Knowledge

Least-upper-bound property

Source šŸ“

381: 31: 629: 442: 536: 1695:
Rein analytischer Beweis des Lehrsatzes dass zwischen je zwey Werthen, die ein entgegengesetztes Resultat gewƤhren, wenigstens eine reelle Wurzel der Gleichung liege
468: 160: 74: 1276: 52: 1734:
Willard says that an ordered space "X is Dedekind complete if every subset of X having an upper bound has a least upper bound." (pp. 124-5, Problem 17E.)
17: 707:
It is possible to prove the least-upper-bound property using the assumption that every Cauchy sequence of real numbers converges. Let
688: 658:
takes advantage of this failure by defining the irrational numbers as the least upper bounds of certain subsets of the rationals.
390: 1939: 1916: 1874: 1855: 1725:
Bartle and Sherbert (2011) define the "completeness property" and say that it is also called the "supremum property". (p. 39)
1889: 1958: 1897: 1834: 1812: 684: 651: 624:{\displaystyle \left\{x\in \mathbf {Q} :x^{2}\leq 2\right\}=\mathbf {Q} \cap \left(-{\sqrt {2}},{\sqrt {2}}\right)} 202: 174: 1195: 190: 1746: 1706: 475: 217: 1109: 368:
states that any non-empty set of real numbers that has an upper bound must have a least upper bound in
186: 1822: 1777: 680: 451: 143: 57: 1534: 692: 198: 699:, either directly from the construction or as a consequence of some other form of completeness. 1977: 1982: 1390: 485: 221: 194: 140:. Not every (partially) ordered set has the least upper bound property. For example, the set 105: 1255: 530:
does not have the least-upper-bound property under the usual order. For instance, the set
225: 8: 1361: 1083: 1769: 1744:
Raman-Sundstrƶm, Manya (Augustā€“September 2015). "A Pedagogical History of Compactness".
1781: 1773: 1755: 1119: 672: 37: 1954: 1935: 1928: 1912: 1893: 1870: 1851: 1830: 1808: 1785: 647: 128: 114: 1765: 1530: 723:
has exactly one element, then its only element is a least upper bound. So consider
380: 233: 205:, and it is also intimately related to the construction of the real numbers using 1934:. Walter Rudin Student Series in Advanced Mathematics (3 ed.). McGrawā€“Hill. 1690: 676: 527: 163: 1971: 1061: 182: 655: 213: 206: 30: 1689:
The importance of the least-upper-bound property was first recognized by
1315: 1217: 480:
More generally, one may define upper bound and least upper bound for any
271: 256: 229: 124: 101: 81: 1548:
covers as well. This statement can be proved by considering the set
750:
is nonempty and has more than one element, there exists a real number
691:, the property is usually taken as an axiom for the real numbers (see 1122:
in the interval . This theorem can be proved by considering the set
1034:. It follows that both sequences are Cauchy and have the same limit 1526: 1205: 714: 671:
The least-upper-bound property is equivalent to other forms of the
316: 1760: 1807:. Undergraduate Texts in Mathematics. New York: Springer-Verlag. 696: 1906: 695:); in a constructive approach, the property must be proved as a 505:
has the least-upper-bound property if every non-empty subset of
1060:
can be used to prove many of the main foundational theorems in
481: 1216:
of real numbers in a closed interval must have a convergent
181:. It can be used to prove many of the fundamental results of 1162:
is the initial segment of that takes negative values under
437:{\displaystyle \left\{x\in \mathbf {Q} :x^{2}\leq 2\right\}} 1821: 177:
for the real numbers, and is sometimes referred to as
113:
has the least-upper-bound property if every non-empty
1258: 1220:. This theorem can be proved by considering the set 683:. The logical status of the property depends on the 539: 454: 393: 146: 60: 40: 1591:
by construction. By the least-upper-bound property,
76:
which is bounded from above has a least upper bound.
232:and has the least upper bound property is called a 1927: 1270: 623: 462: 436: 216:, this property can be generalized to a notion of 173:The least-upper-bound property is one form of the 154: 68: 46: 375: 1969: 511:with an upper bound has a least upper bound in 201:. It is usually taken as an axiom in synthetic 1883: 1864: 1846:Bartle, Robert G.; Sherbert, Donald R. (2011). 1802: 1743: 702: 1189: 1180:, and the least upper bound must be a root of 1925: 1850:(4 ed.). New York: John Wiley and Sons. 1420:. This can be proved by considering the set 1067: 729:with more than one element, and suppose that 493:, with ā€œreal numberā€ replaced by ā€œelement of 244: 239: 1907:Dangello, Frank; Seyfried, Michael (1999). 640:, but does not have a least upper bound in 1040:, which must be the least upper bound for 1759: 1537:states that some finite subcollection of 148: 62: 1737: 1560:āˆˆ ā€‰:ā€‰ can be covered by finitely many 1345: 379: 29: 1948: 1486:, then it follows from continuity that 14: 1970: 1886:Mathematical Analysis: An Introduction 1629:that can be covered by finitely many 1610:is itself an element of some open set 1503: 1953:. Mineola, N.Y.: Dover Publications. 170:have the least upper bound property. 1336:has a subsequence that converges to 1930:Principles of Mathematical Analysis 1867:A Radical Approach to Real Analysis 1778:10.4169/amer.math.monthly.122.7.619 1770:10.4169/amer.math.monthly.122.7.619 893:Otherwise there must be an element 100:) is a fundamental property of the 27:Property of a partially ordered set 24: 1890:Undergraduate Texts in Mathematics 1054:The least-upper-bound property of 25: 1994: 666: 646:(since the square root of two is 203:constructions of the real numbers 685:construction of the real numbers 652:construction of the real numbers 584: 552: 456: 406: 1049: 759:that is not an upper bound for 448:the set of its upper bounds in 1728: 1719: 499:ā€. In this case, we say that 376:Generalization to ordered sets 13: 1: 1892:. New York: Springer-Verlag. 1848:Introduction to Real Analysis 1796: 1747:American Mathematical Monthly 1508:Let be a closed interval in 1462:, and by its own definition, 675:, such as the convergence of 1829:(Third ed.). Academic. 1707:List of real analysis topics 1638:for some sufficiently small 1480:is the least upper bound of 703:Proof using Cauchy sequences 463:{\displaystyle \mathbf {Q} } 166:with its natural order does 155:{\displaystyle \mathbb {Q} } 69:{\displaystyle \mathbb {R} } 7: 1845: 1827:Principles of real analysis 1825:; Burkinshaw, Owen (1998). 1700: 1284:is not empty. In addition, 1196:Bolzanoā€“Weierstrass theorem 1190:Bolzanoā€“Weierstrass theorem 476:Completeness (order theory) 191:Bolzanoā€“Weierstrass theorem 18:Least upper bound principle 10: 1999: 1949:Willard, Stephen (2004) . 1909:Introductory Real Analysis 1684: 1665:is not an upper bound for 1110:intermediate value theorem 1068:Intermediate value theorem 473: 366:least-upper-bound property 245:Statement for real numbers 187:intermediate value theorem 86:least-upper-bound property 1823:Aliprantis, Charalambos D 1389:has no upper bound. The 240:Statement of the property 1884:Browder, Andrew (1996). 1865:Bressoud, David (2007). 1803:Abbott, Stephen (2001). 1712: 1597:has a least upper bound 1302:has a least upper bound 813:recursively as follows: 717:set of real numbers. If 681:nested intervals theorem 661: 693:least upper bound axiom 34:Every non-empty subset 1926:Rudin, Walter (1976). 1805:Understanding Analysis 1327:, and it follows that 1290:is an upper bound for 1272: 1271:{\displaystyle a\in S} 1174:is an upper bound for 835:is an upper bound for 634:has an upper bound in 625: 471: 464: 438: 348:for every upper bound 332:is an upper bound for 255:be a non-empty set of 156: 77: 70: 48: 1619:, and it follows for 1391:extreme value theorem 1346:Extreme value theorem 1273: 1108:. In this case, the 626: 520:For example, the set 486:partially ordered set 465: 439: 383: 222:partially ordered set 195:extreme value theorem 179:Dedekind completeness 157: 106:partially ordered set 71: 49: 33: 1585:, and is bounded by 1256: 1243:for infinitely many 765:. Define sequences 537: 452: 391: 226:linearly ordered set 144: 104:. More generally, a 58: 54:of the real numbers 38: 1645:. This proves that 1579:obviously contains 1535:Heineā€“Borel theorem 1525:be a collection of 1504:Heineā€“Borel theorem 1362:continuous function 1086:, and suppose that 1084:continuous function 735:has an upper bound 199:Heineā€“Borel theorem 1693:in his 1817 paper 1268: 1204:states that every 689:synthetic approach 673:completeness axiom 621: 472: 460: 434: 175:completeness axiom 152: 88:(sometimes called 78: 66: 44: 1941:978-0-07-054235-8 1918:978-0-395-95933-6 1876:978-0-88385-747-2 1857:978-0-471-43331-6 1446:By definition of 1142:) < 0 for all 614: 604: 312:least upper bound 94:supremum property 47:{\displaystyle M} 16:(Redirected from 1990: 1964: 1951:General Topology 1945: 1933: 1922: 1903: 1880: 1861: 1840: 1818: 1790: 1789: 1763: 1741: 1735: 1732: 1726: 1723: 1680: 1671:. Consequently, 1670: 1664: 1658: 1644: 1637: 1628: 1618: 1609: 1603: 1596: 1590: 1584: 1578: 1568: 1547: 1524: 1513: 1499: 1485: 1479: 1473: 1467: 1461: 1451: 1441: 1419: 1412: 1398: 1388: 1381: 1374: 1359: 1341: 1335: 1326: 1318:of the sequence 1313: 1307: 1301: 1295: 1289: 1283: 1277: 1275: 1274: 1269: 1248: 1215: 1203: 1185: 1179: 1173: 1167: 1161: 1151: 1117: 1107: 1096: 1081: 1059: 1045: 1039: 1033: 1026: 1008: 960: 941: 925: 904: 898: 889: 862: 840: 834: 812: 788: 764: 758: 749: 743: 734: 728: 722: 712: 677:Cauchy sequences 645: 639: 630: 628: 627: 622: 620: 616: 615: 610: 605: 600: 587: 579: 575: 568: 567: 555: 528:rational numbers 525: 516: 510: 504: 498: 492: 469: 467: 466: 461: 459: 443: 441: 440: 435: 433: 429: 422: 421: 409: 359: 353: 347: 337: 331: 325: 309: 300: 290: 280: 268: 254: 234:linear continuum 164:rational numbers 161: 159: 158: 153: 151: 139: 122: 112: 75: 73: 72: 67: 65: 53: 51: 50: 45: 21: 1998: 1997: 1993: 1992: 1991: 1989: 1988: 1987: 1968: 1967: 1961: 1942: 1919: 1911:. Brooks Cole. 1900: 1877: 1858: 1837: 1815: 1799: 1794: 1793: 1742: 1738: 1733: 1729: 1724: 1720: 1715: 1703: 1691:Bernard Bolzano 1687: 1672: 1666: 1660: 1646: 1639: 1635: 1630: 1620: 1616: 1611: 1605: 1598: 1592: 1586: 1580: 1574: 1565: 1552: 1544: 1538: 1521: 1515: 1509: 1506: 1487: 1481: 1475: 1469: 1468:is bounded by 1463: 1453: 1447: 1424: 1414: 1400: 1394: 1383: 1376: 1365: 1351: 1348: 1337: 1333: 1328: 1324: 1319: 1309: 1303: 1297: 1291: 1285: 1279: 1257: 1254: 1253: 1241: 1224: 1213: 1208: 1199: 1192: 1181: 1175: 1169: 1163: 1157: 1126: 1113: 1098: 1087: 1073: 1070: 1055: 1052: 1041: 1035: 1028: 1023: 1016: 1010: 1007: 1000: 993: 986: 979: 972: 966: 958: 952: 943: 936: 927: 922: 915: 906: 900: 894: 886: 879: 873: 864: 860: 854: 845: 836: 831: 824: 818: 810: 803: 796: 790: 786: 779: 772: 766: 760: 757: 751: 745: 742: 736: 730: 724: 718: 708: 705: 669: 664: 641: 635: 609: 599: 595: 591: 583: 563: 559: 551: 544: 540: 538: 535: 534: 521: 512: 506: 500: 494: 488: 478: 455: 453: 450: 449: 417: 413: 405: 398: 394: 392: 389: 388: 378: 355: 349: 339: 333: 327: 321: 305: 292: 282: 276: 264: 250: 247: 242: 147: 145: 142: 141: 135: 118: 108: 98:l.u.b. property 61: 59: 56: 55: 39: 36: 35: 28: 23: 22: 15: 12: 11: 5: 1996: 1986: 1985: 1980: 1966: 1965: 1959: 1946: 1940: 1923: 1917: 1904: 1898: 1881: 1875: 1862: 1856: 1842: 1841: 1835: 1819: 1813: 1798: 1795: 1792: 1791: 1754:(7): 619ā€“635. 1736: 1727: 1717: 1716: 1714: 1711: 1710: 1709: 1702: 1699: 1686: 1683: 1633: 1614: 1571: 1570: 1563: 1542: 1519: 1505: 1502: 1444: 1443: 1399:is finite and 1347: 1344: 1331: 1322: 1267: 1264: 1261: 1250: 1249: 1239: 1211: 1191: 1188: 1154: 1153: 1069: 1066: 1051: 1048: 1021: 1014: 1005: 998: 991: 984: 977: 970: 963: 962: 956: 947: 931: 920: 913: 891: 884: 877: 868: 858: 849: 844:If it is, let 842: 829: 822: 817:Check whether 808: 801: 794: 784: 777: 770: 755: 740: 704: 701: 668: 667:Logical status 665: 663: 660: 632: 631: 619: 613: 608: 603: 598: 594: 590: 586: 582: 578: 574: 571: 566: 562: 558: 554: 550: 547: 543: 474:Main article: 458: 432: 428: 425: 420: 416: 412: 408: 404: 401: 397: 377: 374: 362: 361: 304:A real number 302: 263:A real number 246: 243: 241: 238: 185:, such as the 150: 134:(supremum) in 64: 43: 26: 9: 6: 4: 3: 2: 1995: 1984: 1981: 1979: 1978:Real analysis 1976: 1975: 1973: 1962: 1960:9780486434797 1956: 1952: 1947: 1943: 1937: 1932: 1931: 1924: 1920: 1914: 1910: 1905: 1901: 1899:0-387-94614-4 1895: 1891: 1887: 1882: 1878: 1872: 1868: 1863: 1859: 1853: 1849: 1844: 1843: 1838: 1836:0-12-050257-7 1832: 1828: 1824: 1820: 1816: 1814:0-387-95060-5 1810: 1806: 1801: 1800: 1787: 1783: 1779: 1775: 1771: 1767: 1762: 1757: 1753: 1749: 1748: 1740: 1731: 1722: 1718: 1708: 1705: 1704: 1698: 1696: 1692: 1682: 1679: 1675: 1669: 1663: 1657: 1653: 1649: 1642: 1636: 1627: 1623: 1617: 1608: 1601: 1595: 1589: 1583: 1577: 1566: 1559: 1555: 1551: 1550: 1549: 1545: 1536: 1532: 1528: 1522: 1512: 1501: 1498: 1494: 1490: 1484: 1478: 1472: 1466: 1460: 1456: 1450: 1439: 1435: 1431: 1427: 1423: 1422: 1421: 1417: 1411: 1407: 1403: 1397: 1392: 1386: 1379: 1372: 1368: 1363: 1358: 1354: 1343: 1340: 1334: 1325: 1317: 1312: 1306: 1300: 1294: 1288: 1282: 1265: 1262: 1259: 1246: 1242: 1235: 1231: 1227: 1223: 1222: 1221: 1219: 1214: 1207: 1202: 1197: 1187: 1184: 1178: 1172: 1166: 1160: 1149: 1145: 1141: 1137: 1133: 1129: 1125: 1124: 1123: 1121: 1116: 1111: 1105: 1101: 1094: 1090: 1085: 1080: 1076: 1065: 1063: 1062:real analysis 1058: 1047: 1044: 1038: 1031: 1024: 1017: 1004: 997: 990: 983: 976: 969: 959: 950: 946: 940: 934: 930: 923: 916: 909: 903: 897: 892: 887: 880: 871: 867: 861: 852: 848: 843: 839: 832: 825: 816: 815: 814: 807: 800: 793: 783: 776: 769: 763: 754: 748: 739: 733: 727: 721: 716: 711: 700: 698: 694: 690: 687:used: in the 686: 682: 678: 674: 659: 657: 656:Dedekind cuts 653: 649: 644: 638: 617: 611: 606: 601: 596: 592: 588: 580: 576: 572: 569: 564: 560: 556: 548: 545: 541: 533: 532: 531: 529: 524: 518: 515: 509: 503: 497: 491: 487: 483: 477: 447: 430: 426: 423: 418: 414: 410: 402: 399: 395: 386: 382: 373: 371: 367: 358: 352: 346: 342: 336: 330: 324: 319: 318: 313: 308: 303: 299: 295: 289: 285: 279: 274: 273: 269:is called an 267: 262: 261: 260: 258: 253: 237: 235: 231: 227: 223: 219: 215: 210: 208: 207:Dedekind cuts 204: 200: 196: 192: 188: 184: 183:real analysis 180: 176: 171: 169: 165: 138: 133: 131: 126: 121: 116: 111: 107: 103: 99: 95: 91: 87: 83: 41: 32: 19: 1983:Order theory 1950: 1929: 1908: 1885: 1866: 1847: 1826: 1804: 1751: 1745: 1739: 1730: 1721: 1694: 1688: 1677: 1673: 1667: 1661: 1655: 1651: 1647: 1640: 1631: 1625: 1621: 1612: 1606: 1599: 1593: 1587: 1581: 1575: 1572: 1561: 1557: 1553: 1540: 1533:. Then the 1517: 1510: 1507: 1496: 1492: 1488: 1482: 1476: 1470: 1464: 1458: 1454: 1448: 1445: 1437: 1433: 1429: 1425: 1415: 1409: 1405: 1401: 1395: 1393:states that 1384: 1377: 1370: 1366: 1356: 1352: 1349: 1338: 1329: 1320: 1310: 1304: 1298: 1292: 1286: 1280: 1251: 1244: 1237: 1233: 1229: 1225: 1209: 1200: 1193: 1182: 1176: 1170: 1164: 1158: 1155: 1147: 1143: 1139: 1135: 1131: 1127: 1118:must have a 1114: 1112:states that 1103: 1099: 1092: 1088: 1078: 1074: 1071: 1056: 1053: 1050:Applications 1042: 1036: 1029: 1019: 1012: 1002: 995: 988: 981: 974: 967: 964: 954: 948: 944: 938: 932: 928: 918: 911: 907: 901: 895: 882: 875: 869: 865: 856: 850: 846: 837: 827: 820: 805: 798: 791: 781: 774: 767: 761: 752: 746: 737: 731: 725: 719: 709: 706: 670: 642: 636: 633: 522: 519: 513: 507: 501: 495: 489: 479: 445: 384: 370:real numbers 369: 365: 363: 356: 350: 344: 340: 334: 328: 322: 315: 311: 306: 297: 293: 287: 283: 277: 270: 265: 257:real numbers 251: 248: 218:completeness 214:order theory 211: 178: 172: 167: 136: 129: 119: 109: 102:real numbers 97: 93: 90:completeness 89: 85: 79: 1604:. Hence, 1432:āˆˆ ā€‰:ā€‰ sup 1316:limit point 1218:subsequence 272:upper bound 132:upper bound 125:upper bound 82:mathematics 1972:Categories 1797:References 1514:, and let 1314:must be a 648:irrational 197:, and the 1786:119936587 1761:1006.4131 1527:open sets 1413:for some 1263:∈ 1252:Clearly, 1156:That is, 597:− 589:∩ 570:≤ 549:∈ 424:≤ 403:∈ 1701:See also 1573:The set 1375:, where 1364:and let 1206:sequence 1168:. Then 1106:) > 0 1095:) < 0 942:and let 905:so that 863:and let 744:. Since 715:nonempty 650:). The 387:the set 317:supremum 291:for all 228:that is 220:for any 123:with an 1869:. MAA. 1685:History 1308:. Then 1232:āˆˆ ā€‰: 1134:āˆˆ ā€‰: 926:. Let 697:theorem 679:or the 310:is the 162:of all 1957:  1938:  1915:  1896:  1873:  1854:  1833:  1811:  1784:  1776:  1643:> 0 1531:covers 1369:= sup 1278:, and 987:ā‰¤ ā‹Æ ā‰¤ 654:using 482:subset 320:) for 224:. A 193:, the 189:, the 127:has a 115:subset 84:, the 1782:S2CID 1774:JSTOR 1756:arXiv 1713:Notes 1624:< 1529:that 1474:. If 1436:() = 1360:be a 1355:: ā†’ 1296:, so 1082:be a 1077:: ā†’ 1025:| ā†’ 0 965:Then 924:) ā„ 2 910:>( 888:) ā„ 2 833:) ā„ 2 811:, ... 787:, ... 713:be a 662:Proof 484:of a 446:Blue: 230:dense 130:least 1955:ISBN 1936:ISBN 1913:ISBN 1894:ISBN 1871:ISBN 1852:ISBN 1831:ISBN 1809:ISBN 1659:and 1556:=ā€‰ { 1495:) = 1428:=ā€‰ { 1408:) = 1350:Let 1228:=ā€‰ { 1198:for 1194:The 1130:=ā€‰ { 1120:root 1097:and 1072:Let 1009:and 789:and 385:Red: 364:The 338:and 314:(or 275:for 249:Let 1766:doi 1752:122 1382:if 1380:= āˆž 1032:ā†’ āˆž 1027:as 899:in 874:= ( 526:of 354:of 326:if 281:if 212:In 209:. 168:not 117:of 96:or 80:In 1974:: 1888:. 1780:. 1772:. 1764:. 1750:. 1697:. 1681:. 1676:= 1654:āˆˆ 1650:+ 1602:āˆˆ 1567:} 1546:} 1523:} 1500:. 1457:āˆˆ 1452:, 1440:} 1418:āˆˆ 1387:() 1373:() 1342:. 1247:} 1236:ā‰¤ 1186:. 1150:} 1146:ā‰¤ 1064:. 1046:. 1018:āˆ’ 1001:ā‰¤ 994:ā‰¤ 980:ā‰¤ 973:ā‰¤ 953:= 951:+1 937:= 935:+1 917:+ 881:+ 872:+1 855:= 853:+1 826:+ 804:, 797:, 780:, 773:, 517:. 444:. 372:. 343:ā‰¤ 296:āˆˆ 286:ā‰„ 259:. 236:. 92:, 1963:. 1944:. 1921:. 1902:. 1879:. 1860:. 1839:. 1817:. 1788:. 1768:: 1758:: 1678:b 1674:c 1668:S 1662:c 1656:S 1652:Ī“ 1648:c 1641:Ī“ 1634:Ī± 1632:U 1626:b 1622:c 1615:Ī± 1613:U 1607:c 1600:c 1594:S 1588:b 1582:a 1576:S 1569:. 1564:Ī± 1562:U 1558:s 1554:S 1543:Ī± 1541:U 1539:{ 1520:Ī± 1518:U 1516:{ 1511:R 1497:M 1493:c 1491:( 1489:f 1483:S 1477:c 1471:b 1465:S 1459:S 1455:a 1449:M 1442:. 1438:M 1434:f 1430:s 1426:S 1416:c 1410:M 1406:c 1404:( 1402:f 1396:M 1385:f 1378:M 1371:f 1367:M 1357:R 1353:f 1339:c 1332:n 1330:x 1323:n 1321:x 1311:c 1305:c 1299:S 1293:S 1287:b 1281:S 1266:S 1260:a 1245:n 1240:n 1238:x 1234:s 1230:s 1226:S 1212:n 1210:x 1201:R 1183:f 1177:S 1171:b 1165:f 1159:S 1152:. 1148:s 1144:x 1140:x 1138:( 1136:f 1132:s 1128:S 1115:f 1104:b 1102:( 1100:f 1093:a 1091:( 1089:f 1079:R 1075:f 1057:R 1043:S 1037:L 1030:n 1022:n 1020:B 1015:n 1013:A 1011:| 1006:1 1003:B 999:2 996:B 992:3 989:B 985:3 982:A 978:2 975:A 971:1 968:A 961:. 957:n 955:B 949:n 945:B 939:s 933:n 929:A 921:n 919:B 914:n 912:A 908:s 902:S 896:s 890:. 885:n 883:B 878:n 876:A 870:n 866:B 859:n 857:A 851:n 847:A 841:. 838:S 830:n 828:B 823:n 821:A 819:( 809:3 806:B 802:2 799:B 795:1 792:B 785:3 782:A 778:2 775:A 771:1 768:A 762:S 756:1 753:A 747:S 741:1 738:B 732:S 726:S 720:S 710:S 643:Q 637:Q 618:) 612:2 607:, 602:2 593:( 585:Q 581:= 577:} 573:2 565:2 561:x 557:: 553:Q 546:x 542:{ 523:Q 514:X 508:X 502:X 496:X 490:X 470:. 457:Q 431:} 427:2 419:2 415:x 411:: 407:Q 400:x 396:{ 360:. 357:S 351:y 345:y 341:x 335:S 329:x 323:S 307:x 301:. 298:S 294:s 288:s 284:x 278:S 266:x 252:S 149:Q 137:X 120:X 110:X 63:R 42:M 20:)

Index

Least upper bound principle

mathematics
real numbers
partially ordered set
subset
upper bound
least upper bound
rational numbers
completeness axiom
real analysis
intermediate value theorem
Bolzanoā€“Weierstrass theorem
extreme value theorem
Heineā€“Borel theorem
constructions of the real numbers
Dedekind cuts
order theory
completeness
partially ordered set
linearly ordered set
dense
linear continuum
real numbers
upper bound
supremum

Completeness (order theory)
subset
partially ordered set

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

ā†‘