Knowledge

Bézout domain

Source 📝

63: 22: 165: 322:
a polynomial function of degree 1, so an element has a factorization only if it has finitely many zeroes. In the case of the algebraic integers there are no irreducible elements at all, since for any algebraic integer its square root (for instance) is also an algebraic integer. This shows in
808:
of them: this is equivalent to the statement that an ideal which is generated by two elements is also generated by a single element, and induction demonstrates that all finitely generated ideals are principal. The expression of the greatest common divisor of two elements of a PID as a linear
887:
is not Noetherian, then there exists an infinite ascending chain of finitely generated ideals, so in a Bézout domain an infinite ascending chain of principal ideals. (4) and (2) are thus equivalent.
883:
The equivalence of (1) and (2) was noted above. Since a Bézout domain is a GCD domain, it follows immediately that (3), (4) and (5) are equivalent. Finally, if
816:
Note that the above gcd condition is stronger than the mere existence of a gcd. An integral domain where a gcd exists for any two elements is called a
865: 928:
is principal, a local ring is a Bézout domain iff it is a valuation domain. Moreover, a valuation domain with noncyclic (equivalently non-
901:
Consequently, one may view the equivalence "Bézout domain iff Prüfer domain and GCD-domain" as analogous to the more familiar "PID iff
127: 99: 106: 225: 207: 146: 49: 189: 113: 80: 35: 285:. The theory of Bézout domains retains many of the properties of PIDs, without requiring the Noetherian property. 924:. So the localization of a Bézout domain at a prime ideal is a valuation domain. Since an invertible ideal in a 95: 84: 1161: 1178: 894:, i.e., a domain in which each finitely generated ideal is invertible, or said another way, a commutative 1156: 939:
is the value group of some valuation domain. This gives many examples of non-Noetherian Bézout domains.
855: 278: 1051: 929: 329:
are Bézout domains. Any non-Noetherian valuation ring is an example of a non-noetherian Bézout domain.
259: 180: 946:
are domains whose finitely generated right ideals are principal right ideals, that is, of the form
800:
A ring is a Bézout domain if and only if it is an integral domain in which any two elements have a
1151: 801: 73: 966:
commutative domain is an Ore domain. Right Bézout domains are also right semihereditary rings.
810: 255: 120: 909: 270: 41: 1183: 1133: 1114: 1078: 8: 821: 295: 805: 355: 319: 396:, and the ideal generated by all these quotients of is not finitely generated (and so 1102: 315: 175: 511:
be the minimal exponent such that at least one of them has a nonzero coefficient of
1140: 1094: 1066: 703:; we shall show it is in fact a greatest common divisor by showing that it lies in 1098: 891: 263: 1129: 1110: 1074: 902: 895: 388:
with zero constant term can be divided indefinitely by noninvertible elements of
311: 274: 251: 247: 974:
Some facts about modules over a PID extend to modules over a Bézout domain. Let
921: 326: 1070: 1005: 1172: 1106: 936: 917: 876: 825: 292: 289: 820:
and thus Bézout domains are GCD domains. In particular, in a Bézout domain,
1121: 318:. In case of entire functions, the only irreducible elements are functions 933: 913: 239: 959: 925: 817: 314:(functions holomorphic on the whole complex plane) and the ring of all 282: 185:
mathematical proofs are used in place of citations to existing sources.
1085:
Helmer, Olaf (1940), "Divisibility properties of integral functions",
277:, so it could have non-finitely generated ideals; if so, it is not a 62: 828:(but as the algebraic integer example shows, they need not exist). 323:
both cases that the ring is not a UFD, and so certainly not a PID.
999: 310:
Examples of Bézout domains that are not PIDs include the ring of
558:
are not relatively prime, there is a greatest common divisor of
962:. This fact is not interesting in the commutative case, since 958:. One notable result is that a right Bézout domain is a right 908:
Prüfer domains can be characterized as integral domains whose
566:
in this UFD that has constant term 1, and therefore lies in
332:
The following general construction produces a Bézout domain
273:(PID) is a Bézout domain, but a Bézout domain need not be a 1128:, Boston, Mass.: Allyn and Bacon Inc., pp. x+180, 340:
that is not a field, for instance from a PID; the case
1002:(a commutative semifir is precisely a Bézout domain.) 687:, is divisible by any nonzero constant, the constant 507:
nonzero; if both have a zero constant term, then let
384:. This ring is not Noetherian, since an element like 87:. Unsourced material may be challenged and removed. 767:has a zero constant term, and so is a multiple in 1120: 258:holds for every pair of elements, and that every 1170: 875:factors into a product of irreducibles (R is an 661:. Since any element without constant term, like 969: 835:, the following conditions are all equivalent: 866:ascending chain condition on principal ideals 1084: 721:respectively by the Bézout coefficients for 1049: 990:is flat if and only if it is torsion-free. 932:) value group is not Noetherian, and every 262:is principal. Bézout domains are a form of 254:is also a principal ideal. This means that 50:Learn how and when to remove these messages 350:is the basic example to have in mind. Let 415:It suffices to prove that for every pair 336:that is not a UFD from any Bézout domain 226:Learn how and when to remove this message 208:Learn how and when to remove this message 147:Learn how and when to remove this message 1139: 1033: 789:does as well, which completes the proof. 538:We may therefore assume at least one of 1171: 158: 85:adding citations to reliable sources 56: 15: 392:, which are still noninvertible in 288:Bézout domains are named after the 13: 573:We may therefore also assume that 14: 1195: 1052:"Bezout rings and their subrings" 31:This article has multiple issues. 546:has a nonzero constant term. If 472:, it suffices to prove this for 376:, the subring of polynomials in 163: 61: 20: 1043: 1036:, Ch I, §2, no 4, Proposition 3 982:finitely generated module over 595:, and some constant polynomial 570:; we can divide by this factor. 72:needs additional citations for 39:or discuss these issues on the 1027: 1018: 499:We may assume the polynomials 1: 1099:10.1215/s0012-7094-40-00626-3 1011: 795: 404:). One shows as follows that 1059:Proc. Cambridge Philos. Soc. 970:Modules over a Bézout domain 842:is a principal ideal domain. 809:combination is often called 617:is a Bézout domain, the gcd 307:All PIDs are Bézout domains. 7: 1157:Encyclopedia of Mathematics 993: 942:In noncommutative algebra, 856:unique factorization domain 771:of the constant polynomial 301: 279:unique factorization domain 183:. The specific problem is: 10: 1200: 813:, whence the terminology. 1071:10.1017/s0305004100042791 871:Every nonzero nonunit in 775:, and therefore lies in 581:are relatively prime in 400:has no factorization in 260:finitely generated ideal 250:in which the sum of two 978:be a Bézout domain and 802:greatest common divisor 691:is a common divisor in 527:is a common divisor of 916:(equivalently, at all 625:of the constant terms 554:viewed as elements of 468:have a common divisor 380:with constant term in 281:(UFD), but is still a 271:principal ideal domain 890:A Bézout domain is a 1050:Cohn, P. M. (1968), 944:right Bézout domains 831:For a Bézout domain 585:, so that 1 lies in 190:improve this article 179:to meet Knowledge's 81:improve this article 1179:Commutative algebra 1145:Commutative algebra 753:with constant term 739:gives a polynomial 408:is a Bézout domain. 806:linear combination 356:field of fractions 316:algebraic integers 1141:Bourbaki, Nicolas 1126:Commutative rings 1122:Kaplansky, Irving 922:valuation domains 811:Bézout's identity 725:with respect to 535:and divide by it. 488:, since the same 256:Bézout's identity 236: 235: 228: 218: 217: 210: 181:quality standards 172:This article may 157: 156: 149: 131: 54: 1191: 1165: 1147: 1136: 1117: 1081: 1056: 1037: 1031: 1025: 1022: 784: 766: 752: 712: 686: 673: 660: 612: 594: 448: 375: 349: 312:entire functions 252:principal ideals 231: 224: 213: 206: 202: 199: 193: 167: 166: 159: 152: 145: 141: 138: 132: 130: 89: 65: 57: 46: 24: 23: 16: 1199: 1198: 1194: 1193: 1192: 1190: 1189: 1188: 1169: 1168: 1150: 1054: 1046: 1041: 1040: 1032: 1028: 1023: 1019: 1014: 996: 972: 934:totally ordered 903:Dedekind domain 798: 776: 758: 744: 738: 731: 704: 685: 675: 672: 662: 656: 646: 640: 638: 631: 604: 586: 515:; one can find 440: 363: 341: 327:Valuation rings 304: 275:Noetherian ring 248:integral domain 232: 221: 220: 219: 214: 203: 197: 194: 187: 168: 164: 153: 142: 136: 133: 96:"Bézout domain" 90: 88: 78: 66: 25: 21: 12: 11: 5: 1197: 1187: 1186: 1181: 1167: 1166: 1148: 1137: 1118: 1093:(2): 345–356, 1082: 1065:(2): 251–264, 1045: 1042: 1039: 1038: 1026: 1016: 1015: 1013: 1010: 1009: 1008: 1003: 995: 992: 971: 968: 896:semihereditary 881: 880: 869: 864:satisfies the 859: 849: 848:is Noetherian. 843: 797: 794: 793: 792: 791: 790: 736: 729: 713:. Multiplying 683: 670: 654: 644: 636: 629: 613:. Also, since 571: 536: 497: 458: 410: 409: 330: 324: 308: 303: 300: 296:Étienne Bézout 234: 233: 216: 215: 171: 169: 162: 155: 154: 69: 67: 60: 55: 29: 28: 26: 19: 9: 6: 4: 3: 2: 1196: 1185: 1182: 1180: 1177: 1176: 1174: 1163: 1159: 1158: 1153: 1152:"Bezout ring" 1149: 1146: 1142: 1138: 1135: 1131: 1127: 1123: 1119: 1116: 1112: 1108: 1104: 1100: 1096: 1092: 1088: 1087:Duke Math. J. 1083: 1080: 1076: 1072: 1068: 1064: 1060: 1053: 1048: 1047: 1035: 1034:Bourbaki 1989 1030: 1021: 1017: 1007: 1004: 1001: 998: 997: 991: 989: 985: 981: 977: 967: 965: 961: 957: 953: 949: 945: 940: 938: 937:abelian group 935: 931: 927: 923: 920:) ideals are 919: 915: 911: 910:localizations 906: 904: 899: 897: 893: 892:Prüfer domain 888: 886: 878: 877:atomic domain 874: 870: 867: 863: 860: 857: 853: 850: 847: 844: 841: 838: 837: 836: 834: 829: 827: 823: 819: 814: 812: 807: 803: 788: 783: 779: 774: 770: 765: 761: 756: 751: 747: 742: 735: 728: 724: 720: 716: 711: 707: 702: 698: 694: 690: 682: 678: 669: 665: 659: 653: 649: 643: 635: 628: 624: 620: 616: 611: 607: 602: 598: 593: 589: 584: 580: 576: 572: 569: 565: 561: 557: 553: 549: 545: 541: 537: 534: 530: 526: 522: 518: 514: 510: 506: 502: 498: 495: 491: 487: 483: 479: 475: 471: 467: 463: 459: 456: 452: 449:divides both 447: 443: 438: 434: 430: 426: 422: 418: 414: 413: 412: 411: 407: 403: 399: 395: 391: 387: 383: 379: 374: 370: 366: 361: 357: 353: 348: 344: 339: 335: 331: 328: 325: 321: 320:associated to 317: 313: 309: 306: 305: 299: 297: 294: 293:mathematician 291: 286: 284: 280: 276: 272: 267: 265: 264:Prüfer domain 261: 257: 253: 249: 245: 244:Bézout domain 241: 230: 227: 212: 209: 201: 191: 186: 182: 178: 177: 170: 161: 160: 151: 148: 140: 129: 126: 122: 119: 115: 112: 108: 105: 101: 98: –  97: 93: 92:Find sources: 86: 82: 76: 75: 70:This article 68: 64: 59: 58: 53: 51: 44: 43: 38: 37: 32: 27: 18: 17: 1155: 1144: 1125: 1090: 1086: 1062: 1058: 1044:Bibliography 1029: 1020: 987: 983: 979: 975: 973: 963: 955: 951: 947: 943: 941: 907: 900: 889: 884: 882: 872: 861: 851: 845: 839: 832: 830: 822:irreducibles 815: 799: 786: 781: 777: 772: 768: 763: 759: 754: 749: 745: 740: 733: 726: 722: 718: 714: 709: 705: 700: 696: 692: 688: 680: 676: 667: 663: 657: 651: 647: 641: 633: 626: 622: 618: 614: 609: 605: 600: 596: 591: 587: 582: 578: 574: 567: 563: 559: 555: 551: 547: 543: 539: 532: 528: 524: 520: 516: 512: 508: 504: 500: 493: 489: 485: 481: 477: 473: 469: 465: 461: 454: 450: 445: 441: 436: 432: 428: 427:there exist 424: 420: 416: 405: 401: 397: 393: 389: 385: 381: 377: 372: 368: 364: 359: 351: 346: 342: 337: 333: 287: 268: 243: 237: 222: 204: 195: 188:Please help 184: 173: 143: 134: 124: 117: 110: 103: 91: 79:Please help 74:verification 71: 47: 40: 34: 33:Please help 30: 1184:Ring theory 1006:Bézout ring 905:and UFD". 785:. But then 240:mathematics 198:August 2024 192:if you can. 137:August 2024 1173:Categories 1012:References 960:Ore domain 926:local ring 818:GCD domain 804:that is a 796:Properties 523:such that 439:such that 362:, and put 283:GCD domain 107:newspapers 36:improve it 1162:EMS Press 1107:0012-7094 950:for some 898:domain.) 42:talk page 1143:(1989), 1124:(1970), 994:See also 930:discrete 639:lies in 603:lies in 496:will do. 302:Examples 174:require 1164:, 2001 1134:0254021 1115:0001851 1079:0222065 1000:Semifir 986:. Then 918:maximal 912:at all 868:(ACCP). 757:. Then 354:be the 176:cleanup 121:scholar 1132:  1113:  1105:  1077:  858:(UFD). 290:French 246:is an 123:  116:  109:  102:  94:  1055:(PDF) 964:every 914:prime 854:is a 826:prime 128:JSTOR 114:books 1103:ISSN 1024:Cohn 824:are 732:and 717:and 699:and 632:and 577:and 562:and 550:and 531:and 503:and 480:and 464:and 453:and 269:Any 242:, a 100:news 1095:doi 1067:doi 954:in 743:in 695:of 674:or 621:in 599:in 519:in 460:If 435:in 423:in 358:of 238:In 83:by 1175:: 1160:, 1154:, 1130:MR 1111:MR 1109:, 1101:, 1089:, 1075:MR 1073:, 1063:64 1061:, 1057:, 948:xR 879:). 782:bS 780:+ 778:aS 762:− 750:bS 748:+ 746:aS 710:bS 708:+ 706:aS 679:− 666:− 650:+ 610:bS 608:+ 606:aS 592:bF 590:+ 588:aF 542:, 525:fX 492:, 446:bt 444:+ 442:as 431:, 419:, 373:XF 371:+ 367:= 345:= 298:. 266:. 45:. 1097:: 1091:6 1069:: 988:M 984:R 980:M 976:R 956:R 952:x 885:R 873:R 862:R 852:R 846:R 840:R 833:R 787:d 773:r 769:S 764:d 760:p 755:d 741:p 737:0 734:b 730:0 727:a 723:d 719:b 715:a 701:b 697:a 693:S 689:d 684:0 681:b 677:b 671:0 668:a 664:a 658:R 655:0 652:b 648:R 645:0 642:a 637:0 634:b 630:0 627:a 623:R 619:d 615:R 601:R 597:r 583:F 579:b 575:a 568:S 564:b 560:a 556:F 552:b 548:a 544:b 540:a 533:b 529:a 521:F 517:f 513:X 509:n 505:b 501:a 494:t 490:s 486:d 484:/ 482:b 478:d 476:/ 474:a 470:d 466:b 462:a 457:. 455:b 451:a 437:S 433:t 429:s 425:S 421:b 417:a 406:S 402:S 398:X 394:S 390:R 386:X 382:R 378:F 369:R 365:S 360:R 352:F 347:Z 343:R 338:R 334:S 229:) 223:( 211:) 205:( 200:) 196:( 150:) 144:( 139:) 135:( 125:· 118:· 111:· 104:· 77:. 52:) 48:(

Index

improve it
talk page
Learn how and when to remove these messages

verification
improve this article
adding citations to reliable sources
"Bézout domain"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
cleanup
quality standards
improve this article
Learn how and when to remove this message
Learn how and when to remove this message
mathematics
integral domain
principal ideals
Bézout's identity
finitely generated ideal
Prüfer domain
principal ideal domain
Noetherian ring
unique factorization domain
GCD domain
French

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.