Knowledge

100 prisoners problem

Source 📝

693: 20: 452: 443: 1748:, a one-to-one correspondence of the (canonical) cycle notation and the one-line notation of permutations. In the second problem, the survival probability is independent of the chosen strategy and equal to the survival probability in the original problem with the cycle-following strategy. Since an arbitrary strategy for the original problem can also be applied to the second problem, but cannot attain a higher survival probability there, the cycle-following strategy has to be optimal. 71:
into 50 drawers in any order. The drawers are closed again afterwards. If, during this search, every prisoner finds their number in one of the drawers, all prisoners are pardoned. If even one prisoner does not find their number, all prisoners die. Before the first prisoner enters the room, the prisoners may discuss strategy — but may not communicate once the first prisoner enters to look in the drawers. What is the prisoners' best strategy?
1282: 1886:
end, they just have to ensure that their assignment of prisoners' numbers to drawers constitutes a permutation with a cycle of length larger than 50. The prisoners in turn can counter this by agreeing among themselves on a specific random numbering of the drawers, provided that the director does not overhear this and does not bother to respond by replacing numbers in the boxes before the prisoners are let in.
2348: 2544:. Any individual prisoner has a 50% chance of finding their own number on an odd-numbered try. The main strategy will work for all the prisoners if the permutation of the prisoners contains only cycles of odd length. For 100 prisoners the probability that all will succeed using the main strategy is approximately 7.9589%, which is substantially better than the probability 46:. In this problem, 100 numbered prisoners must find their own numbers in one of 100 drawers in order to survive. The rules state that each prisoner may open only 50 drawers and cannot communicate with other prisoners. At first glance, the situation appears hopeless, but a clever strategy offers the prisoners a realistic chance of survival. 2029: 1217: 2371:
consecutively open two of the three doors. If they are successful, the doors are closed again and the second player enters the room. The second player may also open two of the three doors, but they cannot communicate with the first player in any form. What is the winning probability if both players act optimally?
191:). By starting with their own number, the prisoner guarantees they are on the specific cycle of drawers containing their number. The only question is whether any cycle is longer than fifty drawers - and only one cycle can possibly be too long, since at most one can comprise more than half of the total drawers. 1854:
At first, Gál and Miltersen considered in their paper the case that the number of boxes is twice the number of team members while half of the boxes are empty. This is a more difficult problem since empty boxes lead nowhere and thus the cycle-following strategy cannot be applied. It is an open problem
683:
different ways depending on the starting number of the cycle. During the opening of the drawers using the above strategy, each prisoner follows a single cycle which always ends with their own number. In the case of eight prisoners, this cycle-following strategy is successful if and only if the length
70:
The director of a prison offers 100 death row prisoners, who are numbered from 1 to 100, a last chance. A room contains a cupboard with 100 drawers. The director randomly puts one prisoner's number in each closed drawer. The prisoners enter the room, one after another. Each prisoner may open and look
1862:
developed a strategy for team B based on the cycle-following strategy for a more general problem in which the fraction of empty boxes as well as the fraction of boxes each team member is allowed to open are variable. The winning probability still tends to zero in this case, but slower than suggested
1799:
numbers. The authors noted that the winning probability can be increased also in the case where the team members don't find their own numbers. If the given answer is the product of all the signs found and if the length of the longest cycle is half the (even) number of players plus one, then the team
1743:
In 2006, Eugene Curtin and Max Warshauer gave a proof for the optimality of the cycle-following strategy. The proof is based on an equivalence to a related problem in which all prisoners are allowed to be present in the room and observe the opening of the drawers. Mathematically, this equivalence is
2352:
It is noteworthy that although we receive the same expected values, they are from very different distributions. With the second strategy, some prisoners are simply destined to die or live given a particular permutation, and with the first strategy (i.e., no strategy), there is "truly" a 1/2 chance
1885:
In case the prison director does not have to distribute the numbers into the drawers randomly, and realizes that the prisoners may apply the above-mentioned strategy and guesses the box numbering the prisoners will apply (such as numbers indicated on the boxes), they can foil the strategy. To this
2516:, which is optimal since the first player cannot have a higher winning probability than that. In a further variant, three prizes are hidden behind the three doors and three players have to independently find their assigned prizes with two tries. In this case the winning probability is also 2370:
Behind three closed doors a car, the car keys and a goat are randomly distributed. There are two players: the first player has to find the car, the second player the keys to the car. Only if both players are successful they may drive the car home. The first player enters the room and may
1772:). Every player of team B must guess their color correctly after opening half of the boxes for their team to win. Initially, Gál and Miltersen assumed that the winning probability quickly tends to zero with increasing number of players. However, Sven Skyum, a colleague at 2343:{\displaystyle (1-\ln(2))\cdot 1+\sum _{k=\lfloor n/2\rfloor +1}^{N}{\frac {1}{k}}\left(1-{\frac {k}{n}}\right)=1-\ln(2)+\sum _{\lfloor n/2\rfloor +1}^{N}{\frac {1}{k}}-\sum _{k=\lfloor n/2\rfloor +1}^{N}{\frac {1}{n}}=1-\ln(2)+\ln(2)-{\frac {1}{2}}={\frac {1}{2}}} 199:
The reason this is a promising strategy is illustrated with the following example using 8 prisoners and drawers, whereby each prisoner may open 4 drawers. The prison director has distributed the prisoners' numbers into the drawers in the following fashion:
290:
In this case, all prisoners find their numbers. This is, however, not always the case. For example, the small change to the numbers of swapping drawers 5 and 8 would cause prisoner 1 to fail after opening 1, 7, 5, and 2 (and not finding their own number):
1040: 1726: 282:
Prisoner 4 opens drawers 4, 8, and 2, where they find their own number. This is the same cycle that was encountered by prisoner 2 and will be encountered by prisoner 8. Each of these prisoners will find their own number in the third opened
1776:, brought his attention to the cycle-following strategy for the case of this problem where there are no empty boxes. To find this strategy was left open as an exercise in the publication. The paper was honored with the best paper award. 1768:). In their version, player A (the prison director) randomly colors strips of paper with the names of the players of team B (the prisoners) in red or blue and puts each strip into a different box. Some of the boxes may be empty (see 1800:
members in this cycle either all guess wrong or all guess right. Even if this extension of the strategy offers a visible improvement for a small number of players, it becomes negligible when the number of players becomes large.
1017: 2400:
Player 2 first opens door 2. If the keys are behind the door, the player is successful. If the goat was behind the door, the player next opens door 3; whereas if the car was behind the door, the player next opens door
2396:
Player 1 first opens door 1. If the car is behind the door, the player is successful. If the keys were behind the door, the player next opens door 2; if instead the goat was behind the door, the player next opens door
1474: 158:
Surprisingly, there is a strategy that provides a survival probability of more than 30%. The key to success is that the prisoners do not have to decide beforehand which drawers to open. Each prisoner can use the
1898:, and then switch the contents of two boxes, all prisoners will survive. This is so since any cycle of length larger than 50 can be broken, so that it can be guaranteed that all cycles are of length at most 50. 684:
of the longest cycle of the permutation is at most 4. If a permutation contains a cycle of length 5 or more, all prisoners whose numbers lie in such a cycle do not reach their own number after four steps.
1984: 1595: 700:
In the initial problem, the 100 prisoners are successful if the longest cycle of the permutation has a length of at most 50. Their survival probability is therefore equal to the probability that a
1863:
by Gál and Miltersen. If the number of team members and the fraction of boxes which are opened is fixed, the winning probability stays strictly larger than zero when more empty boxes are added.
170:
To describe the strategy, not only the prisoners, but also the drawers, are numbered from 1 to 100; for example, row by row starting with the top left drawer. The strategy is now as follows:
1212:{\displaystyle 1-{\frac {1}{100!}}\left({\frac {100!}{51}}+\ldots +{\frac {100!}{100}}\right)=1-\left({\frac {1}{51}}+\ldots +{\frac {1}{100}}\right)=1-(H_{100}-H_{50})\approx 0.31183,} 696:
Probability distribution of the length of the longest cycle of a random permutation of the numbers 1 to 100. The green area corresponds to the survival probability of the prisoners.
561: 1803:
In the following years, the problem entered the mathematical literature, where it was shaped in further different ways, for example with cards on a table or wallets in lockers (
772: 638: 163:
gained from the contents of every drawer they already opened to decide which one to open next. Another important observation is that this way the success of one prisoner is not
2022: 273:
Prisoner 1 first opens drawer 1 and finds number 7. Then they open drawer 7 and find number 5. Then they open drawer 5, where they find their own number and are successful.
1526: 1606: 474:
of the set of natural numbers from 1 to 100 to itself. A sequence of numbers which after repeated application of the permutation returns to the first number is called a
886: 2405:
In the six possible distributions of car, keys and goat behind the three doors, the players open the following doors (in the green cases, the player was successful):
1500: 912: 731: 811: 1247: 1994:
In the variant where any prisoner who finds their number is free, the expected probability of an individual's survival given a random permutation is as follows:
1310: 1919: 1330: 1267: 851: 831: 681: 661: 3031: 187:
If the prisoner could continue indefinitely this way, they would inevitably loop back to the drawer they started with, forming a permutation cycle (see
2500:
The success of the strategy is based on building a correlation between the successes and failures of the two players. Here, the winning probability is
920: 183:
The prisoner repeats steps 2 and 3 until they find their own number, or fail because the number is not found in the first fifty opened drawers.
1338: 1827:
in their textbooks on combinatorics. The problem, or riddle, along with a detailed explanation of the solution, was featured by the channel
460:
Graph representations of the permutations (1 7 5)(2 4 8)(3 6) and (1 3 7 4 5 8 2)(6)
3020: 2540:
Instead of having to find their number within the first 50 tries, the test could be finding the number within the 50 odd-numbered tries,
1921:, they can ensure their escape by opening significantly fewer than half of the drawers. Specifically, each prisoner needs to open only 2735: 1788: 3010: 1924: 2361:
In 2009, Adam S. Landsberg proposed the following simpler variant of the 100 prisoners problem which is based on the well-known
1533: 1735:, the prisoners survive with the cycle-following strategy in more than 30% of cases independently of the number of prisoners. 1285:
The harmonic numbers are approximately given by the area under the hyperbola and can therefore be approximated by a logarithm.
3085: 2994: 2976: 2951: 2939: 62: 360:
And in the following arrangement, prisoner 1 opens drawers 1, 3, 7, and 4, at which point they have to stop unsuccessfully:
566:
and thus consists of two cycles of length 3 and one cycle of length 2. The permutation of the third example is accordingly
2968: 704:
of the numbers 1 to 100 contains no cycle of length greater than 50. This probability is determined in the following.
643:
and consists of a cycle of length 7 and a cycle of length 1. The cycle notation is not unique since a cycle of length
180:
Otherwise, the drawer contains the number of another prisoner, and they next open the drawer labeled with this number.
3080: 164: 482:
cycles, that is, cycles which have no common elements. The permutation of the first example above can be written in
1023: 1332:
an arbitrary natural number, the prisoners' survival probability with the cycle-following strategy is given by
88:
that a single prisoner finds their number is 50%. The probability that all prisoners find their numbers is the
2572: 1480: 1859: 2577: 1819: 492: 736: 572: 3064: 3057: 3047: 2567: 1838: 1027: 167:
of the success of the other prisoners, because they all depend on the way the numbers are distributed.
1745: 23:
Each prisoner has to find their own number in one of 100 drawers, but may open only 50 of the drawers.
1874: 1809: 466:
The prison director's assignment of prisoner numbers to drawers can mathematically be described as a
276:
Prisoner 2 opens drawers 2, 4, and 8 in this order. In the last drawer they find their own number, 2.
2000: 1721:{\displaystyle \lim _{n\to \infty }(1-H_{2n}+H_{n})=1-\gamma +\gamma -\ln 2=1-\ln 2\approx 0.30685.} 1273:. Therefore, using the cycle-following strategy the prisoners survive in a surprising 31% of cases. 1026:) random permutation contains no cycle of length greater than 50 is calculated with the formula for 2701: 1732: 77: 1756:
The 100 prisoners problem was first considered in 2003 by Anna Gál and Peter Bro Miltersen in the
1505: 57:
The 100 prisoners problem has different renditions in the literature. The following version is by
2562: 1855:
whether in this case the winning probability tends to zero with growing number of team members.
2685:
Anna Gál, Peter Bro Miltersen (2003), "The cell probe complexity of succinct data structures",
2601: 1757: 3017: 856: 3090: 2557: 1485: 891: 710: 89: 1807:). In the form of a prisoner problem it was posed in 2006 by Christoph Pöppe in the journal 781: 692: 1823:. With slight alterations this form was adopted by Philippe Flajolet, Robert Sedgewick and 1225: 888:
ways. Therefore, the number of permutations of the numbers 1 to 100 with a cycle of length
35: 8: 1031: 2687:
Proceedings 30th International Colloquium on Automata, Languages and Programming (ICALP)
1292: 2960: 2853: 2789: 2641: 2362: 1904: 1824: 1796: 1315: 1252: 836: 816: 701: 666: 646: 475: 39: 2990: 2972: 2947: 2935: 2645: 1773: 58: 2912: 2884: 2781: 2633: 1792: 3024: 2793: 1780: 1270: 2815:
Third International Conference on Quantum, Nano and Micro Technologies ICQNM '09
2548:
that would be obtained if each prisoner opened drawers independently at random.
2810: 1870: 483: 3051: 3041: 2917: 2889: 1832: 1012:{\displaystyle {\binom {100}{l}}\cdot (l-1)!\cdot (100-l)!={\frac {100!}{l}}.} 707:
A permutation of the numbers 1 to 100 can contain at most one cycle of length
3074: 3037: 1814: 479: 43: 19: 2376:
If the players select their doors randomly, the winning probability is only
451: 442: 775: 467: 160: 85: 32: 286:
Prisoners 5 to 7 will also each find their numbers in a similar fashion.
177:
If this drawer contains their number, they are done and were successful.
2806: 2637: 1866: 1828: 1469:{\displaystyle 1-(H_{2n}-H_{n})=1-(H_{2n}-\ln 2n)+(H_{n}-\ln n)-\ln 2.} 81: 2785: 853:
because of cyclic symmetry. The remaining numbers can be arranged in
471: 49:
Anna Gál and Peter Bro Miltersen first proposed the problem in 2003.
2934: 2858: 2844: 2827: 2599: 1762:
30. International Colloquium on Automata, Languages and Programming
279:
Prisoner 3 opens drawers 3 and 6, where they find their own number.
174:
Each prisoner first opens the drawer labeled with their own number.
3011:
Mathematicians hate civil liberties - 100 prisoners and 100 boxes
1281: 2736:"Mathematische Unterhaltungen: Freiheit für die Kombinatoriker" 1989: 1600:
holds, which results in an asymptotic survival probability of
145:, a vanishingly small number. The situation appears hopeless. 2684: 1765: 478:
of the permutation. Every permutation can be decomposed into
429:
Indeed, all prisoners except 6 (who succeeds directly) fail.
2772:
Navin Goyal, Michael Saks (2005), "A parallel search game",
2623: 1979:{\displaystyle O\left(N{\frac {\log \log N}{\log N}}\right)} 2699: 2392:(about 44%). The optimal strategy is, however, as follows: 2805: 2624:
Eugene Curtin, Max Warshauer (2006), "The locker puzzle",
2965:
Algebraic Combinatorics: Walks, Trees, Tableaux, and More
2771: 2667:
Algebraic Combinatorics: Walks, Trees, Tableaux, and More
1590:{\displaystyle \lim _{n\to \infty }(H_{n}-\ln n)=\gamma } 1894:
In the case that one prisoner may enter the room first,
1779:
In spring 2004, the problem appeared in Joe Buhler and
778:). Within this cycle, these numbers can be arranged in 2875:
Adam S. Landsberg (2009), "The Return of Monty Hall",
741: 2032: 2003: 1927: 1907: 1609: 1536: 1508: 1488: 1341: 1318: 1295: 1255: 1228: 1043: 923: 894: 859: 839: 819: 784: 739: 713: 669: 649: 575: 495: 2846:
The Prisoners and the Swap: Less than Half is Enough
833:
permutations to represent distinct cycles of length
1889: 2959: 2664: 2342: 2016: 1978: 1913: 1720: 1589: 1520: 1494: 1468: 1324: 1304: 1261: 1241: 1211: 1011: 906: 880: 845: 825: 805: 766: 725: 675: 655: 632: 555: 2874: 2718: 940: 927: 470:of the numbers 1 to 100. Such a permutation is a 3072: 2903:Eric Grundwald (2010), "Re: The Locker Puzzle", 1611: 1538: 774:ways to select the numbers of such a cycle (see 2753:Peter Winkler (2006), "Names in Boxes Puzzle", 2733: 1986:drawers to secure the escape of all prisoners. 1312:instead of 100 prisoners are considered, where 188: 2902: 2984: 2842: 2752: 1901:For a sufficiently large number of prisoners 1877:variant in which team B wins with certainty. 757: 744: 432: 2870: 2868: 2828:Philippe Flajolet, Robert Sedgewick (2009), 2723:, Cambridge University Press, pp. 29–30 2600:Philippe Flajolet, Robert Sedgewick (2009), 2246: 2232: 2192: 2178: 2094: 2080: 2026:With the strategy for the original problem: 1990:Any prisoner who finds their number is free 3067:to check the optimal strategy, 6 July 2022 2595: 2593: 2916: 2888: 2865: 2857: 2832:, Cambridge University Press, p. 177 2680: 2678: 2676: 2660: 2658: 2656: 2654: 2606:, Cambridge University Press, p. 124 1880: 1791:. Thereby, the authors replaced boxes by 687: 2619: 2617: 2615: 2613: 1789:Mathematical Sciences Research Institute 1280: 691: 18: 2590: 2532:when the optimal strategy is employed. 1731:Since the sequence of probabilities is 3073: 2746: 2673: 2651: 2535: 92:of the single probabilities, which is 2813:(2009), "The quantum locker puzzle", 2721:Cryptography and Secure Communication 2693: 2610: 2356: 76:If every prisoner selects 50 drawers 2727: 2700:Joe Buhler, Elwyn Berlekamp (2004), 556:{\displaystyle (1~7~5)(2~4~8)(3~6)} 13: 2969:Undergraduate Texts in Mathematics 2774:Random Structures & Algorithms 1783:'s puzzle column of the quarterly 1621: 1548: 1515: 931: 767:{\displaystyle {\tbinom {100}{l}}} 748: 633:{\displaystyle (1~3~7~4~5~8~2)(6)} 269:The prisoners now act as follows: 14: 3102: 3003: 1890:One prisoner may make one change 1769: 450: 441: 2896: 2836: 2821: 2799: 1795:and colored strips of paper by 3065:Stochastic simulation in Julia 3053:Solution to The Impossible Bet 2946:, Cambridge University Press, 2765: 2712: 2311: 2305: 2293: 2287: 2167: 2161: 2057: 2054: 2048: 2033: 2017:{\displaystyle {\frac {1}{2}}} 1849: 1661: 1626: 1618: 1578: 1553: 1545: 1512: 1451: 1426: 1420: 1389: 1377: 1348: 1276: 1197: 1171: 982: 970: 961: 949: 872: 860: 797: 785: 627: 621: 618: 576: 550: 538: 535: 517: 514: 496: 1: 2928: 2583: 2573:Random permutation statistics 1738: 3086:Probability theory paradoxes 2742:(in German), 6/2006: 106–108 2669:, Springer, pp. 187–189 1521:{\displaystyle n\to \infty } 7: 2755:College Mathematics Journal 2665:Richard P. Stanley (2013), 2551: 1844: 1820:College Mathematics Journal 194: 153: 148: 10: 3107: 2905:Mathematical Intelligencer 2877:Mathematical Intelligencer 2719:Richard E. Blahut (2014), 2626:Mathematical Intelligencer 2568:Unexpected hanging paradox 1751: 433:Permutation representation 52: 2987:Mathematical Mind-Benders 2918:10.1007/s00283-009-9107-1 2890:10.1007/s00283-008-9016-8 2740:Spektrum der Wissenschaft 1858:In 2005, Navin Goyal and 1810:Spektrum der Wissenschaft 1481:Euler–Mascheroni constant 1022:The probability, that a ( 3081:Recreational mathematics 2734:Christoph Pöppe (2006), 1746:Foata's transition lemma 1733:monotonically decreasing 881:{\displaystyle (100-l)!} 2578:Golomb–Dickman constant 2563:Three prisoners problem 2353:for every permutation. 1495:{\displaystyle \gamma } 907:{\displaystyle l>50} 726:{\displaystyle l>50} 2989:, Taylor and Francis, 2985:Peter Winkler (2007), 2944:Analytic Combinatorics 2843:Uri Mendlovic (2024), 2830:Analytic Combinatorics 2603:Analytic Combinatorics 2344: 2261: 2207: 2109: 2018: 1980: 1915: 1881:The malicious director 1722: 1591: 1522: 1496: 1470: 1326: 1306: 1286: 1263: 1243: 1213: 1013: 908: 882: 847: 827: 807: 806:{\displaystyle (l-1)!} 768: 727: 697: 688:Probability of success 677: 657: 634: 557: 24: 2345: 2221: 2173: 2069: 2019: 1981: 1916: 1873:considered in 2009 a 1723: 1592: 1523: 1497: 1471: 1327: 1307: 1284: 1264: 1244: 1242:{\displaystyle H_{n}} 1214: 1024:uniformly distributed 1014: 909: 883: 848: 828: 813:ways since there are 808: 769: 728: 695: 678: 658: 635: 558: 29:100 prisoners problem 22: 2030: 2001: 1925: 1905: 1607: 1534: 1506: 1486: 1339: 1316: 1293: 1253: 1226: 1041: 1032:complementary events 1030:and the formula for 921: 892: 857: 837: 817: 782: 737: 733:. There are exactly 711: 667: 647: 573: 493: 3034:, Spring 2011 (PDF) 2536:Odd number of tries 1875:quantum theoretical 397:number of prisoner 328:number of prisoner 237:number of prisoner 16:Mathematics problem 3032:Prisoners in Boxes 3030:Jamie Mulholland: 3027:, 12 December 2009 3023:2014-07-14 at the 3018:Pity the prisoners 2961:Richard P. Stanley 2761:(4): 260, 285, 289 2689:, pp. 332–344 2638:10.1007/BF02986999 2558:Prisoner's dilemma 2430:Goat − Keys − Car 2363:Monty Hall problem 2357:Monty Hall problem 2340: 2014: 1997:Without strategy: 1976: 1911: 1825:Richard P. Stanley 1718: 1625: 1587: 1552: 1518: 1492: 1466: 1322: 1305:{\displaystyle 2n} 1302: 1287: 1259: 1239: 1209: 1009: 904: 878: 843: 823: 803: 764: 762: 723: 702:random permutation 698: 673: 663:can be written in 653: 630: 553: 472:one-to-one mapping 40:probability theory 25: 3060:, 8 December 2014 3043:An Impossible Bet 3013:, 13 January 2014 2996:978-1-568-81336-3 2978:978-1-461-46998-8 2953:978-1-139-47716-1 2936:Philippe Flajolet 2786:10.1002/rsa.20068 2542:1, 3, ..., 97, 99 2496: 2495: 2427:Goat − Car − Keys 2424:Keys − Goat − Car 2421:Keys − Car − Goat 2418:Car − Goat − Keys 2415:Car − Keys − Goat 2338: 2325: 2270: 2216: 2139: 2118: 2012: 1969: 1914:{\displaystyle N} 1896:inspect all boxes 1774:Aarhus University 1610: 1537: 1325:{\displaystyle n} 1262:{\displaystyle n} 1155: 1136: 1107: 1083: 1063: 1004: 938: 846:{\displaystyle l} 826:{\displaystyle l} 755: 676:{\displaystyle l} 656:{\displaystyle l} 614: 608: 602: 596: 590: 584: 546: 531: 525: 510: 504: 425: 424: 368:number of drawer 356: 355: 299:number of drawer 265: 264: 208:number of drawer 59:Philippe Flajolet 3098: 3054: 3044: 2999: 2981: 2956: 2940:Robert Sedgewick 2922: 2921: 2920: 2900: 2894: 2893: 2892: 2872: 2863: 2862: 2861: 2851: 2840: 2834: 2833: 2825: 2819: 2818: 2817:, pp. 63–66 2803: 2797: 2796: 2769: 2763: 2762: 2750: 2744: 2743: 2731: 2725: 2724: 2716: 2710: 2709: 2708:, Spring 2004: 3 2702:"Puzzles Column" 2697: 2691: 2690: 2682: 2671: 2670: 2662: 2649: 2648: 2621: 2608: 2607: 2597: 2547: 2543: 2531: 2529: 2528: 2525: 2522: 2515: 2513: 2512: 2509: 2506: 2410: 2409: 2391: 2389: 2388: 2385: 2382: 2349: 2347: 2346: 2341: 2339: 2331: 2326: 2318: 2271: 2263: 2260: 2255: 2242: 2217: 2209: 2206: 2201: 2188: 2145: 2141: 2140: 2132: 2119: 2111: 2108: 2103: 2090: 2023: 2021: 2020: 2015: 2013: 2005: 1985: 1983: 1982: 1977: 1975: 1971: 1970: 1968: 1957: 1940: 1920: 1918: 1917: 1912: 1835: 1727: 1725: 1724: 1719: 1660: 1659: 1647: 1646: 1624: 1596: 1594: 1593: 1588: 1565: 1564: 1551: 1527: 1525: 1524: 1519: 1501: 1499: 1498: 1493: 1475: 1473: 1472: 1467: 1438: 1437: 1404: 1403: 1376: 1375: 1363: 1362: 1331: 1329: 1328: 1323: 1311: 1309: 1308: 1303: 1268: 1266: 1265: 1260: 1248: 1246: 1245: 1240: 1238: 1237: 1218: 1216: 1215: 1210: 1196: 1195: 1183: 1182: 1161: 1157: 1156: 1148: 1137: 1129: 1113: 1109: 1108: 1103: 1095: 1084: 1079: 1071: 1064: 1062: 1051: 1018: 1016: 1015: 1010: 1005: 1000: 992: 945: 944: 943: 930: 913: 911: 910: 905: 887: 885: 884: 879: 852: 850: 849: 844: 832: 830: 829: 824: 812: 810: 809: 804: 773: 771: 770: 765: 763: 761: 760: 747: 732: 730: 729: 724: 682: 680: 679: 674: 662: 660: 659: 654: 639: 637: 636: 631: 612: 606: 600: 594: 588: 582: 562: 560: 559: 554: 544: 529: 523: 508: 502: 454: 445: 392:  8   365: 364: 323:  8   296: 295: 232:  8   205: 204: 144: 143: 140: 137: 134: 131: 128: 125: 122: 119: 110: 108: 107: 104: 101: 63:Robert Sedgewick 3106: 3105: 3101: 3100: 3099: 3097: 3096: 3095: 3071: 3070: 3052: 3042: 3025:Wayback Machine 3006: 2997: 2979: 2954: 2931: 2926: 2925: 2901: 2897: 2873: 2866: 2849: 2841: 2837: 2826: 2822: 2804: 2800: 2770: 2766: 2751: 2747: 2732: 2728: 2717: 2713: 2698: 2694: 2683: 2674: 2663: 2652: 2622: 2611: 2598: 2591: 2586: 2554: 2545: 2541: 2538: 2526: 2523: 2520: 2519: 2517: 2510: 2507: 2504: 2503: 2501: 2489:(Door 1: Goat) 2488: 2483: 2482:(Door 2: Goat) 2478: 2473: 2460: 2455: 2450: 2445: 2386: 2383: 2380: 2379: 2377: 2359: 2330: 2317: 2262: 2256: 2238: 2225: 2208: 2202: 2184: 2177: 2131: 2124: 2120: 2110: 2104: 2086: 2073: 2031: 2028: 2027: 2004: 2002: 1999: 1998: 1992: 1958: 1941: 1939: 1935: 1931: 1926: 1923: 1922: 1906: 1903: 1902: 1892: 1883: 1852: 1847: 1833: 1781:Elwyn Berlekamp 1754: 1741: 1655: 1651: 1639: 1635: 1614: 1608: 1605: 1604: 1560: 1556: 1541: 1535: 1532: 1531: 1507: 1504: 1503: 1487: 1484: 1483: 1433: 1429: 1396: 1392: 1371: 1367: 1355: 1351: 1340: 1337: 1336: 1317: 1314: 1313: 1294: 1291: 1290: 1279: 1271:harmonic number 1254: 1251: 1250: 1233: 1229: 1227: 1224: 1223: 1191: 1187: 1178: 1174: 1147: 1128: 1127: 1123: 1096: 1094: 1072: 1070: 1069: 1065: 1055: 1050: 1042: 1039: 1038: 993: 991: 939: 926: 925: 924: 922: 919: 918: 893: 890: 889: 858: 855: 854: 838: 835: 834: 818: 815: 814: 783: 780: 779: 756: 743: 742: 740: 738: 735: 734: 712: 709: 708: 690: 668: 665: 664: 648: 645: 644: 574: 571: 570: 494: 491: 490: 464: 463: 462: 461: 457: 456: 455: 447: 446: 435: 389:  7   386:  6   383:  5   380:  4   377:  3   374:  2   371:  1   320:  7   317:  6   314:  5   311:  4   308:  3   305:  2   302:  1   229:  7   226:  6   223:  5   220:  4   217:  3   214:  2   197: 156: 151: 141: 138: 135: 132: 129: 126: 123: 120: 117: 115: 113: 105: 102: 99: 98: 96: 95: 55: 17: 12: 11: 5: 3104: 3094: 3093: 3088: 3083: 3069: 3068: 3063:Robert Feldt: 3061: 3035: 3028: 3014: 3005: 3004:External links 3002: 3001: 3000: 2995: 2982: 2977: 2957: 2952: 2930: 2927: 2924: 2923: 2895: 2864: 2835: 2820: 2811:Anne Broadbent 2798: 2780:(2): 227–234, 2764: 2745: 2726: 2711: 2692: 2672: 2650: 2609: 2588: 2587: 2585: 2582: 2581: 2580: 2575: 2570: 2565: 2560: 2553: 2550: 2537: 2534: 2498: 2497: 2494: 2493: 2490: 2487:(Door 2: Car) 2485: 2484:(Door 3: Car) 2480: 2475: 2470: 2467: 2463: 2462: 2457: 2452: 2447: 2442: 2439: 2436: 2432: 2431: 2428: 2425: 2422: 2419: 2416: 2413: 2403: 2402: 2398: 2374: 2373: 2358: 2355: 2337: 2334: 2329: 2324: 2321: 2316: 2313: 2310: 2307: 2304: 2301: 2298: 2295: 2292: 2289: 2286: 2283: 2280: 2277: 2274: 2269: 2266: 2259: 2254: 2251: 2248: 2245: 2241: 2237: 2234: 2231: 2228: 2224: 2220: 2215: 2212: 2205: 2200: 2197: 2194: 2191: 2187: 2183: 2180: 2176: 2172: 2169: 2166: 2163: 2160: 2157: 2154: 2151: 2148: 2144: 2138: 2135: 2130: 2127: 2123: 2117: 2114: 2107: 2102: 2099: 2096: 2093: 2089: 2085: 2082: 2079: 2076: 2072: 2068: 2065: 2062: 2059: 2056: 2053: 2050: 2047: 2044: 2041: 2038: 2035: 2011: 2008: 1991: 1988: 1974: 1967: 1964: 1961: 1956: 1953: 1950: 1947: 1944: 1938: 1934: 1930: 1910: 1891: 1888: 1882: 1879: 1871:Anne Broadbent 1851: 1848: 1846: 1843: 1753: 1750: 1740: 1737: 1729: 1728: 1717: 1714: 1711: 1708: 1705: 1702: 1699: 1696: 1693: 1690: 1687: 1684: 1681: 1678: 1675: 1672: 1669: 1666: 1663: 1658: 1654: 1650: 1645: 1642: 1638: 1634: 1631: 1628: 1623: 1620: 1617: 1613: 1598: 1597: 1586: 1583: 1580: 1577: 1574: 1571: 1568: 1563: 1559: 1555: 1550: 1547: 1544: 1540: 1517: 1514: 1511: 1491: 1477: 1476: 1465: 1462: 1459: 1456: 1453: 1450: 1447: 1444: 1441: 1436: 1432: 1428: 1425: 1422: 1419: 1416: 1413: 1410: 1407: 1402: 1399: 1395: 1391: 1388: 1385: 1382: 1379: 1374: 1370: 1366: 1361: 1358: 1354: 1350: 1347: 1344: 1321: 1301: 1298: 1278: 1275: 1258: 1236: 1232: 1220: 1219: 1208: 1205: 1202: 1199: 1194: 1190: 1186: 1181: 1177: 1173: 1170: 1167: 1164: 1160: 1154: 1151: 1146: 1143: 1140: 1135: 1132: 1126: 1122: 1119: 1116: 1112: 1106: 1102: 1099: 1093: 1090: 1087: 1082: 1078: 1075: 1068: 1061: 1058: 1054: 1049: 1046: 1034:thus given by 1020: 1019: 1008: 1003: 999: 996: 990: 987: 984: 981: 978: 975: 972: 969: 966: 963: 960: 957: 954: 951: 948: 942: 937: 934: 929: 903: 900: 897: 877: 874: 871: 868: 865: 862: 842: 822: 802: 799: 796: 793: 790: 787: 759: 754: 751: 746: 722: 719: 716: 689: 686: 672: 652: 641: 640: 629: 626: 623: 620: 617: 611: 605: 599: 593: 587: 581: 578: 564: 563: 552: 549: 543: 540: 537: 534: 528: 522: 519: 516: 513: 507: 501: 498: 484:cycle notation 459: 458: 449: 448: 440: 439: 438: 437: 436: 434: 431: 427: 426: 423: 422: 419: 416: 413: 410: 407: 404: 401: 398: 394: 393: 390: 387: 384: 381: 378: 375: 372: 369: 358: 357: 354: 353: 350: 347: 344: 341: 338: 335: 332: 329: 325: 324: 321: 318: 315: 312: 309: 306: 303: 300: 288: 287: 284: 280: 277: 274: 267: 266: 263: 262: 259: 256: 253: 250: 247: 244: 241: 238: 234: 233: 230: 227: 224: 221: 218: 215: 212: 211: 1   209: 196: 193: 185: 184: 181: 178: 175: 155: 152: 150: 147: 111: 93: 74: 73: 54: 51: 15: 9: 6: 4: 3: 2: 3103: 3092: 3089: 3087: 3084: 3082: 3079: 3078: 3076: 3066: 3062: 3059: 3055: 3049: 3045: 3039: 3038:MinutePhysics 3036: 3033: 3029: 3026: 3022: 3019: 3016:Oliver Nash: 3015: 3012: 3008: 3007: 2998: 2992: 2988: 2983: 2980: 2974: 2970: 2966: 2962: 2958: 2955: 2949: 2945: 2941: 2937: 2933: 2932: 2919: 2914: 2910: 2906: 2899: 2891: 2886: 2882: 2878: 2871: 2869: 2860: 2855: 2848: 2847: 2839: 2831: 2824: 2816: 2812: 2808: 2802: 2795: 2791: 2787: 2783: 2779: 2775: 2768: 2760: 2756: 2749: 2741: 2737: 2730: 2722: 2715: 2707: 2703: 2696: 2688: 2681: 2679: 2677: 2668: 2661: 2659: 2657: 2655: 2647: 2643: 2639: 2635: 2631: 2627: 2620: 2618: 2616: 2614: 2605: 2604: 2596: 2594: 2589: 2579: 2576: 2574: 2571: 2569: 2566: 2564: 2561: 2559: 2556: 2555: 2549: 2533: 2492:Door 2: Keys 2491: 2486: 2481: 2479:Door 1: Keys 2476: 2474:Door 3: Keys 2472:Door 2: Goat 2471: 2469:Door 2: Keys 2468: 2465: 2464: 2459:Door 1: Goat 2458: 2456:Door 3: Keys 2454:Door 1: Goat 2453: 2451:Door 2: Goat 2449:Door 1: Keys 2448: 2444:Door 1: Keys 2443: 2440: 2437: 2434: 2433: 2429: 2426: 2423: 2420: 2417: 2414: 2412: 2411: 2408: 2407: 2406: 2399: 2395: 2394: 2393: 2372: 2368: 2367: 2366: 2364: 2354: 2350: 2335: 2332: 2327: 2322: 2319: 2314: 2308: 2302: 2299: 2296: 2290: 2284: 2281: 2278: 2275: 2272: 2267: 2264: 2257: 2252: 2249: 2243: 2239: 2235: 2229: 2226: 2222: 2218: 2213: 2210: 2203: 2198: 2195: 2189: 2185: 2181: 2174: 2170: 2164: 2158: 2155: 2152: 2149: 2146: 2142: 2136: 2133: 2128: 2125: 2121: 2115: 2112: 2105: 2100: 2097: 2091: 2087: 2083: 2077: 2074: 2070: 2066: 2063: 2060: 2051: 2045: 2042: 2039: 2036: 2024: 2009: 2006: 1995: 1987: 1972: 1965: 1962: 1959: 1954: 1951: 1948: 1945: 1942: 1936: 1932: 1928: 1908: 1899: 1897: 1887: 1878: 1876: 1872: 1868: 1864: 1861: 1856: 1842: 1840: 1836: 1830: 1826: 1822: 1821: 1816: 1815:Peter Winkler 1812: 1811: 1806: 1805:locker puzzle 1801: 1798: 1794: 1790: 1786: 1782: 1777: 1775: 1771: 1767: 1763: 1759: 1749: 1747: 1736: 1734: 1715: 1712: 1709: 1706: 1703: 1700: 1697: 1694: 1691: 1688: 1685: 1682: 1679: 1676: 1673: 1670: 1667: 1664: 1656: 1652: 1648: 1643: 1640: 1636: 1632: 1629: 1615: 1603: 1602: 1601: 1584: 1581: 1575: 1572: 1569: 1566: 1561: 1557: 1542: 1530: 1529: 1528: 1509: 1489: 1482: 1463: 1460: 1457: 1454: 1448: 1445: 1442: 1439: 1434: 1430: 1423: 1417: 1414: 1411: 1408: 1405: 1400: 1397: 1393: 1386: 1383: 1380: 1372: 1368: 1364: 1359: 1356: 1352: 1345: 1342: 1335: 1334: 1333: 1319: 1299: 1296: 1283: 1274: 1272: 1256: 1234: 1230: 1206: 1203: 1200: 1192: 1188: 1184: 1179: 1175: 1168: 1165: 1162: 1158: 1152: 1149: 1144: 1141: 1138: 1133: 1130: 1124: 1120: 1117: 1114: 1110: 1104: 1100: 1097: 1091: 1088: 1085: 1080: 1076: 1073: 1066: 1059: 1056: 1052: 1047: 1044: 1037: 1036: 1035: 1033: 1029: 1028:single events 1025: 1006: 1001: 997: 994: 988: 985: 979: 976: 973: 967: 964: 958: 955: 952: 946: 935: 932: 917: 916: 915: 901: 898: 895: 875: 869: 866: 863: 840: 820: 800: 794: 791: 788: 777: 752: 749: 720: 717: 714: 705: 703: 694: 685: 670: 650: 624: 615: 609: 603: 597: 591: 585: 579: 569: 568: 567: 547: 541: 532: 526: 520: 511: 505: 499: 489: 488: 487: 485: 481: 477: 473: 469: 453: 444: 430: 420: 417: 414: 411: 408: 405: 402: 399: 396: 395: 391: 388: 385: 382: 379: 376: 373: 370: 367: 366: 363: 362: 361: 351: 348: 345: 342: 339: 336: 333: 330: 327: 326: 322: 319: 316: 313: 310: 307: 304: 301: 298: 297: 294: 293: 292: 285: 281: 278: 275: 272: 271: 270: 260: 257: 254: 251: 248: 245: 242: 239: 236: 235: 231: 228: 225: 222: 219: 216: 213: 210: 207: 206: 203: 202: 201: 192: 190: 182: 179: 176: 173: 172: 171: 168: 166: 162: 146: 91: 87: 83: 79: 78:independently 72: 68: 67: 66: 64: 60: 50: 47: 45: 44:combinatorics 41: 37: 34: 30: 21: 3091:Permutations 3009:Rob Heaton: 2986: 2971:, Springer, 2964: 2943: 2908: 2904: 2898: 2880: 2876: 2845: 2838: 2829: 2823: 2814: 2801: 2777: 2773: 2767: 2758: 2754: 2748: 2739: 2729: 2720: 2714: 2706:The Emissary 2705: 2695: 2686: 2666: 2629: 2625: 2602: 2539: 2499: 2477:Door 2: Car 2461:Door 3: Car 2446:Door 2: Car 2441:Door 1: Car 2438:Door 1: Car 2404: 2375: 2369: 2360: 2351: 2025: 1996: 1993: 1900: 1895: 1893: 1884: 1865: 1860:Michael Saks 1857: 1853: 1818: 1808: 1804: 1802: 1785:The Emissary 1784: 1778: 1761: 1755: 1742: 1730: 1599: 1478: 1288: 1221: 1021: 914:is equal to 706: 699: 642: 565: 465: 428: 359: 289: 268: 198: 186: 169: 157: 75: 69: 56: 48: 33:mathematical 28: 26: 1850:Empty boxes 1758:proceedings 1277:Asymptotics 776:combination 468:permutation 165:independent 161:information 86:probability 3075:Categories 2929:Literature 2859:2407.07190 2850:(Preprint) 2807:David Avis 2584:References 1867:David Avis 1831:in a 2023 1829:Veritasium 1739:Optimality 2852:, arXiv, 2646:123089718 2632:: 28–31, 2466:Player 2 2435:Player 1 2315:− 2303:⁡ 2285:⁡ 2279:− 2247:⌋ 2233:⌊ 2223:∑ 2219:− 2193:⌋ 2179:⌊ 2175:∑ 2159:⁡ 2153:− 2129:− 2095:⌋ 2081:⌊ 2071:∑ 2061:⋅ 2046:⁡ 2040:− 1963:⁡ 1952:⁡ 1946:⁡ 1744:based on 1713:≈ 1707:⁡ 1701:− 1689:⁡ 1683:− 1680:γ 1674:γ 1671:− 1633:− 1622:∞ 1619:→ 1585:γ 1573:⁡ 1567:− 1549:∞ 1546:→ 1516:∞ 1513:→ 1490:γ 1479:With the 1461:⁡ 1455:− 1446:⁡ 1440:− 1412:⁡ 1406:− 1387:− 1365:− 1346:− 1201:≈ 1185:− 1169:− 1142:… 1121:− 1089:… 1048:− 977:− 968:⋅ 956:− 947:⋅ 867:− 792:− 3021:Archived 2963:(2013), 2942:(2009), 2911:(2): 1, 2883:(2): 1, 2552:See also 1845:Variants 1716:0.30685. 480:disjoint 195:Examples 154:Strategy 149:Solution 82:randomly 3058:YouTube 3048:YouTube 2530:⁠ 2518:⁠ 2514:⁠ 2502:⁠ 2390:⁠ 2378:⁠ 1839:YouTube 1817:in the 1813:and by 1787:of the 1760:of the 1752:History 1249:is the 1204:0.31183 283:drawer. 109:⁠ 97:⁠ 90:product 53:Problem 36:problem 2993:  2975:  2950:  2792:  2644:  1797:signed 1502:, for 1222:where 613:  607:  601:  595:  589:  583:  545:  530:  524:  509:  503:  84:, the 2854:arXiv 2794:90893 2790:S2CID 2642:S2CID 2546:(1/2) 1834:video 1770:below 1766:ICALP 476:cycle 189:below 116:0.000 31:is a 3050:and 2991:ISBN 2973:ISBN 2948:ISBN 1869:and 1793:ROMs 1269:-th 899:> 718:> 142:0008 80:and 61:and 42:and 27:The 3056:on 3046:on 2913:doi 2885:doi 2782:doi 2634:doi 1960:log 1949:log 1943:log 1837:on 1612:lim 1539:lim 1289:If 1180:100 1153:100 1105:100 1098:100 1074:100 1057:100 995:100 974:100 933:100 864:100 750:100 486:as 139:000 136:000 133:000 130:000 127:000 124:000 121:000 118:000 38:in 3077:: 3040:: 2967:, 2938:, 2909:32 2907:, 2881:31 2879:, 2867:^ 2809:, 2788:, 2778:27 2776:, 2759:37 2757:, 2738:, 2704:, 2675:^ 2653:^ 2640:, 2630:28 2628:, 2612:^ 2592:^ 2401:1. 2397:3. 2365:: 2300:ln 2282:ln 2156:ln 2043:ln 1841:. 1704:ln 1686:ln 1570:ln 1464:2. 1458:ln 1443:ln 1409:ln 1193:50 1134:51 1081:51 902:50 721:50 421:2 352:1 261:2 114:≈ 65:: 2915:: 2887:: 2856:: 2784:: 2636:: 2527:3 2524:/ 2521:2 2511:3 2508:/ 2505:2 2387:9 2384:/ 2381:4 2336:2 2333:1 2328:= 2323:2 2320:1 2312:) 2309:2 2306:( 2297:+ 2294:) 2291:2 2288:( 2276:1 2273:= 2268:n 2265:1 2258:N 2253:1 2250:+ 2244:2 2240:/ 2236:n 2230:= 2227:k 2214:k 2211:1 2204:N 2199:1 2196:+ 2190:2 2186:/ 2182:n 2171:+ 2168:) 2165:2 2162:( 2150:1 2147:= 2143:) 2137:n 2134:k 2126:1 2122:( 2116:k 2113:1 2106:N 2101:1 2098:+ 2092:2 2088:/ 2084:n 2078:= 2075:k 2067:+ 2064:1 2058:) 2055:) 2052:2 2049:( 2037:1 2034:( 2010:2 2007:1 1973:) 1966:N 1955:N 1937:N 1933:( 1929:O 1909:N 1764:( 1710:2 1698:1 1695:= 1692:2 1677:+ 1668:1 1665:= 1662:) 1657:n 1653:H 1649:+ 1644:n 1641:2 1637:H 1630:1 1627:( 1616:n 1582:= 1579:) 1576:n 1562:n 1558:H 1554:( 1543:n 1510:n 1452:) 1449:n 1435:n 1431:H 1427:( 1424:+ 1421:) 1418:n 1415:2 1401:n 1398:2 1394:H 1390:( 1384:1 1381:= 1378:) 1373:n 1369:H 1360:n 1357:2 1353:H 1349:( 1343:1 1320:n 1300:n 1297:2 1257:n 1235:n 1231:H 1207:, 1198:) 1189:H 1176:H 1172:( 1166:1 1163:= 1159:) 1150:1 1145:+ 1139:+ 1131:1 1125:( 1118:1 1115:= 1111:) 1101:! 1092:+ 1086:+ 1077:! 1067:( 1060:! 1053:1 1045:1 1007:. 1002:l 998:! 989:= 986:! 983:) 980:l 971:( 965:! 962:) 959:1 953:l 950:( 941:) 936:l 928:( 896:l 876:! 873:) 870:l 861:( 841:l 821:l 801:! 798:) 795:1 789:l 786:( 758:) 753:l 745:( 715:l 671:l 651:l 628:) 625:6 622:( 619:) 616:2 610:8 604:5 598:4 592:7 586:3 580:1 577:( 551:) 548:6 542:3 539:( 536:) 533:8 527:4 521:2 518:( 515:) 512:5 506:7 500:1 497:( 418:4 415:6 412:8 409:5 406:7 403:1 400:3 349:5 346:3 343:2 340:8 337:6 334:4 331:7 258:5 255:3 252:1 249:8 246:6 243:4 240:7 112:) 106:2 103:/ 100:1 94:(

Index


mathematical
problem
probability theory
combinatorics
Philippe Flajolet
Robert Sedgewick
independently
randomly
probability
product
information
independent
below


permutation
one-to-one mapping
cycle
disjoint
cycle notation

random permutation
combination
uniformly distributed
single events
complementary events
harmonic number

Euler–Mascheroni constant

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.