Knowledge

Direct product of groups

Source 📝

4303: 41: 6629: 3613: 5563: 5301: 3181: 3926: 6347:
Unlike the direct product, elements of the free product cannot be represented by ordered pairs. In fact, the free product of any two nontrivial groups is infinite. The free product is actually the
3398: 3337: 3817: 3760: 3229: 2826: 2793: 2478:
This property is equivalent to property 3, since the elements of two normal subgroups with trivial intersection necessarily commute, a fact which can be deduced by considering the
2860: 2748: 6528: 486: 461: 424: 1628: 885: 3697: 3670: 3643: 3513: 3486: 3455: 3428: 1540: 1480: 3521: 5473: 5253: 5751:
of groups, this can be defined just like the finite direct product of above, with elements of the infinite direct product being infinite tuples.
3072: 788: 3828: 888: 6133:
It is also possible to relax the third condition entirely, requiring neither of the two subgroups to be normal. In this case, the group
5726:
This has many of the same properties as the direct product of two groups, and can be characterized algebraically in a similar way.
346: 6843: 6820: 6790: 6739: 6718: 3342: 3284: 296: 3765: 3708: 781: 291: 6688: 4943:
behave in a more complex manner since not all subgroups of direct products themselves decompose as direct products.
5226:. This automorphism group is infinite, but only finitely many of the automorphisms have the form given above. 707: 6782: 3195: 774: 5397:
are indecomposable, centerless groups, then the automorphism group is relatively straightforward, being Aut(
1278: 2798: 2765: 5734:
It is also possible to take the direct product of an infinite number of groups. For an infinite sequence
391: 205: 6510: 6436: 5826: 2839: 2727: 1370:
is the group of all vectors in the first quadrant under the operation of component-wise multiplication
123: 6026: 5430: 4177: 3458: 2318: 2132: 6141: 5446:
It is possible to take the direct product of more than two groups at once. Given a finite sequence
2377:
Together, these three properties completely determine the algebraic structure of the direct product
4073: 589: 323: 200: 469: 444: 407: 6862: 3263: 887:. Direct sums play an important role in the classification of abelian groups: according to the 6727: 1607: 864: 739: 529: 4874: 2901: 1936: 1357: 613: 6800: 6766: 6749: 5215: 3675: 3648: 3621: 3491: 3464: 3433: 3406: 2927: 2912: 1848: 553: 541: 159: 93: 8: 6408: 5359: 4294: 814: 128: 23: 3041:
through the center of the cube. A similar fact holds true for the symmetry group of an
6624:{\displaystyle G\times _{Q}H=\{\,(g,h)\in G\times H:\varphi (g)=\chi (h)\,\}{\text{.}}} 6424: 6352: 5986: 5972:, which consists of all elements that have only finitely many non-identity components. 4958: 4616: 4193: 4148: 4134: 4068: 3608:{\displaystyle G\times H=\langle S_{G}\cup S_{H}\mid R_{G}\cup R_{H}\cup R_{P}\rangle } 1525: 1465: 113: 85: 3012:
is the internal direct product of the subgroup of rotations and the two-element group
6839: 6816: 6786: 6735: 6714: 6684: 6364: 5558:{\displaystyle \prod _{i=1}^{n}G_{i}\;=\;G_{1}\times G_{2}\times \cdots \times G_{n}} 5296:{\displaystyle {\begin{bmatrix}\alpha &\beta \\\gamma &\delta \end{bmatrix}}} 4578: 1594: 843: 839: 518: 361: 255: 684: 6108:
is obtained by relaxing the third condition, so that only one of the two subgroups
5968:. Instead, these subgroups generate a subgroup of the direct product known as the 5358:
are homomorphisms. Such a matrix must have the property that every element in the
3038: 2953: 2523: 2019: 1803: 1598: 1263: 1099: 990: 669: 661: 653: 645: 637: 625: 565: 505: 495: 337: 279: 154: 6835: 6812: 6796: 6762: 6745: 6118:
is required to be normal. The resulting product still consists of ordered pairs
6079: 4680: 4356: 4104: 2998: 2465: 1155: 753: 746: 732: 689: 577: 500: 330: 244: 184: 64: 1071:
The resulting algebraic object satisfies the axioms for a group. Specifically:
5755: 5426: 4489: 3060: 3005: 2876: 2872: 847: 760: 696: 386: 366: 303: 268: 189: 179: 164: 149: 103: 80: 2287:
have the following three important properties: (Saying again that we identify
1727:
The direct product is commutative and associative up to isomorphism. That is,
6856: 6710: 6702: 6039: 5200: 4492:
of the direct products is isomorphic to the direct product of the quotients:
4444: 2942: 2364: 2331: 1799: 1089: 854: 679: 601: 435: 308: 174: 6166: 5230: 4130: 2886: 2062: 1452: 952: 892: 806: 534: 233: 222: 169: 144: 139: 98: 69: 32: 6660: 5219: 4786: 3176:{\displaystyle D_{4n}=\langle r,s\mid r^{2n}=s^{2}=1,sr=r^{-1}s\rangle .} 3042: 2448:
In some contexts, the third property above is replaced by the following:
1917: 1245: 802: 3921:{\displaystyle G\times H=\langle a,b\mid a^{3}=1,b^{5}=1,ab=ba\rangle .} 6774: 4940: 4302: 2479: 858: 701: 429: 6785:, vol. 211 (Revised third ed.), New York: Springer-Verlag, 6348: 522: 5947:
is not generated by the elements of the isomorphic subgroups { 
2227: 1249: 891:, every finite abelian group can be expressed as the direct sum of 59: 4355:
This is a special case of the universal property for products in
401: 315: 6130:, but with a slightly more complicated rule for multiplication. 2713:
is the internal direct product of the two-element subgroups {1,
2967:
is the internal direct product of the special orthogonal group
2172: 40: 6197:, is similar to the direct product, except that the subgroups 5592: 6761:(2nd ed.), Lexington, Mass.: Xerox College Publishing, 6734:(3rd ed.), Upper Saddle River, NJ: Prentice Hall Inc., 5928:
Unlike a finite direct product, the infinite direct product
4539:
Note that it is not true in general that every subgroup of
3009: 6051:
can be expressed uniquely as the product of an element of
2343:
can be expressed uniquely as the product of an element of
838:. This operation is the group-theoretic analogue of the 6021:
as long as it satisfies the following three conditions:
4751:
is simply the Cartesian product of a conjugacy class in
3266:
for the direct product in terms of the presentations of
2260:, respectively, then we can think of the direct product 5433:, and holds more generally for finite direct products. 5262: 3645:
is a set of relations specifying that each element of
3393:{\displaystyle \ \ H=\langle S_{H}\mid R_{H}\rangle ,} 6531: 5476: 5256: 5090:
It is not true in general that every automorphism of
4238:
be the projection homomorphisms. Then for any group
3831: 3768: 3711: 3678: 3651: 3624: 3524: 3494: 3467: 3436: 3409: 3345: 3332:{\displaystyle G=\langle S_{G}\mid R_{G}\rangle \ \ } 3287: 3198: 3075: 2842: 2801: 2768: 2730: 1610: 1528: 1468: 867: 857:, the direct product is sometimes referred to as the 472: 447: 410: 4606:
which is not the direct product of two subgroups of
3812:{\displaystyle \ \ H=\langle b\mid b^{5}=1\rangle } 3755:{\displaystyle G=\langle a\mid a^{3}=1\rangle \ \ } 2411:is necessarily isomorphic to the direct product of 6623: 5557: 5295: 4946: 4615:The subgroups of direct products are described by 3920: 3811: 3754: 3691: 3664: 3637: 3607: 3507: 3480: 3449: 3422: 3392: 3331: 3223: 3175: 2862:is the internal direct product of these subgroups. 2854: 2820: 2787: 2742: 1622: 1534: 1474: 879: 480: 455: 418: 6854: 5130:is any group, then there exists an automorphism 5075:has a subgroup isomorphic to the direct product 5188:For another example, the automorphism group of 3192:is the internal direct product of the subgroup 6427:, every subdirect product is a fiber product. 1360:under multiplication. Then the direct product 6683:(7 ed.). Cengage Learning. p. 157. 4801:is simply the product of the centralizers of 4638: 1806:of the direct product, up to isomorphism. If 941:The underlying set is the Cartesian product, 782: 6613: 6551: 5380:commutes with every element in the image of 5368:commutes with every element in the image of 3912: 3844: 3806: 3781: 3743: 3718: 3602: 3537: 3384: 3358: 3320: 3294: 3218: 3199: 3167: 3092: 2849: 2843: 2815: 2802: 2782: 2769: 2737: 2731: 889:fundamental theorem of finite abelian groups 828:and constructs a new group, usually denoted 5729: 4741:. It follows that each conjugacy class in 4567:is any non-trivial group, then the product 846:and is one of several important notions of 6250:    and     6219:are not required to commute. That is, if 5512: 5508: 4024:    and     789: 775: 6612: 6554: 5441: 474: 449: 412: 6829: 6756: 6726: 2405:that satisfy the properties above, then 2203:   and    2065:whose orders are relatively prime, then 1720: 6678: 6423:under the projection homomorphisms. By 6009:is isomorphic to the direct product of 4411:. For example, the isomorphic copy of 3224:{\displaystyle \langle r^{2},s\rangle } 6855: 5980: 4192:can be characterized by the following 2926:is the internal direct product of the 2894:of unit complex numbers and the group 2885:is the internal direct product of the 2140: 1916:This follows from the formula for the 347:Classification of finite simple groups 6701: 6358: 4278:, there exists a unique homomorphism 4171: 4166: 2821:{\displaystyle \langle a^{m}\rangle } 2788:{\displaystyle \langle a^{n}\rangle } 2242:, and the second being isomorphic to 6806: 6773: 6663:, then this is a subdirect product. 5374:, and every element in the image of 5146:that switches the two factors, i.e. 4119:(or vice versa). In the case where 2131:This fact is closely related to the 6830:Robinson, Derek John Scott (1996), 4620: 3931: 3238:) and the two-element subgroup {1, 2941:and the subgroup consisting of all 13: 6811:(3rd ed.), Berlin, New York: 5436: 3958:. Specifically, define functions 3936:As mentioned above, the subgroups 2266:as containing the original groups 1262:is the group of all two-component 14: 6874: 6430: 5975: 4887:is the product of the centers of 2855:{\displaystyle \langle a\rangle } 2743:{\displaystyle \langle a\rangle } 2171:, and consider the following two 1920:of the cartesian product of sets. 6832:A course in the theory of groups 6757:Herstein, Israel Nathan (1975), 6160: 4549:is the product of a subgroup of 4301: 3247: 2429:is sometimes referred to as the 2236:, the first being isomorphic to 2075:is cyclic as well. That is, if 2034:is the product of the orders of 1861:is the product of the orders of 1142:is the identity element of  39: 6513:, is the following subgroup of 5100:has the above form. (That is, 4947:Automorphisms and endomorphisms 4309:Specifically, the homomorphism 4157:and the composition factors of 2828:are cyclic subgroups of orders 813:is an operation that takes two 6672: 6609: 6603: 6594: 6588: 6567: 6555: 5112:is often a proper subgroup of 4151:of the composition factors of 3672:commutes with each element of 3278:. Specifically, suppose that 708:Infinite dimensional Lie group 1: 6783:Graduate Texts in Mathematics 6681:Contemporary Abstract Algebra 6666: 4293:making the following diagram 3515:are defining relations. Then 2979:and the two-element subgroup 2509: 2248:. If we identify these with 898: 5884:The product of two elements 5413:are not isomorphic, and Aut( 4979:, then the product function 4362: 3030:is the identity element and 2762:are relatively prime. Then 481:{\displaystyle \mathbb {Z} } 456:{\displaystyle \mathbb {Z} } 419:{\displaystyle \mathbb {Z} } 7: 6679:Gallian, Joseph A. (2010). 5657:is defined component-wise: 4619:. Other subgroups include 3252:The algebraic structure of 2750:be a cyclic group of order 2087:are relatively prime, then 1812:denotes the trivial group, 1252:. Then the direct product 1232: 1127:is the identity element of 1003:is defined component-wise: 206:List of group theory topics 10: 6879: 6437:Pullback (category theory) 6434: 6362: 6164: 5984: 5891:is defined componentwise: 5827:infinite Cartesian product 4639:Conjugacy and centralizers 4391:, then the direct product 4175: 2226:Both of these are in fact 1923:The order of each element 1098:The direct product has an 5754:More generally, given an 5218:with integer entries and 4766:Along the same lines, if 4757:and a conjugacy class in 4178:Product (category theory) 3231:(which is isomorphic to D 2671: 2636: 2601: 2568: 2559: 2552: 2545: 2540: 2537: 2133:Chinese remainder theorem 1623:{\displaystyle G\times H} 880:{\displaystyle G\oplus H} 5825:are the elements of the 5730:Infinite direct products 4478:is a normal subgroup of 4313:is given by the formula 2871:be the group of nonzero 1583:Then the direct product 1078:The binary operation on 324:Elementary abelian group 201:Glossary of group theory 6728:Herstein, Israel Nathan 6487:be homomorphisms. The 6057:and an element of  5861:with the property that 5429:. This is part of the 2431:internal direct product 2393:group having subgroups 2349:and an element of  1455:with two elements each: 1277:under the operation of 6625: 6282:are presentations for 5801:is defined as follows: 5568:is defined as follows: 5559: 5497: 5442:Finite direct products 5324:is an endomorphism of 5312:is an endomorphism of 5297: 5053:is an automorphism of 4973:is an automorphism of 4244:and any homomorphisms 4133:, it follows that the 3922: 3813: 3756: 3693: 3666: 3639: 3609: 3509: 3482: 3451: 3424: 3394: 3333: 3262:can be used to give a 3225: 3177: 2856: 2822: 2789: 2744: 2423:. In this situation, 2367:with every element of 1624: 1536: 1476: 936:is defined as follows: 881: 740:Linear algebraic group 482: 457: 420: 6809:Undergraduate Algebra 6626: 5560: 5477: 5431:Krull–Schmidt theorem 5298: 3923: 3814: 3757: 3694: 3692:{\displaystyle S_{H}} 3667: 3665:{\displaystyle S_{G}} 3640: 3638:{\displaystyle R_{P}} 3610: 3510: 3508:{\displaystyle R_{H}} 3483: 3481:{\displaystyle R_{G}} 3452: 3450:{\displaystyle S_{H}} 3425: 3423:{\displaystyle S_{G}} 3395: 3334: 3226: 3178: 2904:under multiplication. 2902:positive real numbers 2857: 2823: 2790: 2745: 2049:As a consequence, if 1937:least common multiple 1721:Elementary properties 1625: 1537: 1477: 1358:positive real numbers 882: 483: 458: 421: 6834:, Berlin, New York: 6807:Lang, Serge (2005), 6529: 6139:is referred to as a 5991:Recall that a group 5474: 5254: 5243:can be written as a 5124:.) For example, if 4078:, whose kernels are 3829: 3766: 3709: 3676: 3649: 3622: 3522: 3492: 3465: 3434: 3407: 3343: 3285: 3196: 3073: 2928:special linear group 2913:general linear group 2840: 2836:, respectively, and 2799: 2766: 2728: 2022:, then the order of 1851:of a direct product 1608: 1526: 1466: 865: 470: 445: 408: 16:Mathematical concept 6459:be groups, and let 6397:is any subgroup of 5981:Semidirect products 5970:infinite direct sum 5211:, the group of all 5063:. It follows that 4561:. For example, if 4555:with a subgroup of 4182:The direct product 4135:composition factors 2534: 2281:These subgroups of 2141:Algebraic structure 1630: 1542: 1482: 114:Group homomorphisms 24:Algebraic structure 6621: 6509:, also known as a 6359:Subdirect products 6353:category of groups 6187:, usually denoted 6142:Zappa–Szép product 6094:semidirect product 5987:Semidirect product 5838:; i.e., functions 5555: 5293: 5287: 5229:In general, every 4194:universal property 4172:Universal property 4167:Further properties 4147:are precisely the 3918: 3809: 3752: 3689: 3662: 3635: 3605: 3505: 3478: 3447: 3420: 3390: 3329: 3221: 3173: 2852: 2818: 2785: 2740: 2528: 1994:In particular, if 1620: 1604: 1532: 1522: 1472: 1462: 1216:is the inverse of 1198:is the inverse of 877: 853:In the context of 805:, specifically in 590:Special orthogonal 478: 453: 416: 297:Lagrange's theorem 6845:978-0-387-94461-6 6822:978-0-387-22025-3 6792:978-0-387-95385-4 6759:Topics in algebra 6741:978-0-13-374562-7 6720:978-0-89871-510-1 6619: 6383:subdirect product 6365:Subdirect product 6045:Every element of 5639:The operation on 5425:, wr denotes the 4735:are conjugate in 4711:are conjugate in 4579:diagonal subgroup 4488:. Moreover, the 4468:are normal, then 4401:is a subgroup of 4385:is a subgroup of 4373:is a subgroup of 3774: 3771: 3751: 3748: 3351: 3348: 3328: 3325: 3052:be odd, and let D 2911:is odd, then the 2706: 2705: 2433:of its subgroups 2358:Every element of 2337:Every element of 2313:, respectively.) 1939:of the orders of 1718: 1717: 1578: 1577: 1535:{\displaystyle H} 1518: 1517: 1475:{\displaystyle G} 1404:)  =  ( 1315:)  =  ( 861:, and is denoted 840:Cartesian product 799: 798: 374: 373: 256:Alternating group 213: 212: 6870: 6848: 6825: 6803: 6769: 6752: 6732:Abstract algebra 6723: 6695: 6694: 6676: 6658: 6644: 6630: 6628: 6627: 6622: 6620: 6617: 6544: 6543: 6522: 6508: 6502: 6496: 6486: 6472: 6458: 6452: 6446: 6422: 6416: 6406: 6396: 6390: 6380: 6374: 6342: 6323: 6306: 6293: 6287: 6277: 6265: 6255: 6249: 6237: 6227: 6218: 6208: 6202: 6196: 6186: 6180: 6156: 6150: 6138: 6129: 6117: 6107: 6101: 6087: 6077: 6071: 6062: 6056: 6050: 6037: 6020: 6014: 6008: 6002: 5996: 5967: 5955: 5946: 5920: 5904: 5890: 5880: 5874: 5860: 5837: 5824: 5806:The elements of 5800: 5778: 5766: 5750: 5718: 5690: 5656: 5635: 5629: 5613: 5590: 5573:The elements of 5564: 5562: 5561: 5556: 5554: 5553: 5535: 5534: 5522: 5521: 5507: 5506: 5496: 5491: 5463: 5385: 5379: 5373: 5367: 5357: 5343: 5329: 5323: 5317: 5311: 5302: 5300: 5299: 5294: 5292: 5291: 5246: 5242: 5225: 5214: 5210: 5197: 5183: 5145: 5135: 5129: 5123: 5111: 5099: 5086: 5074: 5062: 5049: 5004: 4978: 4972: 4966: 4956: 4935: 4916: 4898: 4892: 4886: 4868: 4839: 4812: 4806: 4800: 4784: 4762: 4756: 4750: 4740: 4734: 4725: 4716: 4710: 4701: 4692: 4678: 4660: 4634: 4628: 4611: 4602: 4576: 4566: 4560: 4554: 4548: 4534: 4516: 4487: 4477: 4467: 4461: 4452: 4442: 4441: 4436: 4435: 4426: 4416: 4410: 4400: 4390: 4384: 4378: 4372: 4350: 4322:)  =  4312: 4305: 4292: 4277: 4260: 4243: 4237: 4216: 4191: 4162: 4156: 4146: 4128: 4118: 4112: 4102: 4093:It follows that 4090:, respectively. 4089: 4083: 4066: 4057: 4044: 4023: 3999: 3978: 3957: 3947: 3941: 3932:Normal structure 3927: 3925: 3924: 3919: 3887: 3886: 3868: 3867: 3818: 3816: 3815: 3810: 3799: 3798: 3772: 3769: 3761: 3759: 3758: 3753: 3749: 3746: 3736: 3735: 3698: 3696: 3695: 3690: 3688: 3687: 3671: 3669: 3668: 3663: 3661: 3660: 3644: 3642: 3641: 3636: 3634: 3633: 3614: 3612: 3611: 3606: 3601: 3600: 3588: 3587: 3575: 3574: 3562: 3561: 3549: 3548: 3514: 3512: 3511: 3506: 3504: 3503: 3487: 3485: 3484: 3479: 3477: 3476: 3456: 3454: 3453: 3448: 3446: 3445: 3429: 3427: 3426: 3421: 3419: 3418: 3399: 3397: 3396: 3391: 3383: 3382: 3370: 3369: 3349: 3346: 3338: 3336: 3335: 3330: 3326: 3323: 3319: 3318: 3306: 3305: 3277: 3271: 3261: 3230: 3228: 3227: 3222: 3211: 3210: 3182: 3180: 3179: 3174: 3163: 3162: 3132: 3131: 3119: 3118: 3088: 3087: 3039:point reflection 3036: 3029: 3023: 2996: 2990: 2978: 2966: 2954:orthogonal group 2948:Similarly, when 2940: 2925: 2899: 2893: 2884: 2870: 2861: 2859: 2858: 2853: 2827: 2825: 2824: 2819: 2814: 2813: 2794: 2792: 2791: 2786: 2781: 2780: 2749: 2747: 2746: 2741: 2712: 2702: 2697: 2690: 2683: 2676: 2667: 2660: 2655: 2648: 2641: 2632: 2625: 2618: 2613: 2606: 2597: 2590: 2583: 2576: 2571: 2564: 2557: 2550: 2543: 2535: 2533: 2527: 2524:Klein four-group 2521: 2505: 2499: 2493: 2487: 2473: 2463: 2457: 2444: 2438: 2428: 2422: 2416: 2410: 2404: 2398: 2388: 2382: 2372: 2363: 2354: 2348: 2342: 2329: 2312: 2306: 2300: 2293: 2286: 2277: 2271: 2265: 2259: 2253: 2247: 2241: 2235: 2221: 2202: 2180: 2170: 2156: 2150: 2127: 2116: 2086: 2080: 2074: 2060: 2054: 2045: 2039: 2033: 2020:relatively prime 2017: 2016: 2010: 2005: 2004: 1998: 1990: 1989: 1983: 1979: 1973: 1969: 1957: 1950: 1944: 1934: 1912: 1911: 1905: 1902: 1899: 1893: 1889: 1879: 1872: 1866: 1860: 1843: 1837: 1829: 1819: 1811: 1804:identity element 1794: 1788: 1782: 1776: 1763: 1746: 1738: 1631: 1629: 1627: 1626: 1621: 1603: 1599:Klein four-group 1592: 1543: 1541: 1539: 1538: 1533: 1521: 1483: 1481: 1479: 1478: 1473: 1461: 1450: 1444: 1433: 1369: 1356:be the group of 1355: 1344: 1276: 1261: 1244:be the group of 1243: 1227: 1221: 1215: 1209: 1203: 1197: 1191: 1179: 1169: 1147: 1141: 1132: 1126: 1117: 1100:identity element 1087: 1064: 1002: 991:binary operation 985: 975: 965: 950: 935: 922: 919:(with operation 918: 912: 909:(with operation 908: 886: 884: 883: 878: 850:in mathematics. 837: 827: 821: 791: 784: 777: 733:Algebraic groups 506:Hyperbolic group 496:Arithmetic group 487: 485: 484: 479: 477: 462: 460: 459: 454: 452: 425: 423: 422: 417: 415: 338:Schur multiplier 292:Cauchy's theorem 280:Quaternion group 228: 227: 54: 53: 43: 30: 19: 18: 6878: 6877: 6873: 6872: 6871: 6869: 6868: 6867: 6853: 6852: 6846: 6836:Springer-Verlag 6823: 6813:Springer-Verlag 6793: 6742: 6721: 6698: 6691: 6677: 6673: 6669: 6646: 6632: 6616: 6539: 6535: 6530: 6527: 6526: 6514: 6504: 6498: 6492: 6474: 6460: 6454: 6448: 6442: 6439: 6433: 6425:Goursat's lemma 6418: 6412: 6398: 6392: 6386: 6376: 6370: 6367: 6361: 6339: 6332: 6327: 6326: 6321: 6314: 6308: 6298: 6289: 6283: 6274: 6269: 6268: 6263: 6257: 6251: 6246: 6241: 6240: 6235: 6229: 6223: 6210: 6204: 6198: 6188: 6182: 6176: 6169: 6163: 6152: 6146: 6134: 6119: 6109: 6103: 6097: 6083: 6073: 6067: 6058: 6052: 6046: 6029: 6016: 6010: 6004: 5998: 5997:with subgroups 5992: 5989: 5983: 5978: 5966: 5957: 5953: 5948: 5944: 5939: 5929: 5926: 5906: 5894: 5885: 5876: 5872: 5862: 5858: 5853: 5839: 5835: 5830: 5822: 5817: 5807: 5798: 5793: 5783: 5779:of groups, the 5777: 5768: 5764: 5759: 5748: 5741: 5735: 5732: 5724: 5715: 5711: 5705: 5699: 5692: 5687: 5681: 5673: 5667: 5660: 5655: 5646: 5640: 5631: 5627: 5620: 5615: 5611: 5602: 5595: 5589: 5580: 5574: 5549: 5545: 5530: 5526: 5517: 5513: 5502: 5498: 5492: 5481: 5475: 5472: 5471: 5464:of groups, the 5462: 5453: 5447: 5444: 5439: 5437:Generalizations 5381: 5375: 5369: 5363: 5345: 5331: 5325: 5319: 5313: 5307: 5286: 5285: 5280: 5274: 5273: 5268: 5258: 5257: 5255: 5252: 5251: 5244: 5234: 5223: 5212: 5199: 5189: 5181: 5174: 5167: 5160: 5150: 5137: 5131: 5125: 5113: 5101: 5091: 5076: 5064: 5054: 5048: 5029: 5009: 4980: 4974: 4968: 4962: 4952: 4949: 4918: 4903: 4894: 4888: 4878: 4873:Similarly, the 4862: 4849: 4841: 4829: 4817: 4808: 4802: 4790: 4767: 4758: 4752: 4742: 4736: 4733: 4727: 4724: 4718: 4712: 4709: 4703: 4700: 4694: 4693:if and only if 4684: 4676: 4669: 4662: 4658: 4651: 4644: 4641: 4630: 4624: 4617:Goursat's lemma 4607: 4584: 4568: 4562: 4556: 4550: 4540: 4514: 4496: 4479: 4469: 4463: 4457: 4448: 4439: 4438: 4433: 4428: 4427:is the product 4418: 4412: 4402: 4392: 4386: 4380: 4374: 4368: 4365: 4357:category theory 4349: 4341: 4331: 4325: 4317: 4310: 4279: 4268: 4262: 4251: 4245: 4239: 4223: 4218: 4202: 4197: 4183: 4180: 4174: 4169: 4158: 4152: 4138: 4120: 4114: 4108: 4094: 4085: 4079: 4064: 4059: 4055: 4050: 4030: 4025: 4009: 4004: 3985: 3980: 3964: 3959: 3949: 3943: 3937: 3934: 3882: 3878: 3863: 3859: 3830: 3827: 3826: 3794: 3790: 3767: 3764: 3763: 3731: 3727: 3710: 3707: 3706: 3702:For example if 3683: 3679: 3677: 3674: 3673: 3656: 3652: 3650: 3647: 3646: 3629: 3625: 3623: 3620: 3619: 3596: 3592: 3583: 3579: 3570: 3566: 3557: 3553: 3544: 3540: 3523: 3520: 3519: 3499: 3495: 3493: 3490: 3489: 3472: 3468: 3466: 3463: 3462: 3459:generating sets 3457:are (disjoint) 3441: 3437: 3435: 3432: 3431: 3414: 3410: 3408: 3405: 3404: 3378: 3374: 3365: 3361: 3344: 3341: 3340: 3314: 3310: 3301: 3297: 3286: 3283: 3282: 3273: 3267: 3253: 3250: 3245: 3237: 3206: 3202: 3197: 3194: 3193: 3191: 3155: 3151: 3127: 3123: 3111: 3107: 3080: 3076: 3074: 3071: 3070: 3058: 3031: 3025: 3013: 2999:identity matrix 2992: 2980: 2968: 2956: 2943:scalar matrices 2930: 2915: 2895: 2889: 2880: 2873:complex numbers 2866: 2841: 2838: 2837: 2809: 2805: 2800: 2797: 2796: 2776: 2772: 2767: 2764: 2763: 2729: 2726: 2725: 2708: 2700: 2693: 2686: 2679: 2672: 2663: 2658: 2651: 2644: 2637: 2628: 2621: 2616: 2609: 2602: 2593: 2586: 2579: 2574: 2569: 2560: 2553: 2546: 2541: 2529: 2517: 2512: 2501: 2495: 2489: 2483: 2469: 2459: 2453: 2452:3′.  Both 2440: 2434: 2424: 2418: 2412: 2406: 2400: 2394: 2384: 2383:. That is, if 2378: 2368: 2359: 2350: 2344: 2338: 2321: 2308: 2302: 2295: 2288: 2282: 2273: 2267: 2261: 2255: 2249: 2243: 2237: 2231: 2204: 2185: 2176: 2158: 2157:be groups, let 2152: 2146: 2143: 2138: 2114: 2090: 2082: 2076: 2066: 2056: 2050: 2041: 2035: 2023: 2014: 2008: 2007: 2002: 1996: 1995: 1987: 1981: 1977: 1971: 1967: 1955: 1954: 1946: 1940: 1924: 1909: 1903: 1900: 1897: 1891: 1887: 1877: 1876: 1868: 1862: 1852: 1839: 1838:for any groups 1827: 1817: 1813: 1807: 1790: 1784: 1778: 1777:for any groups 1761: 1748: 1736: 1728: 1723: 1609: 1606: 1605: 1584: 1581: 1527: 1524: 1523: 1467: 1464: 1463: 1446: 1440: 1431: 1424: 1417: 1410: 1403: 1396: 1389: 1382: 1375: 1361: 1351: 1342: 1335: 1328: 1321: 1314: 1307: 1300: 1293: 1286: 1279:vector addition 1266: 1253: 1239: 1235: 1223: 1217: 1211: 1205: 1199: 1193: 1181: 1171: 1159: 1143: 1140: 1134: 1128: 1125: 1119: 1115: 1109: 1103: 1079: 1069: 1062: 1055: 1048: 1041: 1034: 1027: 1020: 1013: 1006: 994: 977: 967: 955: 951:. That is, the 942: 927: 920: 914: 910: 904: 901: 866: 863: 862: 829: 823: 817: 795: 766: 765: 754:Abelian variety 747:Reductive group 735: 725: 724: 723: 722: 673: 665: 657: 649: 641: 614:Special unitary 525: 511: 510: 492: 491: 473: 471: 468: 467: 448: 446: 443: 442: 411: 409: 406: 405: 397: 396: 387:Discrete groups 376: 375: 331:Frobenius group 276: 263: 252: 245:Symmetric group 241: 225: 215: 214: 65:Normal subgroup 51: 31: 22: 17: 12: 11: 5: 6876: 6866: 6865: 6863:Group products 6851: 6850: 6844: 6827: 6821: 6804: 6791: 6771: 6754: 6740: 6724: 6719: 6703:Artin, Michael 6697: 6696: 6689: 6670: 6668: 6665: 6615: 6611: 6608: 6605: 6602: 6599: 6596: 6593: 6590: 6587: 6584: 6581: 6578: 6575: 6572: 6569: 6566: 6563: 6560: 6557: 6553: 6550: 6547: 6542: 6538: 6534: 6435:Main article: 6432: 6431:Fiber products 6429: 6381:are groups, a 6363:Main article: 6360: 6357: 6345: 6344: 6337: 6330: 6324: 6319: 6312: 6280: 6279: 6272: 6266: 6261: 6244: 6238: 6233: 6165:Main article: 6162: 6159: 6090: 6089: 6064: 6043: 5985:Main article: 5982: 5979: 5977: 5976:Other products 5974: 5958: 5951: 5942: 5931: 5925: 5924: 5923: 5922: 5882: 5875:for each  5870: 5856: 5845: 5833: 5820: 5809: 5803: 5796: 5785: 5781:direct product 5769: 5762: 5756:indexed family 5746: 5739: 5731: 5728: 5723: 5722: 5721: 5720: 5713: 5709: 5703: 5697: 5685: 5679: 5671: 5665: 5651: 5644: 5637: 5625: 5618: 5607: 5600: 5585: 5578: 5570: 5566: 5565: 5552: 5548: 5544: 5541: 5538: 5533: 5529: 5525: 5520: 5516: 5511: 5505: 5501: 5495: 5490: 5487: 5484: 5480: 5466:direct product 5458: 5451: 5443: 5440: 5438: 5435: 5427:wreath product 5304: 5303: 5290: 5284: 5281: 5279: 5276: 5275: 5272: 5269: 5267: 5264: 5263: 5261: 5186: 5185: 5179: 5172: 5165: 5158: 5051: 5050: 5046: 5027: 4948: 4945: 4938: 4937: 4917: =  4871: 4870: 4858: 4845: 4840: =  4821: 4731: 4722: 4707: 4698: 4674: 4667: 4656: 4649: 4640: 4637: 4621:fiber products 4604: 4603: 4537: 4536: 4364: 4361: 4353: 4352: 4347: 4337: 4327: 4323: 4307: 4306: 4264: 4247: 4221: 4200: 4176:Main article: 4173: 4170: 4168: 4165: 4062: 4053: 4047: 4046: 4028: 4007: 3983: 3962: 3948:are normal in 3933: 3930: 3929: 3928: 3917: 3914: 3911: 3908: 3905: 3902: 3899: 3896: 3893: 3890: 3885: 3881: 3877: 3874: 3871: 3866: 3862: 3858: 3855: 3852: 3849: 3846: 3843: 3840: 3837: 3834: 3820: 3819: 3808: 3805: 3802: 3797: 3793: 3789: 3786: 3783: 3780: 3777: 3745: 3742: 3739: 3734: 3730: 3726: 3723: 3720: 3717: 3714: 3686: 3682: 3659: 3655: 3632: 3628: 3616: 3615: 3604: 3599: 3595: 3591: 3586: 3582: 3578: 3573: 3569: 3565: 3560: 3556: 3552: 3547: 3543: 3539: 3536: 3533: 3530: 3527: 3502: 3498: 3475: 3471: 3444: 3440: 3417: 3413: 3401: 3400: 3389: 3386: 3381: 3377: 3373: 3368: 3364: 3360: 3357: 3354: 3322: 3317: 3313: 3309: 3304: 3300: 3296: 3293: 3290: 3249: 3246: 3244: 3243: 3232: 3220: 3217: 3214: 3209: 3205: 3201: 3186: 3184: 3183: 3172: 3169: 3166: 3161: 3158: 3154: 3150: 3147: 3144: 3141: 3138: 3135: 3130: 3126: 3122: 3117: 3114: 3110: 3106: 3103: 3100: 3097: 3094: 3091: 3086: 3083: 3079: 3061:dihedral group 3053: 3046: 3006:symmetry group 3002: 2946: 2905: 2877:multiplication 2863: 2851: 2848: 2845: 2817: 2812: 2808: 2804: 2784: 2779: 2775: 2771: 2739: 2736: 2733: 2722: 2704: 2703: 2698: 2691: 2684: 2677: 2669: 2668: 2661: 2656: 2649: 2642: 2634: 2633: 2626: 2619: 2614: 2607: 2599: 2598: 2591: 2584: 2577: 2572: 2566: 2565: 2558: 2551: 2544: 2539: 2513: 2511: 2508: 2476: 2475: 2375: 2374: 2356: 2335: 2278:as subgroups. 2224: 2223: 2142: 2139: 2137: 2136: 2130: 2129: 2047: 1993: 1992: 1921: 1915: 1914: 1845: 1796: 1724: 1722: 1719: 1716: 1715: 1712: 1709: 1706: 1703: 1699: 1698: 1695: 1692: 1689: 1686: 1682: 1681: 1678: 1675: 1672: 1669: 1665: 1664: 1661: 1658: 1655: 1652: 1648: 1647: 1644: 1641: 1638: 1635: 1619: 1616: 1613: 1580: 1579: 1576: 1575: 1572: 1569: 1565: 1564: 1561: 1558: 1554: 1553: 1550: 1547: 1531: 1519: 1516: 1515: 1512: 1509: 1505: 1504: 1501: 1498: 1494: 1493: 1490: 1487: 1471: 1458: 1457: 1456: 1436: 1435: 1429: 1422: 1415: 1408: 1401: 1394: 1387: 1380: 1372: 1371: 1347: 1346: 1340: 1333: 1326: 1319: 1312: 1305: 1298: 1291: 1283: 1282: 1234: 1231: 1230: 1229: 1158:of an element 1152: 1149: 1136: 1121: 1111: 1105: 1096: 1093: 1076: 1068: 1067: 1066: 1065: 1060: 1053: 1046: 1039: 1032: 1025: 1018: 1011: 987: 938: 925:direct product 900: 897: 876: 873: 870: 855:abelian groups 848:direct product 811:direct product 797: 796: 794: 793: 786: 779: 771: 768: 767: 764: 763: 761:Elliptic curve 757: 756: 750: 749: 743: 742: 736: 731: 730: 727: 726: 721: 720: 717: 714: 710: 706: 705: 704: 699: 697:Diffeomorphism 693: 692: 687: 682: 676: 675: 671: 667: 663: 659: 655: 651: 647: 643: 639: 634: 633: 622: 621: 610: 609: 598: 597: 586: 585: 574: 573: 562: 561: 554:Special linear 550: 549: 542:General linear 538: 537: 532: 526: 517: 516: 513: 512: 509: 508: 503: 498: 490: 489: 476: 464: 451: 438: 436:Modular groups 434: 433: 432: 427: 414: 398: 395: 394: 389: 383: 382: 381: 378: 377: 372: 371: 370: 369: 364: 359: 356: 350: 349: 343: 342: 341: 340: 334: 333: 327: 326: 321: 312: 311: 309:Hall's theorem 306: 304:Sylow theorems 300: 299: 294: 286: 285: 284: 283: 277: 272: 269:Dihedral group 265: 264: 259: 253: 248: 242: 237: 226: 221: 220: 217: 216: 211: 210: 209: 208: 203: 195: 194: 193: 192: 187: 182: 177: 172: 167: 162: 160:multiplicative 157: 152: 147: 142: 134: 133: 132: 131: 126: 118: 117: 109: 108: 107: 106: 104:Wreath product 101: 96: 91: 89:direct product 83: 81:Quotient group 75: 74: 73: 72: 67: 62: 52: 49: 48: 45: 44: 36: 35: 15: 9: 6: 4: 3: 2: 6875: 6864: 6861: 6860: 6858: 6847: 6841: 6837: 6833: 6828: 6824: 6818: 6814: 6810: 6805: 6802: 6798: 6794: 6788: 6784: 6780: 6776: 6772: 6768: 6764: 6760: 6755: 6751: 6747: 6743: 6737: 6733: 6729: 6725: 6722: 6716: 6712: 6711:Prentice Hall 6708: 6704: 6700: 6699: 6692: 6690:9780547165097 6686: 6682: 6675: 6671: 6664: 6662: 6657: 6653: 6649: 6643: 6639: 6635: 6606: 6600: 6597: 6591: 6585: 6582: 6579: 6576: 6573: 6570: 6564: 6561: 6558: 6548: 6545: 6540: 6536: 6532: 6524: 6521: 6517: 6512: 6507: 6501: 6495: 6490: 6489:fiber product 6485: 6481: 6477: 6471: 6467: 6463: 6457: 6451: 6445: 6438: 6428: 6426: 6421: 6415: 6410: 6405: 6401: 6395: 6389: 6384: 6379: 6373: 6366: 6356: 6354: 6350: 6340: 6333: 6322: 6315: 6305: 6301: 6297: 6296: 6295: 6292: 6286: 6275: 6264: 6254: 6247: 6236: 6226: 6222: 6221: 6220: 6217: 6213: 6207: 6201: 6195: 6191: 6185: 6179: 6174: 6168: 6161:Free products 6158: 6155: 6149: 6144: 6143: 6137: 6131: 6127: 6123: 6116: 6112: 6106: 6100: 6095: 6086: 6081: 6076: 6070: 6065: 6061: 6055: 6049: 6044: 6041: 6036: 6032: 6028: 6024: 6023: 6022: 6019: 6013: 6007: 6001: 5995: 5988: 5973: 5971: 5965: 5961: 5954: 5945: 5938: 5934: 5918: 5914: 5910: 5902: 5898: 5893: 5892: 5889: 5883: 5879: 5873: 5866: 5859: 5852: 5848: 5843: 5836: 5828: 5823: 5816: 5812: 5805: 5804: 5802: 5799: 5792: 5788: 5782: 5776: 5772: 5765: 5757: 5752: 5745: 5738: 5727: 5716: 5702: 5696: 5688: 5678: 5674: 5664: 5659: 5658: 5654: 5650: 5643: 5638: 5634: 5628: 5621: 5610: 5606: 5599: 5594: 5588: 5584: 5577: 5572: 5571: 5569: 5550: 5546: 5542: 5539: 5536: 5531: 5527: 5523: 5518: 5514: 5509: 5503: 5499: 5493: 5488: 5485: 5482: 5478: 5470: 5469: 5468: 5467: 5461: 5457: 5450: 5434: 5432: 5428: 5424: 5420: 5416: 5412: 5408: 5404: 5400: 5396: 5392: 5387: 5384: 5378: 5372: 5366: 5361: 5356: 5352: 5348: 5342: 5338: 5334: 5328: 5322: 5316: 5310: 5288: 5282: 5277: 5270: 5265: 5259: 5250: 5249: 5248: 5241: 5237: 5232: 5227: 5221: 5217: 5209: 5207: 5203: 5196: 5192: 5178: 5171: 5164: 5157: 5153: 5149: 5148: 5147: 5144: 5140: 5134: 5128: 5121: 5117: 5109: 5105: 5098: 5094: 5088: 5084: 5080: 5072: 5068: 5061: 5057: 5044: 5040: 5036: 5032: 5025: 5021: 5017: 5013: 5008: 5007: 5006: 5003: 4999: 4995: 4991: 4987: 4983: 4977: 4971: 4965: 4960: 4955: 4944: 4942: 4933: 4929: 4925: 4921: 4914: 4910: 4906: 4902: 4901: 4900: 4897: 4891: 4885: 4881: 4876: 4866: 4861: 4857: 4853: 4848: 4844: 4837: 4833: 4828: 4824: 4820: 4816: 4815: 4814: 4811: 4805: 4798: 4794: 4788: 4783: 4779: 4775: 4771: 4764: 4761: 4755: 4749: 4745: 4739: 4730: 4721: 4715: 4706: 4697: 4691: 4687: 4682: 4673: 4666: 4655: 4648: 4643:Two elements 4636: 4633: 4627: 4622: 4618: 4613: 4610: 4600: 4596: 4592: 4588: 4583: 4582: 4581: 4580: 4575: 4571: 4565: 4559: 4553: 4547: 4543: 4532: 4528: 4524: 4520: 4512: 4508: 4504: 4500: 4495: 4494: 4493: 4491: 4486: 4482: 4476: 4472: 4466: 4460: 4454: 4451: 4446: 4431: 4425: 4421: 4415: 4409: 4405: 4399: 4395: 4389: 4383: 4377: 4371: 4360: 4358: 4345: 4340: 4335: 4330: 4321: 4316: 4315: 4314: 4304: 4300: 4299: 4298: 4296: 4291: 4287: 4283: 4276: 4272: 4267: 4259: 4255: 4250: 4242: 4236: 4232: 4228: 4224: 4215: 4211: 4207: 4203: 4195: 4190: 4186: 4179: 4164: 4161: 4155: 4150: 4145: 4141: 4136: 4132: 4127: 4123: 4117: 4111: 4106: 4101: 4097: 4091: 4088: 4082: 4077: 4076:homomorphisms 4075: 4070: 4069:homomorphisms 4065: 4056: 4043: 4039: 4035: 4031: 4022: 4018: 4014: 4010: 4003: 4002: 4001: 3998: 3994: 3990: 3986: 3977: 3973: 3969: 3965: 3956: 3952: 3946: 3940: 3915: 3909: 3906: 3903: 3900: 3897: 3894: 3891: 3888: 3883: 3879: 3875: 3872: 3869: 3864: 3860: 3856: 3853: 3850: 3847: 3841: 3838: 3835: 3832: 3825: 3824: 3823: 3803: 3800: 3795: 3791: 3787: 3784: 3778: 3775: 3740: 3737: 3732: 3728: 3724: 3721: 3715: 3712: 3705: 3704: 3703: 3700: 3684: 3680: 3657: 3653: 3630: 3626: 3597: 3593: 3589: 3584: 3580: 3576: 3571: 3567: 3563: 3558: 3554: 3550: 3545: 3541: 3534: 3531: 3528: 3525: 3518: 3517: 3516: 3500: 3496: 3473: 3469: 3460: 3442: 3438: 3415: 3411: 3387: 3379: 3375: 3371: 3366: 3362: 3355: 3352: 3315: 3311: 3307: 3302: 3298: 3291: 3288: 3281: 3280: 3279: 3276: 3270: 3265: 3260: 3256: 3248:Presentations 3241: 3236: 3215: 3212: 3207: 3203: 3190: 3170: 3164: 3159: 3156: 3152: 3148: 3145: 3142: 3139: 3136: 3133: 3128: 3124: 3120: 3115: 3112: 3108: 3104: 3101: 3098: 3095: 3089: 3084: 3081: 3077: 3069: 3068: 3066: 3062: 3057: 3051: 3047: 3044: 3040: 3035: 3028: 3021: 3017: 3011: 3007: 3003: 3000: 2995: 2988: 2984: 2976: 2972: 2964: 2960: 2955: 2951: 2947: 2944: 2938: 2934: 2929: 2923: 2919: 2914: 2910: 2906: 2903: 2898: 2892: 2888: 2883: 2878: 2874: 2869: 2864: 2846: 2835: 2831: 2810: 2806: 2777: 2773: 2761: 2757: 2753: 2734: 2723: 2720: 2716: 2711: 2699: 2696: 2692: 2689: 2685: 2682: 2678: 2675: 2670: 2666: 2662: 2657: 2654: 2650: 2647: 2643: 2640: 2635: 2631: 2627: 2624: 2620: 2615: 2612: 2608: 2605: 2600: 2596: 2592: 2589: 2585: 2582: 2578: 2573: 2567: 2563: 2556: 2549: 2536: 2532: 2525: 2520: 2515: 2514: 2507: 2504: 2498: 2492: 2486: 2481: 2472: 2467: 2462: 2456: 2451: 2450: 2449: 2446: 2443: 2437: 2432: 2427: 2421: 2415: 2409: 2403: 2397: 2392: 2387: 2381: 2371: 2366: 2362: 2357: 2353: 2347: 2341: 2336: 2333: 2328: 2324: 2320: 2316: 2315: 2314: 2311: 2305: 2298: 2291: 2285: 2279: 2276: 2270: 2264: 2258: 2252: 2246: 2240: 2234: 2229: 2219: 2215: 2211: 2207: 2200: 2196: 2192: 2188: 2184: 2183: 2182: 2179: 2174: 2169: 2165: 2161: 2155: 2149: 2134: 2126: 2123: 2119: 2112: 2109: 2105: 2101: 2098: 2094: 2089: 2088: 2085: 2079: 2073: 2069: 2064: 2063:cyclic groups 2059: 2053: 2048: 2044: 2038: 2031: 2027: 2021: 2013: 2001: 1986: 1976: 1965: 1961: 1953: 1952: 1949: 1943: 1938: 1932: 1928: 1922: 1919: 1908: 1896: 1886: 1882: 1875: 1874: 1871: 1865: 1859: 1855: 1850: 1846: 1842: 1836: 1832: 1826: 1822: 1816: 1810: 1805: 1801: 1800:trivial group 1797: 1793: 1787: 1781: 1774: 1770: 1766: 1760: 1756: 1752: 1745: 1741: 1735: 1731: 1726: 1725: 1713: 1710: 1707: 1704: 1701: 1700: 1696: 1693: 1690: 1687: 1684: 1683: 1679: 1676: 1673: 1670: 1667: 1666: 1662: 1659: 1656: 1653: 1650: 1649: 1645: 1642: 1639: 1636: 1633: 1632: 1617: 1614: 1611: 1602: 1600: 1596: 1591: 1587: 1573: 1570: 1567: 1566: 1562: 1559: 1556: 1555: 1551: 1548: 1545: 1544: 1529: 1520: 1513: 1510: 1507: 1506: 1502: 1499: 1496: 1495: 1491: 1488: 1485: 1484: 1469: 1460: 1459: 1454: 1453:cyclic groups 1449: 1443: 1438: 1437: 1428: 1421: 1414: 1407: 1400: 1393: 1386: 1379: 1374: 1373: 1368: 1364: 1359: 1354: 1349: 1348: 1339: 1332: 1325: 1318: 1311: 1304: 1297: 1290: 1285: 1284: 1280: 1274: 1270: 1265: 1260: 1256: 1251: 1247: 1242: 1237: 1236: 1226: 1220: 1214: 1208: 1202: 1196: 1189: 1185: 1178: 1174: 1167: 1163: 1157: 1153: 1150: 1146: 1139: 1131: 1124: 1114: 1108: 1101: 1097: 1094: 1091: 1086: 1082: 1077: 1075:Associativity 1074: 1073: 1072: 1059: 1052: 1045: 1038: 1031: 1024: 1017: 1010: 1005: 1004: 1001: 997: 992: 988: 984: 980: 974: 970: 963: 959: 954: 953:ordered pairs 949: 945: 940: 939: 937: 934: 930: 926: 917: 907: 903:Given groups 896: 894: 893:cyclic groups 890: 874: 871: 868: 860: 856: 851: 849: 845: 841: 836: 832: 826: 820: 816: 812: 808: 804: 792: 787: 785: 780: 778: 773: 772: 770: 769: 762: 759: 758: 755: 752: 751: 748: 745: 744: 741: 738: 737: 734: 729: 728: 718: 715: 712: 711: 709: 703: 700: 698: 695: 694: 691: 688: 686: 683: 681: 678: 677: 674: 668: 666: 660: 658: 652: 650: 644: 642: 636: 635: 631: 627: 624: 623: 619: 615: 612: 611: 607: 603: 600: 599: 595: 591: 588: 587: 583: 579: 576: 575: 571: 567: 564: 563: 559: 555: 552: 551: 547: 543: 540: 539: 536: 533: 531: 528: 527: 524: 520: 515: 514: 507: 504: 502: 499: 497: 494: 493: 465: 440: 439: 437: 431: 428: 403: 400: 399: 393: 390: 388: 385: 384: 380: 379: 368: 365: 363: 360: 357: 354: 353: 352: 351: 348: 345: 344: 339: 336: 335: 332: 329: 328: 325: 322: 320: 318: 314: 313: 310: 307: 305: 302: 301: 298: 295: 293: 290: 289: 288: 287: 281: 278: 275: 270: 267: 266: 262: 257: 254: 251: 246: 243: 240: 235: 232: 231: 230: 229: 224: 223:Finite groups 219: 218: 207: 204: 202: 199: 198: 197: 196: 191: 188: 186: 183: 181: 178: 176: 173: 171: 168: 166: 163: 161: 158: 156: 153: 151: 148: 146: 143: 141: 138: 137: 136: 135: 130: 127: 125: 122: 121: 120: 119: 116: 115: 111: 110: 105: 102: 100: 97: 95: 92: 90: 87: 84: 82: 79: 78: 77: 76: 71: 68: 66: 63: 61: 58: 57: 56: 55: 50:Basic notions 47: 46: 42: 38: 37: 34: 29: 25: 21: 20: 6831: 6808: 6778: 6758: 6731: 6706: 6680: 6674: 6661:epimorphisms 6655: 6651: 6647: 6641: 6637: 6633: 6525: 6519: 6515: 6505: 6499: 6493: 6488: 6483: 6479: 6475: 6469: 6465: 6461: 6455: 6449: 6443: 6440: 6419: 6413: 6409:surjectively 6403: 6399: 6393: 6387: 6382: 6377: 6371: 6368: 6346: 6335: 6328: 6317: 6310: 6303: 6299: 6290: 6284: 6281: 6270: 6259: 6252: 6242: 6231: 6224: 6215: 6211: 6205: 6199: 6193: 6189: 6183: 6177: 6173:free product 6172: 6170: 6167:Free product 6153: 6147: 6140: 6135: 6132: 6125: 6121: 6114: 6110: 6104: 6098: 6093: 6091: 6084: 6074: 6068: 6059: 6053: 6047: 6034: 6030: 6027:intersection 6017: 6011: 6005: 5999: 5993: 5990: 5969: 5963: 5959: 5949: 5940: 5936: 5932: 5927: 5916: 5912: 5908: 5900: 5896: 5887: 5877: 5868: 5864: 5854: 5850: 5846: 5841: 5831: 5829:of the sets 5818: 5814: 5810: 5794: 5790: 5786: 5780: 5774: 5770: 5760: 5753: 5743: 5736: 5733: 5725: 5707: 5700: 5694: 5683: 5676: 5669: 5662: 5652: 5648: 5641: 5632: 5623: 5616: 5608: 5604: 5597: 5586: 5582: 5575: 5567: 5465: 5459: 5455: 5448: 5445: 5422: 5418: 5414: 5410: 5406: 5402: 5398: 5394: 5390: 5388: 5382: 5376: 5370: 5364: 5354: 5350: 5346: 5340: 5336: 5332: 5326: 5320: 5314: 5308: 5305: 5239: 5235: 5231:endomorphism 5228: 5205: 5201: 5194: 5190: 5187: 5176: 5169: 5162: 5155: 5151: 5142: 5138: 5132: 5126: 5119: 5115: 5107: 5103: 5096: 5092: 5089: 5082: 5078: 5070: 5066: 5059: 5055: 5052: 5042: 5038: 5034: 5030: 5023: 5019: 5015: 5011: 5001: 4997: 4993: 4989: 4985: 4981: 4975: 4969: 4963: 4959:automorphism 4953: 4950: 4939: 4931: 4927: 4923: 4919: 4912: 4908: 4904: 4895: 4889: 4883: 4879: 4872: 4864: 4859: 4855: 4851: 4846: 4842: 4835: 4831: 4826: 4822: 4818: 4809: 4803: 4796: 4792: 4781: 4777: 4773: 4769: 4765: 4759: 4753: 4747: 4743: 4737: 4728: 4719: 4713: 4704: 4695: 4689: 4685: 4671: 4664: 4653: 4646: 4642: 4631: 4625: 4614: 4608: 4605: 4598: 4594: 4590: 4586: 4573: 4569: 4563: 4557: 4551: 4545: 4541: 4538: 4530: 4526: 4522: 4518: 4510: 4506: 4502: 4498: 4484: 4480: 4474: 4470: 4464: 4458: 4455: 4449: 4447:subgroup of 4429: 4423: 4419: 4413: 4407: 4403: 4397: 4393: 4387: 4381: 4375: 4369: 4366: 4354: 4343: 4338: 4333: 4328: 4319: 4308: 4289: 4285: 4281: 4274: 4270: 4265: 4257: 4253: 4248: 4240: 4234: 4230: 4226: 4219: 4213: 4209: 4205: 4198: 4188: 4184: 4181: 4159: 4153: 4143: 4139: 4131:finite group 4125: 4121: 4115: 4109: 4099: 4095: 4092: 4086: 4080: 4072: 4060: 4051: 4048: 4041: 4037: 4033: 4026: 4020: 4016: 4012: 4005: 3996: 3992: 3988: 3981: 3975: 3971: 3967: 3960: 3954: 3950: 3944: 3938: 3935: 3821: 3701: 3617: 3402: 3274: 3268: 3264:presentation 3258: 3254: 3251: 3239: 3234: 3188: 3064: 3055: 3049: 3033: 3026: 3019: 3015: 2997:denotes the 2993: 2986: 2982: 2974: 2970: 2962: 2958: 2949: 2936: 2932: 2921: 2917: 2908: 2896: 2890: 2887:circle group 2881: 2867: 2833: 2829: 2759: 2755: 2751: 2718: 2714: 2709: 2694: 2687: 2680: 2673: 2664: 2652: 2645: 2638: 2629: 2622: 2610: 2603: 2594: 2587: 2580: 2561: 2554: 2547: 2530: 2518: 2502: 2496: 2490: 2484: 2477: 2470: 2460: 2454: 2447: 2441: 2435: 2430: 2425: 2419: 2413: 2407: 2401: 2395: 2390: 2385: 2379: 2376: 2369: 2360: 2351: 2345: 2339: 2326: 2322: 2319:intersection 2309: 2303: 2296: 2289: 2283: 2280: 2274: 2268: 2262: 2256: 2250: 2244: 2238: 2232: 2225: 2217: 2213: 2209: 2205: 2198: 2194: 2193:, 1) : 2190: 2186: 2177: 2167: 2163: 2159: 2153: 2147: 2144: 2124: 2121: 2117: 2110: 2107: 2103: 2099: 2096: 2092: 2083: 2077: 2071: 2067: 2057: 2051: 2042: 2036: 2029: 2025: 2011: 1999: 1984: 1974: 1963: 1959: 1947: 1941: 1930: 1926: 1906: 1894: 1884: 1880: 1869: 1863: 1857: 1853: 1840: 1834: 1830: 1824: 1820: 1814: 1808: 1791: 1785: 1779: 1772: 1768: 1764: 1758: 1754: 1750: 1743: 1739: 1733: 1729: 1589: 1585: 1582: 1447: 1441: 1426: 1419: 1412: 1405: 1398: 1391: 1384: 1377: 1366: 1362: 1352: 1337: 1330: 1323: 1316: 1309: 1302: 1295: 1288: 1272: 1268: 1258: 1254: 1246:real numbers 1240: 1224: 1218: 1212: 1206: 1200: 1194: 1187: 1183: 1180:is the pair 1176: 1172: 1165: 1161: 1144: 1137: 1129: 1122: 1112: 1106: 1084: 1080: 1070: 1057: 1050: 1043: 1036: 1029: 1022: 1015: 1008: 999: 995: 982: 978: 972: 968: 961: 957: 947: 943: 932: 928: 924: 915: 905: 902: 852: 834: 830: 824: 818: 810: 807:group theory 800: 629: 617: 605: 593: 581: 569: 557: 545: 316: 273: 260: 249: 238: 234:Cyclic group 112: 99:Free product 88: 70:Group action 33:Group theory 28:Group theory 27: 6775:Lang, Serge 6407:which maps 5220:determinant 5005:defined by 4941:Normalizers 4787:centralizer 4071:, known as 3043:icosahedron 2952:is odd the 1918:cardinality 1090:associative 803:mathematics 519:Topological 358:alternating 6667:References 5417:) wr 2 if 4074:projection 3063:of order 4 2717:} and {1, 2480:commutator 2208:′ = { (1, 1595:isomorphic 899:Definition 859:direct sum 626:Symplectic 566:Orthogonal 523:Lie groups 430:Free group 155:continuous 94:Direct sum 6601:χ 6586:φ 6577:× 6571:∈ 6537:× 6349:coproduct 5630:for each 5543:× 5540:⋯ 5537:× 5524:× 5479:∏ 5283:δ 5278:γ 5271:β 5266:α 4681:conjugate 4593:) : 4363:Subgroups 4105:extension 3913:⟩ 3857:∣ 3845:⟨ 3836:× 3807:⟩ 3788:∣ 3782:⟨ 3744:⟩ 3725:∣ 3719:⟨ 3603:⟩ 3590:∪ 3577:∪ 3564:∣ 3551:∪ 3538:⟨ 3529:× 3385:⟩ 3372:∣ 3359:⟨ 3321:⟩ 3308:∣ 3295:⟨ 3219:⟩ 3200:⟨ 3168:⟩ 3157:− 3105:∣ 3093:⟨ 2850:⟩ 2844:⟨ 2816:⟩ 2803:⟨ 2783:⟩ 2770:⟨ 2738:⟩ 2732:⟨ 2228:subgroups 2212:) : 1867:and  1615:× 1102:, namely 872:⊕ 690:Conformal 578:Euclidean 185:nilpotent 6857:Category 6777:(2002), 6730:(1996), 6705:(1991), 6511:pullback 5706:′, ..., 5682:′, ..., 5614:, where 5401:) × Aut( 5216:matrices 5106:) × Aut( 5081:) × Aut( 4490:quotient 4437:, where 2879:. Then 2754:, where 2510:Examples 2365:commutes 2175:of  1418:,  1250:addition 1233:Examples 1222:in  1192:, where 1151:Inverses 1118:, where 1095:Identity 966:, where 685:Poincaré 530:Solenoid 402:Integers 392:Lattices 367:sporadic 362:Lie type 190:solvable 180:dihedral 165:additive 150:infinite 60:Subgroup 6801:1878556 6779:Algebra 6767:0356988 6750:1375019 6707:Algebra 6351:in the 6294:, then 6040:trivial 5956: } 5767: } 5758:{  5668:, ..., 5603:, ..., 5454:, ..., 5247:matrix 4585:Δ = { ( 4445:trivial 4443:is the 4295:commute 4196:. Let 3059:be the 3037:is the 2522:be the 2482:of any 2332:trivial 2189:′ = { ( 2173:subsets 1935:is the 1901:  1802:is the 1597:to the 1264:vectors 1156:inverse 923:), the 680:Lorentz 602:Unitary 501:Lattice 441:PSL(2, 175:abelian 86:(Semi-) 6842:  6819:  6799:  6789:  6765:  6748:  6738:  6717:  6687:  6453:, and 6080:normal 5647:× ⋯ × 5593:tuples 5581:× ⋯ × 5330:, and 5306:where 4957:is an 4875:center 4785:, the 4577:has a 4103:is an 3773:  3770:  3750:  3747:  3618:where 3403:where 3350:  3347:  3327:  3324:  3185:Then D 3024:where 2991:where 2875:under 2466:normal 1789:, and 1714:(1,1) 1702:(a,b) 1697:(a,1) 1685:(1,b) 1680:(1,b) 1668:(a,1) 1663:(a,b) 1651:(1,1) 1646:(a,b) 1643:(1,b) 1640:(a,1) 1637:(1,1) 1248:under 1210:, and 913:) and 815:groups 809:, the 535:Circle 466:SL(2, 355:cyclic 319:-group 170:cyclic 145:finite 140:simple 124:kernel 6503:over 6411:onto 6066:Both 5895:(ƒ • 5749:, ... 5405:) if 5389:When 5360:image 5245:2 × 2 5213:2 × 2 5168:) = ( 4525:) × ( 4505:) / ( 4336:), ƒ 4149:union 4129:is a 4049:Then 3822:then 3008:of a 2707:Then 2301:with 2102:) × ( 1970:= lcm 1849:order 1711:(a,1) 1708:(1,b) 1705:(a,b) 1694:(1,1) 1691:(a,b) 1688:(1,b) 1677:(a,b) 1674:(1,1) 1671:(a,1) 1660:(1,b) 1657:(a,1) 1654:(1,1) 1390:) × ( 1301:) + ( 1035:) = ( 1021:) · ( 719:Sp(∞) 716:SU(∞) 129:image 6840:ISBN 6817:ISBN 6787:ISBN 6736:ISBN 6715:ISBN 6685:ISBN 6659:are 6645:and 6497:and 6473:and 6441:Let 6417:and 6391:and 6375:and 6288:and 6203:and 6181:and 6171:The 6151:and 6102:and 6078:are 6072:and 6025:The 6015:and 6003:and 5911:) • 5867:) ∈ 5591:are 5409:and 5393:and 5344:and 5204:(2, 5114:Aut( 5102:Aut( 5077:Aut( 5065:Aut( 5026:) = 4967:and 4926:) × 4893:and 4854:) × 4807:and 4776:) ∈ 4726:and 4717:and 4702:and 4679:are 4661:and 4629:and 4462:and 4440:{1} 4434:{1} 4379:and 4261:and 4217:and 4084:and 4067:are 4058:and 4040:) = 4019:) = 3979:and 3942:and 3762:and 3488:and 3461:and 3430:and 3339:and 3272:and 3048:Let 3010:cube 3004:The 2865:Let 2832:and 2795:and 2758:and 2724:Let 2516:Let 2464:are 2458:and 2439:and 2417:and 2399:and 2317:The 2307:and 2294:and 2272:and 2254:and 2151:and 2145:Let 2081:and 2061:are 2055:and 2040:and 2018:are 2006:and 1945:and 1847:The 1798:The 1757:) × 1747:and 1445:and 1439:Let 1350:Let 1238:Let 1154:The 1133:and 989:The 976:and 844:sets 822:and 713:O(∞) 702:Loop 521:and 6631:If 6491:of 6385:of 6369:If 6209:of 6175:of 6145:of 6096:of 6082:in 6038:is 6033:∩ 5886:ƒ, 5844:→ ⋃ 5840:ƒ: 5362:of 5233:of 5198:is 5136:of 5037:), 4961:of 4951:If 4877:of 4789:of 4683:in 4623:of 4456:If 4417:in 4367:If 4280:ƒ: 4137:of 4113:by 4107:of 4000:by 2969:SO( 2931:SL( 2916:GL( 2907:If 2900:of 2526:: 2500:in 2488:in 2468:in 2391:any 2389:is 2330:is 2230:of 1767:× ( 1593:is 1451:be 1204:in 1170:of 1110:, 1 1088:is 993:on 842:of 801:In 628:Sp( 616:SU( 592:SO( 556:SL( 544:GL( 6859:: 6838:, 6815:, 6797:MR 6795:, 6781:, 6763:MR 6746:MR 6744:, 6713:, 6709:, 6654:→ 6650:: 6640:→ 6636:: 6634:𝜑 6523:: 6518:× 6482:→ 6478:: 6468:→ 6464:: 6462:𝜑 6447:, 6402:× 6355:. 6334:∪ 6316:∪ 6309:〈 6307:= 6302:∗ 6258:〈 6256:= 6230:〈 6228:= 6214:∗ 6192:∗ 6157:. 6124:, 6113:, 6092:A 5907:ƒ( 5905:= 5899:)( 5863:ƒ( 5742:, 5717:′) 5691:= 5689:′) 5675:)( 5622:∈ 5421:≅ 5386:. 5353:→ 5349:: 5339:→ 5335:: 5318:, 5238:× 5224:±1 5222:, 5202:GL 5193:× 5175:, 5161:, 5141:× 5118:× 5095:× 5087:. 5069:× 5058:× 5022:, 5018:)( 5014:× 5000:× 4996:→ 4992:× 4988:: 4984:× 4911:× 4899:: 4882:× 4834:, 4813:: 4795:, 4780:× 4772:, 4763:. 4746:× 4688:× 4670:, 4652:, 4635:. 4612:. 4601:} 4597:∈ 4589:, 4572:× 4544:× 4529:/ 4521:/ 4513:) 4509:× 4501:× 4483:× 4473:× 4453:. 4432:× 4422:× 4406:× 4396:× 4359:. 4346:) 4318:ƒ( 4297:: 4288:× 4284:→ 4273:→ 4269:: 4256:→ 4252:: 4233:→ 4229:× 4225:: 4212:→ 4208:× 4204:: 4187:× 4163:. 4142:× 4124:× 4098:× 4036:, 4015:, 3995:→ 3991:× 3987:: 3974:→ 3970:× 3966:: 3953:× 3699:. 3257:× 3242:}. 3067:: 3022:}, 3018:, 3014:{− 2989:}, 2985:, 2981:{− 2973:, 2961:, 2957:O( 2935:, 2920:, 2752:mn 2721:}. 2506:. 2494:, 2445:. 2325:∩ 2216:∈ 2197:∈ 2181:: 2166:× 2162:= 2122:mn 2120:/ 2113:) 2106:/ 2095:/ 2070:× 2032:) 2028:, 1988:|) 1980:, 1972:(| 1962:, 1951:: 1929:, 1890:= 1883:× 1873:: 1856:× 1833:× 1823:× 1783:, 1771:× 1753:× 1742:× 1732:× 1634:* 1601:: 1588:× 1574:1 1568:b 1563:b 1557:1 1552:b 1549:1 1546:* 1514:1 1508:a 1503:a 1497:1 1492:a 1489:1 1486:* 1425:× 1411:× 1397:, 1383:, 1365:× 1336:+ 1329:, 1322:+ 1308:, 1294:, 1271:, 1257:× 1186:, 1175:× 1164:, 1104:(1 1083:× 1056:∆ 1049:, 1042:* 1028:, 1014:, 998:× 981:∈ 971:∈ 960:, 946:× 931:× 906:G 895:. 833:× 604:U( 580:E( 568:O( 26:→ 6849:. 6826:. 6770:. 6753:. 6693:. 6656:Q 6652:H 6648:χ 6642:Q 6638:G 6618:. 6614:} 6610:) 6607:h 6604:( 6598:= 6595:) 6592:g 6589:( 6583:: 6580:H 6574:G 6568:) 6565:h 6562:, 6559:g 6556:( 6552:{ 6549:= 6546:H 6541:Q 6533:G 6520:H 6516:G 6506:Q 6500:H 6494:G 6484:Q 6480:H 6476:χ 6470:Q 6466:G 6456:Q 6450:H 6444:G 6420:H 6414:G 6404:H 6400:G 6394:H 6388:G 6378:H 6372:G 6343:. 6341:〉 6338:H 6336:R 6331:G 6329:R 6325:| 6320:H 6318:S 6313:G 6311:S 6304:H 6300:G 6291:H 6285:G 6278:, 6276:〉 6273:H 6271:R 6267:| 6262:H 6260:S 6253:H 6248:〉 6245:G 6243:R 6239:| 6234:G 6232:S 6225:G 6216:H 6212:G 6206:H 6200:G 6194:H 6190:G 6184:H 6178:G 6154:H 6148:G 6136:P 6128:) 6126:h 6122:g 6120:( 6115:H 6111:G 6105:H 6099:G 6088:. 6085:P 6075:H 6069:G 6063:. 6060:H 6054:G 6048:P 6042:. 6035:H 6031:G 6018:H 6012:G 6006:H 6000:G 5994:P 5964:I 5962:∈ 5960:i 5952:i 5950:G 5943:i 5941:G 5937:I 5935:∈ 5933:i 5930:Π 5921:. 5919:) 5917:i 5915:( 5913:g 5909:i 5903:) 5901:i 5897:g 5888:g 5881:. 5878:i 5871:i 5869:G 5865:i 5857:i 5855:G 5851:I 5849:∈ 5847:i 5842:I 5834:i 5832:G 5821:i 5819:G 5815:I 5813:∈ 5811:i 5808:Π 5797:i 5795:G 5791:I 5789:∈ 5787:i 5784:Π 5775:I 5773:∈ 5771:i 5763:i 5761:G 5747:2 5744:G 5740:1 5737:G 5719:. 5714:n 5712:g 5710:n 5708:g 5704:1 5701:g 5698:1 5695:g 5693:( 5686:n 5684:g 5680:1 5677:g 5672:n 5670:g 5666:1 5663:g 5661:( 5653:n 5649:G 5645:1 5642:G 5636:. 5633:i 5626:i 5624:G 5619:i 5617:g 5612:) 5609:n 5605:g 5601:1 5598:g 5596:( 5587:n 5583:G 5579:1 5576:G 5551:n 5547:G 5532:2 5528:G 5519:1 5515:G 5510:= 5504:i 5500:G 5494:n 5489:1 5486:= 5483:i 5460:n 5456:G 5452:1 5449:G 5423:H 5419:G 5415:G 5411:H 5407:G 5403:H 5399:G 5395:H 5391:G 5383:δ 5377:γ 5371:β 5365:α 5355:H 5351:G 5347:γ 5341:G 5337:H 5333:β 5327:H 5321:δ 5315:G 5309:α 5289:] 5260:[ 5240:H 5236:G 5208:) 5206:Z 5195:Z 5191:Z 5184:. 5182:) 5180:1 5177:g 5173:2 5170:g 5166:2 5163:g 5159:1 5156:g 5154:( 5152:σ 5143:G 5139:G 5133:σ 5127:G 5122:) 5120:H 5116:G 5110:) 5108:H 5104:G 5097:H 5093:G 5085:) 5083:H 5079:G 5073:) 5071:H 5067:G 5060:H 5056:G 5047:) 5045:) 5043:h 5041:( 5039:β 5035:g 5033:( 5031:α 5028:( 5024:h 5020:g 5016:β 5012:α 5010:( 5002:H 4998:G 4994:H 4990:G 4986:β 4982:α 4976:H 4970:β 4964:G 4954:α 4936:. 4934:) 4932:H 4930:( 4928:Z 4924:G 4922:( 4920:Z 4915:) 4913:H 4909:G 4907:( 4905:Z 4896:H 4890:G 4884:H 4880:G 4869:. 4867:) 4865:h 4863:( 4860:H 4856:C 4852:g 4850:( 4847:G 4843:C 4838:) 4836:h 4832:g 4830:( 4827:H 4825:× 4823:G 4819:C 4810:h 4804:g 4799:) 4797:h 4793:g 4791:( 4782:H 4778:G 4774:h 4770:g 4768:( 4760:H 4754:G 4748:H 4744:G 4738:H 4732:2 4729:h 4723:1 4720:h 4714:G 4708:2 4705:g 4699:1 4696:g 4690:H 4686:G 4677:) 4675:2 4672:h 4668:2 4665:g 4663:( 4659:) 4657:1 4654:h 4650:1 4647:g 4645:( 4632:H 4626:G 4609:G 4599:G 4595:g 4591:g 4587:g 4574:G 4570:G 4564:G 4558:H 4552:G 4546:H 4542:G 4535:. 4533:) 4531:B 4527:H 4523:A 4519:G 4517:( 4515:≅ 4511:B 4507:A 4503:H 4499:G 4497:( 4485:H 4481:G 4475:B 4471:A 4465:B 4459:A 4450:H 4430:G 4424:H 4420:G 4414:G 4408:H 4404:G 4398:B 4394:A 4388:H 4382:B 4376:G 4370:A 4351:. 4348:) 4344:p 4342:( 4339:H 4334:p 4332:( 4329:G 4326:ƒ 4324:( 4320:p 4311:ƒ 4290:H 4286:G 4282:P 4275:H 4271:P 4266:H 4263:ƒ 4258:G 4254:P 4249:G 4246:ƒ 4241:P 4235:H 4231:H 4227:G 4222:H 4220:π 4214:G 4210:H 4206:G 4201:G 4199:π 4189:H 4185:G 4160:H 4154:G 4144:H 4140:G 4126:H 4122:G 4116:H 4110:G 4100:H 4096:G 4087:G 4081:H 4063:H 4061:π 4054:G 4052:π 4045:. 4042:h 4038:h 4034:g 4032:( 4029:H 4027:π 4021:g 4017:h 4013:g 4011:( 4008:G 4006:π 3997:H 3993:H 3989:G 3984:H 3982:π 3976:G 3972:H 3968:G 3963:G 3961:π 3955:H 3951:G 3945:H 3939:G 3916:. 3910:a 3907:b 3904:= 3901:b 3898:a 3895:, 3892:1 3889:= 3884:5 3880:b 3876:, 3873:1 3870:= 3865:3 3861:a 3854:b 3851:, 3848:a 3842:= 3839:H 3833:G 3804:1 3801:= 3796:5 3792:b 3785:b 3779:= 3776:H 3741:1 3738:= 3733:3 3729:a 3722:a 3716:= 3713:G 3685:H 3681:S 3658:G 3654:S 3631:P 3627:R 3598:P 3594:R 3585:H 3581:R 3572:G 3568:R 3559:H 3555:S 3546:G 3542:S 3535:= 3532:H 3526:G 3501:H 3497:R 3474:G 3470:R 3443:H 3439:S 3416:G 3412:S 3388:, 3380:H 3376:R 3367:H 3363:S 3356:= 3353:H 3316:G 3312:R 3303:G 3299:S 3292:= 3289:G 3275:H 3269:G 3259:H 3255:G 3240:r 3235:n 3233:2 3216:s 3213:, 3208:2 3204:r 3189:n 3187:4 3171:. 3165:s 3160:1 3153:r 3149:= 3146:r 3143:s 3140:, 3137:1 3134:= 3129:2 3125:s 3121:= 3116:n 3113:2 3109:r 3102:s 3099:, 3096:r 3090:= 3085:n 3082:4 3078:D 3065:n 3056:n 3054:4 3050:n 3045:. 3034:I 3032:− 3027:I 3020:I 3016:I 3001:. 2994:I 2987:I 2983:I 2977:) 2975:R 2971:n 2965:) 2963:R 2959:n 2950:n 2945:. 2939:) 2937:R 2933:n 2924:) 2922:R 2918:n 2909:n 2897:R 2891:T 2882:C 2868:C 2847:a 2834:n 2830:m 2811:m 2807:a 2778:n 2774:a 2760:n 2756:m 2735:a 2719:b 2715:a 2710:V 2701:1 2695:a 2688:b 2681:c 2674:c 2665:a 2659:1 2653:c 2646:b 2639:b 2630:b 2623:c 2617:1 2611:a 2604:a 2595:c 2588:b 2581:a 2575:1 2570:1 2562:c 2555:b 2548:a 2542:1 2538:∙ 2531:V 2519:V 2503:H 2497:h 2491:G 2485:g 2474:. 2471:P 2461:H 2455:G 2442:H 2436:G 2426:P 2420:H 2414:G 2408:P 2402:H 2396:G 2386:P 2380:P 2373:. 2370:H 2361:G 2355:. 2352:H 2346:G 2340:P 2334:. 2327:H 2323:G 2310:H 2304:G 2299:′ 2297:H 2292:′ 2290:G 2284:P 2275:H 2269:G 2263:P 2257:H 2251:G 2245:H 2239:G 2233:P 2222:. 2220:} 2218:H 2214:h 2210:h 2206:H 2201:} 2199:G 2195:g 2191:g 2187:G 2178:P 2168:H 2164:G 2160:P 2154:H 2148:G 2135:. 2128:. 2125:Z 2118:Z 2115:≅ 2111:Z 2108:n 2104:Z 2100:Z 2097:m 2093:Z 2091:( 2084:n 2078:m 2072:H 2068:G 2058:H 2052:G 2046:. 2043:h 2037:g 2030:h 2026:g 2024:( 2015:| 2012:h 2009:| 2003:| 2000:g 1997:| 1991:. 1985:h 1982:| 1978:| 1975:g 1968:| 1966:) 1964:h 1960:g 1958:( 1956:| 1948:h 1942:g 1933:) 1931:h 1927:g 1925:( 1913:. 1910:| 1907:H 1904:| 1898:| 1895:G 1892:| 1888:| 1885:H 1881:G 1878:| 1870:H 1864:G 1858:H 1854:G 1844:. 1841:G 1835:G 1831:E 1828:≅ 1825:E 1821:G 1818:≅ 1815:G 1809:E 1795:. 1792:K 1786:H 1780:G 1775:) 1773:K 1769:H 1765:G 1762:≅ 1759:K 1755:H 1751:G 1749:( 1744:G 1740:H 1737:≅ 1734:H 1730:G 1618:H 1612:G 1590:H 1586:G 1571:b 1560:1 1530:H 1511:a 1500:1 1470:G 1448:H 1442:G 1434:. 1432:) 1430:2 1427:y 1423:1 1420:y 1416:2 1413:x 1409:1 1406:x 1402:2 1399:y 1395:2 1392:x 1388:1 1385:y 1381:1 1378:x 1376:( 1367:R 1363:R 1353:R 1345:. 1343:) 1341:2 1338:y 1334:1 1331:y 1327:2 1324:x 1320:1 1317:x 1313:2 1310:y 1306:2 1303:x 1299:1 1296:y 1292:1 1289:x 1287:( 1281:: 1275:) 1273:y 1269:x 1267:( 1259:R 1255:R 1241:R 1228:. 1225:H 1219:h 1213:h 1207:G 1201:g 1195:g 1190:) 1188:h 1184:g 1182:( 1177:H 1173:G 1168:) 1166:h 1162:g 1160:( 1148:. 1145:H 1138:H 1135:1 1130:G 1123:G 1120:1 1116:) 1113:H 1107:G 1092:. 1085:H 1081:G 1063:) 1061:2 1058:h 1054:1 1051:h 1047:2 1044:g 1040:1 1037:g 1033:2 1030:h 1026:2 1023:g 1019:1 1016:h 1012:1 1009:g 1007:( 1000:H 996:G 986:. 983:H 979:h 973:G 969:g 964:) 962:h 958:g 956:( 948:H 944:G 933:H 929:G 921:∆ 916:H 911:* 875:H 869:G 835:H 831:G 825:H 819:G 790:e 783:t 776:v 672:8 670:E 664:7 662:E 656:6 654:E 648:4 646:F 640:2 638:G 632:) 630:n 620:) 618:n 608:) 606:n 596:) 594:n 584:) 582:n 572:) 570:n 560:) 558:n 548:) 546:n 488:) 475:Z 463:) 450:Z 426:) 413:Z 404:( 317:p 282:Q 274:n 271:D 261:n 258:A 250:n 247:S 239:n 236:Z

Index

Algebraic structure
Group theory

Subgroup
Normal subgroup
Group action
Quotient group
(Semi-)
direct product
Direct sum
Free product
Wreath product
Group homomorphisms
kernel
image
simple
finite
infinite
continuous
multiplicative
additive
cyclic
abelian
dihedral
nilpotent
solvable
Glossary of group theory
List of group theory topics
Finite groups
Cyclic group

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.