Knowledge

Silicon–germanium

Source 📝

169:. The challenge that had delayed its realization for decades was that germanium atoms are roughly 4% larger than silicon atoms. At the usual high temperatures at which silicon transistors were fabricated, the strain induced by adding these larger atoms into crystalline silicon produced vast numbers of defects, precluding the resulting material being of any use. Meyerson and co-workers discovered that the then believed requirement for high temperature processing was flawed, allowing SiGe growth at sufficiently low temperatures such that for all practical purposes no defects were formed. Once having resolved that basic roadblock, it was shown that resultant SiGe materials could be manufactured into high performance electronics using conventional low cost silicon 230: 296: 690:"A 200 mm SiGe HBT BiCMOS Technology for Mixed Signal Applications," K. Schonenberg, M. Gilbert, G.D. Berg, S. Wu, M. Soyuer, K. A. Tallman, K. J. Stein, R. A. Groves, S. Subbanna, D.B. Colavito, D.A. Sunderland and B.S. Meyerson," Proceedings of the 1995 Bipolar/BiCMOS Circuits and Technology Meeting, p. 89-92, 1995. 429:
transfer using light instead of electric current, speeding up data transfer while reducing energy consumption and need for cooling systems. The international team, with lead authors Elham Fadaly, Alain Dijkstra and Erik Bakkers at Eindhoven University of Technology in the Netherlands and Jens Renè Suckert at
173:
toolsets. More relevant, the performance of resulting transistors far exceeded what was then thought to be the limit of traditionally manufactured silicon devices, enabling a new generation of low cost commercial wireless technologies such as WiFi. SiGe processes achieve costs similar to those of
759:
Fadaly, Elham M. T.; Dijkstra, Alain; Suckert, Jens Renè; Ziss, Dorian; van Tilburg, Marvin A. J.; Mao, Chenyang; Ren, Yizhen; van Lange, Victor T.; Korzun, Ksenia; Kölling, Sebastian; Verheijen, Marcel A.; Busse, David; Rödl, Claudia; Furthmüller, Jürgen; Bechstedt, Friedhelm; Stangl, Julian;
428:
By controlling the composition of a hexagonal SiGe alloy, researchers from Eindhoven University of Technology developed a material that can emit light. In combination with its electronic properties, this opens up the possibility of producing a laser integrated into a single chip to enable data
578:"SiGe HBTs Reach the Microwave and Millimeter-Wave Frontier," C. Kermarrec, T. Tewksbury, G. Dave, R. Baines, B. Meyerson, D. Harame and M. Gilbert, Proceedings of the 1994 Bipolar/BiCMOS Circuits & Technology Meeting, Minneapolis, Minn., Oct. 10-11, 1994, Sponsored by IEEE, (1994). 588:
Woelk, Egbert; Shenai-Khatkhate, Deodatta V.; DiCarlo, Ronald L.; Amamchyan, Artashes; Power, Michael B.; Lamare, Bruno; Beaudoin, Grégoire; Sagnes, Isabelle (January 2006). "Designing novel organogermanium OMVPE precursors for high-purity germanium films".
624:
Shenai, Deo V.; DiCarlo, Ronald L.; Power, Michael B.; Amamchyan, Artashes; Goyette, Randall J.; Woelk, Egbert (January 2007). "Safer alternative liquid germanium precursors for relaxed graded SiGe layers and strained silicon by MOVPE".
569:  SiGe Base Heterojunction Bipolar Transistor," G.L. Patton, J.H. Comfort, B.S. Meyerson, E.F. Crabbe, G.J. Scilla, E. DeFresart, J.M.C. Stork, J.Y.-C. Sun, D.L. Harame and J. Burghartz, Electron. Dev. Lett. 11, 171 (1990). 392:
leakage due to the lower bandgap value of SiGe. However, a major issue with SGOI MOSFETs is the inability to form stable oxides with silicon–germanium using standard silicon oxidation processing.
739:
G. L. Bennett; J. J. Lombardo; R. J. Hemler; G. Silverman; C. W. Whitmore; W. R. Amos; E. W. Johnson; A. Schock; R. W. Zocher; T. K. Keenan; J. C. Hagan; R. W. Englehart (26–29 June 2006).
461: 896: 673: 543:"Bistable Conditions for Low Temperature Silicon Epitaxy," Bernard S. Meyerson, Franz Himpsel and Kevin J. Uram, Appl. Phys. Lett. 57, 1034 (1990). 314: 206: 660:
AMD And IBM Unveil New, Higher Performance, More Power Efficient 65nm Process Technologies At Gathering Of Industry's Top R&D Firms
826: 717: 182:, alkylgermanium trichlorides, and dimethylaminogermanium trichloride) have been examined as less hazardous liquid alternatives to 485: 357:. This translates into better low-current and high-frequency performance. Being a heterojunction technology with an adjustable 251: 880: 861: 764:; Haverkort, Jos E. M.; Bakkers, Erik P. A. M. (April 2020). "Direct-bandgap emission from hexagonal Ge and SiGe alloys". 145:
introduced the technology into mainstream manufacturing in 1989. This relatively new technology offers opportunities in
346: 332: 277: 17: 659: 259: 216:
silicon–germanium process, promising a quadrupling in the amount of transistors compared to a contemporary process.
350: 205:
disclosed a joint development with IBM for a SiGe stressed-silicon technology, targeting the 65 nm process.
146: 255: 916: 408:
spacecraft. Silicon–germanium thermoelectric devices were also used in other MHW-RTGs and GPHS-RTGs aboard
552:
B. S. Meyerson, "UHV/CVD growth of Si and Si:Ge alloys: chemistry, physics, and device applications," in
354: 748:. 4th International Energy Conversion Engineering Conference and Exhibit (IECEC). San Diego, California. 353:. Heterojunction bipolar transistors have higher forward gain and lower reverse gain than traditional 931: 134: 362: 170: 310: 240: 926: 244: 174:
silicon CMOS manufacturing and are lower than those of other heterojunction technologies such as
202: 119: 198: 783: 634: 598: 518: 451: 417: 413: 369: 725: 8: 506: 409: 166: 787: 742:
Mission of Daring: The General-Purpose Heat Source Radioisotope Thermoelectric Generator
638: 602: 522: 446: 921: 807: 773: 430: 377: 372:(SOI) technology currently employed in computer chips. SGOI increases the speed of the 212:
In July 2015, IBM announced that it had created working samples of transistors using a
130: 123: 530: 876: 857: 811: 799: 385: 481: 791: 738: 646: 642: 610: 606: 526: 389: 191: 175: 62: 36: 489: 433:
in Germany, were awarded the 2020 Breakthrough of the Year award by the magazine
179: 701: 154: 150: 127: 851: 795: 910: 761: 434: 803: 456: 213: 94: 373: 368:
Silicon–germanium on insulator (SGOI) is a technology analogous to the
740: 587: 462:
Application of silicon-germanium thermoelectrics in space exploration
405: 401: 102: 229: 201:
services are offered by several semiconductor technology companies.
190:
deposition of Ge-containing films such as high purity Ge, SiGe, and
778: 556:, vol. 80, no. 10, pp. 1592-1608, Oct. 1992, doi: 10.1109/5.168668. 400:
A silicon–germanium thermoelectric device MHW-RTG3 was used in the
358: 165:
The use of silicon–germanium as a semiconductor was championed by
183: 98: 873:
Circuits and Applications Using Silicon Heterostructure Devices
388:
and higher drive currents. SiGe MOSFETs can also provide lower
381: 674:"IBM Discloses Working Version of a Much Higher-Capacity Chip" 77: 51: 187: 157:
material for high-temperature applications (>700 K).
90: 852:
Raminderpal Singh; Modest M. Oprysko; David Harame (2004).
623: 138: 71: 831:
announces its Breakthrough of the Year finalists for 2020"
509:(March 1994). "High-Speed Silicon-Germanium Electronics". 74: 897:
Ge Precursors for Strained Si and Compound Semiconductors
758: 142: 48: 45: 68: 42: 703:
Silicon-Germanium Heterojunction Bipolar Transistors
361:, the SiGe offers the opportunity for more flexible 854:
Silicon Germanium: Technology, Modeling, and Design
305:
may be too technical for most readers to understand
65: 39: 153:IC design and manufacture. SiGe is also used as a 482:"Silicon–Germanium Gives Semiconductors the Edge" 908: 870: 824: 105:, i.e. with a molecular formula of the form Si 395: 345:SiGe allows CMOS logic to be integrated with 178:. Recently, organogermanium precursors (e.g. 699: 258:. Unsourced material may be challenged and 777: 333:Learn how and when to remove this message 317:, without removing the technical details. 278:Learn how and when to remove this message 505: 209:also sells SiGe manufacturing capacity. 671: 14: 909: 856:. IEEE Press / John Wiley & Sons. 480:Ouellette, Jennifer (June/July 2002). 315:make it understandable to non-experts 289: 256:adding citations to reliable sources 223: 431:Friedrich-Schiller-Universität Jena 219: 24: 845: 718:"Thermoelectrics History Timeline" 347:heterojunction bipolar transistors 25: 943: 890: 700:Cressler, J. D.; Niu, G. (2003). 531:10.1038/scientificamerican0394-62 423: 355:homojunction bipolar transistors 351:mixed-signal integrated circuits 294: 228: 61: 35: 825:Hamish Johnston (10 Dec 2020). 818: 752: 732: 710: 693: 684: 665: 662:, retrieved at March 16, 2007. 653: 647:10.1016/j.jcrysgro.2006.10.194 617: 611:10.1016/j.jcrysgro.2005.10.094 581: 572: 559: 546: 537: 499: 474: 365:than silicon-only technology. 13: 1: 672:Markoff, John (9 July 2015). 467: 378:straining the crystal lattice 160: 384:gate, resulting in improved 7: 901:Semiconductor International 706:. Artech House. p. 13. 440: 118:. It is commonly used as a 10: 948: 396:Thermoelectric application 871:John D. Cressler (2007). 796:10.1038/s41586-020-2150-y 627:Journal of Crystal Growth 591:Journal of Crystal Growth 349:, making it suitable for 494:The Industrial Physicist 554:Proceedings of the IEEE 120:semiconductor material 760:Finley, Jonathan J.; 376:inside microchips by 507:Meyerson, Bernard S. 452:Silicon on insulator 370:silicon on insulator 252:improve this section 147:mixed-signal circuit 137:-inducing layer for 917:Integrated circuits 788:2020Natur.580..205F 639:2007JCrGr.298..172S 603:2006JCrGr.287..684W 523:1994SciAm.270c..62M 511:Scientific American 131:bipolar transistors 124:integrated circuits 678:The New York Times 488:2008-05-17 at the 932:Thermoelectricity 882:978-1-4200-6695-1 863:978-0-471-66091-0 772:(7802): 205–209. 386:electron mobility 343: 342: 335: 288: 287: 280: 87:silicon–germanium 27:Chemical compound 18:Silicon-germanium 16:(Redirected from 939: 903:, April 1, 2006. 886: 867: 839: 838: 822: 816: 815: 781: 756: 750: 749: 747: 736: 730: 729: 724:. Archived from 714: 708: 707: 697: 691: 688: 682: 681: 669: 663: 657: 651: 650: 621: 615: 614: 585: 579: 576: 570: 563: 557: 550: 544: 541: 535: 534: 503: 497: 478: 447:Low-κ dielectric 338: 331: 327: 324: 318: 298: 297: 290: 283: 276: 272: 269: 263: 232: 224: 220:SiGe transistors 192:strained silicon 176:gallium arsenide 84: 83: 80: 79: 76: 73: 70: 67: 58: 57: 54: 53: 50: 47: 44: 41: 21: 947: 946: 942: 941: 940: 938: 937: 936: 907: 906: 893: 883: 864: 848: 846:Further reading 843: 842: 823: 819: 757: 753: 745: 737: 733: 722:Alphabet Energy 716: 715: 711: 698: 694: 689: 685: 670: 666: 658: 654: 622: 618: 586: 582: 577: 573: 568: 564: 560: 551: 547: 542: 538: 504: 500: 490:Wayback Machine 479: 475: 470: 443: 426: 398: 339: 328: 322: 319: 311:help improve it 308: 299: 295: 284: 273: 267: 264: 249: 233: 222: 180:isobutylgermane 167:Bernie Meyerson 163: 117: 111: 64: 60: 38: 34: 28: 23: 22: 15: 12: 11: 5: 945: 935: 934: 929: 927:Silicon alloys 924: 919: 905: 904: 892: 891:External links 889: 888: 887: 881: 868: 862: 847: 844: 841: 840: 817: 762:Botti, Silvana 751: 731: 728:on 2019-08-17. 709: 692: 683: 664: 652: 616: 597:(2): 684–687. 580: 571: 566: 558: 545: 536: 498: 472: 471: 469: 466: 465: 464: 459: 454: 449: 442: 439: 425: 424:Light emission 422: 402:Voyager 1 397: 394: 382:MOS transistor 363:bandgap tuning 341: 340: 302: 300: 293: 286: 285: 236: 234: 227: 221: 218: 162: 159: 155:thermoelectric 151:analog circuit 141:transistors. 128:heterojunction 113: 106: 26: 9: 6: 4: 3: 2: 944: 933: 930: 928: 925: 923: 920: 918: 915: 914: 912: 902: 898: 895: 894: 884: 878: 875:. CRC Press. 874: 869: 865: 859: 855: 850: 849: 836: 835:Physics World 832: 830: 829:Physics World 821: 813: 809: 805: 801: 797: 793: 789: 785: 780: 775: 771: 767: 763: 755: 744: 743: 735: 727: 723: 719: 713: 705: 704: 696: 687: 679: 675: 668: 661: 656: 648: 644: 640: 636: 632: 628: 620: 612: 608: 604: 600: 596: 592: 584: 575: 562: 555: 549: 540: 532: 528: 524: 520: 516: 512: 508: 502: 495: 491: 487: 483: 477: 473: 463: 460: 458: 455: 453: 450: 448: 445: 444: 438: 436: 435:Physics World 432: 421: 419: 415: 411: 407: 403: 393: 391: 387: 383: 379: 375: 371: 366: 364: 360: 356: 352: 348: 337: 334: 326: 323:December 2017 316: 312: 306: 303:This section 301: 292: 291: 282: 279: 271: 268:December 2008 261: 257: 253: 247: 246: 242: 237:This section 235: 231: 226: 225: 217: 215: 210: 208: 204: 200: 195: 193: 189: 185: 181: 177: 172: 168: 158: 156: 152: 148: 144: 140: 136: 132: 129: 125: 121: 116: 110: 104: 100: 96: 92: 88: 82: 56: 32: 19: 900: 872: 853: 834: 828: 820: 769: 765: 754: 741: 734: 726:the original 721: 712: 702: 695: 686: 677: 667: 655: 630: 626: 619: 594: 590: 583: 574: 561: 553: 548: 539: 517:(3): 62–67. 514: 510: 501: 493: 476: 427: 399: 367: 344: 329: 320: 304: 274: 265: 250:Please help 238: 211: 196: 164: 114: 108: 86: 30: 29: 633:: 172–175. 457:Silicon-tin 374:transistors 911:Categories 779:1911.00726 565:"75 GHz f 468:References 380:under the 171:processing 161:Production 126:(ICs) for 922:Germanium 812:207870211 239:does not 214:7 nm 103:germanium 97:ratio of 93:with any 804:32269353 486:Archived 441:See also 390:junction 359:band gap 133:or as a 89:, is an 784:Bibcode 635:Bibcode 599:Bibcode 519:Bibcode 418:Ulysses 414:Galileo 410:Cassini 309:Please 260:removed 245:sources 199:foundry 184:germane 99:silicon 879:  860:  810:  802:  766:Nature 135:strain 85:), or 808:S2CID 774:arXiv 746:(PDF) 197:SiGe 188:MOVPE 95:molar 91:alloy 877:ISBN 858:ISBN 800:PMID 404:and 243:any 241:cite 207:TSMC 186:for 149:and 139:CMOS 101:and 31:SiGe 792:doi 770:580 643:doi 631:298 607:doi 595:287 527:doi 515:270 313:to 254:by 203:AMD 143:IBM 122:in 59:or 913:: 899:; 833:. 806:. 798:. 790:. 782:. 768:. 720:. 676:. 641:. 629:. 605:. 593:. 525:. 513:. 492:, 484:. 437:. 420:. 416:, 412:, 194:. 112:Ge 107:1− 78:iː 75:dʒ 72:aɪ 52:iː 885:. 866:. 837:. 827:" 814:. 794:: 786:: 776:: 680:. 649:. 645:: 637:: 613:. 609:: 601:: 567:t 533:. 529:: 521:: 496:. 406:2 336:) 330:( 325:) 321:( 307:. 281:) 275:( 270:) 266:( 262:. 248:. 115:x 109:x 81:/ 69:s 66:ˈ 63:/ 55:/ 49:ɡ 46:ɪ 43:s 40:ˈ 37:/ 33:( 20:)

Index

Silicon-germanium
/ˈsɪɡ/
/ˈs/
alloy
molar
silicon
germanium
semiconductor material
integrated circuits
heterojunction
bipolar transistors
strain
CMOS
IBM
mixed-signal circuit
analog circuit
thermoelectric
Bernie Meyerson
processing
gallium arsenide
isobutylgermane
germane
MOVPE
strained silicon
foundry
AMD
TSMC
7 nm

cite

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.