Knowledge

Symmetric space

Source 📝

2567:, which is the maximum dimension of a subspace of the tangent space (to any point) on which the curvature is identically zero. The rank is always at least one, with equality if the sectional curvature is positive or negative. If the curvature is positive, the space is of compact type, and if negative, it is of noncompact type. The spaces of Euclidean type have rank equal to their dimension and are isometric to a Euclidean space of that dimension. Therefore, it remains to classify the irreducible, simply connected Riemannian symmetric spaces of compact and non-compact type. In both cases there are two classes. 44: 9257: 10426: 10076: 2512:
if it is not the product of two or more Riemannian symmetric spaces. It can then be shown that any simply connected Riemannian symmetric space is a Riemannian product of irreducible ones. Therefore, we may further restrict ourselves to classifying the irreducible, simply connected Riemannian
9080: 1032:
Locally Riemannian symmetric spaces that are not Riemannian symmetric may be constructed as quotients of Riemannian symmetric spaces by discrete groups of isometries with no fixed points, and as open subsets of (locally) Riemannian symmetric spaces.
10297: 9874: 10510:
on the tangent space at the identity coset. Thus the Hermitian symmetric spaces are easily read off of the classification. In both the compact and the non-compact cases it turns out that there are four infinite series, namely AIII, BDI with
9400: 1582: 10170: 6091:
The classification of Riemannian symmetric spaces does not extend readily to the general case for the simple reason that there is no general splitting of a symmetric space into a product of irreducibles. Here a symmetric space
10563:. Thus the quaternion-Kähler symmetric spaces are easily read off from the classification. In both the compact and the non-compact cases it turns out that there is exactly one for each complex simple Lie group, namely AI with 9737:, as corresponds to the transpose for the orthogonal groups and the Hermitian conjugate for the unitary groups. It is a linear functional, and it is self-adjoint, and so one concludes that there is an orthonormal basis 10491:. Some examples are complex vector spaces and complex projective spaces, both with their usual Riemannian metric, and the complex unit balls with suitable metrics so that they become complete and Riemannian symmetric. 2326: 6082:
is a symmetric space). Such manifolds can also be described as those affine manifolds whose geodesic symmetries are all globally defined affine diffeomorphisms, generalizing the Riemannian and pseudo-Riemannian case.
6269:
is semisimple. This is the analogue of the Riemannian dichotomy between Euclidean spaces and those of compact or noncompact type, and it motivated M. Berger to classify semisimple symmetric spaces (i.e., those with
9252:{\displaystyle \langle X,Y\rangle _{\mathfrak {g}}={\begin{cases}\langle X,Y\rangle _{p}\quad &X,Y\in T_{p}M\cong {\mathfrak {m}}\\-B(X,Y)\quad &X,Y\in {\mathfrak {h}}\\0&{\mbox{otherwise}}\end{cases}}} 6145: 3251: 1449: 2052: 9475: 5256: 686:
In geometric terms, a complete, simply connected Riemannian manifold is a symmetric space if and only if its curvature tensor is invariant under parallel transport. More generally, a Riemannian manifold
4886: 4495: 4013: 3461: 2159:. Conversely, symmetric spaces with compact isotropy group are Riemannian symmetric spaces, although not necessarily in a unique way. To obtain a Riemannian symmetric space structure we need to fix a 5585: 4305: 5975: 5495: 5449: 5312: 5155: 5109: 4942: 4669: 4552: 4405: 4359: 1256: 9541: 9299: 2718:
Specializing to the Riemannian symmetric spaces of class A and compact type, Cartan found that there are the following seven infinite series and twelve exceptional Riemannian symmetric spaces
4972: 9637: 10696:, in Representation Theory and Automorphic Forms: Instructional Conference, International Centre for Mathematical Sciences, March 1996, Edinburgh, Scotland, American Mathematical Society, 9672: 5395: 5055: 9863: 4788: 4207: 922: 962:
if its geodesic symmetries are in fact isometric. This is equivalent to the vanishing of the covariant derivative of the curvature tensor. A locally symmetric space is said to be a
2710:
In both class A and class B there is thus a correspondence between symmetric spaces of compact type and non-compact type. This is known as duality for Riemannian symmetric spaces.
10518:, DIII and CI, and two exceptional spaces, namely EIII and EVII. The non-compact Hermitian symmetric spaces can be realized as bounded symmetric domains in complex vector spaces. 5928: 5733: 3957: 3405: 3190: 2138: 9781: 6668: 6610: 6575: 6512: 6422: 3609: 2994: 10421:{\displaystyle \langle \cdot ,\cdot \rangle ={\frac {1}{\lambda _{1}}}\left.B\right|_{{\mathfrak {m}}_{1}}+\cdots +{\frac {1}{\lambda _{d}}}\left.B\right|_{{\mathfrak {m}}_{d}}} 5845: 4120: 3788: 3565: 3358: 3030: 2835: 2799: 10071:{\displaystyle \langle Y_{i}^{\#},Y_{j}\rangle =\lambda _{i}\langle Y_{i},Y_{j}\rangle =B(Y_{i},Y_{j})=\langle Y_{j}^{\#},Y_{i}\rangle =\lambda _{j}\langle Y_{j},Y_{i}\rangle } 9434: 5775: 5657: 5625: 4701: 3821: 3747: 3642: 3142: 9731: 3909: 2949: 2140:
see the definition and following proposition on page 209, chapter IV, section 3 in Helgason's Differential Geometry, Lie Groups, and Symmetric Spaces for further information.
10289: 10103: 9805: 9696: 9574: 9507: 6536: 6446: 6391: 6363: 6316: 6292: 6267: 6224: 6200: 6172: 1860: 1836: 1808: 1781: 1757: 1729: 1705: 1681: 1657: 1633: 1609: 1398: 1370: 1338: 1302: 2411:, and then performs these two constructions in sequence, then the Riemannian symmetric space yielded is isometric to the original one. This shows that the "algebraic data" ( 5903: 5878: 2891: 863: 3081: 2094: 6071: 4076: 3521: 3314: 10265: 5809: 5691: 5529: 5346: 5189: 5006: 4830: 4735: 4615: 4586: 4439: 4249: 4154: 9329: 3857: 3678: 2687:
is its maximal compact subgroup. Each such example has a corresponding example of compact type, by considering a maximal compact subgroup of the complexification of
1108: 739: 9334: 4040: 3278: 3108: 2918: 1460: 786:
Riemannian symmetric spaces arise in a wide variety of situations in both mathematics and physics. Their central role in the theory of holonomy was discovered by
10236: 10111: 3485: 10469:
of a Riemannian manifold at a point acts irreducibly on the tangent space, then either the manifold is a locally Riemannian symmetric space, or it is in one of
3878: 6698:
The following table indexes the real symmetric spaces by complex symmetric spaces and real forms, for each classical and exceptional complex simple Lie group.
3713: 745:, since any geodesic can be extended indefinitely via symmetries about the endpoints). Both descriptions can also naturally be extended to the setting of 9034:
An account of weakly symmetric spaces and their classification by Akhiezer and Vinberg, based on the classification of periodic automorphisms of complex
10435:
the spectrum of the hydrogen atom, with the eigenvalues of the Killing form corresponding to different values of the angular momentum of an orbital (
2679:
The examples of class A are completely described by the classification of noncompact simply connected real simple Lie groups. For non-compact type,
461: 1735:, but there are many reductive homogeneous spaces which are not symmetric spaces. The key feature of symmetric spaces is the third condition that 5923:
construction. The irreducible compact Riemannian symmetric spaces are, up to finite covers, either a compact simple Lie group, a Grassmannian, a
6627:
The classification therefore reduces to the classification of commuting pairs of antilinear involutions of a complex Lie algebra. The composite
10487:
A Riemannian symmetric space that is additionally equipped with a parallel complex structure compatible with the Riemannian metric is called a
2581:
is either the product of a compact simple Lie group with itself (compact type), or a complexification of such a Lie group (non-compact type).
509: 8953:
Selberg's definition can also be phrased equivalently in terms of a generalization of geodesic symmetry. It is required that for every point
6106: 3196: 1410: 2480:
of a Riemannian symmetric space is again Riemannian symmetric, and the covering map is described by dividing the connected isometry group
514: 2695:. More directly, the examples of compact type are classified by involutive automorphisms of compact simply connected simple Lie groups 2238: 1068:
of genus greater than 1 (with its usual metric of constant curvature −1) is a locally symmetric space but not a symmetric space.
504: 499: 1987: 10993:(1956), "Harmonic analysis and discontinuous groups in weakly symmetric riemannian spaces, with applications to Dirichlet series", 9439: 319: 6294:
semisimple) and determine which of these are irreducible. The latter question is more subtle than in the Riemannian case: even if
5195: 583: 466: 4836: 4445: 3963: 3411: 5535: 4255: 11024: 10838: 10701: 5934: 5454: 5408: 5271: 5114: 5068: 4901: 4628: 4511: 4364: 4318: 2734:, together with a geometric interpretation, if readily available. The labelling of these spaces is the one given by Cartan. 10917: 979: 614: 10537: 10527: 1192: 790:. They are important objects of study in representation theory and harmonic analysis as well as in differential geometry. 9509:
can be further factored into eigenspaces classified by the Killing form. This is accomplished by defining an adjoint map
1280:
fixes the identity element, and hence, by differentiating at the identity, it induces an automorphism of the Lie algebra
9512: 9265: 2493: 4947: 1947:. This action is faithful (e.g., by a theorem of Kostant, any isometry in the identity component is determined by its 1110:, which is symmetric. The lens spaces are quotients of the 3-sphere by a discrete isometry that has no fixed points. 10927: 10879: 10856: 10773: 10751: 9582: 10889: 10622: 9645: 5352: 5012: 22: 9813: 4741: 4160: 2639: 476: 7700:
to be the identity involution (indicated by a dash). In the above tables this is implicitly covered by the case
868: 11042: 6341:. Any semisimple symmetric space is a product of symmetric spaces of this form with symmetric spaces such that 10536:) isomorphic to the imaginary quaternions at each point, and compatible with the Riemannian metric, is called 471: 451: 11047: 10870:
Groups and Geometric Analysis: Integral Geometry, Invariant Differential Operators, and Spherical Functions
416: 324: 5697: 3921: 3369: 3154: 2099: 11057: 10470: 9740: 6642: 6584: 6549: 6486: 6396: 3576: 2961: 1732: 5815: 4090: 3758: 3535: 3328: 3000: 2805: 2769: 10431:
In certain practical applications, this factorization can be interpreted as the spectrum of operators,
9409: 6175: 5748: 5630: 5598: 5266: 4896: 4674: 3794: 3720: 3615: 3115: 2484:
of the covering by a subgroup of its center. Therefore, we may suppose without loss of generality that
1401: 746: 640: 456: 9701: 3885: 2925: 1587:
The first condition is automatic for any homogeneous space: it just says the infinitesimal stabilizer
10560: 10488: 10482: 10270: 10084: 9786: 9677: 9546: 9488: 6517: 6427: 6372: 6344: 6297: 6273: 6248: 6205: 6181: 6153: 2440: 1841: 1817: 1789: 1762: 1738: 1710: 1686: 1662: 1638: 1614: 1590: 1379: 1351: 1319: 1283: 9116: 10602: 10596: 10466: 6639:
determines a real form. From this it is easy to construct tables of symmetric spaces for any given
5998: 5920: 2058: 1154: 772: 607: 91: 10446:
Classification of symmetric spaces proceeds based on whether or not the Killing form is definite.
5886: 5861: 2841: 1057:, each with their standard Riemannian metrics. More examples are provided by compact, semi-simple 833: 7696:
For exceptional simple Lie groups, the Riemannian case is included explicitly below, by allowing
6040:
Symmetric and locally symmetric spaces in general can be regarded as affine symmetric spaces. If
5924: 5743: 4506: 3036: 2072: 2626:
The compact simply connected Lie groups are the universal covers of the classical Lie groups SO(
9035: 8935: 8849: 6365:
is simple. It remains to describe the latter case. For this, one needs to classify involutions
4046: 3491: 3284: 411: 374: 342: 329: 10532:
A Riemannian symmetric space that is additionally equipped with a parallel subbundle of End(T
10244: 9395:{\displaystyle B(X,Y)=\operatorname {trace} (\operatorname {ad} X\circ \operatorname {ad} Y)} 6227: 5786: 5668: 5506: 5323: 5166: 4983: 4807: 4712: 4592: 4563: 4416: 4226: 4131: 676: 672: 443: 111: 9304: 5919:) uniformly classifies the Riemannian symmetric spaces, both compact and non-compact, via a 3827: 3648: 1577:{\displaystyle \subset {\mathfrak {h}},\;\subset {\mathfrak {m}},\;\subset {\mathfrak {h}}.} 1078: 714: 186: 176: 166: 156: 10890:"A uniform description of compact symmetric spaces as Grassmannians using the magic square" 10627: 10443:
that can classify the different representations under which different orbitals transform.)
10165:{\displaystyle {\mathfrak {m}}={\mathfrak {m}}_{1}\oplus \cdots \oplus {\mathfrak {m}}_{d}} 6026: 5985:. A similar construction produces the irreducible non-compact Riemannian symmetric spaces. 2516:
The next step is to show that any irreducible, simply connected Riemannian symmetric space
1114: 991: 71: 61: 10656:
Jurgen Jost, (2002) "Riemannian Geometry and Geometric Analysis", Third edition, Springer
8: 11052: 4019: 3257: 3087: 2897: 2617: 2546: 1865: 656: 644: 636: 600: 588: 429: 259: 10291:
semisimple, so that the Killing form is non-degenerate, the metric likewise factorizes:
10181: 6029:(with zero, positive and negative curvature respectively). De Sitter space of dimension 5993:
An important class of symmetric spaces generalizing the Riemannian symmetric spaces are
3467: 10979: 10868: 10740: 6075: 6014: 3863: 2699:(up to conjugation). Such involutions extend to involutions of the complexification of 2472:) be the algebraic data associated to it. To classify the possible isometry classes of 652: 360: 350: 6678:. This extends the compact/non-compact duality from the Riemannian case, where either 6448:
is a complex simple Lie algebra, and the corresponding symmetric spaces have the form
3684: 1021:). In fact, already the identity component of the isometry group acts transitively on 11020: 10923: 10875: 10852: 10834: 10769: 10747: 10697: 10637: 6687: 6059: 1010: 779:
This definition includes more than the Riemannian definition, and reduces to it when
742: 680: 424: 387: 539: 277: 10971: 10959: 10904: 10816: 10794: 10722: 10681: 10610: 10506:
contains a central circle. A quarter turn by this circle acts as multiplication by
10440: 6033:
may be identified with the 1-sheeted hyperboloid in a Minkowski space of dimension
6001:(nondegenerate instead of positive definite on each tangent space). In particular, 2585: 1054: 1050: 995: 944:
need not be isometric, nor can it be extended, in general, from a neighbourhood of
559: 239: 231: 223: 215: 207: 140: 121: 81: 10694:
Harmonic analysis on semisimple symmetric spaces: A survey of some general results
1810:
with a direct sum decomposition satisfying these three conditions, the linear map
10556: 6079: 6022: 6018: 2532: 2477: 1065: 1042: 544: 297: 282: 53: 10955: 10669: 10632: 10460: 8927: 6234: 6078:. Conversely a manifold with such a connection is locally symmetric (i.e., its 6063: 1915: 999: 987: 966:
if in addition its geodesic symmetries can be extended to isometries on all of
564: 382: 287: 10908: 10782: 2446: 668: 549: 11036: 10710: 9059: 933: 787: 272: 101: 10807:
Cartan, Élie (1927), "Sur une classe remarquable d'espaces de Riemann, II",
10990: 10761: 10735: 9403: 9071: 8931: 8855: 4080: 3525: 3318: 2062: 569: 554: 355: 337: 267: 9406:. The minus sign appears because the Killing form is negative-definite on 2584:
The examples in class B are completely described by the classification of
10606: 6233:
However, the irreducible symmetric spaces can be classified. As shown by
628: 395: 311: 35: 10727: 752:
From the point of view of Lie theory, a symmetric space is the quotient
10983: 10933:
Chapter XI contains a good introduction to Riemannian symmetric spaces.
10821: 10799: 10691: 10685: 6539: 5881: 1948: 1866:
Riemannian symmetric spaces satisfy the Lie-theoretic characterization
1072: 1058: 664: 534: 400: 292: 671:
to give a complete classification. Symmetric spaces commonly occur in
6329:
As in the Riemannian case there are semisimple symmetric spaces with
6140:{\displaystyle {\mathfrak {g}}={\mathfrak {h}}\oplus {\mathfrak {m}}} 3246:{\displaystyle \mathrm {S} (\mathrm {U} (p)\times \mathrm {U} (q))\,} 1883: 1444:{\displaystyle {\mathfrak {g}}={\mathfrak {h}}\oplus {\mathfrak {m}}} 1130: 1002:
locally Riemannian symmetric space is actually Riemannian symmetric.
761: 31: 10975: 1153:
of a typical point is an open subgroup of the fixed point set of an
10692:
van den Ban, E. P.; Flensted-Jensen, M.; Schlichtkrull, H. (1997),
6670:, and furthermore, there is an obvious duality given by exchanging 5856: 1312:, whose square is the identity. It follows that the eigenvalues of 660: 648: 2445:
The algebraic description of Riemannian symmetric spaces enabled
2321:{\displaystyle s_{p}:M\to M,\quad h'K\mapsto h\sigma (h^{-1}h')K} 491: 2616:
is its maximal compact subgroup. In both cases, the rank is the
2434: 10551:
is quaternion-Kähler if and only if isotropy representation of
2559:
has nonpositive (but not identically zero) sectional curvature.
2047:{\displaystyle \sigma :G\to G,h\mapsto s_{p}\circ h\circ s_{p}} 1046: 10785:(1926), "Sur une classe remarquable d'espaces de Riemann, I", 6226:
is not semisimple (or even reductive) in general, it can have
1075:
is locally symmetric but not symmetric, with the exception of
9470:{\displaystyle \langle \cdot ,\cdot \rangle _{\mathfrak {g}}} 6690:, i.e., its fixed point set is a maximal compact subalgebra. 6464:: these are the analogues of the Riemannian symmetric spaces 6009:
dimensional pseudo-Riemannian symmetric spaces of signature (
771:
that is (a connected component of) the invariant group of an
9050:
Some properties and forms of symmetric spaces can be noted.
8930:.) Selberg proved that weakly symmetric spaces give rise to 5251:{\displaystyle \mathrm {Spin} (16)/\{\pm \mathrm {vol} \}\,} 2508:
A simply connected Riemannian symmetric space is said to be
1894:
is Riemannian homogeneous). Therefore, if we fix some point
10833:, CBMS Regional Conference, American Mathematical Society, 10672:(1999), "Weakly symmetric spaces and spherical varieties", 10392: 10338: 9245: 8858:
extended Cartan's definition of symmetric space to that of
43: 18:(pseudo-)Riemannian manifold whose geodesics are reversible 2175:: such an inner product always exists by averaging, since 9868:
These are orthogonal with respect to the metric, in that
6054:
is a symmetric space, then Nomizu showed that there is a
4881:{\displaystyle \mathrm {SO} (12)\cdot \mathrm {SU} (2)\,} 4490:{\displaystyle \mathrm {SO} (10)\cdot \mathrm {SO} (2)\,} 4008:{\displaystyle \mathrm {Sp} (p)\times \mathrm {Sp} (q)\,} 3456:{\displaystyle \mathrm {SO} (p)\times \mathrm {SO} (q)\,} 2531:
has vanishing curvature, and is therefore isometric to a
695:) is said to be symmetric if and only if, for each point 655:
about every point. This can be studied with the tools of
10766:
Essays in the History of Lie Groups and Algebraic Groups
5580:{\displaystyle \mathrm {Sp} (3)\cdot \mathrm {SU} (2)\,} 4300:{\displaystyle \mathrm {SU} (6)\cdot \mathrm {SU} (2)\,} 1874:
is a Riemannian symmetric space, the identity component
6237:, there is a dichotomy: an irreducible symmetric space 5970:{\displaystyle (\mathbf {A} \otimes \mathbf {B} )^{n},} 5490:{\displaystyle (\mathbb {H} \otimes \mathbb {O} )P^{2}} 5444:{\displaystyle (\mathbb {O} \otimes \mathbb {O} )P^{2}} 5307:{\displaystyle (\mathbb {O} \otimes \mathbb {O} )P^{2}} 5150:{\displaystyle (\mathbb {C} \otimes \mathbb {O} )P^{2}} 5104:{\displaystyle (\mathbb {H} \otimes \mathbb {O} )P^{2}} 4937:{\displaystyle (\mathbb {H} \otimes \mathbb {O} )P^{2}} 4664:{\displaystyle (\mathbb {C} \otimes \mathbb {O} )P^{2}} 4547:{\displaystyle (\mathbb {C} \otimes \mathbb {O} )P^{2}} 4400:{\displaystyle (\mathbb {C} \otimes \mathbb {H} )P^{2}} 4354:{\displaystyle (\mathbb {C} \otimes \mathbb {O} )P^{2}} 2703:, and these in turn classify non-compact real forms of 10948:
Symmetric spaces II: Compact Spaces and Classification
10849:
Differential geometry, Lie groups and symmetric spaces
10081:
since the Killing form is symmetric. This factorizes
9733:
is the Killing form. This map is sometimes called the
9236: 10521: 10300: 10273: 10247: 10184: 10114: 10087: 9877: 9816: 9789: 9743: 9704: 9680: 9648: 9585: 9549: 9515: 9491: 9442: 9412: 9337: 9307: 9268: 9083: 8843: 6645: 6587: 6552: 6520: 6489: 6430: 6399: 6375: 6347: 6300: 6276: 6251: 6208: 6184: 6156: 6109: 5937: 5889: 5864: 5818: 5789: 5751: 5700: 5671: 5633: 5601: 5538: 5509: 5457: 5411: 5355: 5326: 5274: 5198: 5169: 5117: 5071: 5015: 4986: 4950: 4904: 4839: 4810: 4744: 4715: 4677: 4631: 4595: 4566: 4514: 4448: 4419: 4367: 4321: 4258: 4229: 4163: 4134: 4093: 4049: 4022: 3966: 3924: 3888: 3866: 3830: 3797: 3761: 3723: 3687: 3651: 3618: 3579: 3538: 3494: 3470: 3414: 3372: 3331: 3287: 3260: 3199: 3157: 3118: 3090: 3039: 3003: 2964: 2928: 2900: 2844: 2808: 2772: 2449:
to obtain a complete classification of them in 1926.
2241: 2102: 2075: 1990: 1844: 1820: 1792: 1765: 1741: 1713: 1689: 1665: 1641: 1617: 1593: 1463: 1413: 1382: 1354: 1322: 1286: 1195: 1081: 871: 836: 717: 10960:"Invariant affine connections on homogeneous spaces" 8870:
with a transitive connected Lie group of isometries
2096:
and its identity component (hence an open subgroup)
1251:{\displaystyle G^{\sigma }=\{g\in G:\sigma (g)=g\}.} 10715:
Annales Scientifiques de l'École Normale Supérieure
2612:is a simply connected complex simple Lie group and 826:and reverses geodesics through that point, i.e. if 10867: 10739: 10613:can be interpreted as reductive symmetric spaces. 10420: 10283: 10259: 10230: 10164: 10097: 10070: 9857: 9799: 9775: 9725: 9690: 9666: 9631: 9568: 9536:{\displaystyle {\mathfrak {m}}\to {\mathfrak {m}}} 9535: 9501: 9469: 9428: 9394: 9323: 9293: 9251: 6662: 6604: 6569: 6538:may be viewed as the fixed point set of a complex 6530: 6506: 6440: 6416: 6385: 6357: 6310: 6286: 6261: 6218: 6194: 6166: 6139: 5997:, in which the Riemannian metric is replaced by a 5969: 5897: 5872: 5839: 5803: 5769: 5727: 5685: 5651: 5619: 5579: 5523: 5489: 5443: 5389: 5340: 5306: 5250: 5183: 5149: 5103: 5049: 5000: 4966: 4936: 4880: 4824: 4782: 4729: 4695: 4663: 4609: 4580: 4546: 4489: 4433: 4399: 4353: 4299: 4243: 4201: 4148: 4114: 4070: 4034: 4007: 3951: 3903: 3872: 3851: 3815: 3782: 3741: 3707: 3672: 3636: 3603: 3559: 3515: 3479: 3455: 3399: 3352: 3308: 3272: 3245: 3184: 3136: 3102: 3075: 3024: 2988: 2943: 2912: 2885: 2829: 2793: 2320: 2132: 2088: 2046: 1854: 1830: 1802: 1775: 1751: 1723: 1699: 1675: 1651: 1627: 1603: 1576: 1443: 1392: 1364: 1332: 1296: 1250: 1113:An example of a non-Riemannian symmetric space is 1102: 1041:Basic examples of Riemannian symmetric spaces are 916: 857: 733: 10862:The standard book on Riemannian symmetric spaces. 10571: = 2 (these are isomorphic), BDI with 10449: 9294:{\displaystyle \langle \cdot ,\cdot \rangle _{p}} 2163:-invariant inner product on the tangent space to 11034: 10757:Contains a compact introduction and many tables. 10454: 4967:{\displaystyle \mathbb {H} \otimes \mathbb {O} } 4050: 3495: 3288: 2608:is the diagonal subgroup. For non-compact type, 2592:is a compact simply connected simple Lie group, 2407:If one starts with a Riemannian symmetric space 1269:(including, of course, the identity component). 1061:equipped with a bi-invariant Riemannian metric. 741:as minus the identity (every symmetric space is 462:Representation theory of semisimple Lie algebras 10919:Foundations of Differential Geometry, Volume II 10915: 10888:Huang, Yongdong; Leung, Naichung Conan (2010). 10828: 10713:(1957), "Les espaces symétriques noncompacts", 10667: 9632:{\displaystyle \langle X,Y^{\#}\rangle =B(X,Y)} 10916:Kobayashi, Shoshichi; Nomizu, Katsumi (1996), 10587: = 1, EII, EVI, EIX, FI and G. 6581:extends to a complex antilinear involution of 10809:Bulletin de la Société Mathématique de France 10787:Bulletin de la Société Mathématique de France 10476: 9667:{\displaystyle \langle \cdot ,\cdot \rangle } 5390:{\displaystyle E_{7}\cdot \mathrm {SU} (2)\,} 5050:{\displaystyle E_{6}\cdot \mathrm {SO} (2)\,} 2951:that leave the complex determinant invariant 2435:Classification of Riemannian symmetric spaces 1316:are ±1. The +1 eigenspace is the Lie algebra 608: 10313: 10301: 10065: 10039: 10023: 9992: 9951: 9925: 9909: 9878: 9858:{\displaystyle Y_{i}^{\#}=\lambda _{i}Y_{i}} 9661: 9649: 9605: 9586: 9456: 9443: 9282: 9269: 9132: 9119: 9097: 9084: 9053: 8866:. These are defined as Riemannian manifolds 6635:determines a complex symmetric space, while 5244: 5227: 4783:{\displaystyle \mathrm {SU} (8)/\{\pm I\}\,} 4776: 4767: 4202:{\displaystyle \mathrm {Sp} (4)/\{\pm I\}\,} 4195: 4186: 2210:is Riemannian symmetric, consider any point 1242: 1209: 10831:Analysis on Non-Riemannian Symmetric Spaces 10590: 6616:and hence also a complex linear involution 6230:representations which are not irreducible. 5988: 2545:has nonnegative (but not identically zero) 2069:is contained between the fixed point group 1964:, hence compact. Moreover, if we denote by 659:, leading to consequences in the theory of 10887: 10555:contains an Sp(1) summand acting like the 6245:is either flat (i.e., an affine space) or 6013: − 1,1), are important in 5916: 3717:Space of orthogonal complex structures on 1955:is a subgroup of the orthogonal group of T 1537: 1500: 924:It follows that the derivative of the map 917:{\displaystyle f(\gamma (t))=\gamma (-t).} 615: 601: 500:Particle physics and representation theory 42: 10820: 10798: 10726: 6086: 5891: 5866: 5836: 5800: 5753: 5724: 5682: 5635: 5603: 5576: 5520: 5470: 5462: 5424: 5416: 5386: 5337: 5287: 5279: 5247: 5180: 5130: 5122: 5084: 5076: 5046: 4997: 4960: 4952: 4917: 4909: 4877: 4821: 4779: 4726: 4683: 4680: 4644: 4636: 4606: 4577: 4527: 4519: 4486: 4430: 4380: 4372: 4334: 4326: 4296: 4240: 4198: 4145: 4096: 4004: 3948: 3891: 3812: 3779: 3726: 3633: 3600: 3541: 3452: 3396: 3334: 3242: 3181: 3121: 3021: 2985: 2931: 2826: 2790: 2126: 1348:), and the −1 eigenspace will be denoted 1186:is an open subgroup of the invariant set 10865: 10846: 2713: 2520:is of one of the following three types: 2503: 1265:is open, it is a union of components of 980:Cartan–Ambrose–Hicks theorem 11017:Harmonic Analysis on Commutative Spaces 10989: 2452:For a given Riemannian symmetric space 2427:) completely describe the structure of 1120: 802:be a connected Riemannian manifold and 793: 467:Representations of classical Lie groups 11035: 10954: 10806: 10781: 10709: 10760: 10734: 9066:can be lifted to a scalar product on 8926:was later shown to be unnecessary by 3144:compatible with the Hermitian metric 11014: 11005: 10945: 10936: 9301:is the Riemannian metric defined on 9039: 8323: / SO(9,1)×SO(1,1) 8132: / SO(5,5)×SO(1,1) 5728:{\displaystyle \mathrm {Spin} (9)\,} 3952:{\displaystyle \mathrm {Sp} (p+q)\,} 3400:{\displaystyle \mathrm {SO} (p+q)\,} 3185:{\displaystyle \mathrm {SU} (p+q)\,} 3112:Space of quaternionic structures on 2133:{\displaystyle (G^{\sigma })_{o}\,,} 1013:(meaning that the isometry group of 940:. On a general Riemannian manifold, 320:Lie group–Lie algebra correspondence 10405: 10351: 10276: 10208: 10191: 10151: 10128: 10117: 10090: 9792: 9776:{\displaystyle Y_{1},\ldots ,Y_{n}} 9683: 9528: 9518: 9494: 9461: 9415: 9221: 9174: 9102: 6663:{\displaystyle {\mathfrak {g}}^{c}} 6649: 6605:{\displaystyle {\mathfrak {g}}^{c}} 6591: 6570:{\displaystyle {\mathfrak {g}}^{c}} 6556: 6523: 6507:{\displaystyle {\mathfrak {g}}^{c}} 6493: 6433: 6417:{\displaystyle {\mathfrak {g}}^{c}} 6403: 6378: 6350: 6303: 6279: 6254: 6211: 6187: 6159: 6132: 6122: 6112: 5910: 3604:{\displaystyle \mathrm {SO} (2n)\,} 2989:{\displaystyle \mathrm {SU} (2n)\,} 2488:is simply connected. (This implies 1930:. By differentiating the action at 1847: 1823: 1795: 1768: 1744: 1716: 1692: 1668: 1644: 1620: 1596: 1566: 1553: 1543: 1529: 1516: 1506: 1492: 1479: 1469: 1436: 1426: 1416: 1385: 1357: 1325: 1289: 973: 13: 10939:Symmetric spaces I: General Theory 10922:, Wiley Classics Library edition, 10522:Quaternion-Kähler symmetric spaces 10005: 9891: 9827: 9600: 9561: 8844:Weakly symmetric Riemannian spaces 8622: / SO(10,2)×SL(2, 8544: / SO(8,4)×SU(2) 8524: / SO(12)× Sp(1) 8414: / SO(12)× Sp(1) 8264: / SO(8,2)×SO(2) 8247: / SU(4,2)×SU(2) 8198: / SO(6,4)×SO(2) 8181: / SU(4,2)×SU(2) 7951: / Sp(2,1)×Sp(1) 7914: / Sp(2,1)×Sp(1) 6017:, the most notable examples being 5995:pseudo-Riemannian symmetric spaces 5840:{\displaystyle \mathrm {SO} (4)\,} 5823: 5820: 5711: 5708: 5705: 5702: 5563: 5560: 5543: 5540: 5373: 5370: 5240: 5237: 5234: 5209: 5206: 5203: 5200: 5033: 5030: 4864: 4861: 4844: 4841: 4749: 4746: 4473: 4470: 4453: 4450: 4283: 4280: 4263: 4260: 4168: 4165: 4115:{\displaystyle \mathbb {H} ^{p+q}} 3991: 3988: 3971: 3968: 3929: 3926: 3911:compatible with the inner product 3799: 3783:{\displaystyle \mathrm {Sp} (n)\,} 3766: 3763: 3620: 3584: 3581: 3560:{\displaystyle \mathbb {R} ^{p+q}} 3439: 3436: 3419: 3416: 3377: 3374: 3353:{\displaystyle \mathbb {C} ^{p+q}} 3226: 3209: 3201: 3162: 3159: 3025:{\displaystyle \mathrm {Sp} (n)\,} 3008: 3005: 2969: 2966: 2830:{\displaystyle \mathrm {SO} (n)\,} 2813: 2810: 2794:{\displaystyle \mathrm {SU} (n)\,} 2777: 2774: 2726:. They are here given in terms of 2494:long exact sequence of a fibration 2396:is a geodesic symmetry and, since 1786:Conversely, given any Lie algebra 1635:. The second condition means that 1344:(since this is the Lie algebra of 932:is minus the identity map on the 14: 11069: 11019:, American Mathematical Society, 10768:, American Mathematical Society, 10538:quaternion-Kähler symmetric space 10528:Quaternion-Kähler symmetric space 10465:If the identity component of the 9429:{\displaystyle {\mathfrak {h}}~;} 8860:weakly symmetric Riemannian space 8474: / SO(6,6)×SL(2, 8253: / SU(5,1)×SL(2, 8233: / SO(10)×SO(2) 8187: / SU(3,3)×SL(2, 8058: / SO(10)×SO(2) 6062:(i.e. an affine connection whose 5770:{\displaystyle \mathbb {O} P^{2}} 5652:{\displaystyle \mathbb {H} P^{2}} 5620:{\displaystyle \mathbb {O} P^{2}} 4696:{\displaystyle \mathbb {OP} ^{2}} 3816:{\displaystyle \mathrm {U} (n)\,} 3742:{\displaystyle \mathbb {R} ^{2n}} 3637:{\displaystyle \mathrm {U} (n)\,} 3137:{\displaystyle \mathbb {C} ^{2n}} 2404:is a Riemannian symmetric space. 1973:: M → M the geodesic symmetry of 1934:we obtain an isometric action of 1906:is diffeomorphic to the quotient 1862:, is an involutive automorphism. 1005:Every Riemannian symmetric space 10829:Flensted-Jensen, Mogens (1986), 10623:Orthogonal symmetric Lie algebra 9726:{\displaystyle B(\cdot ,\cdot )} 9480: 8157: / SU(6)×SU(2) 8051: / SU(6)×SU(2) 7891: / Sp(3)×Sp(1) 7863: / Sp(3)×Sp(1) 7779: / SU(2)×SU(2) 7760: / SU(2)×SU(2) 6476:a complex simple Lie group, and 5950: 5942: 5595:Space of symmetric subspaces of 5405:Space of symmetric subspaces of 5065:Space of symmetric subspaces of 4625:Space of symmetric subspaces of 4315:Space of symmetric subspaces of 3904:{\displaystyle \mathbb {H} ^{n}} 2944:{\displaystyle \mathbb {C} ^{n}} 2563:A more refined invariant is the 2378:equal to minus the identity on T 1731:. Thus any symmetric space is a 986:is locally Riemannian symmetric 711:and acting on the tangent space 23:Symmetric space (disambiguation) 10543:An irreducible symmetric space 10494:An irreducible symmetric space 10284:{\displaystyle {\mathfrak {g}}} 10098:{\displaystyle {\mathfrak {m}}} 9800:{\displaystyle {\mathfrak {m}}} 9691:{\displaystyle {\mathfrak {m}}} 9569:{\displaystyle Y\mapsto Y^{\#}} 9502:{\displaystyle {\mathfrak {m}}} 9204: 9141: 6531:{\displaystyle {\mathfrak {g}}} 6514:is simple. The real subalgebra 6441:{\displaystyle {\mathfrak {g}}} 6386:{\displaystyle {\mathfrak {g}}} 6369:of a (real) simple Lie algebra 6358:{\displaystyle {\mathfrak {g}}} 6311:{\displaystyle {\mathfrak {g}}} 6287:{\displaystyle {\mathfrak {g}}} 6262:{\displaystyle {\mathfrak {g}}} 6219:{\displaystyle {\mathfrak {h}}} 6195:{\displaystyle {\mathfrak {h}}} 6167:{\displaystyle {\mathfrak {m}}} 3882:Space of complex structures on 2267: 2179:is compact, and by acting with 1855:{\displaystyle {\mathfrak {m}}} 1831:{\displaystyle {\mathfrak {h}}} 1803:{\displaystyle {\mathfrak {g}}} 1776:{\displaystyle {\mathfrak {h}}} 1752:{\displaystyle {\mathfrak {m}}} 1724:{\displaystyle {\mathfrak {g}}} 1700:{\displaystyle {\mathfrak {h}}} 1676:{\displaystyle {\mathfrak {h}}} 1652:{\displaystyle {\mathfrak {m}}} 1628:{\displaystyle {\mathfrak {g}}} 1604:{\displaystyle {\mathfrak {h}}} 1393:{\displaystyle {\mathfrak {g}}} 1365:{\displaystyle {\mathfrak {m}}} 1333:{\displaystyle {\mathfrak {h}}} 1297:{\displaystyle {\mathfrak {g}}} 10650: 10450:Applications and special cases 10219: 10185: 9986: 9960: 9720: 9708: 9626: 9614: 9553: 9523: 9389: 9365: 9353: 9341: 9201: 9189: 5955: 5938: 5929:double Lagrangian Grassmannian 5915:A more modern classification ( 5833: 5827: 5721: 5715: 5573: 5567: 5553: 5547: 5474: 5458: 5428: 5412: 5383: 5377: 5291: 5275: 5219: 5213: 5134: 5118: 5088: 5072: 5043: 5037: 4921: 4905: 4874: 4868: 4854: 4848: 4759: 4753: 4648: 4632: 4531: 4515: 4483: 4477: 4463: 4457: 4384: 4368: 4338: 4322: 4293: 4287: 4273: 4267: 4178: 4172: 4065: 4053: 4001: 3995: 3981: 3975: 3945: 3933: 3846: 3834: 3809: 3803: 3776: 3770: 3702: 3688: 3667: 3655: 3630: 3624: 3597: 3588: 3510: 3498: 3449: 3443: 3429: 3423: 3393: 3381: 3303: 3291: 3239: 3236: 3230: 3219: 3213: 3205: 3178: 3166: 3070: 3055: 3052: 3040: 3018: 3012: 2982: 2973: 2872: 2860: 2857: 2845: 2823: 2817: 2787: 2781: 2574:is a (real) simple Lie group; 2352:is an isometry with (clearly) 2312: 2288: 2279: 2258: 2155:with a compact isotropy group 2117: 2103: 2012: 2000: 1558: 1538: 1521: 1501: 1484: 1464: 1233: 1227: 1097: 1085: 908: 899: 890: 887: 881: 875: 846: 840: 703:, there exists an isometry of 515:Galilean group representations 510:Poincaré group representations 1: 10643: 10455:Symmetric spaces and holonomy 9045: 8918:. (Selberg's assumption that 6150:is said to be irreducible if 5977:for normed division algebras 2500:is connected by assumption.) 2187:-invariant Riemannian metric 2065:such that the isotropy group 994:, and furthermore that every 505:Lorentz group representations 472:Theorem of the highest weight 11008:Spaces of constant curvature 10502:is Hermitian if and only if 9674:is the Riemannian metric on 8934:, so that in particular the 8862:, or in current terminology 8806: / SO(12,4) or E 6480:a maximal compact subgroup. 5898:{\displaystyle \mathbb {H} } 5880:which are isomorphic to the 5873:{\displaystyle \mathbb {O} } 5855:Space of subalgebras of the 2922:Space of real structures on 2886:{\displaystyle (n-1)(n+2)/2} 960:locally Riemannian symmetric 858:{\displaystyle \gamma (0)=p} 7: 11010:(5th ed.), McGraw–Hill 10866:Helgason, Sigurdur (1984), 10847:Helgason, Sigurdur (1978), 10658:(See section 5.3, page 256) 10616: 9074:. This is done by defining 9062:on the Riemannian manifold 8749: / SO(8,8) or E 6003:Lorentzian symmetric spaces 3076:{\displaystyle (n-1)(2n+1)} 2838: 2089:{\displaystyle G^{\sigma }} 1814:, equal to the identity on 1733:reductive homogeneous space 1036: 1009:is complete and Riemannian 747:pseudo-Riemannian manifolds 663:; or algebraically through 10: 11074: 10594: 10525: 10480: 10477:Hermitian symmetric spaces 10458: 8847: 6326:might not be irreducible. 6176:irreducible representation 5267:Rosenfeld projective plane 4897:Rosenfeld projective plane 4087:-dimensional subspaces of 3532:-dimensional subspaces of 3325:-dimensional subspaces of 2438: 2369:and (by differentiating) d 2343:. Then one can check that 1838:and minus the identity on 964:(globally) symmetric space 641:pseudo-Riemannian manifold 457:Lie algebra representation 20: 10909:10.1007/s00208-010-0549-8 10579: = 4, CII with 10561:quaternionic vector space 10489:Hermitian symmetric space 10483:Hermitian symmetric space 10439:the Killing form being a 9070:by combining it with the 9054:Lifting the metric tensor 6693: 4071:{\displaystyle \min(p,q)} 3516:{\displaystyle \min(p,q)} 3309:{\displaystyle \min(p,q)} 2759:Geometric interpretation 2441:List of simple Lie groups 1878:of the isometry group of 1683:-invariant complement to 11015:Wolf, Joseph A. (2007), 11006:Wolf, Joseph A. (1999), 10603:Bott periodicity theorem 10597:Bott periodicity theorem 10591:Bott periodicity theorem 8950:) is multiplicity free. 8922:should be an element of 6058:-invariant torsion-free 5999:pseudo-Riemannian metric 5989:General symmetric spaces 5921:Freudenthal magic square 990:its curvature tensor is 452:Lie group representation 10995:J. Indian Math. Society 10260:{\displaystyle i\neq j} 9036:semisimple Lie algebras 9031:is a symmetric space. 8969:, there is an isometry 8615: / SU(6,2) 8537: / SU(6,2) 8531: / SU(4,4) 8447: / SU(4,4) 8305: / Sp(3,1) 8240: / Sp(2,2) 8164: / Sp(3,1) 8090: / Sp(2,2) 7960: / SO(8,1) 7923: / SO(5,4) 5925:Lagrangian Grassmannian 5804:{\displaystyle G_{2}\,} 5744:Cayley projective plane 5686:{\displaystyle F_{4}\,} 5524:{\displaystyle F_{4}\,} 5341:{\displaystyle E_{8}\,} 5184:{\displaystyle E_{8}\,} 5001:{\displaystyle E_{7}\,} 4825:{\displaystyle E_{7}\,} 4730:{\displaystyle E_{7}\,} 4610:{\displaystyle F_{4}\,} 4581:{\displaystyle E_{6}\,} 4507:Cayley projective plane 4434:{\displaystyle E_{6}\,} 4244:{\displaystyle E_{6}\,} 4149:{\displaystyle E_{6}\,} 1886:acting transitively on 1611:is a Lie subalgebra of 1141:is a homogeneous space 477:Borel–Weil–Bott theorem 10736:Besse, Arthur Lancelot 10422: 10285: 10261: 10232: 10166: 10099: 10072: 9859: 9801: 9777: 9727: 9692: 9668: 9633: 9570: 9537: 9503: 9471: 9430: 9396: 9325: 9324:{\displaystyle T_{p}M} 9295: 9253: 8936:unitary representation 8864:weakly symmetric space 8850:Weakly symmetric space 8742: / SO(16) 8716: / SO(16) 6664: 6606: 6571: 6532: 6508: 6442: 6418: 6387: 6359: 6312: 6288: 6263: 6220: 6196: 6168: 6141: 6087:Classification results 5971: 5917:Huang & Leung 2010 5899: 5874: 5841: 5805: 5771: 5729: 5687: 5653: 5621: 5581: 5525: 5491: 5445: 5391: 5342: 5308: 5252: 5185: 5151: 5105: 5051: 5002: 4968: 4938: 4882: 4826: 4784: 4731: 4697: 4665: 4611: 4582: 4548: 4491: 4435: 4401: 4355: 4301: 4245: 4203: 4150: 4116: 4072: 4036: 4009: 3953: 3905: 3874: 3853: 3852:{\displaystyle n(n+1)} 3817: 3784: 3743: 3709: 3674: 3673:{\displaystyle n(n-1)} 3638: 3605: 3561: 3517: 3481: 3457: 3401: 3354: 3310: 3274: 3247: 3186: 3138: 3104: 3077: 3026: 2990: 2945: 2914: 2887: 2831: 2795: 2640:exceptional Lie groups 2476:, first note that the 2322: 2171:at the identity coset 2134: 2090: 2048: 1856: 1832: 1804: 1777: 1753: 1725: 1701: 1677: 1653: 1629: 1605: 1578: 1445: 1394: 1376:is an automorphism of 1366: 1334: 1298: 1272:As an automorphism of 1252: 1168:is an automorphism of 1104: 1103:{\displaystyle L(2,1)} 918: 859: 822:if it fixes the point 735: 734:{\displaystyle T_{p}M} 639:(or more generally, a 375:Semisimple Lie algebra 330:Adjoint representation 11043:Differential geometry 10946:Loos, Ottmar (1969), 10937:Loos, Ottmar (1969), 10897:Mathematische Annalen 10423: 10286: 10262: 10233: 10167: 10100: 10073: 9860: 9802: 9778: 9735:generalized transpose 9728: 9693: 9669: 9634: 9571: 9538: 9504: 9472: 9431: 9397: 9326: 9296: 9254: 8894:there is an isometry 8679: / SO(16, 8440: / SU(8) 8407: / SU(8) 8366: / SO(12, 8083: / Sp(4) 8044: / Sp(4) 8008: / SO(10, 7942: / SO(9) 7872: / SO(9) 6665: 6607: 6572: 6533: 6509: 6443: 6419: 6388: 6360: 6313: 6289: 6264: 6221: 6197: 6169: 6142: 5972: 5900: 5875: 5842: 5806: 5772: 5730: 5688: 5654: 5622: 5582: 5526: 5492: 5446: 5392: 5343: 5309: 5253: 5186: 5152: 5106: 5052: 5003: 4969: 4939: 4883: 4827: 4785: 4732: 4698: 4666: 4612: 4583: 4549: 4492: 4436: 4402: 4356: 4302: 4246: 4204: 4151: 4117: 4073: 4037: 4010: 3954: 3906: 3875: 3854: 3818: 3785: 3744: 3710: 3675: 3639: 3606: 3562: 3518: 3482: 3458: 3402: 3355: 3311: 3275: 3248: 3187: 3139: 3105: 3078: 3027: 2991: 2946: 2915: 2888: 2832: 2796: 2714:Classification result 2504:Classification scheme 2335:is the involution of 2323: 2147:is a symmetric space 2135: 2091: 2049: 1951:at any point) and so 1857: 1833: 1805: 1778: 1754: 1726: 1702: 1678: 1654: 1630: 1606: 1579: 1446: 1395: 1367: 1335: 1299: 1253: 1149:where the stabilizer 1105: 1017:acts transitively on 919: 860: 814:of a neighborhood of 736: 677:representation theory 673:differential geometry 444:Representation theory 10628:Relative root system 10298: 10271: 10245: 10182: 10112: 10085: 9875: 9814: 9787: 9741: 9702: 9678: 9646: 9583: 9547: 9513: 9489: 9440: 9410: 9335: 9305: 9266: 9081: 8810: / Sk(8, 8753: / Sk(8, 8632: / Sk(6, 8605: / SL(4, 8550: / Sk(6, 8484: / Sk(6, 8463: / SL(4, 8453: / SL(8, 8355: / SL(8, 8312: / SL(3, 8204: / Sk(5, 8170: / Sp(8, 8121: / SL(3, 8107: / SL(6, 8096: / Sp(8, 7993: / SL(6, 7982: / Sp(8, 7900: / Sp(6, 7837: / SO(9, 7820: / Sp(6, 7788: / SL(2, 7730: / SL(2, 7065: / S(GL( 7017:) / Sp(2 6816: / S(GL( 6735: / S(GL( 6643: 6585: 6550: 6518: 6487: 6428: 6424:is not simple, then 6397: 6373: 6345: 6298: 6274: 6249: 6206: 6182: 6154: 6107: 6027:anti-de Sitter space 5935: 5887: 5862: 5816: 5787: 5749: 5698: 5669: 5631: 5599: 5536: 5507: 5455: 5409: 5353: 5324: 5272: 5196: 5167: 5115: 5069: 5013: 4984: 4948: 4902: 4837: 4808: 4742: 4713: 4675: 4629: 4593: 4564: 4512: 4446: 4417: 4365: 4319: 4256: 4227: 4161: 4132: 4091: 4047: 4020: 3964: 3922: 3886: 3864: 3828: 3795: 3759: 3721: 3685: 3649: 3616: 3577: 3536: 3492: 3468: 3412: 3370: 3329: 3285: 3258: 3197: 3155: 3116: 3088: 3037: 3001: 2962: 2926: 2898: 2842: 2806: 2770: 2683:is such a group and 2588:. For compact type, 2492:is connected by the 2239: 2100: 2073: 1988: 1842: 1818: 1790: 1763: 1739: 1711: 1687: 1663: 1639: 1615: 1591: 1461: 1411: 1380: 1352: 1320: 1284: 1193: 1121:Algebraic definition 1115:anti-de Sitter space 1079: 992:covariantly constant 869: 834: 794:Geometric definition 715: 21:For other uses, see 11048:Riemannian geometry 10746:, Springer-Verlag, 10728:10.24033/asens.1054 10009: 9895: 9831: 9477:positive-definite. 8961:and tangent vector 7621: / Sp(2 7591:) / GL( 7559:) / Sp( 7441: / Sp(2 7315:) / GL( 7275:) / SO( 6977:) / GL( 6933: / S(U( 6919:) / Sk( 6483:Thus we may assume 4035:{\displaystyle 4pq} 3273:{\displaystyle 2pq} 3103:{\displaystyle n-1} 2913:{\displaystyle n-1} 2547:sectional curvature 830:is a geodesic with 810:. A diffeomorphism 657:Riemannian geometry 637:Riemannian manifold 589:Table of Lie groups 430:Compact Lie algebra 11058:Homogeneous spaces 10874:, Academic Press, 10851:, Academic Press, 10822:10.24033/bsmf.1113 10800:10.24033/bsmf.1105 10742:Einstein Manifolds 10686:10.1007/BF01236659 10583: = 1 or 10575: = 4 or 10567: = 2 or 10418: 10281: 10267:. For the case of 10257: 10231:{\displaystyle =0} 10228: 10162: 10095: 10068: 9995: 9881: 9855: 9817: 9797: 9773: 9723: 9688: 9664: 9629: 9566: 9533: 9499: 9485:The tangent space 9467: 9426: 9392: 9321: 9291: 9249: 9244: 9240: 9023:is independent of 8999:the derivative of 7682: / GL( 7643: / Sp( 7515: / Sp( 7474: / GL( 7407: / SL( 7371: / SO( 7349: / Sk( 7229: / SO( 7195: / GL( 7162: / SO( 7109: / Sp( 7095: / GL( 7051: / Sk( 6991: / Sp( 6901: / SO( 6856: / Sp( 6838: / GL( 6802: / SO( 6768: / Sp( 6721: / SO( 6660: 6602: 6567: 6528: 6504: 6460:is a real form of 6438: 6414: 6383: 6355: 6308: 6284: 6259: 6216: 6192: 6164: 6137: 6015:general relativity 5967: 5895: 5882:quaternion algebra 5870: 5837: 5801: 5767: 5725: 5683: 5649: 5617: 5577: 5521: 5487: 5441: 5387: 5338: 5304: 5248: 5181: 5147: 5101: 5047: 4998: 4964: 4934: 4878: 4822: 4780: 4727: 4693: 4661: 4607: 4578: 4544: 4487: 4431: 4397: 4351: 4297: 4241: 4199: 4146: 4112: 4068: 4032: 4005: 3949: 3901: 3870: 3849: 3813: 3780: 3739: 3705: 3670: 3634: 3601: 3557: 3513: 3480:{\displaystyle pq} 3477: 3453: 3397: 3350: 3306: 3270: 3243: 3182: 3134: 3100: 3073: 3022: 2986: 2941: 2910: 2883: 2827: 2791: 2513:symmetric spaces. 2318: 2130: 2086: 2044: 1852: 1828: 1800: 1773: 1749: 1721: 1697: 1673: 1649: 1625: 1601: 1574: 1441: 1390: 1362: 1330: 1308:, also denoted by 1294: 1248: 1100: 914: 855: 767:by a Lie subgroup 731: 653:inversion symmetry 361:Affine Lie algebra 351:Simple Lie algebra 92:Special orthogonal 11026:978-0-8218-4289-8 10840:978-0-8218-0711-8 10703:978-0-8218-0609-8 10668:Akhiezer, D. N.; 10638:Cartan involution 10388: 10334: 10105:into eigenspaces 9422: 9239: 8841: 8840: 8661: 8660: 8337: 8336: 7964: 7963: 7800: 7799: 7694: 7693: 7657: / U( 7607: = Sp(2 7573: / U( 7427: = Sp(2 7419: 7418: 7385: / U( 7289: / U( 7140: 7139: 6688:Cartan involution 6100:with Lie algebra 6060:affine connection 5908: 5907: 3873:{\displaystyle n} 3528:of oriented real 2586:simple Lie groups 1918:of the action of 1055:hyperbolic spaces 1051:projective spaces 820:geodesic symmetry 681:harmonic analysis 625: 624: 425:Split Lie algebra 388:Cartan subalgebra 250: 249: 141:Simple Lie groups 11065: 11029: 11011: 11002: 10986: 10951: 10942: 10932: 10912: 10894: 10884: 10873: 10861: 10843: 10825: 10824: 10803: 10802: 10778: 10756: 10745: 10731: 10730: 10706: 10688: 10660: 10654: 10611:orthogonal group 10557:unit quaternions 10517: 10441:Casimir operator 10427: 10425: 10424: 10419: 10417: 10416: 10415: 10414: 10409: 10408: 10400: 10389: 10387: 10386: 10374: 10363: 10362: 10361: 10360: 10355: 10354: 10346: 10335: 10333: 10332: 10320: 10290: 10288: 10287: 10282: 10280: 10279: 10266: 10264: 10263: 10258: 10237: 10235: 10234: 10229: 10218: 10217: 10212: 10211: 10201: 10200: 10195: 10194: 10171: 10169: 10168: 10163: 10161: 10160: 10155: 10154: 10138: 10137: 10132: 10131: 10121: 10120: 10104: 10102: 10101: 10096: 10094: 10093: 10077: 10075: 10074: 10069: 10064: 10063: 10051: 10050: 10038: 10037: 10022: 10021: 10008: 10003: 9985: 9984: 9972: 9971: 9950: 9949: 9937: 9936: 9924: 9923: 9908: 9907: 9894: 9889: 9864: 9862: 9861: 9856: 9854: 9853: 9844: 9843: 9830: 9825: 9806: 9804: 9803: 9798: 9796: 9795: 9782: 9780: 9779: 9774: 9772: 9771: 9753: 9752: 9732: 9730: 9729: 9724: 9697: 9695: 9694: 9689: 9687: 9686: 9673: 9671: 9670: 9665: 9638: 9636: 9635: 9630: 9604: 9603: 9575: 9573: 9572: 9567: 9565: 9564: 9542: 9540: 9539: 9534: 9532: 9531: 9522: 9521: 9508: 9506: 9505: 9500: 9498: 9497: 9476: 9474: 9473: 9468: 9466: 9465: 9464: 9435: 9433: 9432: 9427: 9420: 9419: 9418: 9401: 9399: 9398: 9393: 9330: 9328: 9327: 9322: 9317: 9316: 9300: 9298: 9297: 9292: 9290: 9289: 9258: 9256: 9255: 9250: 9248: 9247: 9241: 9237: 9225: 9224: 9178: 9177: 9165: 9164: 9140: 9139: 9107: 9106: 9105: 8882:such that given 8874:and an isometry 8829: / E 8825:×SU(2) or E 8821: / E 8795: / E 8776: / E 8764: / E 8723: / E 8690: / E 8663: 8662: 8653: / E 8643: / E 8594: / E 8575: / E 8565: / E 8505: / E 8495: / E 8421: / E 8381: / E 8339: 8338: 8330: / F 8295: / F 8277: / F 8215: / F 8139: / F 8065: / F 8023: / F 7966: 7965: 7802: 7801: 7710: 7709: 7706: 7490: = Sp( 7421: 7420: 7331: = Sk( 7142: 7141: 6701: 6700: 6669: 6667: 6666: 6661: 6659: 6658: 6653: 6652: 6611: 6609: 6608: 6603: 6601: 6600: 6595: 6594: 6576: 6574: 6573: 6568: 6566: 6565: 6560: 6559: 6537: 6535: 6534: 6529: 6527: 6526: 6513: 6511: 6510: 6505: 6503: 6502: 6497: 6496: 6447: 6445: 6444: 6439: 6437: 6436: 6423: 6421: 6420: 6415: 6413: 6412: 6407: 6406: 6392: 6390: 6389: 6384: 6382: 6381: 6364: 6362: 6361: 6356: 6354: 6353: 6317: 6315: 6314: 6309: 6307: 6306: 6293: 6291: 6290: 6285: 6283: 6282: 6268: 6266: 6265: 6260: 6258: 6257: 6225: 6223: 6222: 6217: 6215: 6214: 6201: 6199: 6198: 6193: 6191: 6190: 6173: 6171: 6170: 6165: 6163: 6162: 6146: 6144: 6143: 6138: 6136: 6135: 6126: 6125: 6116: 6115: 6053: 6037: + 1. 5976: 5974: 5973: 5968: 5963: 5962: 5953: 5945: 5931:of subspaces of 5911:As Grassmannians 5904: 5902: 5901: 5896: 5894: 5879: 5877: 5876: 5871: 5869: 5857:octonion algebra 5846: 5844: 5843: 5838: 5826: 5810: 5808: 5807: 5802: 5799: 5798: 5776: 5774: 5773: 5768: 5766: 5765: 5756: 5734: 5732: 5731: 5726: 5714: 5692: 5690: 5689: 5684: 5681: 5680: 5658: 5656: 5655: 5650: 5648: 5647: 5638: 5626: 5624: 5623: 5618: 5616: 5615: 5606: 5586: 5584: 5583: 5578: 5566: 5546: 5530: 5528: 5527: 5522: 5519: 5518: 5496: 5494: 5493: 5488: 5486: 5485: 5473: 5465: 5450: 5448: 5447: 5442: 5440: 5439: 5427: 5419: 5396: 5394: 5393: 5388: 5376: 5365: 5364: 5347: 5345: 5344: 5339: 5336: 5335: 5313: 5311: 5310: 5305: 5303: 5302: 5290: 5282: 5257: 5255: 5254: 5249: 5243: 5226: 5212: 5190: 5188: 5187: 5182: 5179: 5178: 5156: 5154: 5153: 5148: 5146: 5145: 5133: 5125: 5110: 5108: 5107: 5102: 5100: 5099: 5087: 5079: 5056: 5054: 5053: 5048: 5036: 5025: 5024: 5007: 5005: 5004: 4999: 4996: 4995: 4973: 4971: 4970: 4965: 4963: 4955: 4943: 4941: 4940: 4935: 4933: 4932: 4920: 4912: 4887: 4885: 4884: 4879: 4867: 4847: 4831: 4829: 4828: 4823: 4820: 4819: 4789: 4787: 4786: 4781: 4766: 4752: 4736: 4734: 4733: 4728: 4725: 4724: 4702: 4700: 4699: 4694: 4692: 4691: 4686: 4670: 4668: 4667: 4662: 4660: 4659: 4647: 4639: 4616: 4614: 4613: 4608: 4605: 4604: 4587: 4585: 4584: 4579: 4576: 4575: 4553: 4551: 4550: 4545: 4543: 4542: 4530: 4522: 4496: 4494: 4493: 4488: 4476: 4456: 4440: 4438: 4437: 4432: 4429: 4428: 4406: 4404: 4403: 4398: 4396: 4395: 4383: 4375: 4360: 4358: 4357: 4352: 4350: 4349: 4337: 4329: 4306: 4304: 4303: 4298: 4286: 4266: 4250: 4248: 4247: 4242: 4239: 4238: 4208: 4206: 4205: 4200: 4185: 4171: 4155: 4153: 4152: 4147: 4144: 4143: 4121: 4119: 4118: 4113: 4111: 4110: 4099: 4083:of quaternionic 4077: 4075: 4074: 4069: 4041: 4039: 4038: 4033: 4014: 4012: 4011: 4006: 3994: 3974: 3958: 3956: 3955: 3950: 3932: 3910: 3908: 3907: 3902: 3900: 3899: 3894: 3879: 3877: 3876: 3871: 3858: 3856: 3855: 3850: 3822: 3820: 3819: 3814: 3802: 3789: 3787: 3786: 3781: 3769: 3748: 3746: 3745: 3740: 3738: 3737: 3729: 3714: 3712: 3711: 3708:{\displaystyle } 3706: 3698: 3679: 3677: 3676: 3671: 3643: 3641: 3640: 3635: 3623: 3610: 3608: 3607: 3602: 3587: 3566: 3564: 3563: 3558: 3556: 3555: 3544: 3522: 3520: 3519: 3514: 3486: 3484: 3483: 3478: 3462: 3460: 3459: 3454: 3442: 3422: 3406: 3404: 3403: 3398: 3380: 3359: 3357: 3356: 3351: 3349: 3348: 3337: 3315: 3313: 3312: 3307: 3279: 3277: 3276: 3271: 3252: 3250: 3249: 3244: 3229: 3212: 3204: 3191: 3189: 3188: 3183: 3165: 3143: 3141: 3140: 3135: 3133: 3132: 3124: 3109: 3107: 3106: 3101: 3082: 3080: 3079: 3074: 3031: 3029: 3028: 3023: 3011: 2995: 2993: 2992: 2987: 2972: 2950: 2948: 2947: 2942: 2940: 2939: 2934: 2919: 2917: 2916: 2911: 2892: 2890: 2889: 2884: 2879: 2836: 2834: 2833: 2828: 2816: 2800: 2798: 2797: 2792: 2780: 2737: 2736: 2553:Non-compact type 2327: 2325: 2324: 2319: 2311: 2303: 2302: 2275: 2251: 2250: 2219: 2139: 2137: 2136: 2131: 2125: 2124: 2115: 2114: 2095: 2093: 2092: 2087: 2085: 2084: 2053: 2051: 2050: 2045: 2043: 2042: 2024: 2023: 1861: 1859: 1858: 1853: 1851: 1850: 1837: 1835: 1834: 1829: 1827: 1826: 1809: 1807: 1806: 1801: 1799: 1798: 1782: 1780: 1779: 1774: 1772: 1771: 1758: 1756: 1755: 1750: 1748: 1747: 1730: 1728: 1727: 1722: 1720: 1719: 1706: 1704: 1703: 1698: 1696: 1695: 1682: 1680: 1679: 1674: 1672: 1671: 1658: 1656: 1655: 1650: 1648: 1647: 1634: 1632: 1631: 1626: 1624: 1623: 1610: 1608: 1607: 1602: 1600: 1599: 1583: 1581: 1580: 1575: 1570: 1569: 1557: 1556: 1547: 1546: 1533: 1532: 1520: 1519: 1510: 1509: 1496: 1495: 1483: 1482: 1473: 1472: 1450: 1448: 1447: 1442: 1440: 1439: 1430: 1429: 1420: 1419: 1399: 1397: 1396: 1391: 1389: 1388: 1371: 1369: 1368: 1363: 1361: 1360: 1339: 1337: 1336: 1331: 1329: 1328: 1303: 1301: 1300: 1295: 1293: 1292: 1257: 1255: 1254: 1249: 1205: 1204: 1109: 1107: 1106: 1101: 996:simply connected 974:Basic properties 923: 921: 920: 915: 864: 862: 861: 856: 818:is said to be a 740: 738: 737: 732: 727: 726: 667:, which allowed 617: 610: 603: 560:Claude Chevalley 417:Complexification 260:Other Lie groups 146: 145: 54:Classical groups 46: 28: 27: 11073: 11072: 11068: 11067: 11066: 11064: 11063: 11062: 11033: 11032: 11027: 10976:10.2307/2372398 10930: 10892: 10882: 10859: 10841: 10776: 10754: 10704: 10664: 10663: 10655: 10651: 10646: 10619: 10599: 10593: 10547: /  10530: 10524: 10512: 10498: /  10485: 10479: 10463: 10457: 10452: 10410: 10404: 10403: 10402: 10401: 10391: 10390: 10382: 10378: 10373: 10356: 10350: 10349: 10348: 10347: 10337: 10336: 10328: 10324: 10319: 10299: 10296: 10295: 10275: 10274: 10272: 10269: 10268: 10246: 10243: 10242: 10213: 10207: 10206: 10205: 10196: 10190: 10189: 10188: 10183: 10180: 10179: 10156: 10150: 10149: 10148: 10133: 10127: 10126: 10125: 10116: 10115: 10113: 10110: 10109: 10089: 10088: 10086: 10083: 10082: 10059: 10055: 10046: 10042: 10033: 10029: 10017: 10013: 10004: 9999: 9980: 9976: 9967: 9963: 9945: 9941: 9932: 9928: 9919: 9915: 9903: 9899: 9890: 9885: 9876: 9873: 9872: 9849: 9845: 9839: 9835: 9826: 9821: 9815: 9812: 9811: 9791: 9790: 9788: 9785: 9784: 9767: 9763: 9748: 9744: 9742: 9739: 9738: 9703: 9700: 9699: 9682: 9681: 9679: 9676: 9675: 9647: 9644: 9643: 9599: 9595: 9584: 9581: 9580: 9560: 9556: 9548: 9545: 9544: 9527: 9526: 9517: 9516: 9514: 9511: 9510: 9493: 9492: 9490: 9487: 9486: 9483: 9460: 9459: 9455: 9441: 9438: 9437: 9414: 9413: 9411: 9408: 9407: 9336: 9333: 9332: 9312: 9308: 9306: 9303: 9302: 9285: 9281: 9267: 9264: 9263: 9243: 9242: 9235: 9233: 9227: 9226: 9220: 9219: 9205: 9180: 9179: 9173: 9172: 9160: 9156: 9142: 9135: 9131: 9112: 9111: 9101: 9100: 9096: 9082: 9079: 9078: 9056: 9048: 8977:, depending on 8852: 8846: 8832: 8828: 8824: 8820: 8809: 8805: 8798: 8794: 8788: 8779: 8775: 8767: 8763: 8752: 8748: 8741: 8735: 8726: 8722: 8715: 8706: 8693: 8689: 8678: 8669: 8656: 8652: 8648: 8646: 8642: 8631: 8627: 8621: 8614: 8610: 8604: 8597: 8593: 8587: 8578: 8574: 8570: 8568: 8564: 8549: 8545: 8543: 8536: 8532: 8530: 8523: 8517: 8508: 8504: 8500: 8498: 8494: 8483: 8479: 8473: 8462: 8458: 8452: 8448: 8446: 8439: 8433: 8424: 8420: 8413: 8406: 8397: 8384: 8380: 8365: 8354: 8345: 8333: 8329: 8322: 8311: 8304: 8298: 8294: 8288: 8280: 8276: 8265: 8263: 8252: 8248: 8246: 8239: 8232: 8226: 8218: 8214: 8203: 8199: 8197: 8186: 8182: 8180: 8169: 8165: 8163: 8156: 8150: 8142: 8138: 8131: 8120: 8116: 8106: 8095: 8091: 8089: 8082: 8076: 8068: 8064: 8057: 8050: 8043: 8034: 8026: 8022: 8007: 7992: 7981: 7972: 7959: 7950: 7941: 7933: 7922: 7913: 7909: 7899: 7890: 7882: 7871: 7862: 7851: 7836: 7819: 7808: 7787: 7778: 7770: 7759: 7748: 7729: 7718: 7701: 7677: 7638: 7582: 7550: 7548: 7539: 7530: 7521: 7402: 7366: 7306: 7266: 7264: 7255: 7246: 7237: 7090: 7008: 6968: 6966: 6957: 6948: 6939: 6910: 6833: 6696: 6654: 6648: 6647: 6646: 6644: 6641: 6640: 6612:commuting with 6596: 6590: 6589: 6588: 6586: 6583: 6582: 6561: 6555: 6554: 6553: 6551: 6548: 6547: 6522: 6521: 6519: 6516: 6515: 6498: 6492: 6491: 6490: 6488: 6485: 6484: 6468: /  6452: /  6432: 6431: 6429: 6426: 6425: 6408: 6402: 6401: 6400: 6398: 6395: 6394: 6377: 6376: 6374: 6371: 6370: 6349: 6348: 6346: 6343: 6342: 6322: /  6302: 6301: 6299: 6296: 6295: 6278: 6277: 6275: 6272: 6271: 6253: 6252: 6250: 6247: 6246: 6241: /  6210: 6209: 6207: 6204: 6203: 6186: 6185: 6183: 6180: 6179: 6158: 6157: 6155: 6152: 6151: 6131: 6130: 6121: 6120: 6111: 6110: 6108: 6105: 6104: 6096: /  6089: 6080:universal cover 6049: /  6041: 6023:De Sitter space 6019:Minkowski space 5991: 5958: 5954: 5949: 5941: 5936: 5933: 5932: 5913: 5890: 5888: 5885: 5884: 5865: 5863: 5860: 5859: 5819: 5817: 5814: 5813: 5794: 5790: 5788: 5785: 5784: 5761: 5757: 5752: 5750: 5747: 5746: 5701: 5699: 5696: 5695: 5676: 5672: 5670: 5667: 5666: 5643: 5639: 5634: 5632: 5629: 5628: 5611: 5607: 5602: 5600: 5597: 5596: 5559: 5539: 5537: 5534: 5533: 5514: 5510: 5508: 5505: 5504: 5481: 5477: 5469: 5461: 5456: 5453: 5452: 5435: 5431: 5423: 5415: 5410: 5407: 5406: 5369: 5360: 5356: 5354: 5351: 5350: 5331: 5327: 5325: 5322: 5321: 5298: 5294: 5286: 5278: 5273: 5270: 5269: 5233: 5222: 5199: 5197: 5194: 5193: 5174: 5170: 5168: 5165: 5164: 5141: 5137: 5129: 5121: 5116: 5113: 5112: 5095: 5091: 5083: 5075: 5070: 5067: 5066: 5029: 5020: 5016: 5014: 5011: 5010: 4991: 4987: 4985: 4982: 4981: 4959: 4951: 4949: 4946: 4945: 4928: 4924: 4916: 4908: 4903: 4900: 4899: 4860: 4840: 4838: 4835: 4834: 4815: 4811: 4809: 4806: 4805: 4762: 4745: 4743: 4740: 4739: 4720: 4716: 4714: 4711: 4710: 4687: 4679: 4678: 4676: 4673: 4672: 4655: 4651: 4643: 4635: 4630: 4627: 4626: 4600: 4596: 4594: 4591: 4590: 4571: 4567: 4565: 4562: 4561: 4538: 4534: 4526: 4518: 4513: 4510: 4509: 4469: 4449: 4447: 4444: 4443: 4424: 4420: 4418: 4415: 4414: 4391: 4387: 4379: 4371: 4366: 4363: 4362: 4345: 4341: 4333: 4325: 4320: 4317: 4316: 4279: 4259: 4257: 4254: 4253: 4234: 4230: 4228: 4225: 4224: 4181: 4164: 4162: 4159: 4158: 4139: 4135: 4133: 4130: 4129: 4100: 4095: 4094: 4092: 4089: 4088: 4048: 4045: 4044: 4021: 4018: 4017: 3987: 3967: 3965: 3962: 3961: 3925: 3923: 3920: 3919: 3895: 3890: 3889: 3887: 3884: 3883: 3865: 3862: 3861: 3829: 3826: 3825: 3798: 3796: 3793: 3792: 3762: 3760: 3757: 3756: 3730: 3725: 3724: 3722: 3719: 3718: 3694: 3686: 3683: 3682: 3650: 3647: 3646: 3619: 3617: 3614: 3613: 3580: 3578: 3575: 3574: 3545: 3540: 3539: 3537: 3534: 3533: 3493: 3490: 3489: 3469: 3466: 3465: 3435: 3415: 3413: 3410: 3409: 3373: 3371: 3368: 3367: 3338: 3333: 3332: 3330: 3327: 3326: 3286: 3283: 3282: 3259: 3256: 3255: 3225: 3208: 3200: 3198: 3195: 3194: 3158: 3156: 3153: 3152: 3125: 3120: 3119: 3117: 3114: 3113: 3089: 3086: 3085: 3038: 3035: 3034: 3004: 3002: 2999: 2998: 2965: 2963: 2960: 2959: 2935: 2930: 2929: 2927: 2924: 2923: 2899: 2896: 2895: 2875: 2843: 2840: 2839: 2809: 2807: 2804: 2803: 2773: 2771: 2768: 2767: 2722: /  2716: 2675: 2668: 2661: 2654: 2647: 2638:) and the five 2533:Euclidean space 2506: 2478:universal cover 2443: 2437: 2400:was arbitrary, 2395: 2383: 2377: 2360: 2351: 2304: 2295: 2291: 2268: 2246: 2242: 2240: 2237: 2236: 2211: 2206: /  2195: /  2167: /  2151: /  2120: 2116: 2110: 2106: 2101: 2098: 2097: 2080: 2076: 2074: 2071: 2070: 2038: 2034: 2019: 2015: 1989: 1986: 1985: 1972: 1960: 1943: 1868: 1846: 1845: 1843: 1840: 1839: 1822: 1821: 1819: 1816: 1815: 1794: 1793: 1791: 1788: 1787: 1767: 1766: 1764: 1761: 1760: 1743: 1742: 1740: 1737: 1736: 1715: 1714: 1712: 1709: 1708: 1691: 1690: 1688: 1685: 1684: 1667: 1666: 1664: 1661: 1660: 1643: 1642: 1640: 1637: 1636: 1619: 1618: 1616: 1613: 1612: 1595: 1594: 1592: 1589: 1588: 1565: 1564: 1552: 1551: 1542: 1541: 1528: 1527: 1515: 1514: 1505: 1504: 1491: 1490: 1478: 1477: 1468: 1467: 1462: 1459: 1458: 1435: 1434: 1425: 1424: 1415: 1414: 1412: 1409: 1408: 1400:, this gives a 1384: 1383: 1381: 1378: 1377: 1356: 1355: 1353: 1350: 1349: 1324: 1323: 1321: 1318: 1317: 1288: 1287: 1285: 1282: 1281: 1200: 1196: 1194: 1191: 1190: 1181: 1145: /  1135:symmetric space 1129:be a connected 1123: 1080: 1077: 1076: 1066:Riemann surface 1043:Euclidean space 1039: 1029:is connected). 976: 870: 867: 866: 835: 832: 831: 796: 760:of a connected 756: /  722: 718: 716: 713: 712: 633:symmetric space 621: 576: 575: 574: 545:Wilhelm Killing 529: 521: 520: 519: 494: 483: 482: 481: 446: 436: 435: 434: 421: 405: 383:Dynkin diagrams 377: 367: 366: 365: 347: 325:Exponential map 314: 304: 303: 302: 283:Conformal group 262: 252: 251: 243: 235: 227: 219: 211: 192: 182: 172: 162: 143: 133: 132: 131: 112:Special unitary 56: 26: 19: 12: 11: 5: 11071: 11061: 11060: 11055: 11050: 11045: 11031: 11030: 11025: 11012: 11003: 10987: 10964:Amer. J. Math. 10952: 10943: 10934: 10928: 10913: 10885: 10880: 10863: 10857: 10844: 10839: 10826: 10804: 10779: 10774: 10758: 10752: 10732: 10711:Berger, Marcel 10707: 10702: 10689: 10674:Transf. Groups 10670:Vinberg, E. B. 10662: 10661: 10648: 10647: 10645: 10642: 10641: 10640: 10635: 10633:Satake diagram 10630: 10625: 10618: 10615: 10609:of the stable 10595:Main article: 10592: 10589: 10526:Main article: 10523: 10520: 10481:Main article: 10478: 10475: 10467:holonomy group 10461:Holonomy group 10459:Main article: 10456: 10453: 10451: 10448: 10429: 10428: 10413: 10407: 10399: 10396: 10393: 10385: 10381: 10377: 10372: 10369: 10366: 10359: 10353: 10345: 10342: 10339: 10331: 10327: 10323: 10318: 10315: 10312: 10309: 10306: 10303: 10278: 10256: 10253: 10250: 10239: 10238: 10227: 10224: 10221: 10216: 10210: 10204: 10199: 10193: 10187: 10173: 10172: 10159: 10153: 10147: 10144: 10141: 10136: 10130: 10124: 10119: 10092: 10079: 10078: 10067: 10062: 10058: 10054: 10049: 10045: 10041: 10036: 10032: 10028: 10025: 10020: 10016: 10012: 10007: 10002: 9998: 9994: 9991: 9988: 9983: 9979: 9975: 9970: 9966: 9962: 9959: 9956: 9953: 9948: 9944: 9940: 9935: 9931: 9927: 9922: 9918: 9914: 9911: 9906: 9902: 9898: 9893: 9888: 9884: 9880: 9866: 9865: 9852: 9848: 9842: 9838: 9834: 9829: 9824: 9820: 9794: 9770: 9766: 9762: 9759: 9756: 9751: 9747: 9722: 9719: 9716: 9713: 9710: 9707: 9685: 9663: 9660: 9657: 9654: 9651: 9640: 9639: 9628: 9625: 9622: 9619: 9616: 9613: 9610: 9607: 9602: 9598: 9594: 9591: 9588: 9563: 9559: 9555: 9552: 9530: 9525: 9520: 9496: 9482: 9479: 9463: 9458: 9454: 9451: 9448: 9445: 9425: 9417: 9391: 9388: 9385: 9382: 9379: 9376: 9373: 9370: 9367: 9364: 9361: 9358: 9355: 9352: 9349: 9346: 9343: 9340: 9320: 9315: 9311: 9288: 9284: 9280: 9277: 9274: 9271: 9260: 9259: 9246: 9234: 9232: 9229: 9228: 9223: 9218: 9215: 9212: 9209: 9206: 9203: 9200: 9197: 9194: 9191: 9188: 9185: 9182: 9181: 9176: 9171: 9168: 9163: 9159: 9155: 9152: 9149: 9146: 9143: 9138: 9134: 9130: 9127: 9124: 9121: 9118: 9117: 9115: 9110: 9104: 9099: 9095: 9092: 9089: 9086: 9055: 9052: 9047: 9044: 9038:, is given in 9017: 9016: 8997: 8928:Ernest Vinberg 8848:Main article: 8845: 8842: 8839: 8838: 8830: 8826: 8822: 8818: 8815: 8807: 8803: 8800: 8796: 8792: 8789: 8786: 8782: 8781: 8777: 8773: 8765: 8761: 8758: 8750: 8746: 8743: 8739: 8736: 8733: 8729: 8728: 8724: 8720: 8717: 8713: 8710: 8707: 8704: 8700: 8699: 8691: 8687: 8684: 8676: 8673: 8670: 8667: 8659: 8658: 8657:×SO(1,1) 8654: 8650: 8644: 8640: 8637: 8629: 8619: 8616: 8612: 8602: 8599: 8595: 8591: 8588: 8585: 8581: 8580: 8576: 8572: 8566: 8562: 8559: 8547: 8541: 8538: 8534: 8528: 8525: 8521: 8518: 8515: 8511: 8510: 8506: 8502: 8499:×SO(1,1) 8496: 8492: 8489: 8481: 8471: 8468: 8460: 8450: 8444: 8441: 8437: 8434: 8431: 8427: 8426: 8422: 8418: 8415: 8411: 8408: 8404: 8401: 8398: 8395: 8391: 8390: 8382: 8378: 8375: 8363: 8360: 8352: 8349: 8346: 8343: 8335: 8334: 8331: 8327: 8324: 8320: 8317: 8309: 8306: 8302: 8299: 8296: 8292: 8289: 8286: 8282: 8281: 8278: 8274: 8271: 8261: 8258: 8250: 8244: 8241: 8237: 8234: 8230: 8227: 8224: 8220: 8219: 8216: 8212: 8209: 8201: 8195: 8192: 8184: 8178: 8175: 8167: 8161: 8158: 8154: 8151: 8148: 8144: 8143: 8140: 8136: 8133: 8129: 8126: 8118: 8104: 8101: 8093: 8087: 8084: 8080: 8077: 8074: 8070: 8069: 8066: 8062: 8059: 8055: 8052: 8048: 8045: 8041: 8038: 8035: 8032: 8028: 8027: 8024: 8020: 8017: 8005: 8002: 7990: 7987: 7979: 7976: 7973: 7970: 7962: 7961: 7957: 7952: 7948: 7943: 7939: 7934: 7931: 7925: 7924: 7920: 7915: 7911: 7897: 7892: 7888: 7883: 7880: 7874: 7873: 7869: 7864: 7860: 7855: 7852: 7849: 7843: 7842: 7834: 7829: 7817: 7812: 7809: 7806: 7798: 7797: 7785: 7780: 7776: 7771: 7768: 7762: 7761: 7757: 7752: 7749: 7746: 7740: 7739: 7727: 7722: 7719: 7716: 7692: 7691: 7652: 7616: 7601: 7600: 7568: 7544: 7535: 7526: 7519: 7510: 7484: 7483: 7469: 7436: 7417: 7416: 7380: 7344: 7325: 7324: 7284: 7260: 7251: 7242: 7233: 7224: 7209: 7208: 7190: 7157: 7138: 7137: 7104: 7060: 7046: 7027: 7026: 6986: 6962: 6953: 6944: 6937: 6928: 6896: 6870: 6869: 6851: 6811: 6797: 6782: 6781: 6763: 6730: 6716: 6695: 6692: 6657: 6651: 6599: 6593: 6564: 6558: 6525: 6501: 6495: 6435: 6411: 6405: 6380: 6352: 6305: 6281: 6256: 6235:Katsumi Nomizu 6228:indecomposable 6213: 6189: 6161: 6148: 6147: 6134: 6129: 6124: 6119: 6114: 6088: 6085: 6064:torsion tensor 5990: 5987: 5966: 5961: 5957: 5952: 5948: 5944: 5940: 5912: 5909: 5906: 5905: 5893: 5868: 5853: 5850: 5847: 5835: 5832: 5829: 5825: 5822: 5811: 5797: 5793: 5782: 5778: 5777: 5764: 5760: 5755: 5741: 5738: 5735: 5723: 5720: 5717: 5713: 5710: 5707: 5704: 5693: 5679: 5675: 5664: 5660: 5659: 5646: 5642: 5637: 5627:isomorphic to 5614: 5610: 5605: 5593: 5590: 5587: 5575: 5572: 5569: 5565: 5562: 5558: 5555: 5552: 5549: 5545: 5542: 5531: 5517: 5513: 5502: 5498: 5497: 5484: 5480: 5476: 5472: 5468: 5464: 5460: 5451:isomorphic to 5438: 5434: 5430: 5426: 5422: 5418: 5414: 5403: 5400: 5397: 5385: 5382: 5379: 5375: 5372: 5368: 5363: 5359: 5348: 5334: 5330: 5319: 5315: 5314: 5301: 5297: 5293: 5289: 5285: 5281: 5277: 5264: 5261: 5258: 5246: 5242: 5239: 5236: 5232: 5229: 5225: 5221: 5218: 5215: 5211: 5208: 5205: 5202: 5191: 5177: 5173: 5162: 5158: 5157: 5144: 5140: 5136: 5132: 5128: 5124: 5120: 5111:isomorphic to 5098: 5094: 5090: 5086: 5082: 5078: 5074: 5063: 5060: 5057: 5045: 5042: 5039: 5035: 5032: 5028: 5023: 5019: 5008: 4994: 4990: 4979: 4975: 4974: 4962: 4958: 4954: 4931: 4927: 4923: 4919: 4915: 4911: 4907: 4894: 4891: 4888: 4876: 4873: 4870: 4866: 4863: 4859: 4856: 4853: 4850: 4846: 4843: 4832: 4818: 4814: 4803: 4799: 4798: 4796: 4793: 4790: 4778: 4775: 4772: 4769: 4765: 4761: 4758: 4755: 4751: 4748: 4737: 4723: 4719: 4708: 4704: 4703: 4690: 4685: 4682: 4658: 4654: 4650: 4646: 4642: 4638: 4634: 4623: 4620: 4617: 4603: 4599: 4588: 4574: 4570: 4559: 4555: 4554: 4541: 4537: 4533: 4529: 4525: 4521: 4517: 4503: 4500: 4497: 4485: 4482: 4479: 4475: 4472: 4468: 4465: 4462: 4459: 4455: 4452: 4441: 4427: 4423: 4412: 4408: 4407: 4394: 4390: 4386: 4382: 4378: 4374: 4370: 4348: 4344: 4340: 4336: 4332: 4328: 4324: 4313: 4310: 4307: 4295: 4292: 4289: 4285: 4282: 4278: 4275: 4272: 4269: 4265: 4262: 4251: 4237: 4233: 4222: 4218: 4217: 4215: 4212: 4209: 4197: 4194: 4191: 4188: 4184: 4180: 4177: 4174: 4170: 4167: 4156: 4142: 4138: 4127: 4123: 4122: 4109: 4106: 4103: 4098: 4078: 4067: 4064: 4061: 4058: 4055: 4052: 4042: 4031: 4028: 4025: 4015: 4003: 4000: 3997: 3993: 3990: 3986: 3983: 3980: 3977: 3973: 3970: 3959: 3947: 3944: 3941: 3938: 3935: 3931: 3928: 3917: 3913: 3912: 3898: 3893: 3880: 3869: 3859: 3848: 3845: 3842: 3839: 3836: 3833: 3823: 3811: 3808: 3805: 3801: 3790: 3778: 3775: 3772: 3768: 3765: 3754: 3750: 3749: 3736: 3733: 3728: 3715: 3704: 3701: 3697: 3693: 3690: 3680: 3669: 3666: 3663: 3660: 3657: 3654: 3644: 3632: 3629: 3626: 3622: 3611: 3599: 3596: 3593: 3590: 3586: 3583: 3572: 3568: 3567: 3554: 3551: 3548: 3543: 3523: 3512: 3509: 3506: 3503: 3500: 3497: 3487: 3476: 3473: 3463: 3451: 3448: 3445: 3441: 3438: 3434: 3431: 3428: 3425: 3421: 3418: 3407: 3395: 3392: 3389: 3386: 3383: 3379: 3376: 3365: 3361: 3360: 3347: 3344: 3341: 3336: 3316: 3305: 3302: 3299: 3296: 3293: 3290: 3280: 3269: 3266: 3263: 3253: 3241: 3238: 3235: 3232: 3228: 3224: 3221: 3218: 3215: 3211: 3207: 3203: 3192: 3180: 3177: 3174: 3171: 3168: 3164: 3161: 3150: 3146: 3145: 3131: 3128: 3123: 3110: 3099: 3096: 3093: 3083: 3072: 3069: 3066: 3063: 3060: 3057: 3054: 3051: 3048: 3045: 3042: 3032: 3020: 3017: 3014: 3010: 3007: 2996: 2984: 2981: 2978: 2975: 2971: 2968: 2957: 2953: 2952: 2938: 2933: 2920: 2909: 2906: 2903: 2893: 2882: 2878: 2874: 2871: 2868: 2865: 2862: 2859: 2856: 2853: 2850: 2847: 2837: 2825: 2822: 2819: 2815: 2812: 2801: 2789: 2786: 2783: 2779: 2776: 2765: 2761: 2760: 2757: 2754: 2751: 2746: 2741: 2715: 2712: 2691:that contains 2673: 2666: 2659: 2652: 2645: 2561: 2560: 2550: 2536: 2525:Euclidean type 2505: 2502: 2439:Main article: 2436: 2433: 2391: 2379: 2373: 2356: 2347: 2329: 2328: 2317: 2314: 2310: 2307: 2301: 2298: 2294: 2290: 2287: 2284: 2281: 2278: 2274: 2271: 2266: 2263: 2260: 2257: 2254: 2249: 2245: 2183:, we obtain a 2143:To summarize, 2129: 2123: 2119: 2113: 2109: 2105: 2083: 2079: 2055: 2054: 2041: 2037: 2033: 2030: 2027: 2022: 2018: 2014: 2011: 2008: 2005: 2002: 1999: 1996: 1993: 1968: 1956: 1939: 1916:isotropy group 1867: 1864: 1849: 1825: 1797: 1770: 1759:brackets into 1746: 1718: 1694: 1670: 1646: 1622: 1598: 1585: 1584: 1573: 1568: 1563: 1560: 1555: 1550: 1545: 1540: 1536: 1531: 1526: 1523: 1518: 1513: 1508: 1503: 1499: 1494: 1489: 1486: 1481: 1476: 1471: 1466: 1452: 1451: 1438: 1433: 1428: 1423: 1418: 1404:decomposition 1387: 1359: 1327: 1291: 1259: 1258: 1247: 1244: 1241: 1238: 1235: 1232: 1229: 1226: 1223: 1220: 1217: 1214: 1211: 1208: 1203: 1199: 1177: 1122: 1119: 1099: 1096: 1093: 1090: 1087: 1084: 1064:Every compact 1038: 1035: 988:if and only if 975: 972: 958:is said to be 913: 910: 907: 904: 901: 898: 895: 892: 889: 886: 883: 880: 877: 874: 854: 851: 848: 845: 842: 839: 795: 792: 730: 725: 721: 623: 622: 620: 619: 612: 605: 597: 594: 593: 592: 591: 586: 578: 577: 573: 572: 567: 565:Harish-Chandra 562: 557: 552: 547: 542: 540:Henri Poincaré 537: 531: 530: 527: 526: 523: 522: 518: 517: 512: 507: 502: 496: 495: 490:Lie groups in 489: 488: 485: 484: 480: 479: 474: 469: 464: 459: 454: 448: 447: 442: 441: 438: 437: 433: 432: 427: 422: 420: 419: 414: 408: 406: 404: 403: 398: 392: 390: 385: 379: 378: 373: 372: 369: 368: 364: 363: 358: 353: 348: 346: 345: 340: 334: 332: 327: 322: 316: 315: 310: 309: 306: 305: 301: 300: 295: 290: 288:Diffeomorphism 285: 280: 275: 270: 264: 263: 258: 257: 254: 253: 248: 247: 246: 245: 241: 237: 233: 229: 225: 221: 217: 213: 209: 202: 201: 197: 196: 195: 194: 188: 184: 178: 174: 168: 164: 158: 151: 150: 144: 139: 138: 135: 134: 130: 129: 119: 109: 99: 89: 79: 72:Special linear 69: 62:General linear 58: 57: 52: 51: 48: 47: 39: 38: 17: 9: 6: 4: 3: 2: 11070: 11059: 11056: 11054: 11051: 11049: 11046: 11044: 11041: 11040: 11038: 11028: 11022: 11018: 11013: 11009: 11004: 11000: 10996: 10992: 10991:Selberg, Atle 10988: 10985: 10981: 10977: 10973: 10969: 10965: 10961: 10957: 10953: 10949: 10944: 10940: 10935: 10931: 10929:0-471-15732-5 10925: 10921: 10920: 10914: 10910: 10906: 10903:(1): 79–106. 10902: 10898: 10891: 10886: 10883: 10881:0-12-338301-3 10877: 10872: 10871: 10864: 10860: 10858:0-12-338460-5 10854: 10850: 10845: 10842: 10836: 10832: 10827: 10823: 10818: 10814: 10810: 10805: 10801: 10796: 10792: 10788: 10784: 10780: 10777: 10775:0-8218-0288-7 10771: 10767: 10763: 10762:Borel, Armand 10759: 10755: 10753:0-387-15279-2 10749: 10744: 10743: 10737: 10733: 10729: 10724: 10721:(2): 85–177, 10720: 10716: 10712: 10708: 10705: 10699: 10695: 10690: 10687: 10683: 10679: 10675: 10671: 10666: 10665: 10659: 10653: 10649: 10639: 10636: 10634: 10631: 10629: 10626: 10624: 10621: 10620: 10614: 10612: 10608: 10604: 10598: 10588: 10586: 10582: 10578: 10574: 10570: 10566: 10562: 10558: 10554: 10550: 10546: 10541: 10539: 10535: 10529: 10519: 10515: 10509: 10505: 10501: 10497: 10492: 10490: 10484: 10474: 10472: 10468: 10462: 10447: 10444: 10442: 10438: 10434: 10411: 10397: 10394: 10383: 10379: 10375: 10370: 10367: 10364: 10357: 10343: 10340: 10329: 10325: 10321: 10316: 10310: 10307: 10304: 10294: 10293: 10292: 10254: 10251: 10248: 10225: 10222: 10214: 10202: 10197: 10178: 10177: 10176: 10157: 10145: 10142: 10139: 10134: 10122: 10108: 10107: 10106: 10060: 10056: 10052: 10047: 10043: 10034: 10030: 10026: 10018: 10014: 10010: 10000: 9996: 9989: 9981: 9977: 9973: 9968: 9964: 9957: 9954: 9946: 9942: 9938: 9933: 9929: 9920: 9916: 9912: 9904: 9900: 9896: 9886: 9882: 9871: 9870: 9869: 9850: 9846: 9840: 9836: 9832: 9822: 9818: 9810: 9809: 9808: 9768: 9764: 9760: 9757: 9754: 9749: 9745: 9736: 9717: 9714: 9711: 9705: 9658: 9655: 9652: 9623: 9620: 9617: 9611: 9608: 9596: 9592: 9589: 9579: 9578: 9577: 9557: 9550: 9481:Factorization 9478: 9452: 9449: 9446: 9423: 9405: 9386: 9383: 9380: 9377: 9374: 9371: 9368: 9362: 9359: 9356: 9350: 9347: 9344: 9338: 9318: 9313: 9309: 9286: 9278: 9275: 9272: 9230: 9216: 9213: 9210: 9207: 9198: 9195: 9192: 9186: 9183: 9169: 9166: 9161: 9157: 9153: 9150: 9147: 9144: 9136: 9128: 9125: 9122: 9113: 9108: 9093: 9090: 9087: 9077: 9076: 9075: 9073: 9069: 9065: 9061: 9060:metric tensor 9051: 9043: 9041: 9037: 9032: 9030: 9026: 9022: 9014: 9010: 9006: 9002: 8998: 8995: 8991: 8988: 8987: 8986: 8984: 8980: 8976: 8972: 8968: 8964: 8960: 8956: 8951: 8949: 8945: 8941: 8937: 8933: 8932:Gelfand pairs 8929: 8925: 8921: 8917: 8913: 8909: 8905: 8901: 8897: 8893: 8889: 8885: 8881: 8877: 8873: 8869: 8865: 8861: 8857: 8854:In the 1950s 8851: 8836: 8816: 8813: 8801: 8790: 8784: 8783: 8771: 8759: 8756: 8744: 8737: 8731: 8730: 8718: 8711: 8708: 8702: 8701: 8697: 8685: 8682: 8674: 8671: 8665: 8664: 8638: 8636:)×Sp(1) 8635: 8625: 8617: 8608: 8600: 8598:× SO(2) 8589: 8583: 8582: 8560: 8557: 8553: 8539: 8526: 8519: 8513: 8512: 8490: 8488:)×Sp(1) 8487: 8477: 8469: 8466: 8456: 8442: 8435: 8429: 8428: 8425:× SO(2) 8416: 8409: 8402: 8399: 8393: 8392: 8388: 8376: 8373: 8369: 8361: 8358: 8350: 8347: 8341: 8340: 8325: 8318: 8316:)×Sp(1) 8315: 8307: 8300: 8290: 8284: 8283: 8272: 8270:)×SO(2) 8269: 8259: 8256: 8242: 8235: 8228: 8222: 8221: 8210: 8208:)×SO(2) 8207: 8193: 8190: 8176: 8173: 8159: 8152: 8146: 8145: 8134: 8127: 8125:)×SU(2) 8124: 8114: 8110: 8102: 8099: 8085: 8078: 8072: 8071: 8060: 8053: 8046: 8039: 8036: 8030: 8029: 8018: 8015: 8011: 8003: 8000: 7996: 7988: 7985: 7977: 7974: 7968: 7967: 7956: 7953: 7947: 7944: 7938: 7935: 7930: 7927: 7926: 7919: 7916: 7907: 7903: 7896: 7893: 7887: 7884: 7879: 7876: 7875: 7868: 7865: 7859: 7856: 7853: 7848: 7845: 7844: 7840: 7833: 7830: 7827: 7823: 7816: 7813: 7810: 7804: 7803: 7795: 7792:)× SL(2, 7791: 7784: 7781: 7775: 7772: 7767: 7764: 7763: 7756: 7753: 7750: 7745: 7742: 7741: 7737: 7734:)× SL(2, 7733: 7726: 7723: 7720: 7715: 7712: 7711: 7708: 7704: 7699: 7689: 7685: 7681: 7676: 7673: =  7672: 7669: +  7668: 7664: 7660: 7656: 7653: 7650: 7646: 7642: 7636: 7632: 7628: 7624: 7620: 7617: 7614: 7610: 7606: 7603: 7602: 7598: 7594: 7590: 7586: 7580: 7576: 7572: 7569: 7566: 7562: 7558: 7554: 7547: 7543: 7538: 7534: 7529: 7525: 7518: 7514: 7511: 7509: 7506: =  7505: 7502: +  7501: 7497: 7493: 7489: 7486: 7485: 7481: 7477: 7473: 7470: 7468: 7465: =  7464: 7461: +  7460: 7456: 7452: 7448: 7444: 7440: 7437: 7434: 7430: 7426: 7423: 7422: 7414: 7410: 7406: 7400: 7396: 7392: 7388: 7384: 7381: 7378: 7374: 7370: 7364: 7360: 7356: 7352: 7348: 7345: 7342: 7338: 7334: 7330: 7327: 7326: 7322: 7318: 7314: 7310: 7304: 7300: 7296: 7292: 7288: 7285: 7282: 7278: 7274: 7270: 7263: 7259: 7254: 7250: 7245: 7241: 7236: 7232: 7228: 7225: 7222: 7218: 7214: 7211: 7210: 7206: 7202: 7198: 7194: 7191: 7189: 7185: 7181: 7177: 7173: 7169: 7165: 7161: 7158: 7155: 7151: 7147: 7144: 7143: 7136: 7132: 7128: 7124: 7120: 7116: 7112: 7108: 7105: 7102: 7098: 7094: 7088: 7084: 7080: 7076: 7072: 7068: 7064: 7061: 7058: 7054: 7050: 7047: 7044: 7040: 7036: 7032: 7029: 7028: 7024: 7020: 7016: 7012: 7006: 7002: 6998: 6994: 6990: 6987: 6984: 6980: 6976: 6972: 6965: 6961: 6956: 6952: 6947: 6943: 6936: 6932: 6929: 6926: 6922: 6918: 6914: 6908: 6904: 6900: 6897: 6895: 6891: 6887: 6883: 6879: 6875: 6872: 6871: 6867: 6863: 6859: 6855: 6852: 6849: 6845: 6841: 6837: 6831: 6827: 6823: 6819: 6815: 6812: 6809: 6805: 6801: 6798: 6795: 6791: 6787: 6784: 6783: 6779: 6775: 6771: 6767: 6764: 6762: 6758: 6754: 6750: 6746: 6742: 6738: 6734: 6731: 6728: 6724: 6720: 6717: 6714: 6710: 6706: 6703: 6702: 6699: 6691: 6689: 6685: 6681: 6677: 6673: 6655: 6638: 6634: 6630: 6625: 6623: 6619: 6615: 6597: 6580: 6562: 6545: 6541: 6499: 6481: 6479: 6475: 6471: 6467: 6463: 6459: 6455: 6451: 6409: 6368: 6340: 6336: 6332: 6327: 6325: 6321: 6244: 6240: 6236: 6231: 6229: 6177: 6127: 6117: 6103: 6102: 6101: 6099: 6095: 6084: 6081: 6077: 6073: 6069: 6066:vanishes) on 6065: 6061: 6057: 6052: 6048: 6044: 6038: 6036: 6032: 6028: 6024: 6020: 6016: 6012: 6008: 6004: 6000: 5996: 5986: 5984: 5980: 5964: 5959: 5946: 5930: 5926: 5922: 5918: 5883: 5858: 5854: 5851: 5848: 5830: 5812: 5795: 5791: 5783: 5780: 5779: 5762: 5758: 5745: 5742: 5739: 5736: 5718: 5694: 5677: 5673: 5665: 5662: 5661: 5644: 5640: 5612: 5608: 5594: 5591: 5588: 5570: 5556: 5550: 5532: 5515: 5511: 5503: 5500: 5499: 5482: 5478: 5466: 5436: 5432: 5420: 5404: 5401: 5398: 5380: 5366: 5361: 5357: 5349: 5332: 5328: 5320: 5317: 5316: 5299: 5295: 5283: 5268: 5265: 5262: 5259: 5230: 5223: 5216: 5192: 5175: 5171: 5163: 5160: 5159: 5142: 5138: 5126: 5096: 5092: 5080: 5064: 5061: 5058: 5040: 5026: 5021: 5017: 5009: 4992: 4988: 4980: 4977: 4976: 4956: 4929: 4925: 4913: 4898: 4895: 4892: 4889: 4871: 4857: 4851: 4833: 4816: 4812: 4804: 4801: 4800: 4797: 4794: 4791: 4773: 4770: 4763: 4756: 4738: 4721: 4717: 4709: 4706: 4705: 4688: 4671:isometric to 4656: 4652: 4640: 4624: 4621: 4618: 4601: 4597: 4589: 4572: 4568: 4560: 4557: 4556: 4539: 4535: 4523: 4508: 4505:Complexified 4504: 4501: 4498: 4480: 4466: 4460: 4442: 4425: 4421: 4413: 4410: 4409: 4392: 4388: 4376: 4361:isometric to 4346: 4342: 4330: 4314: 4311: 4308: 4290: 4276: 4270: 4252: 4235: 4231: 4223: 4220: 4219: 4216: 4213: 4210: 4192: 4189: 4182: 4175: 4157: 4140: 4136: 4128: 4125: 4124: 4107: 4104: 4101: 4086: 4082: 4079: 4062: 4059: 4056: 4043: 4029: 4026: 4023: 4016: 3998: 3984: 3978: 3960: 3942: 3939: 3936: 3918: 3915: 3914: 3896: 3881: 3867: 3860: 3843: 3840: 3837: 3831: 3824: 3806: 3791: 3773: 3755: 3752: 3751: 3734: 3731: 3716: 3699: 3695: 3691: 3681: 3664: 3661: 3658: 3652: 3645: 3627: 3612: 3594: 3591: 3573: 3570: 3569: 3552: 3549: 3546: 3531: 3527: 3524: 3507: 3504: 3501: 3488: 3474: 3471: 3464: 3446: 3432: 3426: 3408: 3390: 3387: 3384: 3366: 3363: 3362: 3345: 3342: 3339: 3324: 3320: 3317: 3300: 3297: 3294: 3281: 3267: 3264: 3261: 3254: 3233: 3222: 3216: 3193: 3175: 3172: 3169: 3151: 3148: 3147: 3129: 3126: 3111: 3097: 3094: 3091: 3084: 3067: 3064: 3061: 3058: 3049: 3046: 3043: 3033: 3015: 2997: 2979: 2976: 2958: 2955: 2954: 2936: 2921: 2907: 2904: 2901: 2894: 2880: 2876: 2869: 2866: 2863: 2854: 2851: 2848: 2820: 2802: 2784: 2766: 2763: 2762: 2758: 2755: 2752: 2750: 2747: 2745: 2742: 2739: 2738: 2735: 2733: 2729: 2725: 2721: 2711: 2708: 2706: 2702: 2698: 2694: 2690: 2686: 2682: 2677: 2672: 2665: 2658: 2651: 2644: 2641: 2637: 2633: 2629: 2624: 2622: 2621: 2615: 2611: 2607: 2603: 2599: 2595: 2591: 2587: 2582: 2580: 2575: 2573: 2568: 2566: 2558: 2554: 2551: 2548: 2544: 2540: 2537: 2534: 2530: 2526: 2523: 2522: 2521: 2519: 2514: 2511: 2501: 2499: 2495: 2491: 2487: 2483: 2479: 2475: 2471: 2467: 2463: 2459: 2455: 2450: 2448: 2442: 2432: 2430: 2426: 2422: 2418: 2414: 2410: 2405: 2403: 2399: 2394: 2390: 2386: 2382: 2376: 2372: 2368: 2364: 2359: 2355: 2350: 2346: 2342: 2338: 2334: 2315: 2308: 2305: 2299: 2296: 2292: 2285: 2282: 2276: 2272: 2269: 2264: 2261: 2255: 2252: 2247: 2243: 2235: 2234: 2233: 2232:) and define 2231: 2227: 2223: 2218: 2214: 2209: 2205: 2202:To show that 2200: 2198: 2194: 2190: 2186: 2182: 2178: 2174: 2170: 2166: 2162: 2158: 2154: 2150: 2146: 2141: 2127: 2121: 2111: 2107: 2081: 2077: 2068: 2064: 2060: 2039: 2035: 2031: 2028: 2025: 2020: 2016: 2009: 2006: 2003: 1997: 1994: 1991: 1984: 1983: 1982: 1980: 1976: 1971: 1967: 1963: 1959: 1954: 1950: 1946: 1942: 1937: 1933: 1929: 1925: 1921: 1917: 1913: 1909: 1905: 1901: 1897: 1893: 1889: 1885: 1881: 1877: 1873: 1863: 1813: 1784: 1734: 1571: 1561: 1548: 1534: 1524: 1511: 1497: 1487: 1474: 1457: 1456: 1455: 1431: 1421: 1407: 1406: 1405: 1403: 1375: 1347: 1343: 1315: 1311: 1307: 1279: 1275: 1270: 1268: 1264: 1245: 1239: 1236: 1230: 1224: 1221: 1218: 1215: 1212: 1206: 1201: 1197: 1189: 1188: 1187: 1185: 1180: 1175: 1171: 1167: 1163: 1159: 1156: 1152: 1148: 1144: 1140: 1136: 1132: 1128: 1118: 1116: 1111: 1094: 1091: 1088: 1082: 1074: 1069: 1067: 1062: 1060: 1056: 1052: 1048: 1044: 1034: 1030: 1028: 1024: 1020: 1016: 1012: 1008: 1003: 1001: 997: 993: 989: 985: 982:implies that 981: 971: 969: 965: 961: 957: 953: 951: 947: 943: 939: 935: 934:tangent space 931: 927: 911: 905: 902: 896: 893: 884: 878: 872: 852: 849: 843: 837: 829: 825: 821: 817: 813: 809: 805: 801: 791: 789: 788:Marcel Berger 784: 782: 778: 774: 770: 766: 763: 759: 755: 750: 748: 744: 728: 723: 719: 710: 706: 702: 698: 694: 690: 684: 682: 678: 674: 670: 666: 662: 658: 654: 650: 646: 642: 638: 634: 630: 618: 613: 611: 606: 604: 599: 598: 596: 595: 590: 587: 585: 582: 581: 580: 579: 571: 568: 566: 563: 561: 558: 556: 553: 551: 548: 546: 543: 541: 538: 536: 533: 532: 525: 524: 516: 513: 511: 508: 506: 503: 501: 498: 497: 493: 487: 486: 478: 475: 473: 470: 468: 465: 463: 460: 458: 455: 453: 450: 449: 445: 440: 439: 431: 428: 426: 423: 418: 415: 413: 410: 409: 407: 402: 399: 397: 394: 393: 391: 389: 386: 384: 381: 380: 376: 371: 370: 362: 359: 357: 354: 352: 349: 344: 341: 339: 336: 335: 333: 331: 328: 326: 323: 321: 318: 317: 313: 308: 307: 299: 296: 294: 291: 289: 286: 284: 281: 279: 276: 274: 271: 269: 266: 265: 261: 256: 255: 244: 238: 236: 230: 228: 222: 220: 214: 212: 206: 205: 204: 203: 199: 198: 193: 191: 185: 183: 181: 175: 173: 171: 165: 163: 161: 155: 154: 153: 152: 148: 147: 142: 137: 136: 127: 123: 120: 117: 113: 110: 107: 103: 100: 97: 93: 90: 87: 83: 80: 77: 73: 70: 67: 63: 60: 59: 55: 50: 49: 45: 41: 40: 37: 33: 30: 29: 24: 16: 11016: 11007: 10998: 10994: 10970:(1): 33–65, 10967: 10963: 10947: 10938: 10918: 10900: 10896: 10869: 10848: 10830: 10812: 10808: 10790: 10786: 10783:Cartan, Élie 10765: 10741: 10718: 10714: 10693: 10677: 10673: 10657: 10652: 10600: 10584: 10580: 10576: 10572: 10568: 10564: 10552: 10548: 10544: 10542: 10533: 10531: 10513: 10507: 10503: 10499: 10495: 10493: 10486: 10464: 10445: 10436: 10432: 10430: 10240: 10174: 10080: 9867: 9734: 9641: 9484: 9404:Killing form 9261: 9072:Killing form 9067: 9063: 9057: 9049: 9033: 9028: 9024: 9020: 9018: 9012: 9008: 9004: 9000: 8993: 8989: 8985:, such that 8982: 8978: 8974: 8970: 8966: 8962: 8958: 8954: 8952: 8947: 8943: 8939: 8923: 8919: 8915: 8911: 8907: 8903: 8899: 8895: 8891: 8887: 8883: 8879: 8878:normalising 8875: 8871: 8867: 8863: 8859: 8856:Atle Selberg 8853: 8834: 8811: 8799:×Sp(1) 8780:×SU(2) 8769: 8754: 8727:×Sp(1) 8695: 8680: 8647:×SO(2) 8633: 8623: 8606: 8579:×SO(2) 8569:×SO(2) 8555: 8554:)×SL(2, 8551: 8509:×SO(2) 8485: 8475: 8464: 8454: 8386: 8371: 8370:)×Sp(2, 8367: 8356: 8332:4(−20) 8313: 8267: 8254: 8205: 8188: 8171: 8122: 8112: 8111:)×SL(2, 8108: 8097: 8013: 8012:)×SO(2, 8009: 7998: 7997:)×SL(2, 7994: 7983: 7954: 7945: 7936: 7928: 7917: 7905: 7904:)×Sp(2, 7901: 7894: 7885: 7877: 7866: 7857: 7846: 7838: 7831: 7825: 7824:)×Sp(2, 7821: 7814: 7793: 7789: 7782: 7773: 7765: 7754: 7743: 7735: 7731: 7724: 7713: 7702: 7697: 7695: 7687: 7683: 7679: 7674: 7670: 7666: 7662: 7658: 7654: 7648: 7644: 7640: 7634: 7630: 7626: 7622: 7618: 7612: 7608: 7604: 7596: 7592: 7588: 7584: 7578: 7574: 7570: 7564: 7560: 7556: 7552: 7545: 7541: 7536: 7532: 7527: 7523: 7516: 7512: 7507: 7503: 7499: 7495: 7491: 7487: 7479: 7475: 7471: 7466: 7462: 7458: 7454: 7450: 7446: 7442: 7438: 7432: 7428: 7424: 7412: 7408: 7404: 7398: 7394: 7390: 7386: 7382: 7376: 7372: 7368: 7362: 7358: 7354: 7350: 7346: 7340: 7336: 7332: 7328: 7320: 7316: 7312: 7308: 7302: 7298: 7294: 7290: 7286: 7280: 7276: 7272: 7268: 7261: 7257: 7252: 7248: 7243: 7239: 7234: 7230: 7226: 7220: 7216: 7212: 7204: 7200: 7196: 7192: 7187: 7183: 7179: 7175: 7171: 7167: 7163: 7159: 7153: 7149: 7145: 7134: 7130: 7126: 7122: 7118: 7114: 7110: 7106: 7100: 7096: 7092: 7086: 7082: 7078: 7074: 7070: 7066: 7062: 7056: 7052: 7048: 7042: 7038: 7034: 7030: 7022: 7018: 7014: 7010: 7004: 7000: 6996: 6992: 6988: 6982: 6978: 6974: 6970: 6963: 6959: 6954: 6950: 6945: 6941: 6934: 6930: 6924: 6920: 6916: 6912: 6906: 6902: 6898: 6893: 6889: 6885: 6881: 6877: 6873: 6865: 6861: 6857: 6853: 6847: 6843: 6839: 6835: 6829: 6825: 6821: 6817: 6813: 6807: 6803: 6799: 6793: 6789: 6785: 6777: 6773: 6769: 6765: 6760: 6756: 6752: 6748: 6744: 6740: 6736: 6732: 6726: 6722: 6718: 6712: 6708: 6704: 6697: 6683: 6679: 6675: 6671: 6636: 6632: 6628: 6626: 6621: 6617: 6613: 6578: 6543: 6482: 6477: 6473: 6469: 6465: 6461: 6457: 6453: 6449: 6366: 6338: 6334: 6330: 6328: 6323: 6319: 6242: 6238: 6232: 6149: 6097: 6093: 6090: 6067: 6055: 6050: 6046: 6042: 6039: 6034: 6030: 6010: 6006: 6002: 5994: 5992: 5982: 5978: 5914: 4084: 4081:Grassmannian 3529: 3526:Grassmannian 3322: 3319:Grassmannian 2748: 2743: 2731: 2727: 2723: 2719: 2717: 2709: 2704: 2700: 2696: 2692: 2688: 2684: 2680: 2678: 2670: 2663: 2656: 2649: 2642: 2635: 2631: 2627: 2625: 2619: 2613: 2609: 2605: 2601: 2597: 2593: 2589: 2583: 2578: 2576: 2571: 2569: 2564: 2562: 2556: 2552: 2542: 2539:Compact type 2538: 2528: 2524: 2517: 2515: 2509: 2507: 2497: 2489: 2485: 2481: 2473: 2469: 2465: 2461: 2457: 2453: 2451: 2444: 2428: 2424: 2420: 2416: 2412: 2408: 2406: 2401: 2397: 2392: 2388: 2384: 2380: 2374: 2370: 2366: 2362: 2357: 2353: 2348: 2344: 2340: 2336: 2332: 2330: 2229: 2225: 2221: 2220:(a coset of 2216: 2212: 2207: 2203: 2201: 2196: 2192: 2188: 2184: 2180: 2176: 2172: 2168: 2164: 2160: 2156: 2152: 2148: 2144: 2142: 2066: 2063:automorphism 2056: 1978: 1974: 1969: 1965: 1961: 1957: 1952: 1944: 1940: 1935: 1931: 1927: 1923: 1919: 1914:denotes the 1911: 1907: 1903: 1899: 1895: 1891: 1887: 1879: 1875: 1871: 1869: 1811: 1785: 1586: 1453: 1373: 1345: 1341: 1313: 1309: 1305: 1277: 1273: 1271: 1266: 1262: 1260: 1183: 1178: 1173: 1169: 1165: 1161: 1157: 1150: 1146: 1142: 1138: 1134: 1126: 1124: 1112: 1070: 1063: 1040: 1031: 1026: 1022: 1018: 1014: 1006: 1004: 983: 977: 967: 963: 959: 955: 954: 949: 945: 941: 937: 929: 925: 827: 823: 819: 815: 811: 807: 803: 799: 797: 785: 783:is compact. 780: 776: 768: 764: 757: 753: 751: 708: 704: 700: 696: 692: 688: 685: 651:contains an 632: 626: 570:Armand Borel 555:Hermann Weyl 356:Loop algebra 338:Killing form 312:Lie algebras 189: 179: 169: 159: 125: 115: 105: 95: 85: 75: 65: 36:Lie algebras 15: 10815:: 114–134, 10793:: 214–216, 10607:loop spaces 9436:this makes 9040:Wolf (2007) 8833:×SL(2, 8768:×SL(2, 8694:×Sp(2, 8385:×SO(2, 7629:)×Sp(2 7449:)×Sp(2 6542:involution 6318:is simple, 3321:of complex 2510:irreducible 2447:Élie Cartan 1011:homogeneous 806:a point of 629:mathematics 550:Élie Cartan 396:Root system 200:Exceptional 11053:Lie groups 11037:Categories 10956:Nomizu, K. 10950:, Benjamin 10941:, Benjamin 10644:References 10471:7 families 9046:Properties 8902:such that 7531:)×Sp( 7247:)×SO( 7170:)×SO( 7073:)×GL( 6824:)×GL( 6743:)×GL( 6540:antilinear 2753:Dimension 2496:, because 2061:Lie group 2059:involutive 1981:, the map 1890:(that is, 1402:direct sum 1155:involution 1073:lens space 1059:Lie groups 948:to all of 773:involution 665:Lie theory 649:isometries 535:Sophus Lie 528:Scientists 401:Weyl group 122:Symplectic 82:Orthogonal 32:Lie groups 10380:λ 10368:⋯ 10326:λ 10314:⟩ 10311:⋅ 10305:⋅ 10302:⟨ 10252:≠ 10146:⊕ 10143:⋯ 10140:⊕ 10066:⟩ 10040:⟨ 10031:λ 10024:⟩ 10006:# 9993:⟨ 9952:⟩ 9926:⟨ 9917:λ 9910:⟩ 9892:# 9879:⟨ 9837:λ 9828:# 9758:… 9718:⋅ 9712:⋅ 9662:⟩ 9659:⋅ 9653:⋅ 9650:⟨ 9606:⟩ 9601:# 9587:⟨ 9562:# 9554:↦ 9524:→ 9457:⟩ 9453:⋅ 9447:⋅ 9444:⟨ 9384:⁡ 9378:∘ 9372:⁡ 9363:⁡ 9283:⟩ 9279:⋅ 9273:⋅ 9270:⟨ 9238:otherwise 9217:∈ 9184:− 9170:≅ 9154:∈ 9133:⟩ 9120:⟨ 9098:⟩ 9085:⟨ 6949:)×U( 6202:. Since 6128:⊕ 6072:curvature 5947:⊗ 5557:⋅ 5467:⊗ 5421:⊗ 5367:⋅ 5284:⊗ 5231:± 5127:⊗ 5081:⊗ 5027:⋅ 4957:⊗ 4914:⊗ 4858:⋅ 4771:± 4641:⊗ 4524:⊗ 4467:⋅ 4377:⊗ 4331:⊗ 4277:⋅ 4190:± 3985:× 3662:− 3433:× 3223:× 3095:− 3047:− 2905:− 2852:− 2297:− 2286:σ 2280:↦ 2259:→ 2112:σ 2082:σ 2032:∘ 2026:∘ 2013:↦ 2001:→ 1992:σ 1884:Lie group 1562:⊂ 1525:⊂ 1488:⊂ 1432:⊕ 1225:σ 1216:∈ 1202:σ 1133:. Then a 1131:Lie group 1025:(because 903:− 897:γ 879:γ 838:γ 762:Lie group 412:Real form 298:Euclidean 149:Classical 10958:(1954), 10764:(2001), 10738:(1987), 10680:: 3–24, 10617:See also 8709:– 8672:– 8400:– 8348:– 8266:or Sk(5, 8037:– 7975:– 7854:– 7811:– 7751:– 7721:– 6577:, while 6456:, where 6076:parallel 6005:, i.e., 2618:rank of 2309:′ 2273:′ 2224:, where 1910:, where 1372:. Since 1261:Because 1164:). Thus 1037:Examples 1000:complete 743:complete 661:holonomy 643:) whose 584:Glossary 278:Poincaré 11001:: 47–87 10984:2372398 10601:In the 9543:taking 9402:is the 6337:× 5927:, or a 2387:. Thus 2339:fixing 1160:in Aut( 1047:spheres 707:fixing 492:physics 273:Lorentz 102:Unitary 11023:  10982:  10926:  10878:  10855:  10837:  10772:  10750:  10700:  10605:, the 9642:where 9421:  9331:, and 9262:Here, 9007:sends 8992:fixes 8831:7(−25) 8827:8(−24) 8819:8(−24) 8808:8(−24) 8804:8(−24) 8793:8(−24) 8787:8(−24) 8772:) or E 8655:6(−26) 8651:7(−25) 8645:6(−14) 8641:7(−25) 8630:7(−25) 8620:7(−25) 8613:7(−25) 8603:7(−25) 8592:7(−25) 8586:7(−25) 8577:6(−14) 8328:6(−26) 8321:6(−26) 8310:6(−26) 8303:6(−26) 8293:6(−26) 8287:6(−26) 8279:4(−20) 8275:6(−14) 8262:6(−14) 8251:6(−14) 8245:6(−14) 8238:6(−14) 8231:6(−14) 8225:6(−14) 7958:4(−20) 7949:4(−20) 7940:4(−20) 7932:4(−20) 7583:or Sp( 7551:or Sp( 7307:or SO( 7267:or SO( 7125:even, 7009:or SU( 6969:or SU( 6911:or SU( 6694:Tables 6174:is an 6070:whose 5161:EVIII 2740:Label 2634:), Sp( 2630:), SU( 2600:× 2331:where 2057:is an 1659:is an 1071:Every 1053:, and 669:Cartan 268:Circle 10980:JSTOR 10893:(PDF) 10559:on a 10175:with 9807:with 9360:trace 9019:When 8823:7(−5) 8778:7(−5) 8573:7(−5) 8563:7(−5) 8548:7(−5) 8542:7(−5) 8535:7(−5) 8529:7(−5) 8522:7(−5) 8516:7(−5) 7401:even 7393:/2), 7365:even 7357:/2), 7343:even 7305:even 7297:/2), 7207:even 7117:/2), 7089:even 7045:even 7033:= SL( 7007:even 6999:/2), 6876:= SU( 6868:even 6850:even 6788:= SL( 6780:even 6707:= SL( 6686:is a 6472:with 6393:. If 4978:EVII 4944:over 4411:EIII 3571:DIII 3149:AIII 2756:Rank 2456:let ( 1949:1-jet 1882:is a 1454:with 1172:with 865:then 645:group 635:is a 343:Index 11021:ISBN 10924:ISBN 10876:ISBN 10853:ISBN 10835:ISBN 10770:ISBN 10748:ISBN 10698:ISBN 10437:i.e. 10433:e.g. 10241:for 9698:and 9058:The 9011:to − 8981:and 8910:and 8774:8(8) 8766:7(7) 8762:8(8) 8751:8(8) 8747:8(8) 8740:8(8) 8734:8(8) 8649:or E 8628:or E 8611:or E 8571:or E 8567:6(2) 8546:or E 8533:or E 8507:6(2) 8503:7(7) 8501:or E 8497:6(6) 8493:7(7) 8482:7(7) 8480:or E 8472:7(7) 8461:7(7) 8459:or E 8451:7(7) 8449:or E 8445:7(7) 8438:7(7) 8432:7(7) 8249:or E 8217:4(4) 8213:6(2) 8202:6(2) 8200:or E 8196:6(2) 8185:6(2) 8183:or E 8179:6(2) 8168:6(2) 8166:or E 8162:6(2) 8155:6(2) 8149:6(2) 8141:4(4) 8137:6(6) 8130:6(6) 8119:6(6) 8117:or E 8105:6(6) 8094:6(6) 8092:or E 8088:6(6) 8081:6(6) 8075:6(6) 7921:4(4) 7912:4(4) 7910:or F 7898:4(4) 7889:4(4) 7881:4(4) 7786:2(2) 7777:2(2) 7769:2(2) 7215:=SO( 7148:=SO( 7081:)), 6751:)), 6674:and 6025:and 5981:and 5663:FII 5399:112 5318:EIX 5260:128 4802:EVI 4558:EIV 4221:EII 3916:CII 3364:BDI 2956:AII 2730:and 2604:and 2565:rank 2365:) = 1938:on T 1182:and 1176:= id 1137:for 1125:Let 978:The 798:Let 679:and 631:, a 293:Loop 34:and 10972:doi 10905:doi 10901:350 10817:doi 10795:doi 10723:doi 10682:doi 10516:= 2 9783:of 9576:as 9003:at 8973:of 8965:at 8957:in 8942:on 8938:of 8898:in 8890:in 7705:= 0 7678:or 7665:), 7639:or 7498:), 7457:), 7411:/4, 7403:or 7389:/2, 7375:/2, 7367:or 7353:/2, 7339:), 7335:/2, 7293:/2, 7203:), 7199:/2, 7178:), 7113:/2, 7099:/2, 7091:or 7077:/2, 7069:/2, 7055:/2, 7041:), 7037:/2, 6995:/2, 6967:)) 6884:), 6864:), 6846:), 6842:/2, 6834:or 6832:)) 6776:), 6682:or 6546:of 6178:of 6074:is 5737:16 5589:28 5501:FI 5059:54 4890:64 4792:70 4707:EV 4619:26 4499:32 4309:40 4211:42 4126:EI 4051:min 3753:CI 3496:min 3289:min 2764:AI 2596:is 2577:B. 2570:A. 2191:on 1977:at 1926:at 1922:on 1908:G/K 1898:of 1870:If 1707:in 1340:of 1304:of 936:of 928:at 775:of 699:of 647:of 627:In 124:Sp( 114:SU( 94:SO( 74:SL( 64:GL( 11039:: 10999:20 10997:, 10978:, 10968:76 10966:, 10962:, 10899:. 10895:. 10813:55 10811:, 10791:54 10789:, 10719:74 10717:, 10676:, 10540:. 10473:. 9381:ad 9369:ad 9042:. 9027:, 8916:σx 8914:= 8912:sy 8908:σy 8906:= 8904:sx 8886:, 8837:) 8814:) 8757:) 8698:) 8683:) 8626:) 8609:) 8558:) 8478:) 8467:) 8389:) 8374:) 8359:) 8257:) 8191:) 8174:) 8115:) 8100:) 8016:) 8001:) 7986:) 7841:) 7828:) 7796:) 7738:) 7707:. 7703:kl 7690:) 7651:) 7637:) 7615:) 7599:) 7581:) 7567:) 7549:) 7482:) 7435:) 7415:) 7379:) 7323:) 7283:) 7265:) 7223:) 7186:= 7182:+ 7156:) 7133:= 7129:+ 7103:) 7059:) 7025:) 6985:) 6927:) 6909:) 6892:= 6888:+ 6810:) 6796:) 6759:= 6755:+ 6729:) 6715:) 6624:. 6333:= 6045:= 6021:, 5852:2 5849:8 5781:G 5740:1 5592:4 5402:4 5263:8 5217:16 5062:3 4893:4 4852:12 4795:7 4622:2 4502:2 4461:10 4312:4 4214:6 2707:. 2676:. 2669:, 2662:, 2655:, 2648:, 2623:. 2555:: 2541:: 2527:: 2468:, 2464:, 2460:, 2431:. 2423:, 2419:, 2415:, 2228:∈ 2217:hK 2215:= 2199:. 2173:eK 1902:, 1783:. 1276:, 1117:. 1049:, 1045:, 998:, 970:. 952:. 777:G. 749:. 691:, 683:. 675:, 104:U( 84:O( 10974:: 10911:. 10907:: 10819:: 10797:: 10725:: 10684:: 10678:4 10585:q 10581:p 10577:q 10573:p 10569:q 10565:p 10553:K 10549:K 10545:G 10534:M 10514:p 10508:i 10504:K 10500:K 10496:G 10412:d 10406:m 10398:| 10395:B 10384:d 10376:1 10371:+ 10365:+ 10358:1 10352:m 10344:| 10341:B 10330:1 10322:1 10317:= 10308:, 10277:g 10255:j 10249:i 10226:0 10223:= 10220:] 10215:j 10209:m 10203:, 10198:i 10192:m 10186:[ 10158:d 10152:m 10135:1 10129:m 10123:= 10118:m 10091:m 10061:i 10057:Y 10053:, 10048:j 10044:Y 10035:j 10027:= 10019:i 10015:Y 10011:, 10001:j 9997:Y 9990:= 9987:) 9982:j 9978:Y 9974:, 9969:i 9965:Y 9961:( 9958:B 9955:= 9947:j 9943:Y 9939:, 9934:i 9930:Y 9921:i 9913:= 9905:j 9901:Y 9897:, 9887:i 9883:Y 9851:i 9847:Y 9841:i 9833:= 9823:i 9819:Y 9793:m 9769:n 9765:Y 9761:, 9755:, 9750:1 9746:Y 9721:) 9715:, 9709:( 9706:B 9684:m 9656:, 9627:) 9624:Y 9621:, 9618:X 9615:( 9612:B 9609:= 9597:Y 9593:, 9590:X 9558:Y 9551:Y 9529:m 9519:m 9495:m 9462:g 9450:, 9424:; 9416:h 9390:) 9387:Y 9375:X 9366:( 9357:= 9354:) 9351:Y 9348:, 9345:X 9342:( 9339:B 9319:M 9314:p 9310:T 9287:p 9276:, 9231:0 9222:h 9214:Y 9211:, 9208:X 9202:) 9199:Y 9196:, 9193:X 9190:( 9187:B 9175:m 9167:M 9162:p 9158:T 9151:Y 9148:, 9145:X 9137:p 9129:Y 9126:, 9123:X 9114:{ 9109:= 9103:g 9094:Y 9091:, 9088:X 9068:G 9064:M 9029:M 9025:X 9021:s 9015:. 9013:X 9009:X 9005:x 9001:s 8996:; 8994:x 8990:s 8983:X 8979:x 8975:M 8971:s 8967:x 8963:X 8959:M 8955:x 8948:M 8946:( 8944:L 8940:G 8924:G 8920:σ 8900:G 8896:s 8892:M 8888:y 8884:x 8880:G 8876:σ 8872:G 8868:M 8835:R 8817:E 8812:H 8802:E 8797:7 8791:E 8785:E 8770:R 8760:E 8755:H 8745:E 8738:E 8732:E 8725:7 8721:8 8719:E 8714:8 8712:E 8705:8 8703:E 8696:C 8692:7 8688:8 8686:E 8681:C 8677:8 8675:E 8668:8 8666:E 8639:E 8634:H 8624:R 8618:E 8607:H 8601:E 8596:6 8590:E 8584:E 8561:E 8556:R 8552:H 8540:E 8527:E 8520:E 8514:E 8491:E 8486:H 8476:R 8470:E 8465:H 8457:) 8455:R 8443:E 8436:E 8430:E 8423:6 8419:7 8417:E 8412:7 8410:E 8405:7 8403:E 8396:7 8394:E 8387:C 8383:6 8379:7 8377:E 8372:C 8368:C 8364:7 8362:E 8357:C 8353:7 8351:E 8344:7 8342:E 8326:E 8319:E 8314:H 8308:E 8301:E 8297:4 8291:E 8285:E 8273:E 8268:H 8260:E 8255:R 8243:E 8236:E 8229:E 8223:E 8211:E 8206:H 8194:E 8189:R 8177:E 8172:R 8160:E 8153:E 8147:E 8135:E 8128:E 8123:H 8113:R 8109:R 8103:E 8098:R 8086:E 8079:E 8073:E 8067:4 8063:6 8061:E 8056:6 8054:E 8049:6 8047:E 8042:6 8040:E 8033:6 8031:E 8025:4 8021:6 8019:E 8014:C 8010:C 8006:6 8004:E 7999:C 7995:C 7991:6 7989:E 7984:C 7980:6 7978:E 7971:6 7969:E 7955:F 7946:F 7937:F 7929:F 7918:F 7908:) 7906:R 7902:R 7895:F 7886:F 7878:F 7870:4 7867:F 7861:4 7858:F 7850:4 7847:F 7839:C 7835:4 7832:F 7826:C 7822:C 7818:4 7815:F 7807:4 7805:F 7794:R 7790:R 7783:G 7774:G 7766:G 7758:2 7755:G 7747:2 7744:G 7736:C 7732:C 7728:2 7725:G 7717:2 7714:G 7698:σ 7688:R 7686:, 7684:n 7680:G 7675:n 7671:ℓ 7667:k 7663:ℓ 7661:, 7659:k 7655:G 7649:C 7647:, 7645:n 7641:G 7635:R 7633:, 7631:l 7627:R 7625:, 7623:k 7619:G 7613:R 7611:, 7609:n 7605:G 7597:H 7595:, 7593:p 7589:p 7587:, 7585:p 7579:q 7577:, 7575:p 7571:G 7565:C 7563:, 7561:n 7557:n 7555:, 7553:n 7546:q 7542:ℓ 7540:, 7537:p 7533:ℓ 7528:q 7524:k 7522:, 7520:p 7517:k 7513:G 7508:n 7504:q 7500:p 7496:q 7494:, 7492:p 7488:G 7480:C 7478:, 7476:n 7472:G 7467:n 7463:ℓ 7459:k 7455:C 7453:, 7451:ℓ 7447:C 7445:, 7443:k 7439:G 7433:C 7431:, 7429:n 7425:G 7413:H 7409:n 7405:G 7399:ℓ 7397:, 7395:k 7391:ℓ 7387:k 7383:G 7377:C 7373:n 7369:G 7363:ℓ 7361:, 7359:k 7355:ℓ 7351:k 7347:G 7341:n 7337:H 7333:n 7329:G 7321:R 7319:, 7317:n 7313:n 7311:, 7309:n 7303:q 7301:, 7299:p 7295:q 7291:p 7287:G 7281:C 7279:, 7277:n 7273:n 7271:, 7269:n 7262:q 7258:l 7256:, 7253:p 7249:ℓ 7244:q 7240:k 7238:, 7235:p 7231:k 7227:G 7221:q 7219:, 7217:p 7213:G 7205:n 7201:C 7197:n 7193:G 7188:n 7184:ℓ 7180:k 7176:C 7174:, 7172:ℓ 7168:C 7166:, 7164:k 7160:G 7154:C 7152:, 7150:n 7146:G 7135:n 7131:ℓ 7127:k 7123:ℓ 7121:, 7119:k 7115:ℓ 7111:k 7107:G 7101:C 7097:n 7093:G 7087:ℓ 7085:, 7083:k 7079:H 7075:ℓ 7071:H 7067:k 7063:G 7057:H 7053:n 7049:G 7043:n 7039:H 7035:n 7031:G 7023:R 7021:, 7019:p 7015:p 7013:, 7011:p 7005:q 7003:, 7001:p 6997:q 6993:p 6989:G 6983:C 6981:, 6979:p 6975:p 6973:, 6971:p 6964:q 6960:l 6958:, 6955:p 6951:l 6946:q 6942:k 6940:, 6938:p 6935:k 6931:G 6925:H 6923:, 6921:p 6917:p 6915:, 6913:p 6907:q 6905:, 6903:p 6899:G 6894:n 6890:q 6886:p 6882:q 6880:, 6878:p 6874:G 6866:n 6862:R 6860:, 6858:n 6854:G 6848:n 6844:C 6840:n 6836:G 6830:R 6828:, 6826:l 6822:R 6820:, 6818:k 6814:G 6808:l 6806:, 6804:k 6800:G 6794:R 6792:, 6790:n 6786:G 6778:n 6774:C 6772:, 6770:n 6766:G 6761:n 6757:ℓ 6753:k 6749:C 6747:, 6745:ℓ 6741:C 6739:, 6737:k 6733:G 6727:C 6725:, 6723:n 6719:G 6713:C 6711:, 6709:n 6705:G 6684:τ 6680:σ 6676:τ 6672:σ 6656:c 6650:g 6637:τ 6633:τ 6631:∘ 6629:σ 6622:τ 6620:∘ 6618:σ 6614:τ 6598:c 6592:g 6579:σ 6563:c 6557:g 6544:τ 6524:g 6500:c 6494:g 6478:K 6474:G 6470:K 6466:G 6462:G 6458:H 6454:H 6450:G 6434:g 6410:c 6404:g 6379:g 6367:σ 6351:g 6339:H 6335:H 6331:G 6324:H 6320:G 6304:g 6280:g 6255:g 6243:H 6239:G 6212:h 6188:h 6160:m 6133:m 6123:h 6118:= 6113:g 6098:H 6094:G 6068:M 6056:G 6051:H 6047:G 6043:M 6035:n 6031:n 6011:n 6007:n 5983:B 5979:A 5965:, 5960:n 5956:) 5951:B 5943:A 5939:( 5892:H 5867:O 5834:) 5831:4 5828:( 5824:O 5821:S 5796:2 5792:G 5763:2 5759:P 5754:O 5722:) 5719:9 5716:( 5712:n 5709:i 5706:p 5703:S 5678:4 5674:F 5645:2 5641:P 5636:H 5613:2 5609:P 5604:O 5574:) 5571:2 5568:( 5564:U 5561:S 5554:) 5551:3 5548:( 5544:p 5541:S 5516:4 5512:F 5483:2 5479:P 5475:) 5471:O 5463:H 5459:( 5437:2 5433:P 5429:) 5425:O 5417:O 5413:( 5384:) 5381:2 5378:( 5374:U 5371:S 5362:7 5358:E 5333:8 5329:E 5300:2 5296:P 5292:) 5288:O 5280:O 5276:( 5245:} 5241:l 5238:o 5235:v 5228:{ 5224:/ 5220:) 5214:( 5210:n 5207:i 5204:p 5201:S 5176:8 5172:E 5143:2 5139:P 5135:) 5131:O 5123:C 5119:( 5097:2 5093:P 5089:) 5085:O 5077:H 5073:( 5044:) 5041:2 5038:( 5034:O 5031:S 5022:6 5018:E 4993:7 4989:E 4961:O 4953:H 4930:2 4926:P 4922:) 4918:O 4910:H 4906:( 4875:) 4872:2 4869:( 4865:U 4862:S 4855:) 4849:( 4845:O 4842:S 4817:7 4813:E 4777:} 4774:I 4768:{ 4764:/ 4760:) 4757:8 4754:( 4750:U 4747:S 4722:7 4718:E 4689:2 4684:P 4681:O 4657:2 4653:P 4649:) 4645:O 4637:C 4633:( 4602:4 4598:F 4573:6 4569:E 4540:2 4536:P 4532:) 4528:O 4520:C 4516:( 4484:) 4481:2 4478:( 4474:O 4471:S 4464:) 4458:( 4454:O 4451:S 4426:6 4422:E 4393:2 4389:P 4385:) 4381:H 4373:C 4369:( 4347:2 4343:P 4339:) 4335:O 4327:C 4323:( 4294:) 4291:2 4288:( 4284:U 4281:S 4274:) 4271:6 4268:( 4264:U 4261:S 4236:6 4232:E 4196:} 4193:I 4187:{ 4183:/ 4179:) 4176:4 4173:( 4169:p 4166:S 4141:6 4137:E 4108:q 4105:+ 4102:p 4097:H 4085:p 4066:) 4063:q 4060:, 4057:p 4054:( 4030:q 4027:p 4024:4 4002:) 3999:q 3996:( 3992:p 3989:S 3982:) 3979:p 3976:( 3972:p 3969:S 3946:) 3943:q 3940:+ 3937:p 3934:( 3930:p 3927:S 3897:n 3892:H 3868:n 3847:) 3844:1 3841:+ 3838:n 3835:( 3832:n 3810:) 3807:n 3804:( 3800:U 3777:) 3774:n 3771:( 3767:p 3764:S 3735:n 3732:2 3727:R 3703:] 3700:2 3696:/ 3692:n 3689:[ 3668:) 3665:1 3659:n 3656:( 3653:n 3631:) 3628:n 3625:( 3621:U 3598:) 3595:n 3592:2 3589:( 3585:O 3582:S 3553:q 3550:+ 3547:p 3542:R 3530:p 3511:) 3508:q 3505:, 3502:p 3499:( 3475:q 3472:p 3450:) 3447:q 3444:( 3440:O 3437:S 3430:) 3427:p 3424:( 3420:O 3417:S 3394:) 3391:q 3388:+ 3385:p 3382:( 3378:O 3375:S 3346:q 3343:+ 3340:p 3335:C 3323:p 3304:) 3301:q 3298:, 3295:p 3292:( 3268:q 3265:p 3262:2 3240:) 3237:) 3234:q 3231:( 3227:U 3220:) 3217:p 3214:( 3210:U 3206:( 3202:S 3179:) 3176:q 3173:+ 3170:p 3167:( 3163:U 3160:S 3130:n 3127:2 3122:C 3098:1 3092:n 3071:) 3068:1 3065:+ 3062:n 3059:2 3056:( 3053:) 3050:1 3044:n 3041:( 3019:) 3016:n 3013:( 3009:p 3006:S 2983:) 2980:n 2977:2 2974:( 2970:U 2967:S 2937:n 2932:C 2908:1 2902:n 2881:2 2877:/ 2873:) 2870:2 2867:+ 2864:n 2861:( 2858:) 2855:1 2849:n 2846:( 2824:) 2821:n 2818:( 2814:O 2811:S 2788:) 2785:n 2782:( 2778:U 2775:S 2749:K 2744:G 2732:K 2728:G 2724:K 2720:G 2705:G 2701:G 2697:G 2693:K 2689:G 2685:K 2681:G 2674:2 2671:G 2667:4 2664:F 2660:8 2657:E 2653:7 2650:E 2646:6 2643:E 2636:n 2632:n 2628:n 2620:G 2614:K 2610:G 2606:K 2602:M 2598:M 2594:G 2590:M 2579:G 2572:G 2557:M 2549:. 2543:M 2535:. 2529:M 2518:M 2498:G 2490:K 2486:M 2482:G 2474:M 2470:g 2466:σ 2462:K 2458:G 2454:M 2429:M 2425:g 2421:σ 2417:K 2413:G 2409:M 2402:M 2398:p 2393:p 2389:s 2385:M 2381:p 2375:p 2371:s 2367:p 2363:p 2361:( 2358:p 2354:s 2349:p 2345:s 2341:K 2337:G 2333:σ 2316:K 2313:) 2306:h 2300:1 2293:h 2289:( 2283:h 2277:K 2270:h 2265:, 2262:M 2256:M 2253:: 2248:p 2244:s 2230:G 2226:h 2222:K 2213:p 2208:K 2204:G 2197:K 2193:G 2189:g 2185:G 2181:G 2177:K 2169:K 2165:G 2161:K 2157:K 2153:K 2149:G 2145:M 2128:, 2122:o 2118:) 2108:G 2104:( 2078:G 2067:K 2040:p 2036:s 2029:h 2021:p 2017:s 2010:h 2007:, 2004:G 1998:G 1995:: 1979:p 1975:M 1970:p 1966:s 1962:M 1958:p 1953:K 1945:M 1941:p 1936:K 1932:p 1928:p 1924:M 1920:G 1912:K 1904:M 1900:M 1896:p 1892:M 1888:M 1880:M 1876:G 1872:M 1848:m 1824:h 1812:σ 1796:g 1769:h 1745:m 1717:g 1693:h 1669:h 1645:m 1621:g 1597:h 1572:. 1567:h 1559:] 1554:m 1549:, 1544:m 1539:[ 1535:, 1530:m 1522:] 1517:m 1512:, 1507:h 1502:[ 1498:, 1493:h 1485:] 1480:h 1475:, 1470:h 1465:[ 1437:m 1427:h 1422:= 1417:g 1386:g 1374:σ 1358:m 1346:G 1342:H 1326:h 1314:σ 1310:σ 1306:G 1290:g 1278:σ 1274:G 1267:G 1263:H 1246:. 1243:} 1240:g 1237:= 1234:) 1231:g 1228:( 1222:: 1219:G 1213:g 1210:{ 1207:= 1198:G 1184:H 1179:G 1174:σ 1170:G 1166:σ 1162:G 1158:σ 1151:H 1147:H 1143:G 1139:G 1127:G 1098:) 1095:1 1092:, 1089:2 1086:( 1083:L 1027:M 1023:M 1019:M 1015:M 1007:M 984:M 968:M 956:M 950:M 946:p 942:f 938:p 930:p 926:f 912:. 909:) 906:t 900:( 894:= 891:) 888:) 885:t 882:( 876:( 873:f 853:p 850:= 847:) 844:0 841:( 828:γ 824:p 816:p 812:f 808:M 804:p 800:M 781:H 769:H 765:G 758:H 754:G 729:M 724:p 720:T 709:p 705:M 701:M 697:p 693:g 689:M 687:( 616:e 609:t 602:v 242:8 240:E 234:7 232:E 226:6 224:E 218:4 216:F 210:2 208:G 190:n 187:D 180:n 177:C 170:n 167:B 160:n 157:A 128:) 126:n 118:) 116:n 108:) 106:n 98:) 96:n 88:) 86:n 78:) 76:n 68:) 66:n 25:.

Index

Symmetric space (disambiguation)
Lie groups
Lie algebras

Classical groups
General linear
Special linear
Orthogonal
Special orthogonal
Unitary
Special unitary
Symplectic
Simple Lie groups
An
Bn
Cn
Dn
G2
F4
E6
E7
E8
Other Lie groups
Circle
Lorentz
Poincaré
Conformal group
Diffeomorphism
Loop
Euclidean

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.