 3252: 3247: 3230: 3229: 3218: 3203: 3180: 3179: 3138: 3136: 3135: 3130: 3082: 3080: 3079: 3074: 3072: 3055: 3054: 3033: 3032: 3005: 3003: 3002: 2997: 2986: 2985: 2958: 2956: 2955: 2950: 2939: 2938: 2904: 2902: 2901: 2896: 2894: 2893: 2888: 2882: 2877: 2876: 2875: 2874: 2864: 2851: 2849: 2848: 2843: 2841: 2840: 2835: 2822: 2820: 2819: 2814: 2812: 2807: 2802: 2790: 2788: 2787: 2782: 2770: 2768: 2767: 2762: 2740: 2738: 2737: 2732: 2730: 2729: 2725: 2705: 2703: 2702: 2697: 2685: 2683: 2682: 2677: 2665: 2663: 2662: 2657: 2645: 2643: 2642: 2637: 2625: 2623: 2622: 2617: 2605: 2603: 2602: 2597: 2584:Weil restriction 2581: 2579: 2578: 2573: 2561: 2559: 2558: 2553: 2548: 2531: 2529: 2528: 2523: 2515: 2514: 2509: 2500: 2499: 2494: 2482: 2478: 2471: 2470: 2455: 2454: 2442: 2441: 2436: 2415: 2414: 2364: 2362: 2361: 2356: 2338: 2336: 2335: 2330: 2312: 2310: 2309: 2304: 2302: 2301: 2296: 2272: 2270: 2269: 2264: 2262: 2261: 2256: 2247: 2246: 2241: 2228: 2226: 2225: 2220: 2218: 2217: 2212: 2195: 2193: 2192: 2187: 2185: 2184: 2179: 2163: 2161: 2160: 2155: 2144: 2129:orthogonal group 2126: 2124: 2123: 2118: 2107: 2090: 2088: 2087: 2082: 2080: 2079: 2074: 2062:the split torus 2057: 2055: 2054: 2049: 2047: 2027: 2025: 2024: 2019: 2010: 2002: 1990: 1989: 1970: 1962: 1950: 1949: 1931: 1930: 1925: 1922: 1915: 1910: 1905: 1892: 1890: 1889: 1884: 1872: 1870: 1869: 1864: 1852: 1850: 1849: 1844: 1842: 1834: 1806: 1804: 1803: 1798: 1780: 1778: 1777: 1772: 1770: 1762: 1758: 1739: 1737: 1736: 1731: 1729: 1725: 1716: 1681: 1679: 1678: 1673: 1654: 1652: 1651: 1646: 1634: 1632: 1631: 1626: 1624: 1612: 1610: 1609: 1604: 1602: 1588: 1586: 1585: 1580: 1564: 1562: 1561: 1556: 1554: 1538: 1536: 1535: 1530: 1528: 1516: 1514: 1513: 1508: 1496: 1494: 1493: 1488: 1486: 1485: 1476: 1475: 1451: 1439: 1437: 1436: 1431: 1426: 1404: 1402: 1401: 1396: 1394: 1374: 1372: 1371: 1366: 1350: 1348: 1347: 1342: 1324: 1322: 1321: 1316: 1314: 1313: 1304: 1303: 1298: 1290: 1278: 1270: 1265: 1253: 1251: 1250: 1245: 1233: 1231: 1230: 1225: 1223: 1208: 1206: 1205: 1200: 1198: 1190: 1181: 1179: 1178: 1173: 1159: 1157: 1156: 1151: 1138: 1136: 1135: 1130: 1128: 1120: 1111: 1109: 1108: 1103: 1083: 1081: 1080: 1075: 1033: 1031: 1030: 1025: 1020: 1006: 983: 972: 933: 931: 930: 925: 923: 922: 910: 909: 897: 896: 880: 878: 877: 872: 854: 852: 851: 846: 834: 832: 831: 826: 805: 803: 802: 797: 795: 794: 778: 776: 775: 770: 758: 756: 755: 750: 745: 730: 728: 727: 722: 720: 719: 718: 712: 699: 697: 696: 691: 675: 673: 672: 667: 638: 636: 635: 630: 618: 616: 615: 610: 598: 596: 595: 590: 578: 576: 575: 570: 559: 558: 540: 539: 530: 529: 528: 527: 500: 498: 497: 492: 480: 478: 477: 472: 443:symmetric spaces 437: 435: 434: 429: 427: 426: 421: 393: 391: 390: 385: 364: 362: 361: 356: 354: 353: 352: 346: 333: 331: 330: 325: 323: 296: 294: 293: 288: 280: 279: 258: 250: 247: 242: 241: 236: 220: 218: 217: 212: 210: 209: 208: 202: 189: 187: 186: 181: 179: 151: 149: 148: 143: 141: 140: 139: 133: 108: 106: 105: 100: 98: 86: 84: 83: 78: 76: 75: 70: 57: 55: 54: 49: 47: 46: 45: 39: 6688: 6687: 6683: 6682: 6681: 6679: 6678: 6677: 6658: 6657: 6651: 6602: 6597: 6596: 6588: 6584: 6576: 6572: 6564: 6560: 6549: 6545: 6537: 6530: 6524: 6517: 6512: 6479: 6472: 6469: 6450: 6417: 6412: 6411: 6396: 6392: 6365: 6361: 6352: 6348: 6339: 6335: 6333: 6330: 6329: 6319: 6297: 6286: 6268: 6261: 6254: 6247: 6240: 6233: 6226: 6215: 6208: 6185: 6167:In his work on 6165: 6134: 6130: 6121: 6117: 6105: 6101: 6092: 6088: 6078: 6077: 6066: 6065: 6050: 6046: 6044: 6041: 6040: 6030: 6003: 5994: 5990: 5978: 5974: 5965: 5961: 5959: 5956: 5955: 5925: 5916: 5912: 5894: 5890: 5888: 5885: 5884: 5838: 5817: 5814: 5813: 5767: 5756: 5753: 5752: 5735: 5730: 5729: 5721: 5718: 5717: 5691: 5686: 5685: 5668: 5666: 5663: 5662: 5656: 5634: 5605: 5596: 5554: 5521: 5516: 5495: 5493: 5490: 5489: 5472: 5467: 5466: 5464: 5461: 5460: 5444: 5441: 5440: 5424: 5422: 5419: 5418: 5402: 5399: 5398: 5382: 5380: 5377: 5376: 5359: 5354: 5353: 5351: 5348: 5347: 5331: 5329: 5326: 5325: 5322: 5316: 5295: 5293: 5290: 5289: 5270: 5268: 5265: 5264: 5248: 5245: 5244: 5228: 5226: 5223: 5222: 5206: 5204: 5201: 5200: 5180: 5177: 5176: 5173:asymptotic cone 5144: 5141: 5140: 5124: 5122: 5119: 5118: 5102: 5100: 5097: 5096: 5080: 5077: 5076: 5057: 5055: 5052: 5051: 5035: 5033: 5030: 5029: 5013: 5011: 5008: 5007: 4991: 4989: 4986: 4985: 4969: 4966: 4965: 4962: 4941: 4938: 4937: 4921: 4918: 4917: 4901: 4898: 4897: 4881: 4878: 4877: 4855: 4852: 4851: 4835: 4832: 4831: 4828:symmetric space 4811: 4808: 4807: 4773: 4770: 4769: 4735: 4733: 4730: 4729: 4707: 4704: 4703: 4684: 4675: 4667: 4666: 4664: 4661: 4660: 4637: 4633: 4627: 4622: 4621: 4616: 4613: 4612: 4596: 4593: 4592: 4576: 4573: 4572: 4556: 4554: 4551: 4550: 4534: 4532: 4529: 4528: 4508: 4505: 4504: 4501: 4496: 4475: 4472: 4471: 4451: 4448: 4447: 4431: 4428: 4427: 4407: 4404: 4403: 4374: 4371: 4370: 4369:Two semisimple 4342: 4340: 4339: 4337: 4334: 4333: 4317: 4315: 4312: 4311: 4295: 4289: 4287: 4286: 4284: 4281: 4280: 4260: 4254: 4252: 4251: 4249: 4246: 4245: 4226: 4223: 4222: 4206: 4203: 4202: 4183: 4173: 4171: 4168: 4167: 4131: 4129: 4128: 4120: 4117: 4116: 4097: 4091: 4087: 4081: 4077: 4066: 4057: 4053: 4051: 4048: 4047: 4027: 4025: 4024: 4022: 4019: 4018: 4002: 4000: 3997: 3996: 3980: 3977: 3976: 3960: 3957: 3956: 3940: 3932: 3926: 3924: 3923: 3921: 3918: 3917: 3901: 3894: 3893: 3889: 3881: 3872: 3868: 3860: 3857: 3856: 3840: 3837: 3836: 3820: 3818: 3815: 3814: 3798: 3796: 3793: 3792: 3786:Dynkin diagrams 3770: 3764: 3743: 3740: 3739: 3719: 3716: 3715: 3699: 3697: 3694: 3693: 3673: 3670: 3669: 3649: 3646: 3645: 3629: 3626: 3625: 3607: 3604: 3603: 3584: 3581: 3580: 3560: 3557: 3556: 3540: 3538: 3535: 3534: 3506: 3503: 3502: 3486: 3484: 3481: 3480: 3477: 3459: 3454: 3412: 3408: 3400: 3396: 3395: 3388: 3384: 3383: 3372: 3352: 3348: 3337: 3336: 3327: 3323: 3321: 3318: 3317: 3219: 3214: 3213: 3193: 3175: 3171: 3160: 3157: 3156: 3088: 3085: 3084: 3068: 3050: 3046: 3028: 3024: 3022: 3019: 3018: 3012: 2981: 2977: 2975: 2972: 2971: 2969: 2934: 2930: 2928: 2925: 2924: 2911: 2889: 2884: 2883: 2878: 2870: 2866: 2865: 2860: 2859: 2857: 2854: 2853: 2836: 2831: 2830: 2828: 2825: 2824: 2808: 2803: 2798: 2796: 2793: 2792: 2776: 2773: 2772: 2750: 2747: 2746: 2721: 2717: 2713: 2711: 2708: 2707: 2691: 2688: 2687: 2671: 2668: 2667: 2666:-torus of rank 2651: 2648: 2647: 2631: 2628: 2627: 2611: 2608: 2607: 2591: 2588: 2587: 2567: 2564: 2563: 2544: 2539: 2536: 2535: 2510: 2505: 2504: 2495: 2487: 2486: 2466: 2462: 2450: 2446: 2437: 2432: 2431: 2409: 2408: 2403: 2397: 2396: 2388: 2378: 2377: 2376: 2372: 2370: 2367: 2366: 2344: 2341: 2340: 2318: 2315: 2314: 2297: 2292: 2291: 2289: 2286: 2285: 2279: 2257: 2252: 2251: 2242: 2237: 2236: 2234: 2231: 2230: 2213: 2208: 2207: 2205: 2202: 2201: 2180: 2175: 2174: 2172: 2169: 2168: 2137: 2135: 2132: 2131: 2103: 2101: 2098: 2097: 2075: 2070: 2069: 2067: 2064: 2063: 2043: 2041: 2038: 2037: 2034: 2003: 1998: 1985: 1981: 1963: 1958: 1945: 1941: 1926: 1921: 1920: 1911: 1906: 1901: 1898: 1895: 1894: 1878: 1875: 1874: 1858: 1855: 1854: 1833: 1825: 1822: 1821: 1818: 1813: 1786: 1783: 1782: 1766: 1754: 1753: 1745: 1742: 1741: 1721: 1720: 1712: 1704: 1701: 1700: 1689: 1667: 1664: 1663: 1640: 1637: 1636: 1620: 1618: 1615: 1614: 1598: 1596: 1593: 1592: 1574: 1571: 1570: 1550: 1548: 1545: 1544: 1541:splitting field 1524: 1522: 1519: 1518: 1502: 1499: 1498: 1481: 1477: 1471: 1467: 1447: 1445: 1442: 1441: 1422: 1417: 1414: 1413: 1390: 1388: 1385: 1384: 1360: 1357: 1356: 1330: 1327: 1326: 1309: 1305: 1299: 1289: 1288: 1269: 1261: 1259: 1256: 1255: 1239: 1236: 1235: 1219: 1217: 1214: 1213: 1189: 1187: 1184: 1183: 1167: 1164: 1163: 1145: 1142: 1141: 1119: 1117: 1114: 1113: 1097: 1094: 1093: 1090: 1039: 1036: 1035: 1013: 999: 976: 965: 939: 936: 935: 918: 914: 905: 901: 892: 888: 886: 883: 882: 860: 857: 856: 840: 837: 836: 811: 808: 807: 790: 786: 784: 781: 780: 764: 761: 760: 741: 736: 733: 732: 714: 713: 708: 707: 705: 702: 701: 685: 682: 681: 661: 658: 657: 654: 648: 624: 621: 620: 604: 601: 600: 584: 581: 580: 554: 553: 535: 534: 523: 519: 518: 514: 506: 503: 502: 486: 483: 482: 466: 463: 462: 455: 422: 417: 416: 399: 396: 395: 370: 367: 366: 348: 347: 342: 341: 339: 336: 335: 334:. In fact, any 319: 302: 299: 298: 272: 268: 254: 246: 237: 232: 231: 229: 226: 225: 204: 203: 198: 197: 195: 192: 191: 175: 173: 170: 169: 166:Cartan subgroup 135: 134: 129: 128: 126: 123: 122: 111:algebraic group 94: 92: 89: 88: 71: 66: 65: 63: 60: 59: 41: 40: 35: 34: 32: 29: 28: 25:algebraic torus 17: 12: 11: 5: 6686: 6676: 6675: 6670: 6656: 6655: 6649: 6634: 6625: 6618: 6612: 6601: 6598: 6595: 6594: 6582: 6570: 6558: 6543: 6514: 6513: 6511: 6508: 6507: 6506: 6501: 6496: 6491: 6489:Toric geometry 6485: 6484: 6468: 6465: 6448: 6425: 6420: 6415: 6410: 6407: 6404: 6399: 6395: 6391: 6388: 6385: 6382: 6379: 6376: 6373: 6368: 6364: 6360: 6355: 6351: 6347: 6342: 6338: 6326: 6325: 6317: 6303: 6295: 6284: 6270: 6266: 6259: 6252: 6245: 6238: 6231: 6224: 6213: 6206: 6183: 6164: 6161: 6148: 6145: 6142: 6137: 6133: 6129: 6124: 6120: 6116: 6113: 6108: 6104: 6100: 6095: 6091: 6087: 6081: 6075: 6072: 6069: 6064: 6061: 6058: 6053: 6049: 6028: 6013: 6010: 6006: 6002: 5997: 5993: 5989: 5986: 5981: 5977: 5973: 5968: 5964: 5935: 5932: 5928: 5924: 5919: 5915: 5911: 5908: 5905: 5902: 5897: 5893: 5837: 5834: 5821: 5801: 5798: 5795: 5792: 5789: 5786: 5783: 5780: 5777: 5774: 5766: 5763: 5760: 5738: 5733: 5728: 5725: 5700: 5697: 5694: 5689: 5684: 5681: 5678: 5675: 5655: 5652: 5630: 5601: 5591: 5550: 5520: 5517: 5515: 5512: 5498: 5475: 5470: 5448: 5427: 5417:associated to 5406: 5385: 5362: 5357: 5334: 5318:Main article: 5315: 5312: 5298: 5273: 5252: 5231: 5209: 5184: 5160: 5157: 5154: 5151: 5148: 5127: 5105: 5095:associated to 5084: 5060: 5038: 5016: 4994: 4973: 4961: 4958: 4945: 4925: 4905: 4885: 4865: 4862: 4859: 4839: 4830:associated to 4815: 4792: 4789: 4786: 4783: 4780: 4777: 4757: 4754: 4751: 4748: 4745: 4741: 4738: 4717: 4714: 4711: 4691: 4687: 4683: 4678: 4673: 4670: 4648: 4645: 4640: 4636: 4630: 4625: 4620: 4600: 4580: 4559: 4537: 4512: 4500: 4497: 4495: 4492: 4479: 4455: 4435: 4411: 4392: 4391: 4378: 4350: 4345: 4320: 4298: 4292: 4263: 4257: 4230: 4210: 4190: 4186: 4180: 4177: 4151: 4148: 4145: 4142: 4139: 4134: 4127: 4124: 4115:induces a map 4104: 4100: 4094: 4090: 4084: 4080: 4076: 4073: 4069: 4065: 4060: 4056: 4035: 4030: 4005: 3984: 3964: 3943: 3939: 3935: 3929: 3904: 3897: 3892: 3888: 3884: 3880: 3875: 3871: 3867: 3864: 3844: 3823: 3801: 3766:Main article: 3763: 3760: 3747: 3723: 3702: 3677: 3666: 3665: 3653: 3633: 3611: 3588: 3576: 3564: 3543: 3510: 3489: 3476: 3473: 3469: 3468: 3458: 3455: 3453: 3450: 3441: 3440: 3429: 3426: 3423: 3420: 3415: 3411: 3403: 3399: 3391: 3387: 3381: 3378: 3375: 3370: 3367: 3364: 3359: 3355: 3351: 3346: 3343: 3340: 3335: 3330: 3326: 3257: 3256: 3245: 3242: 3239: 3236: 3233: 3228: 3225: 3222: 3217: 3212: 3209: 3206: 3202: 3199: 3196: 3192: 3189: 3186: 3183: 3178: 3174: 3170: 3167: 3164: 3128: 3125: 3122: 3119: 3116: 3113: 3110: 3107: 3104: 3101: 3098: 3095: 3092: 3071: 3067: 3064: 3061: 3058: 3053: 3049: 3045: 3042: 3039: 3036: 3031: 3027: 3010: 2995: 2992: 2989: 2984: 2980: 2967: 2948: 2945: 2942: 2937: 2933: 2910: 2907: 2892: 2887: 2881: 2873: 2869: 2863: 2839: 2834: 2811: 2806: 2801: 2780: 2760: 2757: 2754: 2728: 2724: 2720: 2716: 2695: 2675: 2655: 2635: 2615: 2595: 2571: 2551: 2547: 2543: 2521: 2518: 2513: 2508: 2503: 2498: 2493: 2490: 2485: 2481: 2477: 2474: 2469: 2465: 2461: 2458: 2453: 2449: 2445: 2440: 2435: 2430: 2427: 2424: 2421: 2418: 2413: 2407: 2404: 2402: 2399: 2398: 2395: 2392: 2389: 2387: 2384: 2383: 2381: 2375: 2354: 2351: 2348: 2328: 2325: 2322: 2300: 2295: 2278: 2275: 2260: 2255: 2250: 2245: 2240: 2216: 2211: 2198: 2197: 2183: 2178: 2153: 2150: 2147: 2143: 2140: 2116: 2113: 2110: 2106: 2091: 2078: 2073: 2046: 2033: 2030: 2017: 2014: 2009: 2006: 2001: 1997: 1993: 1988: 1984: 1980: 1977: 1974: 1969: 1966: 1961: 1957: 1953: 1948: 1944: 1940: 1937: 1934: 1929: 1919: 1914: 1909: 1904: 1882: 1862: 1840: 1837: 1832: 1829: 1817: 1814: 1812: 1809: 1796: 1793: 1790: 1769: 1765: 1761: 1757: 1752: 1749: 1728: 1724: 1719: 1715: 1711: 1708: 1688: 1685: 1684: 1683: 1682:-rank is zero. 1671: 1656: 1644: 1623: 1601: 1578: 1566: 1553: 1527: 1506: 1484: 1480: 1474: 1470: 1466: 1463: 1460: 1457: 1454: 1450: 1429: 1425: 1421: 1406: 1393: 1375:is called the 1364: 1340: 1337: 1334: 1312: 1308: 1302: 1296: 1293: 1287: 1284: 1281: 1276: 1273: 1268: 1264: 1243: 1222: 1196: 1193: 1171: 1149: 1126: 1123: 1101: 1089: 1086: 1073: 1070: 1067: 1064: 1061: 1058: 1055: 1052: 1049: 1046: 1043: 1023: 1019: 1016: 1012: 1009: 1005: 1002: 998: 995: 992: 989: 986: 982: 979: 975: 971: 968: 964: 961: 958: 955: 952: 949: 946: 943: 921: 917: 913: 908: 904: 900: 895: 891: 870: 867: 864: 844: 824: 821: 818: 815: 793: 789: 768: 748: 744: 740: 717: 711: 689: 665: 650:Main article: 647: 644: 628: 608: 588: 568: 565: 562: 557: 552: 549: 546: 543: 538: 533: 526: 522: 517: 513: 510: 490: 470: 454: 451: 425: 420: 415: 412: 409: 406: 403: 383: 380: 377: 374: 351: 345: 322: 318: 315: 312: 309: 306: 286: 283: 278: 275: 271: 267: 264: 261: 257: 253: 245: 240: 235: 207: 201: 178: 138: 132: 119:toric geometry 97: 74: 69: 44: 38: 15: 9: 6: 4: 3: 2: 6685: 6674: 6671: 6669: 6666: 6665: 6663: 6652: 6646: 6642: 6641: 6635: 6631: 6626: 6623: 6619: 6617: 6613: 6610: 6609: 6604: 6603: 6592:, p. 25. 6591: 6586: 6580:, p. 22. 6579: 6574: 6567: 6562: 6554: 6547: 6536: 6529: 6522: 6520: 6515: 6505: 6502: 6500: 6497: 6495: 6492: 6490: 6487: 6486: 6482: 6476: 6471: 6464: 6460: 6458: 6454: 6451:torsors over 6447: 6443: 6439: 6418: 6408: 6405: 6397: 6393: 6389: 6386: 6383: 6374: 6366: 6362: 6358: 6353: 6349: 6340: 6336: 6323: 6316: 6312: 6308: 6304: 6301: 6294: 6290: 6283: 6279: 6275: 6271: 6265: 6258: 6251: 6244: 6237: 6230: 6223: 6219: 6212: 6205: 6201: 6200: 6199: 6197: 6193: 6189: 6182: 6178: 6174: 6170: 6160: 6135: 6131: 6122: 6118: 6114: 6106: 6102: 6093: 6089: 6062: 6059: 6051: 6047: 6036: 6034: 6027: 5995: 5991: 5987: 5984: 5979: 5975: 5966: 5962: 5953: 5950:over a field 5949: 5917: 5913: 5909: 5906: 5903: 5895: 5891: 5882: 5878: 5874: 5870: 5866: 5863:Given a rank 5861: 5859: 5855: 5851: 5847: 5843: 5833: 5819: 5799: 5787: 5781: 5775: 5761: 5758: 5736: 5726: 5723: 5716: 5698: 5695: 5692: 5682: 5676: 5661: 5651: 5648: 5646: 5642: 5638: 5633: 5629: 5625: 5621: 5617: 5613: 5609: 5604: 5600: 5595: 5590: 5586: 5582: 5578: 5574: 5570: 5567: â†’  5566: 5562: 5558: 5553: 5549: 5545: 5541: 5537: 5533: 5529: 5526: 5523:Given a base 5511: 5473: 5446: 5404: 5360: 5321: 5311: 5286: 5250: 5198: 5182: 5174: 5158: 5149: 5146: 5075: 4971: 4957: 4943: 4923: 4903: 4883: 4863: 4860: 4857: 4837: 4829: 4813: 4804: 4787: 4784: 4781: 4752: 4749: 4746: 4715: 4712: 4709: 4676: 4646: 4638: 4628: 4598: 4578: 4526: 4510: 4491: 4477: 4469: 4453: 4446:; then every 4433: 4425: 4409: 4401: 4397: 4390: 4376: 4367: 4366: 4365: 4362: 4343: 4290: 4278: 4255: 4242: 4188: 4184: 4175: 4165: 4146: 4140: 4132: 4092: 4082: 4078: 4058: 4054: 4028: 3982: 3962: 3955:is a maximal 3937: 3927: 3890: 3873: 3869: 3865: 3862: 3789: 3787: 3783: 3779: 3775: 3769: 3759: 3745: 3737: 3721: 3691: 3675: 3651: 3631: 3623: 3609: 3600: 3586: 3577: 3562: 3532: 3531:absolute rank 3528: 3524: 3523: 3522: 3508: 3472: 3467: 3464: 3463: 3462: 3449: 3446: 3427: 3421: 3413: 3409: 3401: 3397: 3389: 3385: 3368: 3362: 3357: 3353: 3349: 3328: 3324: 3316: 3315: 3314: 3312: 3311:Galois module 3308: 3304: 3300: 3296: 3291: 3289: 3285: 3281: 3277: 3273: 3269: 3266:When a field 3264: 3262: 3261:formal groups 3243: 3234: 3226: 3223: 3220: 3210: 3207: 3190: 3184: 3176: 3168: 3162: 3155: 3154: 3153: 3151: 3146: 3142: 3123: 3120: 3117: 3111: 3108: 3099: 3096: 3093: 3059: 3051: 3047: 3043: 3037: 3029: 3025: 3016: 3013: â†’  3009: 2990: 2982: 2978: 2966: 2963: â†’  2962: 2943: 2935: 2931: 2923: 2920: 2916: 2906: 2890: 2879: 2871: 2867: 2837: 2804: 2778: 2758: 2755: 2752: 2744: 2726: 2722: 2718: 2714: 2693: 2673: 2653: 2633: 2613: 2593: 2585: 2569: 2549: 2545: 2541: 2532: 2519: 2511: 2496: 2483: 2479: 2475: 2472: 2467: 2463: 2459: 2456: 2451: 2447: 2443: 2438: 2428: 2425: 2422: 2419: 2416: 2411: 2405: 2400: 2393: 2390: 2385: 2379: 2373: 2352: 2349: 2346: 2326: 2323: 2320: 2298: 2284: 2274: 2258: 2248: 2243: 2214: 2181: 2167: 2148: 2130: 2111: 2096: 2095:unitary group 2092: 2076: 2061: 2060: 2059: 2029: 2007: 2004: 1999: 1995: 1991: 1986: 1982: 1978: 1975: 1972: 1967: 1964: 1959: 1955: 1951: 1946: 1942: 1935: 1927: 1917: 1912: 1907: 1880: 1860: 1835: 1830: 1827: 1808: 1794: 1791: 1788: 1759: 1750: 1747: 1726: 1709: 1706: 1698: 1694: 1669: 1661: 1657: 1642: 1590: 1576: 1567: 1542: 1504: 1482: 1472: 1468: 1461: 1455: 1427: 1423: 1419: 1411: 1407: 1383:of the torus 1382: 1381:absolute rank 1378: 1362: 1354: 1353: 1352: 1338: 1335: 1332: 1310: 1300: 1291: 1282: 1271: 1241: 1210: 1191: 1169: 1161: 1147: 1121: 1099: 1085: 1068: 1065: 1062: 1050: 1047: 1044: 1017: 1014: 1010: 1007: 1003: 1000: 996: 980: 977: 973: 969: 966: 959: 953: 950: 947: 919: 915: 906: 902: 898: 893: 889: 868: 865: 862: 842: 822: 819: 816: 813: 791: 787: 766: 746: 742: 738: 687: 679: 663: 653: 643: 640: 626: 606: 586: 563: 544: 531: 524: 520: 511: 488: 468: 460: 450: 448: 444: 439: 423: 413: 407: 401: 378: 372: 316: 310: 304: 276: 273: 269: 265: 262: 243: 238: 224: 167: 163: 159: 155: 120: 116: 112: 72: 26: 22: 6639: 6629: 6621: 6615: 6606: 6585: 6573: 6561: 6552: 6546: 6504:Hopf algebra 6461: 6452: 6445: 6441: 6438:Picard group 6327: 6321: 6314: 6310: 6306: 6299: 6292: 6288: 6281: 6277: 6273: 6263: 6256: 6249: 6242: 6235: 6228: 6221: 6217: 6210: 6203: 6195: 6191: 6187: 6180: 6176: 6166: 6037: 6032: 6025: 5951: 5947: 5880: 5876: 5872: 5868: 5864: 5862: 5858:Grothendieck 5849: 5845: 5841: 5839: 5657: 5649: 5644: 5636: 5631: 5627: 5623: 5619: 5615: 5611: 5607: 5602: 5598: 5593: 5588: 5584: 5580: 5576: 5572: 5568: 5564: 5560: 5556: 5551: 5547: 5544:fpqc locally 5539: 5536:group scheme 5531: 5527: 5522: 5323: 5287: 4963: 4805: 4768:is equal to 4702:is equal to 4524: 4502: 4393: 4368: 4363: 4276: 4243: 3790: 3782:root systems 3771: 3735: 3689: 3667: 3602: 3579: 3530: 3526: 3478: 3470: 3465: 3460: 3444: 3442: 3313:isomorphism 3309:, we have a 3306: 3302: 3301:and a torus 3298: 3294: 3292: 3287: 3283: 3279: 3275: 3271: 3267: 3265: 3258: 3149: 3144: 3140: 3014: 3007: 2964: 2960: 2914: 2912: 2533: 2283:finite field 2280: 2199: 2035: 1819: 1696: 1690: 1659: 1569: 1540: 1409: 1380: 1376: 1355:The integer 1211: 1140: 1091: 677: 655: 641: 456: 440: 223:group scheme 164:theory (see 157: 24: 18: 5660:affine cone 4396:Tits (1966) 3736:anisotropic 3622:-split rank 1660:anisotropic 1517:over which 934:defined by 21:mathematics 6673:Lie groups 6662:Categories 6600:References 5519:Definition 4468:inner form 4402:groups of 4164:Tits index 3768:Tits index 2743:field norm 1781:such that 1088:Definition 501:, the maps 6566:Tits 1966 6384:≅ 6367:∙ 6123:∙ 6094:∙ 5797:→ 5782:− 5759:π 5727:⊂ 5683:⊂ 5488:-rank of 5314:Buildings 5221:-rank of 5156:∖ 5153:Γ 5083:Γ 5050:-rank of 5028:then the 4861:⊂ 4713:− 4644:→ 4629:× 4525:real rank 4349:Φ 4229:Φ 4209:Φ 4179:¯ 4141:∪ 4138:Φ 4126:→ 4123:Φ 4083:∗ 4075:→ 4059:∗ 4034:Φ 3938:⊂ 3891:⊗ 3874:∗ 3843:Φ 3414:∙ 3369:≅ 3329:∙ 3121:∘ 3112:⁡ 3106:↦ 3083:given by 3066:→ 3052:∙ 3044:× 3030:∙ 2983:∙ 2936:∙ 2756:− 2582:then the 2484:⊂ 2457:− 2429:∈ 2324:− 2281:Over the 2249:× 2244:× 2215:× 2077:× 2005:− 1976:… 1965:− 1839:¯ 1795:ϕ 1792:∘ 1789:ψ 1764:→ 1748:ψ 1718:→ 1707:ϕ 1697:isogenous 1687:Isogenies 1473:× 1462:≅ 1336:≥ 1325:for some 1301:× 1295:¯ 1283:≅ 1275:¯ 1195:¯ 1139:. Then a 1125:¯ 1057:↦ 991:↦ 912:→ 899:× 792:× 551:→ 512:⋅ 447:buildings 424:∗ 414:⊂ 317:⊂ 274:− 239:∗ 162:Lie group 6620:T. Ono, 6614:T. Ono, 6535:Archived 6467:See also 5654:Examples 5542:that is 4162:and the 1811:Examples 1760:′ 1727:′ 1018:′ 1004:′ 981:′ 970:′ 152:. These 6526:Milne. 6234:× 5836:Weights 4826:is the 4527:is the 4275:is the 2922:lattice 2741:of its 1693:isogeny 1662:if its 459:perfect 6647:  6324:) = 1. 6173:T. Ono 5867:torus 5525:scheme 3521:then: 2919:weight 2771:. Any 2646:is an 1234:is an 1160:-torus 154:groups 6608:SGA 3 6538:(PDF) 6531:(PDF) 6510:Notes 6494:Torus 6216:over 6190:, as 5871:over 5713:of a 5559:over 5538:over 4426:over 3690:split 3599:-rank 3305:over 2586:from 2166:torus 1589:-rank 1410:split 680:over 87:, or 23:, an 6645:ISBN 6241:) = 6209:and 5641:rank 4850:and 3784:and 3578:its 3529:(or 3527:rank 3525:its 2686:and 1923:Spec 1568:The 1377:rank 1092:Let 759:the 445:and 248:Spec 158:tori 117:and 6440:of 5769:Aff 5670:Aff 5324:If 5175:of 4896:in 4806:If 4776:min 4503:If 4310:in 4201:on 3791:If 3479:If 3443:If 3109:deg 2606:to 1691:An 1591:of 1543:of 1440:if 1379:or 656:If 639:. 160:in 19:In 6664:: 6533:. 6518:^ 6459:. 6280:, 6255:) 6220:, 6171:, 6035:. 5832:. 5647:. 5597:= 5592:1, 5589:GL 5510:. 4956:. 4803:. 4361:. 3290:. 3191::= 2905:. 2028:. 1084:. 449:. 58:, 6653:. 6453:T 6449:m 6446:G 6442:T 6424:) 6419:m 6414:G 6409:, 6406:T 6403:( 6398:1 6394:t 6390:x 6387:E 6381:) 6378:) 6375:T 6372:( 6363:X 6359:, 6354:k 6350:G 6346:( 6341:1 6337:H 6322:T 6320:( 6318:K 6315:f 6311:K 6307:T 6302:. 6300:K 6296:K 6293:f 6289:L 6285:L 6282:f 6278:K 6276:/ 6274:L 6269:) 6267:2 6264:T 6262:( 6260:K 6257:f 6253:1 6250:T 6248:( 6246:K 6243:f 6239:2 6236:T 6232:1 6229:T 6227:( 6225:K 6222:f 6218:K 6214:2 6211:T 6207:1 6204:T 6196:k 6192:K 6188:K 6184:K 6181:f 6177:k 6147:) 6144:) 6141:) 6136:2 6132:T 6128:( 6119:X 6115:, 6112:) 6107:1 6103:T 6099:( 6090:X 6086:( 6080:Z 6074:m 6071:o 6068:H 6063:, 6060:S 6057:( 6052:1 6048:H 6033:K 6029:m 6026:G 6012:) 6009:) 6005:Z 6001:( 5996:n 5992:L 5988:G 5985:, 5980:K 5976:G 5972:( 5967:1 5963:H 5952:K 5948:T 5934:) 5931:) 5927:Z 5923:( 5918:n 5914:L 5910:G 5907:, 5904:S 5901:( 5896:1 5892:H 5881:S 5877:S 5873:S 5869:T 5865:n 5850:S 5846:S 5842:S 5820:X 5800:X 5794:) 5791:} 5788:0 5785:{ 5779:) 5776:X 5773:( 5765:( 5762:: 5737:n 5732:P 5724:X 5699:1 5696:+ 5693:n 5688:A 5680:) 5677:X 5674:( 5645:S 5637:L 5635:/ 5632:m 5628:G 5624:L 5620:S 5616:K 5612:S 5608:U 5606:/ 5603:m 5599:G 5594:U 5585:U 5581:S 5577:U 5573:X 5569:S 5565:X 5561:S 5557:S 5555:/ 5552:m 5548:G 5540:S 5532:S 5528:S 5497:G 5474:p 5469:Q 5447:X 5426:G 5405:X 5384:G 5361:p 5356:Q 5333:G 5297:Q 5272:G 5251:M 5230:G 5208:Q 5183:M 5159:X 5150:= 5147:M 5126:G 5104:G 5059:G 5037:Q 5015:Q 4993:G 4972:G 4944:X 4924:X 4904:X 4884:T 4864:G 4858:T 4838:G 4814:X 4791:) 4788:q 4785:, 4782:p 4779:( 4756:) 4753:q 4750:, 4747:p 4744:( 4740:O 4737:S 4716:1 4710:n 4690:) 4686:R 4682:( 4677:n 4672:L 4669:S 4647:G 4639:r 4635:) 4624:R 4619:( 4599:r 4579:G 4558:R 4536:R 4511:G 4478:F 4454:F 4434:F 4410:F 4377:F 4344:F 4319:G 4297:T 4291:F 4262:T 4256:F 4189:F 4185:/ 4176:F 4150:} 4147:0 4144:{ 4133:F 4103:) 4099:T 4093:F 4089:( 4079:X 4072:) 4068:T 4064:( 4055:X 4029:F 4004:G 3983:F 3963:F 3942:T 3934:T 3928:F 3903:R 3896:Z 3887:) 3883:T 3879:( 3870:X 3866:= 3863:V 3822:G 3800:T 3746:F 3722:F 3701:G 3676:F 3664:. 3652:F 3632:G 3610:F 3587:F 3563:F 3542:G 3509:F 3488:G 3445:T 3428:. 3425:) 3422:T 3419:( 3410:X 3402:K 3398:G 3390:L 3386:G 3380:d 3377:n 3374:I 3366:) 3363:T 3358:K 3354:/ 3350:L 3345:s 3342:e 3339:R 3334:( 3325:X 3307:L 3303:T 3299:K 3297:/ 3295:L 3288:K 3284:K 3280:K 3276:K 3272:K 3268:K 3244:. 3241:) 3238:) 3235:X 3232:( 3227:S 3224:, 3221:m 3216:G 3211:, 3208:M 3205:( 3201:m 3198:o 3195:H 3188:) 3185:X 3182:( 3177:S 3173:) 3169:M 3166:( 3163:D 3150:Z 3145:n 3141:n 3127:) 3124:g 3118:f 3115:( 3103:) 3100:g 3097:, 3094:f 3091:( 3070:Z 3063:) 3060:T 3057:( 3048:X 3041:) 3038:T 3035:( 3026:X 3015:T 3011:m 3008:G 2994:) 2991:T 2988:( 2979:X 2968:m 2965:G 2961:T 2947:) 2944:T 2941:( 2932:X 2915:T 2891:q 2886:F 2880:/ 2872:2 2868:q 2862:F 2838:q 2833:F 2810:R 2805:/ 2800:C 2779:F 2759:1 2753:d 2727:F 2723:/ 2719:E 2715:N 2694:F 2674:d 2654:F 2634:E 2614:F 2594:E 2570:d 2550:F 2546:/ 2542:E 2520:. 2517:) 2512:q 2507:F 2502:( 2497:2 2492:L 2489:S 2480:} 2476:1 2473:= 2468:2 2464:u 2460:d 2452:2 2448:t 2444:, 2439:q 2434:F 2426:u 2423:, 2420:t 2417:: 2412:) 2406:t 2401:u 2394:u 2391:d 2386:t 2380:( 2374:{ 2353:1 2350:+ 2347:q 2327:1 2321:q 2299:q 2294:F 2259:1 2254:T 2239:R 2210:C 2182:1 2177:T 2152:) 2149:2 2146:( 2142:O 2139:S 2115:) 2112:1 2109:( 2105:U 2072:R 2045:R 2016:) 2013:] 2008:1 2000:n 1996:t 1992:, 1987:n 1983:t 1979:, 1973:, 1968:1 1960:1 1956:t 1952:, 1947:1 1943:t 1939:[ 1936:k 1933:( 1928:k 1918:= 1913:n 1908:m 1903:G 1881:k 1861:n 1836:k 1831:= 1828:k 1768:T 1756:T 1751:: 1723:T 1714:T 1710:: 1670:F 1643:F 1622:T 1600:T 1577:F 1565:. 1552:T 1526:T 1505:F 1483:r 1479:) 1469:E 1465:( 1459:) 1456:E 1453:( 1449:T 1428:F 1424:/ 1420:E 1405:. 1392:T 1363:r 1339:1 1333:r 1311:r 1307:) 1292:F 1286:( 1280:) 1272:F 1267:( 1263:T 1242:F 1221:T 1192:F 1170:F 1148:F 1122:F 1100:F 1072:) 1069:x 1066:, 1063:y 1060:( 1054:) 1051:y 1048:, 1045:x 1042:( 1022:) 1015:y 1011:y 1008:, 1001:x 997:x 994:( 988:) 985:) 978:y 974:, 967:x 963:( 960:, 957:) 954:y 951:, 948:x 945:( 942:( 920:2 916:F 907:2 903:F 894:2 890:F 869:y 866:, 863:x 843:F 823:1 820:= 817:y 814:x 788:E 767:E 747:F 743:/ 739:E 716:m 710:G 688:F 664:F 627:r 607:G 587:r 567:) 564:G 561:( 556:O 548:) 545:G 542:( 537:O 532:: 525:r 521:p 516:) 509:( 489:p 469:G 419:C 411:) 408:1 405:( 402:U 382:) 379:1 376:( 373:U 350:m 344:G 321:C 314:) 311:1 308:( 305:U 285:) 282:] 277:1 270:t 266:, 263:t 260:[ 256:C 252:( 244:= 234:C 206:m 200:G 177:C 137:m 131:G 96:T 73:m 68:G 43:m 37:G

Index

mathematics
algebraic group
projective algebraic geometry
toric geometry
groups
Lie group
Cartan subgroup
group scheme
symmetric spaces
buildings
perfect
Multiplicative group
isogeny
unitary group
orthogonal group
torus
finite field
Weil restriction
field norm
weight
lattice
formal groups
Galois module
Tits index
semisimple Lie algebras
Cartan subalgebras
root systems
Dynkin diagrams
Tits index
Tits (1966)

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑