Knowledge

Principal ideal ring

Source đź“ť

141:, since every right ideal is finitely generated. It is also a right BĂ©zout ring since all finitely generated right ideals are principal. Indeed, it is clear that principal right ideal rings are exactly the rings which are both right BĂ©zout and right Noetherian. 1604:
is known to be a principal left ideal domain which is not right Noetherian, and hence it cannot be a principal right ideal ring. This shows that even for domains principal left and principal right ideal rings are different.
1487:
Arguing as in Example 3. above and using the Zariski-Samuel theorem, it is easy to check that Hungerford's theorem is equivalent to the statement that any special principal ring is the quotient of a discrete valuation ring.
789: 1088: 1195: 961: 704: 1333:
and has an extremely simple ideal structure: there are only finitely many ideals, each of which is a power of the maximal ideal. For this reason, special principal rings are examples of
480: 380: 1133: 583: 258: 200: 1472: 1400: 529: 1252: 883: 836: 1303: 436: 998: 1560: 1215: 285: 1046: 1602: 1503:
which is not just a product of fields is a noncommutative right and left principal ideal domain. Every right and left ideal is a direct summand of
1329:; in particular they are isomorphic to a finite direct product of principal Artinian local rings. A local Artinian principal ring is called a 1340:
The following result gives a complete classification of principal rings in terms of special principal rings and principal ideal domains.
17: 712: 125:(PID). In this article the focus is on the more general concept of a principal ideal ring which is not necessarily a domain. 1697: 1051: 1567: 1149: 888: 1667: 643: 382:. Without much more effort, it can be shown that right BĂ©zout rings are also closed under finite direct products. 450: 324: 1093: 534: 209: 151: 1742: 1429: 1357: 1662:, Graduate Texts in Mathematics, vol. 131 (2 ed.), New York: Springer-Verlag, pp. xx+385, 488: 441: 1224: 1412:
The proof applies the Chinese Remainder theorem to a minimal primary decomposition of the zero ideal.
841: 794: 707: 93: 1528: 1520: 1273: 609:
is again a principal ring. Similarly, any quotient of a principal ring is again a principal ring.
419: 964: 145: 385:
Principal right ideal rings and right BĂ©zout rings are also closed under quotients, that is, if
1484:
The proof of Hungerford's theorem employs Cohen's structure theorems for complete local rings.
969: 121: 1545: 1200: 606: 1747: 1677: 1633: 1218: 263: 1707: 8: 1010: 398: 46: 1572: 39: 413: 108:. Left BĂ©zout rings are defined similarly. These conditions are studied in domains as 1693: 1663: 1703: 1645: 74: 109: 1726: 1673: 1497: 617: 138: 116: 69:.) When this is satisfied for both left and right ideals, such as the case when 66: 65:. (The right and left ideals of this form, generated by one element, are called 1736: 1718: 1714: 1539: 1334: 1326: 1650: 1563: 31: 1685: 1000:
and, being a quotient of a principal ring, is itself a principal ring.
1725:, Graduate Texts in Mathematics, vol. 28, 29, Berlin, New York: 1266:
has at least two elements, then the ring also has zero divisors. If
1255: 397:
is also principal right ideal ring. This follows readily from the
1409:
is either a principal ideal domain or a special principal ring.
1325:
The principal rings constructed in Example 5. above are always
137:
is a principal right ideal ring, then it is certainly a right
1313:
principal: take the ideal generated by the finite subsets of
1197:
forms a commutative principal ideal ring with unity, where
1320: 784:{\displaystyle R/I\cong \prod _{i=1}^{n}R/P_{i}^{a_{i}}} 1415:
There is also the following result, due to Hungerford:
1636:(1968), "On the structure of principal ideal rings", 1575: 1548: 1432: 1360: 1276: 1227: 1203: 1152: 1096: 1054: 1013: 972: 891: 844: 797: 715: 646: 537: 491: 453: 422: 327: 266: 212: 154: 144:
Principal right ideal rings are closed under finite
1083:{\displaystyle {\mathfrak {m}}=\langle x,y\rangle } 1692:(Third ed.), Reading, Mass.: Addison-Wesley, 1596: 1554: 1466: 1394: 1297: 1246: 1209: 1189: 1127: 1082: 1040: 992: 955: 877: 830: 783: 698: 577: 523: 474: 430: 404:All properties above have left analogues as well. 374: 279: 252: 194: 1531:are seen to be both right and left BĂ©zout rings. 1190:{\displaystyle ({\mathcal {P}}(X),\Delta ,\cap )} 1734: 1615: 956:{\displaystyle R_{P_{i}}/P_{i}^{a_{i}}R_{P_{i}}} 389:is a proper ideal of principal right ideal ring 699:{\displaystyle I=\prod _{i=1}^{n}P_{i}^{a_{i}}} 605:4. The localization of a principal ring at any 1713: 1077: 1065: 636:is a principal ring. Indeed, we may factor 1481:is a quotient of a principal ideal domain. 1632: 1491: 1135:. Then R is a finite local ring which is 475:{\displaystyle \mathbb {Z} /n\mathbb {Z} } 1649: 468: 455: 424: 375:{\displaystyle (x_{1},\ldots ,x_{n})R=A} 115:A principal ideal ring which is also an 1562:is a ring endomorphism which is not an 1128:{\displaystyle R=A/{\mathfrak {m}}^{2}} 578:{\displaystyle R=\prod _{i=1}^{n}R_{i}} 407: 253:{\displaystyle A=\prod _{i=1}^{n}A_{i}} 195:{\displaystyle R=\prod _{i=1}^{n}R_{i}} 14: 1735: 1660:A first course in noncommutative rings 1321:Structure theory for commutative PIR's 301:are principal right ideal rings, then 27:Ring in which every ideal is principal 1467:{\displaystyle \prod _{i=1}^{n}R_{i}} 1395:{\displaystyle \prod _{i=1}^{n}R_{i}} 128: 1684: 1657: 1621: 1426:can be written as a direct product 1354:can be written as a direct product 1114: 1057: 589:is a principal ring if and only if 524:{\displaystyle R_{1},\ldots ,R_{n}} 24: 1230: 1204: 1175: 1158: 791:, so it suffices to see that each 25: 1759: 1247:{\displaystyle {\mathcal {P}}(X)} 36:principal right (left) ideal ring 878:{\displaystyle R/P_{i}^{a_{i}}} 831:{\displaystyle R/P_{i}^{a_{i}}} 321:, and then it can be seen that 1638:Pacific Journal of Mathematics 1591: 1579: 1292: 1283: 1241: 1235: 1184: 1169: 1163: 1153: 1035: 1023: 885:is isomorphic to the quotient 640:as a product of prime powers: 360: 328: 13: 1: 1608: 1298:{\displaystyle I=(\bigcup I)} 1527:. Paralleling this example, 598:is a principal ring for all 431:{\displaystyle \mathbb {Z} } 45:in which every right (left) 7: 1350:be a principal ring. Then 202:, then each right ideal of 10: 1764: 1683:Pages 86 & 146-155 of 1422:be a principal ring. Then 1418:Theorem (Hungerford): Let 1007:be a finite field and put 838:is a principal ring. But 18:Principal right ideal ring 1529:von Neumann regular rings 1309:is infinite, the ring is 993:{\displaystyle R_{P_{i}}} 708:Chinese Remainder Theorem 393:, then the quotient ring 1507:, and so is of the form 1219:set symmetric difference 1651:10.2140/pjm.1968.25.543 1555:{\displaystyle \sigma } 1492:Noncommutative examples 1210:{\displaystyle \Delta } 965:discrete valuation ring 1598: 1556: 1468: 1453: 1396: 1381: 1344:Zariski–Samuel theorem 1331:special principal ring 1299: 1248: 1211: 1191: 1146:be a finite set. Then 1129: 1084: 1042: 994: 957: 879: 832: 785: 750: 700: 673: 624:be a nonzero ideal of 579: 564: 525: 476: 432: 376: 281: 254: 239: 196: 181: 122:principal ideal domain 1599: 1557: 1469: 1433: 1397: 1361: 1300: 1249: 1212: 1192: 1130: 1085: 1043: 995: 958: 880: 833: 786: 730: 701: 653: 628:. Then the quotient 607:multiplicative subset 580: 544: 526: 477: 433: 377: 282: 280:{\displaystyle A_{i}} 255: 219: 197: 161: 1573: 1568:skew polynomial ring 1546: 1430: 1358: 1274: 1225: 1201: 1150: 1094: 1052: 1011: 970: 889: 842: 795: 713: 644: 535: 489: 451: 420: 408:Commutative examples 399:isomorphism theorems 325: 287:is a right ideal of 264: 210: 152: 100:are principal, then 83:principal ideal ring 1743:Commutative algebra 1723:Commutative algebra 1658:Lam, T. Y. (2001), 1041:{\displaystyle A=k} 935: 874: 827: 780: 695: 57:) for some element 1594: 1552: 1464: 1392: 1295: 1270:is an ideal, then 1244: 1207: 1187: 1125: 1080: 1038: 990: 953: 914: 875: 853: 828: 806: 781: 759: 696: 674: 575: 521: 472: 428: 372: 277: 250: 192: 129:General properties 94:finitely generated 1699:978-0-201-55540-0 1597:{\displaystyle D} 106:right BĂ©zout ring 16:(Redirected from 1755: 1729: 1710: 1680: 1654: 1653: 1625: 1619: 1603: 1601: 1600: 1595: 1561: 1559: 1558: 1553: 1473: 1471: 1470: 1465: 1463: 1462: 1452: 1447: 1401: 1399: 1398: 1393: 1391: 1390: 1380: 1375: 1304: 1302: 1301: 1296: 1253: 1251: 1250: 1245: 1234: 1233: 1216: 1214: 1213: 1208: 1196: 1194: 1193: 1188: 1162: 1161: 1134: 1132: 1131: 1126: 1124: 1123: 1118: 1117: 1110: 1089: 1087: 1086: 1081: 1061: 1060: 1047: 1045: 1044: 1039: 999: 997: 996: 991: 989: 988: 987: 986: 962: 960: 959: 954: 952: 951: 950: 949: 934: 933: 932: 922: 913: 908: 907: 906: 905: 884: 882: 881: 876: 873: 872: 871: 861: 852: 837: 835: 834: 829: 826: 825: 824: 814: 805: 790: 788: 787: 782: 779: 778: 777: 767: 758: 749: 744: 723: 705: 703: 702: 697: 694: 693: 692: 682: 672: 667: 584: 582: 581: 576: 574: 573: 563: 558: 530: 528: 527: 522: 520: 519: 501: 500: 481: 479: 478: 473: 471: 463: 458: 442:integers modulo 437: 435: 434: 429: 427: 414:ring of integers 381: 379: 378: 373: 359: 358: 340: 339: 286: 284: 283: 278: 276: 275: 259: 257: 256: 251: 249: 248: 238: 233: 201: 199: 198: 193: 191: 190: 180: 175: 119:is said to be a 96:right ideals of 81:can be called a 75:commutative ring 67:principal ideals 21: 1763: 1762: 1758: 1757: 1756: 1754: 1753: 1752: 1733: 1732: 1727:Springer-Verlag 1700: 1670: 1629: 1628: 1620: 1616: 1611: 1574: 1571: 1570: 1547: 1544: 1543: 1498:semisimple ring 1494: 1480: 1458: 1454: 1448: 1437: 1431: 1428: 1427: 1408: 1386: 1382: 1376: 1365: 1359: 1356: 1355: 1335:uniserial rings 1323: 1317:, for example. 1275: 1272: 1271: 1254:represents the 1229: 1228: 1226: 1223: 1222: 1202: 1199: 1198: 1157: 1156: 1151: 1148: 1147: 1119: 1113: 1112: 1111: 1106: 1095: 1092: 1091: 1056: 1055: 1053: 1050: 1049: 1012: 1009: 1008: 982: 978: 977: 973: 971: 968: 967: 945: 941: 940: 936: 928: 924: 923: 918: 909: 901: 897: 896: 892: 890: 887: 886: 867: 863: 862: 857: 848: 843: 840: 839: 820: 816: 815: 810: 801: 796: 793: 792: 773: 769: 768: 763: 754: 745: 734: 719: 714: 711: 710: 688: 684: 683: 678: 668: 657: 645: 642: 641: 618:Dedekind domain 597: 569: 565: 559: 548: 536: 533: 532: 515: 511: 496: 492: 490: 487: 486: 467: 459: 454: 452: 449: 448: 423: 421: 418: 417: 410: 354: 350: 335: 331: 326: 323: 322: 320: 314: 307: 300: 293: 271: 267: 265: 262: 261: 244: 240: 234: 223: 211: 208: 207: 206:is of the form 186: 182: 176: 165: 153: 150: 149: 146:direct products 139:Noetherian ring 131: 117:integral domain 49:is of the form 28: 23: 22: 15: 12: 11: 5: 1761: 1751: 1750: 1745: 1731: 1730: 1711: 1698: 1681: 1668: 1655: 1644:(3): 543–547, 1634:Hungerford, T. 1627: 1626: 1613: 1612: 1610: 1607: 1593: 1590: 1587: 1584: 1581: 1578: 1551: 1493: 1490: 1478: 1461: 1457: 1451: 1446: 1443: 1440: 1436: 1406: 1389: 1385: 1379: 1374: 1371: 1368: 1364: 1327:Artinian rings 1322: 1319: 1294: 1291: 1288: 1285: 1282: 1279: 1243: 1240: 1237: 1232: 1206: 1186: 1183: 1180: 1177: 1174: 1171: 1168: 1165: 1160: 1155: 1122: 1116: 1109: 1105: 1102: 1099: 1079: 1076: 1073: 1070: 1067: 1064: 1059: 1037: 1034: 1031: 1028: 1025: 1022: 1019: 1016: 985: 981: 976: 948: 944: 939: 931: 927: 921: 917: 912: 904: 900: 895: 870: 866: 860: 856: 851: 847: 823: 819: 813: 809: 804: 800: 776: 772: 766: 762: 757: 753: 748: 743: 740: 737: 733: 729: 726: 722: 718: 691: 687: 681: 677: 671: 666: 663: 660: 656: 652: 649: 593: 572: 568: 562: 557: 554: 551: 547: 543: 540: 518: 514: 510: 507: 504: 499: 495: 470: 466: 462: 457: 426: 409: 406: 371: 368: 365: 362: 357: 353: 349: 346: 343: 338: 334: 330: 318: 312: 305: 298: 294:. If all the 291: 274: 270: 247: 243: 237: 232: 229: 226: 222: 218: 215: 189: 185: 179: 174: 171: 168: 164: 160: 157: 130: 127: 110:BĂ©zout domains 87:principal ring 26: 9: 6: 4: 3: 2: 1760: 1749: 1746: 1744: 1741: 1740: 1738: 1728: 1724: 1720: 1716: 1712: 1709: 1705: 1701: 1695: 1691: 1687: 1682: 1679: 1675: 1671: 1669:0-387-95183-0 1665: 1661: 1656: 1652: 1647: 1643: 1639: 1635: 1631: 1630: 1624:, p. 21. 1623: 1618: 1614: 1606: 1588: 1585: 1582: 1576: 1569: 1565: 1549: 1541: 1540:division ring 1537: 1532: 1530: 1526: 1522: 1518: 1514: 1510: 1506: 1502: 1499: 1489: 1485: 1482: 1477: 1474:, where each 1459: 1455: 1449: 1444: 1441: 1438: 1434: 1425: 1421: 1416: 1413: 1410: 1405: 1402:, where each 1387: 1383: 1377: 1372: 1369: 1366: 1362: 1353: 1349: 1345: 1341: 1338: 1336: 1332: 1328: 1318: 1316: 1312: 1308: 1305:. If instead 1289: 1286: 1280: 1277: 1269: 1265: 1261: 1257: 1238: 1220: 1181: 1178: 1172: 1166: 1145: 1140: 1138: 1120: 1107: 1103: 1100: 1097: 1074: 1071: 1068: 1062: 1032: 1029: 1026: 1020: 1017: 1014: 1006: 1001: 983: 979: 974: 966: 946: 942: 937: 929: 925: 919: 915: 910: 902: 898: 893: 868: 864: 858: 854: 849: 845: 821: 817: 811: 807: 802: 798: 774: 770: 764: 760: 755: 751: 746: 741: 738: 735: 731: 727: 724: 720: 716: 709: 706:, and by the 689: 685: 679: 675: 669: 664: 661: 658: 654: 650: 647: 639: 635: 631: 627: 623: 619: 615: 610: 608: 603: 601: 596: 592: 588: 570: 566: 560: 555: 552: 549: 545: 541: 538: 531:be rings and 516: 512: 508: 505: 502: 497: 493: 483: 464: 460: 446: 445: 438: 415: 405: 402: 400: 396: 392: 388: 383: 369: 366: 363: 355: 351: 347: 344: 341: 336: 332: 317: 311: 304: 297: 290: 272: 268: 260:, where each 245: 241: 235: 230: 227: 224: 220: 216: 213: 205: 187: 183: 177: 172: 169: 166: 162: 158: 155: 147: 142: 140: 136: 126: 124: 123: 118: 113: 111: 107: 103: 99: 95: 90: 88: 84: 80: 76: 72: 68: 64: 60: 56: 52: 48: 44: 41: 37: 33: 19: 1722: 1689: 1659: 1641: 1637: 1617: 1564:automorphism 1535: 1533: 1524: 1516: 1512: 1508: 1504: 1500: 1495: 1486: 1483: 1475: 1423: 1419: 1417: 1414: 1411: 1403: 1351: 1347: 1343: 1342: 1339: 1330: 1324: 1314: 1310: 1306: 1267: 1263: 1259: 1143: 1141: 1136: 1004: 1002: 637: 633: 629: 625: 621: 613: 611: 604: 599: 594: 590: 586: 484: 443: 439: 411: 403: 394: 390: 386: 384: 315: 309: 302: 295: 288: 203: 143: 134: 132: 120: 114: 105: 104:is called a 101: 97: 92:If only the 91: 86: 85:, or simply 82: 78: 70: 62: 58: 54: 50: 42: 35: 29: 1748:Ring theory 1715:Zariski, O. 1686:Lang, Serge 1566:, then the 1217:represents 1139:principal. 401:for rings. 32:mathematics 1737:Categories 1719:Samuel, P. 1708:0848.13001 1609:References 1521:idempotent 1589:σ 1550:σ 1435:∏ 1363:∏ 1287:⋃ 1205:Δ 1182:∩ 1176:Δ 1078:⟩ 1066:⟨ 732:∏ 728:≅ 655:∏ 546:∏ 506:… 345:… 221:∏ 163:∏ 1721:(1975), 1688:(1993), 1622:Lam 2001 1256:powerset 585:. Then 1690:Algebra 1678:1838439 1142:7. Let 1003:6. Let 963:of the 612:5. Let 485:3. Let 440:2. The 412:1. The 1706:  1696:  1676:  1666:  1519:is an 1515:where 1496:Every 1346:: Let 148:. If 1538:is a 1262:. If 616:be a 73:is a 47:ideal 38:is a 1694:ISBN 1664:ISBN 1542:and 1221:and 1090:and 620:and 40:ring 34:, a 1704:Zbl 1646:doi 1534:If 1523:of 1511:or 1311:not 1258:of 1137:not 395:R/I 133:If 61:of 30:In 1739:: 1717:; 1702:, 1674:MR 1672:, 1642:25 1640:, 1513:Re 1509:eR 1337:. 1048:, 602:. 482:. 447:: 416:: 112:. 89:. 77:, 55:Rx 51:xR 1648:: 1592:] 1586:, 1583:x 1580:[ 1577:D 1536:D 1525:R 1517:e 1505:R 1501:R 1479:i 1476:R 1460:i 1456:R 1450:n 1445:1 1442:= 1439:i 1424:R 1420:R 1407:i 1404:R 1388:i 1384:R 1378:n 1373:1 1370:= 1367:i 1352:R 1348:R 1315:X 1307:X 1293:) 1290:I 1284:( 1281:= 1278:I 1268:I 1264:X 1260:X 1242:) 1239:X 1236:( 1231:P 1185:) 1179:, 1173:, 1170:) 1167:X 1164:( 1159:P 1154:( 1144:X 1121:2 1115:m 1108:/ 1104:A 1101:= 1098:R 1075:y 1072:, 1069:x 1063:= 1058:m 1036:] 1033:y 1030:, 1027:x 1024:[ 1021:k 1018:= 1015:A 1005:k 984:i 980:P 975:R 947:i 943:P 938:R 930:i 926:a 920:i 916:P 911:/ 903:i 899:P 894:R 869:i 865:a 859:i 855:P 850:/ 846:R 822:i 818:a 812:i 808:P 803:/ 799:R 775:i 771:a 765:i 761:P 756:/ 752:R 747:n 742:1 739:= 736:i 725:I 721:/ 717:R 690:i 686:a 680:i 676:P 670:n 665:1 662:= 659:i 651:= 648:I 638:I 634:I 632:/ 630:R 626:R 622:I 614:R 600:i 595:i 591:R 587:R 571:i 567:R 561:n 556:1 553:= 550:i 542:= 539:R 517:n 513:R 509:, 503:, 498:1 494:R 469:Z 465:n 461:/ 456:Z 444:n 425:Z 391:R 387:I 370:A 367:= 364:R 361:) 356:n 352:x 348:, 342:, 337:1 333:x 329:( 319:i 316:R 313:i 310:x 308:= 306:i 303:A 299:i 296:R 292:i 289:R 273:i 269:A 246:i 242:A 236:n 231:1 228:= 225:i 217:= 214:A 204:R 188:i 184:R 178:n 173:1 170:= 167:i 159:= 156:R 135:R 102:R 98:R 79:R 71:R 63:R 59:x 53:( 43:R 20:)

Index

Principal right ideal ring
mathematics
ring
ideal
principal ideals
commutative ring
finitely generated
BĂ©zout domains
integral domain
principal ideal domain
Noetherian ring
direct products
isomorphism theorems
ring of integers
integers modulo n
multiplicative subset
Dedekind domain
Chinese Remainder Theorem
discrete valuation ring
set symmetric difference
powerset
Artinian rings
uniserial rings
semisimple ring
idempotent
von Neumann regular rings
division ring
automorphism
skew polynomial ring
Lam 2001

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑