Knowledge

Group scheme

Source 📝

38: 818:, in the sense that all algebraic groups have group scheme structure, but group schemes are not necessarily connected, smooth, or defined over a field. This extra generality allows one to study richer infinitesimal structures, and this can help one to understand and answer questions of arithmetic significance. The 2007:
Dieudonné theory exists in a somewhat more general setting than finite flat groups over a field. Oda's 1967 thesis gave a connection between Dieudonné modules and the first de Rham cohomology of abelian varieties, and at about the same time, Grothendieck suggested that there should be a crystalline
1806:
Among the finite flat group schemes, the constants (cf. example above) form a special class, and over an algebraically closed field of characteristic zero, the category of finite groups is equivalent to the category of constant finite group schemes. Over bases with positive characteristic or more
1163:
allows one to make several constructions. Finite direct products of group schemes have a canonical group scheme structure. Given an action of one group scheme on another by automorphisms, one can form semidirect products by following the usual set-theoretic construction. Kernels of group scheme
1732:
Complete connected group schemes are in some sense opposite to affine group schemes, since the completeness implies all global sections are exactly those pulled back from the base, and in particular, they have no nontrivial maps to affine schemes. Any complete group variety (variety here meaning
1725:-algebra). The multiplication, unit, and inverse maps of the group scheme are given by the comultiplication, counit, and antipode structures in the Hopf algebra. The unit and multiplication structures in the Hopf algebra are intrinsic to the underlying scheme. For an arbitrary group scheme 1729:, the ring of global sections also has a commutative Hopf algebra structure, and by taking its spectrum, one obtains the maximal affine quotient group. Affine group varieties are known as linear algebraic groups, since they can be embedded as subgroups of general linear groups. 1811:
is non-constant, because the special fiber isn't smooth. There exist sequences of highly ramified 2-adic rings over which the number of isomorphism types of group schemes of order 2 grows arbitrarily large. More detailed analysis of commutative finite flat group schemes over
1623:, where the additive group acts by translations, and the multiplicative group acts by dilations. The subgroup fixing a chosen basepoint is isomorphic to the multiplicative group, and taking the basepoint to be the identity of an additive group structure identifies 1969:
of Witt co-vectors. This sheaf is more or less dual to the sheaf of Witt vectors (which is in fact representable by a group scheme), since it is constructed by taking a direct limit of finite length Witt vectors under successive Verschiebung maps
1819:
Commutative finite flat group schemes often occur in nature as subgroup schemes of abelian and semi-abelian varieties, and in positive or mixed characteristic, they can capture a lot of information about the ambient variety. For example, the
1851:-torsion forms a finite flat group scheme over the parametrizing space, and the supersingular locus is where the fibers are connected. This merging of connected components can be studied in fine detail by passing from a modular scheme to a 1733:
reduced and geometrically irreducible separated scheme of finite type over a field) is automatically commutative, by an argument involving the action of conjugation on jet spaces of the identity. Complete group varieties are called
1171:
with respect to some morphism of base schemes, although one needs finiteness conditions to be satisfied to ensure representability of the resulting functor. When this morphism is along a finite extension of fields, it is known as
1143:
is a finite group. However, one can take a projective limit of finite constant group schemes to get profinite group schemes, which appear in the study of fundamental groups and Galois representations or in the theory of the
2012:-divisible groups. Galois actions on the group schemes transfer through the equivalences of categories, and the associated deformation theory of Galois representations was used in 1807:
arithmetic structure, additional isomorphism types exist. For example, if 2 is invertible over the base, all group schemes of order 2 are constant, but over the 2-adic integers, Ό
1644:) has a unique group scheme structure with that point as the identity. Unlike the previous positive-dimensional examples, elliptic curves are projective (in particular proper). 1946:
operators, and they may act nontrivially on the Witt vectors. Dieudonne and Cartier constructed an antiequivalence of categories between finite commutative group schemes over
483: 458: 421: 1799:. The order of a constant group scheme is equal to the order of the corresponding group, and in general, order behaves well with respect to base change and finite flat 1045:. Conjugation is an action by automorphisms, i.e., it commutes with the group structure, and this induces linear actions on naturally derived objects, such as its 2160:
SĂ©minaire de GĂ©omĂ©trie AlgĂ©brique du Bois Marie – 1962–64 – SchĂ©mas en groupes – (SGA 3) – vol. 3 (Lecture notes in mathematics
2139:
SĂ©minaire de GĂ©omĂ©trie AlgĂ©brique du Bois Marie – 1962–64 – SchĂ©mas en groupes – (SGA 3) – vol. 2 (Lecture notes in mathematics
2118:
SĂ©minaire de GĂ©omĂ©trie AlgĂ©brique du Bois Marie – 1962–64 – SchĂ©mas en groupes – (SGA 3) – vol. 1 (Lecture notes in mathematics
1757:
and throughout algebraic geometry. A complete group scheme over a field need not be commutative, however; for example, any finite group scheme is complete.
1076:. There are several other equivalent conditions, such as conjugation inducing a trivial action, or inversion map Îč being a group scheme automorphism. 1988:, and then completing. Many properties of commutative group schemes can be seen by examining the corresponding DieudonnĂ© modules, e.g., connected 1753:
is proper and smooth with geometrically connected fibers. They are automatically projective, and they have many applications, e.g., in geometric
1041:. Right actions are defined similarly. Any group scheme admits natural left and right actions on its underlying scheme by multiplication and 785: 1164:
homomorphisms are group schemes, by taking a fiber product over the unit map from the base. Base change sends group schemes to group schemes.
960:
A homomorphism of group schemes is a map of schemes that respects multiplication. This can be precisely phrased either by saying that a map
1824:-torsion of an elliptic curve in characteristic zero is locally isomorphic to the constant elementary abelian group scheme of order 1300:
is said to be normal, and the quotient scheme admits a natural group law. Representability holds in many other cases, such as when
1333:
to the multiplicative group of invertible global sections of the structure sheaf. It can be described as the diagonalizable group
343: 2310: 2256: 2227: 293: 1895:
can be studied by transferring their geometric structure to a (semi-)linear-algebraic setting. The basic object is the
1237:) can be formed as the spectrum of a group ring. More generally, one can form groups of multiplicative type by letting 778: 288: 1440:+ 1 variables by an ideal encoding the invertibility of the determinant. Alternatively, it can be constructed using 2 2184: 2167: 2146: 2125: 1280:) is in general not a sheaf, and even its sheafification is in general not representable as a scheme. However, if 2017: 704: 1532:
to the underlying additive group of global sections of the structure sheaf. Over an affine base such as Spec
1502:
is not invertible in the base, then this scheme is not smooth. In particular, over a field of characteristic
771: 1148:, and these are affine of infinite type. More generally, by taking a locally constant sheaf of groups on 925:, satisfying the usual compatibilities of groups (namely associativity of Ό, identity, and inverse axioms) 1385:
form an important class of commutative group schemes, defined either by the property of being locally on
388: 202: 2034: 1014: 120: 2351: 2336: 2272: 2029: 1160: 1145: 827: 586: 320: 197: 85: 466: 441: 404: 2346: 2341: 2155: 2134: 2113: 1800: 1665:
be the connected component of the identity, i.e., the maximal connected subgroup scheme. Then
1168: 1107: 981: 851: 819: 736: 526: 2286: 843: 610: 1962:)-length. The Dieudonné module functor in one direction is given by homomorphisms into the 1843:
connected components (if the curve is ordinary) or one connected component (if the curve is
1670: 2320: 2266: 2237: 2100: 1852: 1396:, or as groups of multiplicative type associated to finitely generated free abelian groups. 1184: 811: 550: 538: 156: 90: 2251:, Publications de l'Institut Mathématique de l'Université de Nancago , 7, Paris: Hermann, 8: 2211: 2049: 988: 875: 835: 125: 20: 1882: 1926:), which is a quotient of the ring of noncommutative polynomials, with coefficients in 1870: 1754: 1707: 1042: 933: 839: 831: 807: 110: 82: 1325:
has the punctured affine line as its underlying scheme, and as a functor, it sends an
2306: 2252: 2244: 2223: 2180: 1609:
The automorphism group of the affine line is isomorphic to the semidirect product of
1408:
is an affine algebraic variety that can be viewed as the multiplicative group of the
941: 937: 515: 358: 252: 1896: 681: 2298: 2059: 1963: 1436:. Over an affine base, one can construct it as a quotient of a polynomial ring in 1173: 666: 658: 650: 642: 634: 622: 562: 502: 492: 334: 276: 151: 1444:
variables, with relations describing an ordered pair of mutually inverse matrices.
2316: 2294: 2262: 2233: 2219: 2096: 2092: 2044: 1864: 1734: 1382: 859: 815: 810:
equipped with a composition law. Group schemes arise naturally as symmetries of
750: 743: 729: 686: 574: 497: 327: 241: 181: 61: 2084: 2064: 1641: 1122:, where the number of copies is equal to the number of connected components of 855: 847: 757: 693: 383: 363: 300: 265: 186: 176: 161: 146: 100: 77: 2302: 2330: 1873:
taking finite commutative group schemes to finite commutative group schemes.
1844: 953: 823: 676: 598: 432: 305: 171: 2039: 2013: 1943: 1927: 1711: 949: 871: 531: 230: 219: 166: 141: 136: 95: 66: 29: 834:. Group schemes that are not algebraic groups play a significant role in 2054: 1046: 799: 1855:, where supersingular points are replaced by discs of positive radius. 1703:. The quotient scheme is the spectrum of a local ring of finite rank. 698: 426: 2000:
is nilpotent, and Ă©tale group schemes correspond to modules for which
1153: 1102:, and by choosing an identification of these copies with elements of 850:. The initial development of the theory of group schemes was due to 519: 1791:-module of finite rank. The rank is a locally constant function on 1737:. This generalizes to the notion of abelian scheme; a group scheme 56: 1288:, then the quotient is representable, and admits a canonical left 2293:, Graduate Texts in Mathematics, vol. 66, Berlin, New York: 1167:
Group schemes can be formed from smaller group schemes by taking
398: 312: 1341:) associated to the integers. Over an affine base such as Spec 1156:
on the base can induce non-trivial automorphisms on the fibers.
1106:, one can define the multiplication, unit, and inverse maps by 37: 2174: 2153: 2132: 2111: 1292:-action by translation. If the restriction of this action to 2206:
Shatz, Stephen S. (1986), "Group schemes, formal groups, and
1816:-adic rings can be found in Raynaud's work on prolongations. 1049:, and the algebra of left-invariant differential operators. 984:
of functors from schemes to groups (rather than just sets).
1887:
Finite flat commutative group schemes over a perfect field
1152:, one obtains a locally constant group scheme, for which 822:
of group schemes is somewhat better behaved than that of
2089:
Passage au quotient par une relation d'Ă©quivalence plate
2177:
Introduction to algebraic geometry and algebraic groups
1699:
is a smooth group variety that is a subgroup scheme of
1640:
A smooth genus one curve with a marked point (i.e., an
1524:
as its underlying scheme. As a functor, it sends any
469: 444: 407: 2008:
version of the theory that could be used to analyze
1847:). If we consider a family of elliptic curves, the 1556: âŠ— 1, and the inverse is given by sending 1206:) to be the set of abelian group homomorphisms from 1098:. As a scheme, it is a disjoint union of copies of 1869:Cartier duality is a scheme-theoretic analogue of 477: 452: 415: 890:equipped with one of the equivalent sets of data 2328: 1544:to zero, the multiplication is given by sending 1416:matrix ring variety. As a functor, it sends an 1718:, this is given by the relative spectrum of an 944:is equivalent to the presheaf corresponding to 1657:is a group scheme of finite type over a field 1432:matrices whose entries are global sections of 878:that has fiber products and some final object 1353: − 1), which is also written 1241:be a non-constant sheaf of abelian groups on 779: 1835:, it is a finite flat group scheme of order 1760: 1536:, it is the spectrum of the polynomial ring 1745:is abelian if the structural morphism from 1361:to one, multiplication is given by sending 2285: 786: 772: 2216:Arithmetic geometry (Storrs, Conn., 1984) 2175:Gabriel, Peter; Demazure, Michel (1980). 1950:of order a power of "p" and modules over 1089:, one can form the constant group scheme 471: 446: 409: 2281:Modular Forms and Fermat's Last Theorem 2249:Groupes algĂ©briques et corps de classes 2083: 1681:has a unique maximal reduced subscheme 1486:= 1. Over an affine base such as Spec 1466:to itself. As a functor, it sends any 2329: 2210:-divisible groups", in Cornell, Gary; 1590:, and the kernel is the group scheme α 1373:, and the inverse is given by sending 344:Classification of finite simple groups 2243: 2205: 2201:Transformation de Fourier gĂ©nĂ©ralisĂ©e 1583:th powers induces an endomorphism of 2291:Introduction to affine group schemes 2179:. Amsterdam: North-Holland Pub. Co. 1876: 1540:. The unit map is given by sending 1357:. The unit map is given by sending 1118:to a product of copies of the group 842:, since they come up in contexts of 2195:ThĂ©orie de DieudonnĂ© Crystalline II 1648: 1594:. Over an affine base such as Spec 1194:), defined as a functor by setting 13: 1858: 1795:, and is called the order of  1773:is finite and flat if and only if 14: 2363: 1345:, it is the spectrum of the ring 1210:to invertible global sections of 1183:, one can form the corresponding 936:, such that composition with the 1474:to the group of global sections 1079: 36: 2166:(in French). Berlin; New York: 2145:(in French). Berlin; New York: 2124:(in French). Berlin; New York: 1706:Any affine group scheme is the 1630:with the automorphism group of 1284:is finite, flat, and closed in 826:, since all homomorphisms have 2077: 1110:. As a functor, it takes any 1068:) is an abelian group for all 830:, and there is a well-behaved 705:Infinite dimensional Lie group 1: 2070: 1992:-group schemes correspond to 989:left action of a group scheme 865: 1256:, the functor that takes an 1060:is commutative if the group 928:a functor from schemes over 478:{\displaystyle \mathbb {Z} } 453:{\displaystyle \mathbb {Z} } 416:{\displaystyle \mathbb {Z} } 7: 2023: 2018:Shimura–Taniyama conjecture 1891:of positive characteristic 1424:to the group of invertible 1312: 203:List of group theory topics 10: 2368: 2193:Berthelot, Breen, Messing 2035:Geometric invariant theory 1880: 1862: 2303:10.1007/978-1-4612-6217-6 2277:Finite flat group schemes 1769:over a noetherian scheme 1761:Finite flat group schemes 1671:finite Ă©tale group scheme 1447:For any positive integer 1399:The general linear group 1318:The multiplicative group 1161:fiber products of schemes 894:a triple of morphisms ÎŒ: 806:is a type of object from 2030:Fundamental group scheme 1598:, it is the spectrum of 1490:, it is the spectrum of 1146:fundamental group scheme 321:Elementary abelian group 198:Glossary of group theory 1389:a product of copies of 964:satisfies the equation 2156:Alexandre Grothendieck 2135:Alexandre Grothendieck 2114:Alexandre Grothendieck 1942:are the Frobenius and 1801:restriction of scalars 1575:for some prime number 1248:For a subgroup scheme 1179:For any abelian group 1169:restriction of scalars 1108:transport of structure 982:natural transformation 852:Alexander Grothendieck 844:Galois representations 814:, and they generalize 737:Linear algebraic group 479: 454: 417: 1669:is an extension of a 1579:, then the taking of 1455:is the kernel of the 976:), or by saying that 480: 455: 418: 2218:, Berlin, New York: 2212:Silverman, Joseph H. 2170:. pp. vii, 529. 2091:, Berlin, New York: 1853:rigid analytic space 1520:has the affine line 1308:and both are affine. 1185:diagonalizable group 1013:that induces a left 882:. That is, it is an 870:A group scheme is a 862:in the early 1960s. 467: 442: 405: 2287:Waterhouse, William 2149:. pp. ix, 654. 2128:. pp. xv, 564. 2050:Group-scheme action 2004:is an isomorphism. 1996:-modules for which 1922: −  1513:The additive group 876:category of schemes 836:arithmetic geometry 111:Group homomorphisms 21:Algebraic structure 2245:Serre, Jean-Pierre 2222:, pp. 29–78, 2154:Demazure, Michel; 2133:Demazure, Michel; 2112:Demazure, Michel; 1871:Pontryagin duality 1782:is a locally free 1755:class field theory 1459:th power map from 1252:of a group scheme 934:category of groups 840:algebraic topology 832:deformation theory 808:algebraic geometry 587:Special orthogonal 475: 450: 413: 294:Lagrange's theorem 2312:978-0-387-90421-4 2258:978-2-7056-1264-1 2229:978-0-387-96311-2 1877:DieudonnĂ© modules 1735:abelian varieties 1710:of a commutative 1692:is perfect, then 1548:to 1 âŠ—  1296:is trivial, then 1159:The existence of 938:forgetful functor 796: 795: 371: 370: 253:Alternating group 210: 209: 2359: 2352:Duality theories 2337:Algebraic groups 2323: 2269: 2240: 2190: 2171: 2150: 2129: 2104: 2103: 2081: 2060:Invariant theory 1883:DieudonnĂ© module 1839:that has either 1649:Basic properties 1174:Weil restriction 950:Yoneda embedding 816:algebraic groups 788: 781: 774: 730:Algebraic groups 503:Hyperbolic group 493:Arithmetic group 484: 482: 481: 476: 474: 459: 457: 456: 451: 449: 422: 420: 419: 414: 412: 335:Schur multiplier 289:Cauchy's theorem 277:Quaternion group 225: 224: 51: 50: 40: 27: 16: 15: 2367: 2366: 2362: 2361: 2360: 2358: 2357: 2356: 2327: 2326: 2313: 2295:Springer-Verlag 2259: 2230: 2220:Springer-Verlag 2187: 2168:Springer-Verlag 2158:, eds. (1970). 2147:Springer-Verlag 2137:, eds. (1970). 2126:Springer-Verlag 2116:, eds. (1970). 2108: 2107: 2093:Springer-Verlag 2085:Raynaud, Michel 2082: 2078: 2073: 2045:Groupoid scheme 2026: 2016:'s work on the 1987: 1980: 1885: 1879: 1867: 1865:Cartier duality 1861: 1859:Cartier duality 1834: 1810: 1790: 1781: 1765:A group scheme 1763: 1724: 1698: 1687: 1651: 1636: 1629: 1622: 1615: 1593: 1589: 1560:to − 1519: 1509: 1498:−1). If 1465: 1454: 1407: 1395: 1324: 1315: 1216: 1139:if and only if 1135:is affine over 1134: 1097: 1082: 1005: 901: 868: 860:Michel Demazure 848:moduli problems 824:group varieties 792: 763: 762: 751:Abelian variety 744:Reductive group 732: 722: 721: 720: 719: 670: 662: 654: 646: 638: 611:Special unitary 522: 508: 507: 489: 488: 470: 468: 465: 464: 445: 443: 440: 439: 408: 406: 403: 402: 394: 393: 384:Discrete groups 373: 372: 328:Frobenius group 273: 260: 249: 242:Symmetric group 238: 222: 212: 211: 62:Normal subgroup 48: 28: 19: 12: 11: 5: 2365: 2355: 2354: 2349: 2344: 2339: 2325: 2324: 2311: 2283: 2270: 2257: 2241: 2228: 2203: 2197: 2191: 2185: 2172: 2151: 2130: 2106: 2105: 2075: 2074: 2072: 2069: 2068: 2067: 2065:Quotient stack 2062: 2057: 2052: 2047: 2042: 2037: 2032: 2025: 2022: 1985: 1978: 1897:DieudonnĂ© ring 1881:Main article: 1878: 1875: 1863:Main article: 1860: 1857: 1832: 1808: 1786: 1777: 1762: 1759: 1722: 1696: 1685: 1650: 1647: 1646: 1645: 1642:elliptic curve 1638: 1634: 1627: 1620: 1613: 1607: 1591: 1587: 1565: 1517: 1511: 1510:is not smooth. 1507: 1463: 1452: 1445: 1403: 1397: 1393: 1383:Algebraic tori 1322: 1314: 1311: 1310: 1309: 1246: 1214: 1177: 1165: 1157: 1130: 1093: 1085:Given a group 1081: 1078: 1056:-group scheme 1003: 998:is a morphism 958: 957: 926: 899: 867: 864: 856:Michel Raynaud 794: 793: 791: 790: 783: 776: 768: 765: 764: 761: 760: 758:Elliptic curve 754: 753: 747: 746: 740: 739: 733: 728: 727: 724: 723: 718: 717: 714: 711: 707: 703: 702: 701: 696: 694:Diffeomorphism 690: 689: 684: 679: 673: 672: 668: 664: 660: 656: 652: 648: 644: 640: 636: 631: 630: 619: 618: 607: 606: 595: 594: 583: 582: 571: 570: 559: 558: 551:Special linear 547: 546: 539:General linear 535: 534: 529: 523: 514: 513: 510: 509: 506: 505: 500: 495: 487: 486: 473: 461: 448: 435: 433:Modular groups 431: 430: 429: 424: 411: 395: 392: 391: 386: 380: 379: 378: 375: 374: 369: 368: 367: 366: 361: 356: 353: 347: 346: 340: 339: 338: 337: 331: 330: 324: 323: 318: 309: 308: 306:Hall's theorem 303: 301:Sylow theorems 297: 296: 291: 283: 282: 281: 280: 274: 269: 266:Dihedral group 262: 261: 256: 250: 245: 239: 234: 223: 218: 217: 214: 213: 208: 207: 206: 205: 200: 192: 191: 190: 189: 184: 179: 174: 169: 164: 159: 157:multiplicative 154: 149: 144: 139: 131: 130: 129: 128: 123: 115: 114: 106: 105: 104: 103: 101:Wreath product 98: 93: 88: 86:direct product 80: 78:Quotient group 72: 71: 70: 69: 64: 59: 49: 46: 45: 42: 41: 33: 32: 9: 6: 4: 3: 2: 2364: 2353: 2350: 2348: 2347:Hopf algebras 2345: 2343: 2342:Scheme theory 2340: 2338: 2335: 2334: 2332: 2322: 2318: 2314: 2308: 2304: 2300: 2296: 2292: 2288: 2284: 2282: 2278: 2274: 2271: 2268: 2264: 2260: 2254: 2250: 2246: 2242: 2239: 2235: 2231: 2225: 2221: 2217: 2213: 2209: 2204: 2202: 2198: 2196: 2192: 2188: 2186:0-444-85443-6 2182: 2178: 2173: 2169: 2165: 2163: 2157: 2152: 2148: 2144: 2142: 2136: 2131: 2127: 2123: 2121: 2115: 2110: 2109: 2102: 2098: 2094: 2090: 2086: 2080: 2076: 2066: 2063: 2061: 2058: 2056: 2053: 2051: 2048: 2046: 2043: 2041: 2038: 2036: 2033: 2031: 2028: 2027: 2021: 2019: 2015: 2011: 2005: 2003: 1999: 1995: 1991: 1984: 1977: 1973: 1968: 1965: 1964:abelian sheaf 1961: 1957: 1953: 1949: 1945: 1941: 1937: 1933: 1929: 1925: 1921: 1917: 1913: 1909: 1905: 1901: 1898: 1894: 1890: 1884: 1874: 1872: 1866: 1856: 1854: 1850: 1846: 1845:supersingular 1842: 1838: 1831: 1827: 1823: 1817: 1815: 1804: 1802: 1798: 1794: 1789: 1785: 1780: 1776: 1772: 1768: 1758: 1756: 1752: 1748: 1744: 1740: 1736: 1730: 1728: 1721: 1717: 1714:(over a base 1713: 1709: 1704: 1702: 1695: 1691: 1684: 1680: 1676: 1672: 1668: 1664: 1660: 1656: 1653:Suppose that 1643: 1639: 1633: 1626: 1619: 1612: 1608: 1605: 1601: 1597: 1586: 1582: 1578: 1574: 1570: 1566: 1563: 1559: 1555: 1552: +  1551: 1547: 1543: 1539: 1535: 1531: 1527: 1523: 1516: 1512: 1505: 1501: 1497: 1493: 1489: 1485: 1481: 1477: 1473: 1469: 1462: 1458: 1451:, the group ÎŒ 1450: 1446: 1443: 1439: 1435: 1431: 1427: 1423: 1419: 1415: 1411: 1406: 1402: 1398: 1392: 1388: 1384: 1380: 1376: 1372: 1368: 1364: 1360: 1356: 1352: 1348: 1344: 1340: 1336: 1332: 1328: 1321: 1317: 1316: 1307: 1304:is closed in 1303: 1299: 1295: 1291: 1287: 1283: 1279: 1275: 1271: 1267: 1263: 1259: 1255: 1251: 1247: 1244: 1240: 1236: 1232: 1228: 1224: 1220: 1213: 1209: 1205: 1201: 1197: 1193: 1189: 1186: 1182: 1178: 1175: 1170: 1166: 1162: 1158: 1155: 1151: 1147: 1142: 1138: 1133: 1129: 1125: 1121: 1117: 1113: 1109: 1105: 1101: 1096: 1092: 1088: 1084: 1083: 1080:Constructions 1077: 1075: 1071: 1067: 1063: 1059: 1055: 1050: 1048: 1044: 1040: 1036: 1032: 1028: 1025:) on the set 1024: 1020: 1017:of the group 1016: 1012: 1008: 1001: 997: 993: 990: 985: 983: 979: 975: 971: 967: 963: 955: 954:group functor 952:. (See also: 951: 947: 943: 939: 935: 931: 927: 924: 920: 916: 912: 908: 904: 897: 893: 892: 891: 889: 885: 881: 877: 873: 863: 861: 857: 853: 849: 845: 841: 837: 833: 829: 825: 821: 817: 813: 809: 805: 801: 789: 784: 782: 777: 775: 770: 769: 767: 766: 759: 756: 755: 752: 749: 748: 745: 742: 741: 738: 735: 734: 731: 726: 725: 715: 712: 709: 708: 706: 700: 697: 695: 692: 691: 688: 685: 683: 680: 678: 675: 674: 671: 665: 663: 657: 655: 649: 647: 641: 639: 633: 632: 628: 624: 621: 620: 616: 612: 609: 608: 604: 600: 597: 596: 592: 588: 585: 584: 580: 576: 573: 572: 568: 564: 561: 560: 556: 552: 549: 548: 544: 540: 537: 536: 533: 530: 528: 525: 524: 521: 517: 512: 511: 504: 501: 499: 496: 494: 491: 490: 462: 437: 436: 434: 428: 425: 400: 397: 396: 390: 387: 385: 382: 381: 377: 376: 365: 362: 360: 357: 354: 351: 350: 349: 348: 345: 342: 341: 336: 333: 332: 329: 326: 325: 322: 319: 317: 315: 311: 310: 307: 304: 302: 299: 298: 295: 292: 290: 287: 286: 285: 284: 278: 275: 272: 267: 264: 263: 259: 254: 251: 248: 243: 240: 237: 232: 229: 228: 227: 226: 221: 220:Finite groups 216: 215: 204: 201: 199: 196: 195: 194: 193: 188: 185: 183: 180: 178: 175: 173: 170: 168: 165: 163: 160: 158: 155: 153: 150: 148: 145: 143: 140: 138: 135: 134: 133: 132: 127: 124: 122: 119: 118: 117: 116: 113: 112: 108: 107: 102: 99: 97: 94: 92: 89: 87: 84: 81: 79: 76: 75: 74: 73: 68: 65: 63: 60: 58: 55: 54: 53: 52: 47:Basic notions 44: 43: 39: 35: 34: 31: 26: 22: 18: 17: 2290: 2280: 2276: 2248: 2215: 2207: 2200: 2194: 2176: 2161: 2159: 2140: 2138: 2119: 2117: 2088: 2079: 2040:GIT quotient 2009: 2006: 2001: 1997: 1993: 1989: 1982: 1975: 1971: 1966: 1959: 1955: 1954:with finite 1951: 1947: 1944:Verschiebung 1939: 1935: 1931: 1928:Witt vectors 1923: 1919: 1915: 1911: 1907: 1903: 1899: 1892: 1888: 1886: 1868: 1848: 1840: 1836: 1829: 1825: 1821: 1818: 1813: 1805: 1796: 1792: 1787: 1783: 1778: 1774: 1770: 1766: 1764: 1750: 1746: 1742: 1741:over a base 1738: 1731: 1726: 1719: 1715: 1712:Hopf algebra 1705: 1700: 1693: 1689: 1682: 1678: 1674: 1666: 1662: 1658: 1654: 1652: 1631: 1624: 1617: 1610: 1603: 1599: 1595: 1584: 1580: 1576: 1572: 1568: 1561: 1557: 1553: 1549: 1545: 1541: 1537: 1533: 1529: 1525: 1521: 1514: 1503: 1499: 1495: 1491: 1487: 1483: 1479: 1475: 1471: 1467: 1460: 1456: 1448: 1441: 1437: 1433: 1429: 1425: 1421: 1417: 1413: 1409: 1404: 1400: 1390: 1386: 1378: 1374: 1370: 1366: 1362: 1358: 1354: 1350: 1346: 1342: 1338: 1334: 1330: 1326: 1319: 1305: 1301: 1297: 1293: 1289: 1285: 1281: 1277: 1273: 1269: 1265: 1261: 1257: 1253: 1249: 1242: 1238: 1234: 1230: 1226: 1222: 1218: 1211: 1207: 1203: 1199: 1195: 1191: 1187: 1180: 1149: 1140: 1136: 1131: 1127: 1123: 1119: 1115: 1111: 1103: 1099: 1094: 1090: 1086: 1073: 1069: 1065: 1061: 1057: 1053: 1051: 1038: 1034: 1030: 1026: 1022: 1018: 1010: 1006: 999: 995: 994:on a scheme 991: 986: 977: 973: 969: 965: 961: 959: 945: 929: 922: 918: 914: 910: 906: 902: 895: 887: 883: 879: 872:group object 869: 804:group scheme 803: 797: 626: 614: 602: 590: 578: 566: 554: 542: 313: 270: 257: 246: 235: 231:Cyclic group 109: 96:Free product 67:Group action 30:Group theory 25:Group theory 24: 2055:Group-stack 1828:, but over 1229:is affine, 1047:Lie algebra 1043:conjugation 800:mathematics 516:Topological 355:alternating 2331:Categories 2071:References 1482:such that 1033:) for any 948:under the 866:Definition 623:Symplectic 563:Orthogonal 520:Lie groups 427:Free group 152:continuous 91:Direct sum 2273:John Tate 1688:, and if 1217:for each 1154:monodromy 1072:-schemes 917:, and Îč: 687:Conformal 575:Euclidean 182:nilpotent 2289:(1979), 2247:(1984), 2214:(eds.), 2199:Laumon, 2087:(1967), 2024:See also 1708:spectrum 1528:-scheme 1470:-scheme 1420:-scheme 1329:-scheme 1313:Examples 1260:-scheme 1221:-scheme 1114:-scheme 1037:-scheme 886:-scheme 820:category 682:PoincarĂ© 527:Solenoid 399:Integers 389:Lattices 364:sporadic 359:Lie type 187:solvable 177:dihedral 162:additive 147:infinite 57:Subgroup 2321:0547117 2279:, from 2267:0907288 2238:0861972 2101:0232781 1661:. Let 1571:= 0 in 932:to the 828:kernels 812:schemes 677:Lorentz 599:Unitary 498:Lattice 438:PSL(2, 172:abelian 83:(Semi-) 2319:  2309:  2265:  2255:  2236:  2226:  2183:  2099:  1225:. If 1015:action 968:ÎŒ = ÎŒ( 532:Circle 463:SL(2, 352:cyclic 316:-group 167:cyclic 142:finite 137:simple 121:kernel 2014:Wiles 980:is a 909:, e: 874:in a 716:Sp(∞) 713:SU(∞) 126:image 2307:ISBN 2253:ISBN 2224:ISBN 2181:ISBN 1938:and 942:sets 858:and 846:and 838:and 802:, a 710:O(∞) 699:Loop 518:and 2299:doi 2162:153 2141:152 2120:151 1986:n+1 1934:. 1930:of 1918:}/( 1749:to 1697:red 1686:red 1677:. 1673:by 1616:by 1567:If 1506:, ÎŒ 1478:of 1428:by 1412:by 1381:. 1377:to 1365:to 1264:to 1126:. 1052:An 940:to 798:In 625:Sp( 613:SU( 589:SO( 553:SL( 541:GL( 2333:: 2317:MR 2315:, 2305:, 2297:, 2275:, 2263:MR 2261:, 2234:MR 2232:, 2097:MR 2095:, 2020:. 1981:→ 1974:: 1967:CW 1920:FV 1910:){ 1902:= 1803:. 1606:). 1602:/( 1494:/( 1401:GL 1369:⊗ 1351:xy 1349:/( 1272:)/ 1202:)( 1009:→ 987:A 972:× 956:.) 921:→ 913:→ 905:→ 854:, 601:U( 577:E( 565:O( 23:→ 2301:: 2208:p 2189:. 2164:) 2143:) 2122:) 2010:p 2002:F 1998:F 1994:D 1990:p 1983:W 1979:n 1976:W 1972:V 1960:k 1958:( 1956:W 1952:D 1948:k 1940:V 1936:F 1932:k 1924:p 1916:V 1914:, 1912:F 1908:k 1906:( 1904:W 1900:D 1893:p 1889:k 1849:p 1841:p 1837:p 1833:p 1830:F 1826:p 1822:p 1814:p 1809:2 1797:G 1793:S 1788:S 1784:O 1779:G 1775:O 1771:S 1767:G 1751:S 1747:G 1743:S 1739:G 1727:G 1723:S 1720:O 1716:S 1701:G 1694:G 1690:k 1683:G 1679:G 1675:G 1667:G 1663:G 1659:k 1655:G 1637:. 1635:a 1632:G 1628:m 1625:G 1621:m 1618:G 1614:a 1611:G 1604:x 1600:A 1596:A 1592:p 1588:a 1585:G 1581:p 1577:p 1573:S 1569:p 1564:. 1562:x 1558:x 1554:x 1550:x 1546:x 1542:x 1538:A 1534:A 1530:T 1526:S 1522:A 1518:a 1515:G 1508:p 1504:p 1500:n 1496:x 1492:A 1488:A 1484:f 1480:T 1476:f 1472:T 1468:S 1464:m 1461:G 1457:n 1453:n 1449:n 1442:n 1438:n 1434:T 1430:n 1426:n 1422:T 1418:S 1414:n 1410:n 1405:n 1394:m 1391:G 1387:S 1379:x 1375:x 1371:x 1367:x 1363:x 1359:x 1355:A 1347:A 1343:A 1339:Z 1337:( 1335:D 1331:T 1327:S 1323:m 1320:G 1306:G 1302:H 1298:H 1294:H 1290:G 1286:G 1282:H 1278:T 1276:( 1274:H 1270:T 1268:( 1266:G 1262:T 1258:S 1254:G 1250:H 1245:. 1243:S 1239:A 1235:A 1233:( 1231:D 1227:S 1223:T 1219:S 1215:T 1212:O 1208:A 1204:T 1200:A 1198:( 1196:D 1192:A 1190:( 1188:D 1181:A 1176:. 1150:S 1141:G 1137:S 1132:S 1128:G 1124:T 1120:G 1116:T 1112:S 1104:G 1100:S 1095:S 1091:G 1087:G 1074:T 1070:S 1066:T 1064:( 1062:G 1058:G 1054:S 1039:T 1035:S 1031:T 1029:( 1027:X 1023:T 1021:( 1019:G 1011:X 1007:X 1004:S 1002:× 1000:G 996:X 992:G 978:f 974:f 970:f 966:f 962:f 946:G 930:S 923:G 919:G 915:G 911:S 907:G 903:G 900:S 898:× 896:G 888:G 884:S 880:S 787:e 780:t 773:v 669:8 667:E 661:7 659:E 653:6 651:E 645:4 643:F 637:2 635:G 629:) 627:n 617:) 615:n 605:) 603:n 593:) 591:n 581:) 579:n 569:) 567:n 557:) 555:n 545:) 543:n 485:) 472:Z 460:) 447:Z 423:) 410:Z 401:( 314:p 279:Q 271:n 268:D 258:n 255:A 247:n 244:S 236:n 233:Z

Index

Algebraic structure
Group theory

Subgroup
Normal subgroup
Group action
Quotient group
(Semi-)
direct product
Direct sum
Free product
Wreath product
Group homomorphisms
kernel
image
simple
finite
infinite
continuous
multiplicative
additive
cyclic
abelian
dihedral
nilpotent
solvable
Glossary of group theory
List of group theory topics
Finite groups
Cyclic group

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑