Knowledge

Bolzano–Weierstrass theorem

Source 📝

2798: 2924: 2602: 2885: 2702: 2759: 3011: 2797: 2923: 2601: 4663:
of consumption bundles for agents in an economy, and an allocation is Pareto efficient if no change can be made to it that makes no agent worse off and at least one agent better off (here rows of the allocation matrix must be rankable by a
619: 2884: 2701: 2758: 513: 1249: 3010: 1834: 2234: 3810: 3685: 2975: 2849: 2653: 1169: 1021: 4393: 2290: 2152: 2486: 4038: 4633: 4563: 3905: 3479: 2548: 2096: 1747: 1665: 1603: 1511: 1482: 1420: 1391: 1347: 1311: 681: 328: 260: 227: 146: 106: 73: 4118: 3162: 409: 4318: 4010: 2433: 2027: 1914: 1115: 967: 1537: 807: 721: 4357: 4151: 3724: 846: 2389: 2326: 2188: 2063: 1983: 1870: 3618: 3585: 3532: 3446: 3296: 2593: 2519: 1947: 1718: 1636: 1453: 1282: 652: 299: 3116: 2750: 435: 4065: 3413: 3366: 3239: 3192: 3053: 3002: 2915: 2876: 2789: 2353: 1075: 1048: 927: 900: 873: 767: 188:. Some fifty years later the result was identified as significant in its own right, and proved again by Weierstrass. It has since become an essential theorem of 4588: 4533: 4508: 4486: 4460: 4438: 4413: 4277: 4242: 4220: 4198: 4172: 3970: 3948: 3926: 3875: 3836: 3768: 3746: 3638: 3552: 3499: 3386: 3339: 3319: 3259: 3212: 2693: 2673: 1685: 1557: 741: 369: 518: 4655:
concepts in economics, the proofs of the existence of which often require variations of the Bolzano–Weierstrass theorem. One example is the existence of a
2803:
Because each sequence has infinitely many members, there must be (at least) one of these subintervals that contains infinitely many members of
4862: 440: 4643:
is compact if and only if it is sequentially compact, so that the Bolzano–Weierstrass and Heine–Borel theorems are essentially the same.
1174: 437:. Suppose first that the sequence has infinitely many peaks, which means there is a subsequence with the following indices 1752: 4696: 4803: 4784: 2193: 4691: 3021:
Because we halve the length of an interval at each step, the limit of the interval's length is zero. Also, by the
4820: 3780: 3655: 2932: 2806: 2610: 4867: 4830: 1120: 972: 4363: 2239: 2101: 1354: 40: 2438: 4825: 4322: 4681: 4015: 185: 149: 4609: 4539: 3881: 3451: 2524: 2068: 1723: 1641: 1562: 1487: 1458: 1396: 1367: 1323: 1287: 657: 304: 236: 203: 122: 82: 49: 4668:). The Bolzano–Weierstrass theorem allows one to prove that if the set of allocations is compact and 4070: 3127: 374: 4284: 3976: 2394: 1988: 1875: 1080: 932: 1516: 4686: 4603: 772: 686: 4329: 4123: 3696: 812: 2358: 2295: 2157: 2032: 1952: 1839: 3590: 3557: 3504: 3418: 3268: 2565: 2491: 2328:
has a convergent subsequence. This reasoning may be applied until we obtain a countable set
1919: 1690: 1608: 1425: 1361: 1254: 624: 271: 3061: 2710: 414: 4660: 4652: 4592: 4252: 4043: 3850: 3814: 3689: 3391: 3344: 3217: 3170: 3031: 3016:
We continue this process infinitely many times. Thus we get a sequence of nested intervals.
2980: 2893: 2854: 2767: 2331: 1053: 1026: 905: 878: 851: 4842: 8: 4665: 746: 614:{\displaystyle x_{n_{1}}\geq x_{n_{2}}\geq x_{n_{3}}\geq \dots \geq x_{n_{j}}\geq \dots } 181: 109: 4773: 4573: 4518: 4493: 4471: 4445: 4423: 4416: 4398: 4262: 4227: 4205: 4183: 4176: 4157: 3955: 3933: 3911: 3860: 3821: 3753: 3731: 3623: 3537: 3484: 3371: 3324: 3304: 3262: 3244: 3197: 2678: 2658: 1670: 1542: 726: 354: 4799: 4780: 4656: 4596: 331: 4639:
if and only if it is closed and bounded. In fact, general topology tells us that a
4768: 4640: 3023: 2559: 1317: 177: 76: 36: 16:
Bounded sequence in finite-dimensional Euclidean space has a convergent subsequence
173: 44: 32: 1171:. Repeating this process leads to an infinite non-decreasing subsequence  342: 338: 4847: 3341:. Because the length of the intervals converges to zero, there is an interval 4856: 4636: 189: 24: 2558:
There is also an alternative proof of the Bolzano–Weierstrass theorem using
1513:) has a convergent subsequence if and only if there exists a countable set 1350: 334: 230: 157: 112: 20: 4464: 3840: 153: 4669: 2929:
Again, one of these subintervals contains infinitely many members of
2065:
has a convergent subsequence and hence there exists a countable set
508:{\displaystyle n_{1}<n_{2}<n_{3}<\dots <n_{j}<\dots } 4602:
This form of the theorem makes especially clear the analogy to the
1353:
a monotone subsequence, likewise also bounded. It follows from the
3973:
must be bounded, since otherwise the following unbounded sequence
1244:{\displaystyle x_{n_{1}}\leq x_{n_{2}}\leq x_{n_{3}}\leq \ldots } 2190:, by applying the lemma once again there exists a countable set 4837: 723:. But suppose now that there are only finitely many peaks, let 262:
can be put to good use. Indeed, we have the following result:
116: 3167:
then under the assumption of nesting, the intersection of the
172:
The Bolzano–Weierstrass theorem is named after mathematicians
3643: 4599: – are precisely the closed and bounded subsets. 2752:
as the first interval for the sequence of nested intervals.
902:
comes after the final peak, which implies the existence of
3749:
has a convergent subsequence converging to an element of
769:
otherwise) and let the first index of a new subsequence
180:. It was actually first proved by Bolzano in 1817 as a 683:
has a monotone (non-increasing) subsequence, which is
4672:, then the system has a Pareto-efficient allocation. 4612: 4576: 4542: 4521: 4496: 4474: 4448: 4426: 4401: 4366: 4332: 4287: 4265: 4230: 4208: 4186: 4160: 4153:
is unbounded and therefore not convergent. Moreover,
4126: 4073: 4046: 4018: 3979: 3958: 3936: 3914: 3884: 3863: 3824: 3783: 3756: 3734: 3699: 3658: 3626: 3593: 3560: 3540: 3507: 3487: 3454: 3421: 3394: 3374: 3347: 3327: 3307: 3271: 3247: 3220: 3200: 3173: 3130: 3064: 3034: 2983: 2935: 2917:
again at the mid into two equally sized subintervals.
2896: 2857: 2809: 2770: 2713: 2681: 2661: 2613: 2568: 2527: 2494: 2441: 2397: 2361: 2334: 2298: 2242: 2196: 2160: 2104: 2071: 2035: 1991: 1955: 1922: 1878: 1842: 1755: 1726: 1693: 1673: 1644: 1611: 1565: 1545: 1519: 1490: 1461: 1428: 1399: 1370: 1326: 1290: 1257: 1177: 1123: 1083: 1056: 1029: 975: 935: 908: 881: 854: 815: 775: 749: 729: 689: 660: 627: 521: 443: 417: 377: 357: 307: 274: 239: 206: 125: 85: 52: 3415:
contains by construction infinitely many members of
2977:. We take this subinterval as the third subinterval 1829:{\displaystyle x_{n}=(x_{n1},x_{n2},\dots ,x_{nn})} 4798:(2nd ed.). Belmont, CA: Thomson Brooks/Cole. 4772: 4627: 4582: 4557: 4527: 4502: 4480: 4454: 4432: 4407: 4387: 4351: 4312: 4271: 4236: 4214: 4192: 4166: 4145: 4112: 4059: 4032: 4004: 3964: 3942: 3920: 3899: 3869: 3830: 3804: 3762: 3740: 3718: 3679: 3632: 3612: 3579: 3546: 3526: 3493: 3473: 3440: 3407: 3380: 3360: 3333: 3313: 3290: 3253: 3233: 3206: 3186: 3156: 3110: 3047: 2996: 2969: 2909: 2870: 2851:. We take this subinterval as the second interval 2843: 2783: 2744: 2687: 2667: 2647: 2587: 2542: 2513: 2480: 2427: 2383: 2347: 2320: 2284: 2228: 2182: 2146: 2090: 2057: 2021: 1977: 1941: 1908: 1864: 1828: 1741: 1712: 1679: 1659: 1630: 1597: 1551: 1531: 1505: 1476: 1447: 1414: 1385: 1341: 1305: 1276: 1243: 1163: 1109: 1069: 1042: 1015: 961: 921: 894: 867: 840: 801: 761: 735: 715: 675: 646: 613: 507: 429: 403: 363: 322: 293: 254: 221: 140: 100: 67: 4854: 4843:PlanetMath: proof of Bolzano–Weierstrass Theorem 4360:contains a subsequence converging to some point 2791:at the mid into two equally sized subintervals. 2229:{\displaystyle K_{2}\subseteq K_{1}\subseteq I} 1720:may be expressed as an n-tuple of sequences in 1422:. Firstly, we will acknowledge that a sequence 1251:, thereby proving that every infinite sequence 4767: 4569:has a subsequence converging to an element of 3929:has a subsequence converging to an element of 1050:comes after the final peak, hence there is an 351:: Let us call a positive integer-valued index 4346: 4333: 4301: 4288: 4140: 4127: 3993: 3980: 3713: 3700: 2655:is bounded, this sequence has a lower bound 371:of a sequence a "peak" of the sequence when 4793: 4646: 3805:{\displaystyle A\subseteq \mathbb {R} ^{n}} 3680:{\displaystyle A\subseteq \mathbb {R} ^{n}} 2970:{\displaystyle (x_{n})_{n\in \mathbb {N} }} 2844:{\displaystyle (x_{n})_{n\in \mathbb {N} }} 2648:{\displaystyle (x_{n})_{n\in \mathbb {N} }} 1559:is the index set of the sequence such that 167: 4838:A proof of the Bolzano–Weierstrass theorem 3644:Sequential compactness in Euclidean spaces 4615: 4545: 4375: 4026: 3907:with the property that every sequence in 3887: 3792: 3667: 3094: 2961: 2835: 2639: 2530: 1729: 1647: 1493: 1464: 1402: 1373: 1329: 1293: 663: 310: 242: 209: 128: 88: 55: 75:. The theorem states that each infinite 4223:converging to itself, must also lie in 2521:was arbitrary, any bounded sequence in 1164:{\displaystyle x_{n_{2}}\leq x_{n_{3}}} 4855: 3055:is a closed and bounded interval, say 1016:{\displaystyle x_{n_{1}}<x_{n_{2}}} 160:. The theorem is sometimes called the 115:. An equivalent formulation is that a 4715:Bartle and Sherbert 2000, p. 78 (for 4388:{\displaystyle x\in \mathbb {R} ^{n}} 3194:is not empty. Thus there is a number 2878:of the sequence of nested intervals. 2285:{\displaystyle (x_{n2})_{n\in K_{2}}} 2147:{\displaystyle (x_{n1})_{n\in K_{1}}} 743:be the final peak if one exists (let 4863:Theorems about real number sequences 4779:(3rd ed.). New York: J. Wiley. 4754:Bartle and Sherbert 2000, pp. 78-79. 4201:, which has a sequence of points in 4067:to be any arbitrary point such that 3501:contains infinitely many members of 3004:of the sequence of nested intervals. 2553: 2481:{\displaystyle (x_{n})_{n\in K_{n}}} 2029:. It follows then by the lemma that 4591:– i.e., the subsets that are 2562:. We start with a bounded sequence 13: 3587:. Thus, there is a subsequence of 14: 4879: 4813: 4606:, which asserts that a subset of 4033:{\displaystyle n\in \mathbb {N} } 1357:that this subsequence converges. 233:), in which case the ordering on 4794:Fitzpatrick, Patrick M. (2006). 4692:Completeness of the real numbers 4628:{\displaystyle \mathbb {R} ^{n}} 4558:{\displaystyle \mathbb {R} ^{n}} 3900:{\displaystyle \mathbb {R} ^{n}} 3474:{\displaystyle I_{N}\subseteq U} 3009: 2922: 2883: 2796: 2757: 2700: 2600: 2543:{\displaystyle \mathbb {R} ^{n}} 2091:{\displaystyle K_{1}\subseteq I} 1742:{\displaystyle \mathbb {R} ^{1}} 1660:{\displaystyle \mathbb {R} ^{n}} 1598:{\displaystyle (x_{n})_{n\in K}} 1506:{\displaystyle \mathbb {R} ^{n}} 1477:{\displaystyle \mathbb {R} ^{1}} 1415:{\displaystyle \mathbb {R} ^{1}} 1393:) can be reduced to the case of 1386:{\displaystyle \mathbb {R} ^{n}} 1342:{\displaystyle \mathbb {R} ^{1}} 1306:{\displaystyle \mathbb {R} ^{1}} 676:{\displaystyle \mathbb {R} ^{1}} 323:{\displaystyle \mathbb {R} ^{1}} 255:{\displaystyle \mathbb {R} ^{1}} 222:{\displaystyle \mathbb {R} ^{1}} 141:{\displaystyle \mathbb {R} ^{n}} 101:{\displaystyle \mathbb {R} ^{n}} 68:{\displaystyle \mathbb {R} ^{n}} 4697:Ekeland's variational principle 4659:allocation. An allocation is a 4113:{\displaystyle ||x_{n}||\geq n} 3157:{\displaystyle a_{n}\leq b_{n}} 404:{\displaystyle x_{m}\leq x_{n}} 200:First we prove the theorem for 4771:; Sherbert, Donald R. (2000). 4748: 4739: 4722: 4709: 4651:There are different important 4313:{\displaystyle \{x_{n}\}\in A} 4100: 4095: 4080: 4075: 4012:can be constructed. For every 4005:{\displaystyle \{x_{n}\}\in A} 3607: 3594: 3574: 3561: 3521: 3508: 3435: 3422: 3285: 3272: 3105: 3078: 2950: 2936: 2824: 2810: 2739: 2727: 2628: 2614: 2582: 2569: 2550:has a convergent subsequence. 2508: 2495: 2488:converges and therefore since 2456: 2442: 2428:{\displaystyle j=1,2,\dots ,n} 2378: 2362: 2315: 2299: 2260: 2243: 2177: 2161: 2122: 2105: 2052: 2036: 2022:{\displaystyle j=1,2,\dots ,n} 1972: 1956: 1936: 1923: 1909:{\displaystyle j=1,2,\dots ,n} 1859: 1843: 1823: 1769: 1707: 1694: 1625: 1612: 1580: 1566: 1442: 1429: 1271: 1258: 1110:{\displaystyle n_{2}<n_{3}} 962:{\displaystyle n_{1}<n_{2}} 796: 776: 710: 690: 641: 628: 337:(a subsequence that is either 288: 275: 162:sequential compactness theorem 1: 4821:"Bolzano-Weierstrass theorem" 4775:Introduction to Real Analysis 4761: 4728:Fitzpatrick 2006, p. 52 (for 4120:. Then, every subsequence of 4565:for which every sequence in 4251:(closed and bounded implies 3853:implies closed and bounded) 3554:is an accumulation point of 3028:, which states that if each 2154:converges. For the sequence 1667:and denote its index set by 1532:{\displaystyle K\subseteq I} 1355:monotone convergence theorem 1349:; by the lemma proven above 1313:has a monotone subsequence. 621:. So, the infinite sequence 7: 4848:The Bolzano-Weierstrass Rap 4826:Encyclopedia of Mathematics 4675: 4323:Bolzano-Weierstrass theorem 1638:be any bounded sequence in 802:{\displaystyle (x_{n_{j}})} 716:{\displaystyle (x_{n_{j}})} 29:Bolzano–Weierstrass theorem 10: 4884: 4682:Sequentially compact space 4321:is also bounded. From the 4175:must be closed, since any 268:: Every infinite sequence 186:intermediate value theorem 4745:Fitzpatrick 2006, p. xiv. 4352:{\displaystyle \{x_{n}\}} 4280:is bounded, any sequence 4146:{\displaystyle \{x_{n}\}} 3719:{\displaystyle \{x_{n}\}} 3214:that is in each interval 841:{\displaystyle n_{1}=N+1} 4702: 4647:Application to economics 2384:{\displaystyle (x_{nj})} 2321:{\displaystyle (x_{n2})} 2183:{\displaystyle (x_{n2})} 2058:{\displaystyle (x_{n1})} 1978:{\displaystyle (x_{nj})} 1865:{\displaystyle (x_{nj})} 515:and the following terms 195: 168:History and significance 43:in a finite-dimensional 41:result about convergence 3613:{\displaystyle (x_{n})} 3580:{\displaystyle (x_{n})} 3527:{\displaystyle (x_{n})} 3441:{\displaystyle (x_{n})} 3291:{\displaystyle (x_{n})} 2588:{\displaystyle (x_{n})} 2514:{\displaystyle (x_{n})} 1942:{\displaystyle (x_{n})} 1713:{\displaystyle (x_{n})} 1631:{\displaystyle (x_{n})} 1448:{\displaystyle (x_{n})} 1277:{\displaystyle (x_{n})} 647:{\displaystyle (x_{n})} 294:{\displaystyle (x_{n})} 4629: 4584: 4559: 4529: 4504: 4489:must be an element of 4482: 4456: 4434: 4409: 4389: 4353: 4314: 4273: 4253:sequential compactness 4238: 4216: 4194: 4168: 4147: 4114: 4061: 4034: 4006: 3966: 3944: 3922: 3901: 3871: 3851:sequential compactness 3832: 3806: 3764: 3742: 3720: 3681: 3634: 3614: 3581: 3548: 3528: 3495: 3475: 3442: 3409: 3382: 3362: 3335: 3315: 3292: 3255: 3235: 3208: 3188: 3158: 3112: 3111:{\displaystyle I_{n}=} 3049: 2998: 2971: 2911: 2872: 2845: 2785: 2746: 2745:{\displaystyle I_{1}=} 2689: 2669: 2649: 2589: 2544: 2515: 2482: 2429: 2385: 2349: 2322: 2286: 2230: 2184: 2148: 2092: 2059: 2023: 1979: 1943: 1910: 1866: 1830: 1743: 1714: 1681: 1661: 1632: 1599: 1553: 1533: 1507: 1478: 1449: 1416: 1387: 1343: 1316:Now suppose one has a 1307: 1278: 1245: 1165: 1111: 1071: 1044: 1017: 963: 923: 896: 869: 842: 803: 763: 737: 717: 677: 648: 615: 509: 431: 430:{\displaystyle m>n} 405: 365: 324: 295: 256: 223: 142: 102: 69: 4630: 4585: 4560: 4530: 4505: 4483: 4457: 4435: 4410: 4390: 4354: 4315: 4274: 4239: 4217: 4195: 4169: 4148: 4115: 4062: 4060:{\displaystyle x_{n}} 4035: 4007: 3967: 3945: 3923: 3902: 3872: 3833: 3807: 3765: 3743: 3721: 3682: 3635: 3615: 3582: 3549: 3529: 3496: 3476: 3443: 3410: 3408:{\displaystyle I_{N}} 3383: 3363: 3361:{\displaystyle I_{N}} 3336: 3316: 3301:Take a neighbourhood 3293: 3256: 3236: 3234:{\displaystyle I_{n}} 3209: 3189: 3187:{\displaystyle I_{n}} 3159: 3113: 3050: 3048:{\displaystyle I_{n}} 2999: 2997:{\displaystyle I_{3}} 2972: 2912: 2910:{\displaystyle I_{2}} 2873: 2871:{\displaystyle I_{2}} 2846: 2786: 2784:{\displaystyle I_{1}} 2747: 2690: 2670: 2650: 2590: 2545: 2516: 2483: 2430: 2386: 2350: 2348:{\displaystyle K_{n}} 2323: 2287: 2231: 2185: 2149: 2093: 2060: 2024: 1980: 1944: 1911: 1867: 1831: 1744: 1715: 1682: 1662: 1633: 1600: 1554: 1534: 1508: 1479: 1450: 1417: 1388: 1344: 1308: 1279: 1246: 1166: 1112: 1072: 1070:{\displaystyle n_{3}} 1045: 1043:{\displaystyle n_{2}} 1018: 964: 924: 922:{\displaystyle n_{2}} 897: 895:{\displaystyle n_{1}} 875:is not a peak, since 870: 868:{\displaystyle n_{1}} 843: 804: 764: 738: 718: 678: 649: 616: 510: 432: 406: 366: 325: 296: 257: 224: 152:if and only if it is 143: 103: 70: 4868:Compactness theorems 4610: 4593:sequentially compact 4574: 4540: 4519: 4494: 4472: 4446: 4424: 4399: 4364: 4330: 4285: 4263: 4228: 4206: 4184: 4158: 4124: 4071: 4044: 4016: 3977: 3956: 3934: 3912: 3882: 3861: 3822: 3815:sequentially compact 3781: 3754: 3732: 3697: 3690:sequentially compact 3656: 3624: 3591: 3558: 3538: 3505: 3485: 3452: 3419: 3392: 3372: 3368:that is a subset of 3345: 3325: 3305: 3269: 3245: 3241:. Now we show, that 3218: 3198: 3171: 3128: 3062: 3032: 2981: 2933: 2894: 2855: 2807: 2768: 2711: 2679: 2659: 2611: 2566: 2525: 2492: 2439: 2395: 2359: 2332: 2296: 2292:converges and hence 2240: 2194: 2158: 2102: 2069: 2033: 1989: 1985:is also bounded for 1953: 1920: 1876: 1840: 1753: 1724: 1691: 1671: 1642: 1609: 1563: 1543: 1517: 1488: 1459: 1426: 1397: 1368: 1324: 1288: 1255: 1175: 1121: 1081: 1054: 1027: 973: 933: 906: 879: 852: 813: 773: 747: 727: 687: 658: 625: 519: 441: 415: 375: 355: 305: 272: 237: 204: 184:in the proof of the 150:sequentially compact 123: 83: 50: 4687:Heine–Borel theorem 4666:preference relation 4604:Heine–Borel theorem 3534:. This proves that 2675:and an upper bound 762:{\displaystyle N=0} 39:, is a fundamental 4625: 4580: 4555: 4525: 4500: 4478: 4452: 4430: 4405: 4385: 4349: 4310: 4269: 4234: 4212: 4190: 4164: 4143: 4110: 4057: 4030: 4002: 3962: 3940: 3918: 3897: 3867: 3828: 3802: 3760: 3738: 3716: 3692:if every sequence 3677: 3630: 3620:that converges to 3610: 3577: 3544: 3524: 3491: 3471: 3438: 3405: 3378: 3358: 3331: 3311: 3288: 3263:accumulation point 3251: 3231: 3204: 3184: 3154: 3108: 3045: 2994: 2967: 2907: 2868: 2841: 2781: 2742: 2685: 2665: 2645: 2585: 2540: 2511: 2478: 2425: 2381: 2345: 2318: 2282: 2226: 2180: 2144: 2088: 2055: 2019: 1975: 1939: 1906: 1872:is a sequence for 1862: 1826: 1739: 1710: 1677: 1657: 1628: 1595: 1549: 1529: 1503: 1474: 1445: 1412: 1383: 1339: 1303: 1274: 1241: 1161: 1107: 1067: 1040: 1013: 959: 919: 892: 865: 838: 799: 759: 733: 713: 673: 644: 611: 505: 427: 401: 361: 320: 291: 252: 219: 138: 98: 65: 23:, specifically in 4796:Advanced Calculus 4769:Bartle, Robert G. 4597:subspace topology 4583:{\displaystyle A} 4528:{\displaystyle A} 4514:Thus the subsets 4503:{\displaystyle A} 4481:{\displaystyle x} 4455:{\displaystyle A} 4433:{\displaystyle A} 4408:{\displaystyle x} 4272:{\displaystyle A} 4237:{\displaystyle A} 4215:{\displaystyle A} 4193:{\displaystyle A} 4167:{\displaystyle A} 3965:{\displaystyle A} 3943:{\displaystyle A} 3921:{\displaystyle A} 3870:{\displaystyle A} 3831:{\displaystyle A} 3763:{\displaystyle A} 3741:{\displaystyle A} 3633:{\displaystyle x} 3547:{\displaystyle x} 3494:{\displaystyle U} 3381:{\displaystyle U} 3334:{\displaystyle x} 3314:{\displaystyle U} 3254:{\displaystyle x} 3207:{\displaystyle x} 2688:{\displaystyle S} 2668:{\displaystyle s} 2554:Alternative proof 1680:{\displaystyle I} 1552:{\displaystyle I} 736:{\displaystyle N} 364:{\displaystyle n} 4875: 4834: 4809: 4790: 4778: 4755: 4752: 4746: 4743: 4737: 4726: 4720: 4713: 4657:Pareto efficient 4641:metrizable space 4634: 4632: 4631: 4626: 4624: 4623: 4618: 4589: 4587: 4586: 4581: 4564: 4562: 4561: 4556: 4554: 4553: 4548: 4534: 4532: 4531: 4526: 4509: 4507: 4506: 4501: 4487: 4485: 4484: 4479: 4461: 4459: 4458: 4453: 4439: 4437: 4436: 4431: 4414: 4412: 4411: 4406: 4394: 4392: 4391: 4386: 4384: 4383: 4378: 4358: 4356: 4355: 4350: 4345: 4344: 4319: 4317: 4316: 4311: 4300: 4299: 4278: 4276: 4275: 4270: 4243: 4241: 4240: 4235: 4221: 4219: 4218: 4213: 4199: 4197: 4196: 4191: 4173: 4171: 4170: 4165: 4152: 4150: 4149: 4144: 4139: 4138: 4119: 4117: 4116: 4111: 4103: 4098: 4093: 4092: 4083: 4078: 4066: 4064: 4063: 4058: 4056: 4055: 4039: 4037: 4036: 4031: 4029: 4011: 4009: 4008: 4003: 3992: 3991: 3971: 3969: 3968: 3963: 3949: 3947: 3946: 3941: 3927: 3925: 3924: 3919: 3906: 3904: 3903: 3898: 3896: 3895: 3890: 3876: 3874: 3873: 3868: 3837: 3835: 3834: 3829: 3811: 3809: 3808: 3803: 3801: 3800: 3795: 3769: 3767: 3766: 3761: 3747: 3745: 3744: 3739: 3725: 3723: 3722: 3717: 3712: 3711: 3686: 3684: 3683: 3678: 3676: 3675: 3670: 3639: 3637: 3636: 3631: 3619: 3617: 3616: 3611: 3606: 3605: 3586: 3584: 3583: 3578: 3573: 3572: 3553: 3551: 3550: 3545: 3533: 3531: 3530: 3525: 3520: 3519: 3500: 3498: 3497: 3492: 3480: 3478: 3477: 3472: 3464: 3463: 3447: 3445: 3444: 3439: 3434: 3433: 3414: 3412: 3411: 3406: 3404: 3403: 3387: 3385: 3384: 3379: 3367: 3365: 3364: 3359: 3357: 3356: 3340: 3338: 3337: 3332: 3320: 3318: 3317: 3312: 3297: 3295: 3294: 3289: 3284: 3283: 3260: 3258: 3257: 3252: 3240: 3238: 3237: 3232: 3230: 3229: 3213: 3211: 3210: 3205: 3193: 3191: 3190: 3185: 3183: 3182: 3163: 3161: 3160: 3155: 3153: 3152: 3140: 3139: 3117: 3115: 3114: 3109: 3104: 3103: 3090: 3089: 3074: 3073: 3054: 3052: 3051: 3046: 3044: 3043: 3024:nested intervals 3013: 3003: 3001: 3000: 2995: 2993: 2992: 2976: 2974: 2973: 2968: 2966: 2965: 2964: 2948: 2947: 2926: 2916: 2914: 2913: 2908: 2906: 2905: 2887: 2877: 2875: 2874: 2869: 2867: 2866: 2850: 2848: 2847: 2842: 2840: 2839: 2838: 2822: 2821: 2800: 2790: 2788: 2787: 2782: 2780: 2779: 2761: 2751: 2749: 2748: 2743: 2723: 2722: 2704: 2694: 2692: 2691: 2686: 2674: 2672: 2671: 2666: 2654: 2652: 2651: 2646: 2644: 2643: 2642: 2626: 2625: 2604: 2594: 2592: 2591: 2586: 2581: 2580: 2560:nested intervals 2549: 2547: 2546: 2541: 2539: 2538: 2533: 2520: 2518: 2517: 2512: 2507: 2506: 2487: 2485: 2484: 2479: 2477: 2476: 2475: 2474: 2454: 2453: 2434: 2432: 2431: 2426: 2390: 2388: 2387: 2382: 2377: 2376: 2354: 2352: 2351: 2346: 2344: 2343: 2327: 2325: 2324: 2319: 2314: 2313: 2291: 2289: 2288: 2283: 2281: 2280: 2279: 2278: 2258: 2257: 2235: 2233: 2232: 2227: 2219: 2218: 2206: 2205: 2189: 2187: 2186: 2181: 2176: 2175: 2153: 2151: 2150: 2145: 2143: 2142: 2141: 2140: 2120: 2119: 2097: 2095: 2094: 2089: 2081: 2080: 2064: 2062: 2061: 2056: 2051: 2050: 2028: 2026: 2025: 2020: 1984: 1982: 1981: 1976: 1971: 1970: 1948: 1946: 1945: 1940: 1935: 1934: 1915: 1913: 1912: 1907: 1871: 1869: 1868: 1863: 1858: 1857: 1835: 1833: 1832: 1827: 1822: 1821: 1800: 1799: 1784: 1783: 1765: 1764: 1748: 1746: 1745: 1740: 1738: 1737: 1732: 1719: 1717: 1716: 1711: 1706: 1705: 1686: 1684: 1683: 1678: 1666: 1664: 1663: 1658: 1656: 1655: 1650: 1637: 1635: 1634: 1629: 1624: 1623: 1604: 1602: 1601: 1596: 1594: 1593: 1578: 1577: 1558: 1556: 1555: 1550: 1538: 1536: 1535: 1530: 1512: 1510: 1509: 1504: 1502: 1501: 1496: 1483: 1481: 1480: 1475: 1473: 1472: 1467: 1454: 1452: 1451: 1446: 1441: 1440: 1421: 1419: 1418: 1413: 1411: 1410: 1405: 1392: 1390: 1389: 1384: 1382: 1381: 1376: 1348: 1346: 1345: 1340: 1338: 1337: 1332: 1318:bounded sequence 1312: 1310: 1309: 1304: 1302: 1301: 1296: 1283: 1281: 1280: 1275: 1270: 1269: 1250: 1248: 1247: 1242: 1234: 1233: 1232: 1231: 1214: 1213: 1212: 1211: 1194: 1193: 1192: 1191: 1170: 1168: 1167: 1162: 1160: 1159: 1158: 1157: 1140: 1139: 1138: 1137: 1116: 1114: 1113: 1108: 1106: 1105: 1093: 1092: 1076: 1074: 1073: 1068: 1066: 1065: 1049: 1047: 1046: 1041: 1039: 1038: 1022: 1020: 1019: 1014: 1012: 1011: 1010: 1009: 992: 991: 990: 989: 968: 966: 965: 960: 958: 957: 945: 944: 928: 926: 925: 920: 918: 917: 901: 899: 898: 893: 891: 890: 874: 872: 871: 866: 864: 863: 847: 845: 844: 839: 825: 824: 808: 806: 805: 800: 795: 794: 793: 792: 768: 766: 765: 760: 742: 740: 739: 734: 722: 720: 719: 714: 709: 708: 707: 706: 682: 680: 679: 674: 672: 671: 666: 653: 651: 650: 645: 640: 639: 620: 618: 617: 612: 604: 603: 602: 601: 578: 577: 576: 575: 558: 557: 556: 555: 538: 537: 536: 535: 514: 512: 511: 506: 498: 497: 479: 478: 466: 465: 453: 452: 436: 434: 433: 428: 410: 408: 407: 402: 400: 399: 387: 386: 370: 368: 367: 362: 330:has an infinite 329: 327: 326: 321: 319: 318: 313: 300: 298: 297: 292: 287: 286: 261: 259: 258: 253: 251: 250: 245: 228: 226: 225: 220: 218: 217: 212: 178:Karl Weierstrass 147: 145: 144: 139: 137: 136: 131: 107: 105: 104: 99: 97: 96: 91: 77:bounded sequence 74: 72: 71: 66: 64: 63: 58: 37:Karl Weierstrass 4883: 4882: 4878: 4877: 4876: 4874: 4873: 4872: 4853: 4852: 4819: 4816: 4806: 4787: 4764: 4759: 4758: 4753: 4749: 4744: 4740: 4732:), p. 300 (for 4727: 4723: 4714: 4710: 4705: 4678: 4649: 4619: 4614: 4613: 4611: 4608: 4607: 4575: 4572: 4571: 4549: 4544: 4543: 4541: 4538: 4537: 4520: 4517: 4516: 4495: 4492: 4491: 4473: 4470: 4469: 4447: 4444: 4443: 4425: 4422: 4421: 4400: 4397: 4396: 4379: 4374: 4373: 4365: 4362: 4361: 4340: 4336: 4331: 4328: 4327: 4295: 4291: 4286: 4283: 4282: 4264: 4261: 4260: 4229: 4226: 4225: 4207: 4204: 4203: 4185: 4182: 4181: 4159: 4156: 4155: 4134: 4130: 4125: 4122: 4121: 4099: 4094: 4088: 4084: 4079: 4074: 4072: 4069: 4068: 4051: 4047: 4045: 4042: 4041: 4025: 4017: 4014: 4013: 3987: 3983: 3978: 3975: 3974: 3957: 3954: 3953: 3935: 3932: 3931: 3913: 3910: 3909: 3891: 3886: 3885: 3883: 3880: 3879: 3878:is a subset of 3862: 3859: 3858: 3823: 3820: 3819: 3817:if and only if 3796: 3791: 3790: 3782: 3779: 3778: 3755: 3752: 3751: 3733: 3730: 3729: 3707: 3703: 3698: 3695: 3694: 3671: 3666: 3665: 3657: 3654: 3653: 3646: 3625: 3622: 3621: 3601: 3597: 3592: 3589: 3588: 3568: 3564: 3559: 3556: 3555: 3539: 3536: 3535: 3515: 3511: 3506: 3503: 3502: 3486: 3483: 3482: 3459: 3455: 3453: 3450: 3449: 3429: 3425: 3420: 3417: 3416: 3399: 3395: 3393: 3390: 3389: 3373: 3370: 3369: 3352: 3348: 3346: 3343: 3342: 3326: 3323: 3322: 3306: 3303: 3302: 3279: 3275: 3270: 3267: 3266: 3246: 3243: 3242: 3225: 3221: 3219: 3216: 3215: 3199: 3196: 3195: 3178: 3174: 3172: 3169: 3168: 3148: 3144: 3135: 3131: 3129: 3126: 3125: 3099: 3095: 3085: 3081: 3069: 3065: 3063: 3060: 3059: 3039: 3035: 3033: 3030: 3029: 3017: 3014: 3005: 2988: 2984: 2982: 2979: 2978: 2960: 2953: 2949: 2943: 2939: 2934: 2931: 2930: 2927: 2918: 2901: 2897: 2895: 2892: 2891: 2888: 2879: 2862: 2858: 2856: 2853: 2852: 2834: 2827: 2823: 2817: 2813: 2808: 2805: 2804: 2801: 2792: 2775: 2771: 2769: 2766: 2765: 2762: 2753: 2718: 2714: 2712: 2709: 2708: 2705: 2696: 2680: 2677: 2676: 2660: 2657: 2656: 2638: 2631: 2627: 2621: 2617: 2612: 2609: 2608: 2605: 2576: 2572: 2567: 2564: 2563: 2556: 2534: 2529: 2528: 2526: 2523: 2522: 2502: 2498: 2493: 2490: 2489: 2470: 2466: 2459: 2455: 2449: 2445: 2440: 2437: 2436: 2396: 2393: 2392: 2369: 2365: 2360: 2357: 2356: 2339: 2335: 2333: 2330: 2329: 2306: 2302: 2297: 2294: 2293: 2274: 2270: 2263: 2259: 2250: 2246: 2241: 2238: 2237: 2214: 2210: 2201: 2197: 2195: 2192: 2191: 2168: 2164: 2159: 2156: 2155: 2136: 2132: 2125: 2121: 2112: 2108: 2103: 2100: 2099: 2076: 2072: 2070: 2067: 2066: 2043: 2039: 2034: 2031: 2030: 1990: 1987: 1986: 1963: 1959: 1954: 1951: 1950: 1930: 1926: 1921: 1918: 1917: 1877: 1874: 1873: 1850: 1846: 1841: 1838: 1837: 1814: 1810: 1792: 1788: 1776: 1772: 1760: 1756: 1754: 1751: 1750: 1733: 1728: 1727: 1725: 1722: 1721: 1701: 1697: 1692: 1689: 1688: 1687:. The sequence 1672: 1669: 1668: 1651: 1646: 1645: 1643: 1640: 1639: 1619: 1615: 1610: 1607: 1606: 1605:converges. Let 1583: 1579: 1573: 1569: 1564: 1561: 1560: 1544: 1541: 1540: 1518: 1515: 1514: 1497: 1492: 1491: 1489: 1486: 1485: 1468: 1463: 1462: 1460: 1457: 1456: 1436: 1432: 1427: 1424: 1423: 1406: 1401: 1400: 1398: 1395: 1394: 1377: 1372: 1371: 1369: 1366: 1365: 1333: 1328: 1327: 1325: 1322: 1321: 1297: 1292: 1291: 1289: 1286: 1285: 1265: 1261: 1256: 1253: 1252: 1227: 1223: 1222: 1218: 1207: 1203: 1202: 1198: 1187: 1183: 1182: 1178: 1176: 1173: 1172: 1153: 1149: 1148: 1144: 1133: 1129: 1128: 1124: 1122: 1119: 1118: 1101: 1097: 1088: 1084: 1082: 1079: 1078: 1061: 1057: 1055: 1052: 1051: 1034: 1030: 1028: 1025: 1024: 1005: 1001: 1000: 996: 985: 981: 980: 976: 974: 971: 970: 953: 949: 940: 936: 934: 931: 930: 913: 909: 907: 904: 903: 886: 882: 880: 877: 876: 859: 855: 853: 850: 849: 820: 816: 814: 811: 810: 788: 784: 783: 779: 774: 771: 770: 748: 745: 744: 728: 725: 724: 702: 698: 697: 693: 688: 685: 684: 667: 662: 661: 659: 656: 655: 635: 631: 626: 623: 622: 597: 593: 592: 588: 571: 567: 566: 562: 551: 547: 546: 542: 531: 527: 526: 522: 520: 517: 516: 493: 489: 474: 470: 461: 457: 448: 444: 442: 439: 438: 416: 413: 412: 395: 391: 382: 378: 376: 373: 372: 356: 353: 352: 314: 309: 308: 306: 303: 302: 282: 278: 273: 270: 269: 246: 241: 240: 238: 235: 234: 213: 208: 207: 205: 202: 201: 198: 174:Bernard Bolzano 170: 132: 127: 126: 124: 121: 120: 92: 87: 86: 84: 81: 80: 59: 54: 53: 51: 48: 47: 45:Euclidean space 33:Bernard Bolzano 17: 12: 11: 5: 4881: 4871: 4870: 4865: 4851: 4850: 4845: 4840: 4835: 4815: 4814:External links 4812: 4811: 4810: 4804: 4791: 4785: 4763: 4760: 4757: 4756: 4747: 4738: 4721: 4707: 4706: 4704: 4701: 4700: 4699: 4694: 4689: 4684: 4677: 4674: 4648: 4645: 4622: 4617: 4579: 4552: 4547: 4524: 4499: 4477: 4451: 4429: 4404: 4382: 4377: 4372: 4369: 4348: 4343: 4339: 4335: 4309: 4306: 4303: 4298: 4294: 4290: 4268: 4233: 4211: 4189: 4163: 4142: 4137: 4133: 4129: 4109: 4106: 4102: 4097: 4091: 4087: 4082: 4077: 4054: 4050: 4028: 4024: 4021: 4001: 3998: 3995: 3990: 3986: 3982: 3961: 3939: 3917: 3894: 3889: 3866: 3827: 3799: 3794: 3789: 3786: 3759: 3737: 3715: 3710: 3706: 3702: 3674: 3669: 3664: 3661: 3645: 3642: 3629: 3609: 3604: 3600: 3596: 3576: 3571: 3567: 3563: 3543: 3523: 3518: 3514: 3510: 3490: 3470: 3467: 3462: 3458: 3437: 3432: 3428: 3424: 3402: 3398: 3377: 3355: 3351: 3330: 3310: 3287: 3282: 3278: 3274: 3250: 3228: 3224: 3203: 3181: 3177: 3165: 3164: 3151: 3147: 3143: 3138: 3134: 3119: 3118: 3107: 3102: 3098: 3093: 3088: 3084: 3080: 3077: 3072: 3068: 3042: 3038: 3019: 3018: 3015: 3008: 3006: 2991: 2987: 2963: 2959: 2956: 2952: 2946: 2942: 2938: 2928: 2921: 2919: 2904: 2900: 2890:Then we split 2889: 2882: 2880: 2865: 2861: 2837: 2833: 2830: 2826: 2820: 2816: 2812: 2802: 2795: 2793: 2778: 2774: 2764:Then we split 2763: 2756: 2754: 2741: 2738: 2735: 2732: 2729: 2726: 2721: 2717: 2706: 2699: 2697: 2684: 2664: 2641: 2637: 2634: 2630: 2624: 2620: 2616: 2606: 2599: 2584: 2579: 2575: 2571: 2555: 2552: 2537: 2532: 2510: 2505: 2501: 2497: 2473: 2469: 2465: 2462: 2458: 2452: 2448: 2444: 2424: 2421: 2418: 2415: 2412: 2409: 2406: 2403: 2400: 2391:converges for 2380: 2375: 2372: 2368: 2364: 2342: 2338: 2317: 2312: 2309: 2305: 2301: 2277: 2273: 2269: 2266: 2262: 2256: 2253: 2249: 2245: 2225: 2222: 2217: 2213: 2209: 2204: 2200: 2179: 2174: 2171: 2167: 2163: 2139: 2135: 2131: 2128: 2124: 2118: 2115: 2111: 2107: 2087: 2084: 2079: 2075: 2054: 2049: 2046: 2042: 2038: 2018: 2015: 2012: 2009: 2006: 2003: 2000: 1997: 1994: 1974: 1969: 1966: 1962: 1958: 1938: 1933: 1929: 1925: 1905: 1902: 1899: 1896: 1893: 1890: 1887: 1884: 1881: 1861: 1856: 1853: 1849: 1845: 1825: 1820: 1817: 1813: 1809: 1806: 1803: 1798: 1795: 1791: 1787: 1782: 1779: 1775: 1771: 1768: 1763: 1759: 1736: 1731: 1709: 1704: 1700: 1696: 1676: 1654: 1649: 1627: 1622: 1618: 1614: 1592: 1589: 1586: 1582: 1576: 1572: 1568: 1548: 1528: 1525: 1522: 1500: 1495: 1471: 1466: 1444: 1439: 1435: 1431: 1409: 1404: 1380: 1375: 1336: 1331: 1300: 1295: 1273: 1268: 1264: 1260: 1240: 1237: 1230: 1226: 1221: 1217: 1210: 1206: 1201: 1197: 1190: 1186: 1181: 1156: 1152: 1147: 1143: 1136: 1132: 1127: 1104: 1100: 1096: 1091: 1087: 1064: 1060: 1037: 1033: 1008: 1004: 999: 995: 988: 984: 979: 956: 952: 948: 943: 939: 916: 912: 889: 885: 862: 858: 837: 834: 831: 828: 823: 819: 798: 791: 787: 782: 778: 758: 755: 752: 732: 712: 705: 701: 696: 692: 670: 665: 643: 638: 634: 630: 610: 607: 600: 596: 591: 587: 584: 581: 574: 570: 565: 561: 554: 550: 545: 541: 534: 530: 525: 504: 501: 496: 492: 488: 485: 482: 477: 473: 469: 464: 460: 456: 451: 447: 426: 423: 420: 398: 394: 390: 385: 381: 360: 343:non-increasing 339:non-decreasing 317: 312: 290: 285: 281: 277: 249: 244: 216: 211: 197: 194: 169: 166: 135: 130: 95: 90: 62: 57: 31:, named after 15: 9: 6: 4: 3: 2: 4880: 4869: 4866: 4864: 4861: 4860: 4858: 4849: 4846: 4844: 4841: 4839: 4836: 4832: 4828: 4827: 4822: 4818: 4817: 4807: 4805:0-534-37603-7 4801: 4797: 4792: 4788: 4786:9780471321484 4782: 4777: 4776: 4770: 4766: 4765: 4751: 4742: 4735: 4731: 4725: 4718: 4712: 4708: 4698: 4695: 4693: 4690: 4688: 4685: 4683: 4680: 4679: 4673: 4671: 4667: 4662: 4658: 4654: 4644: 4642: 4638: 4620: 4605: 4600: 4598: 4594: 4590: 4577: 4568: 4550: 4535: 4522: 4512: 4510: 4497: 4488: 4475: 4466: 4462: 4449: 4440: 4427: 4418: 4402: 4380: 4370: 4367: 4359: 4341: 4337: 4324: 4320: 4307: 4304: 4296: 4292: 4279: 4266: 4256: 4254: 4250: 4246: 4245: 4231: 4222: 4209: 4200: 4187: 4178: 4174: 4161: 4135: 4131: 4107: 4104: 4089: 4085: 4052: 4048: 4022: 4019: 3999: 3996: 3988: 3984: 3972: 3959: 3950: 3937: 3928: 3915: 3892: 3877: 3864: 3854: 3852: 3848: 3844: 3843:and bounded. 3842: 3838: 3825: 3816: 3812: 3797: 3787: 3784: 3776: 3772: 3770: 3757: 3748: 3735: 3726: 3708: 3704: 3691: 3687: 3672: 3662: 3659: 3650: 3641: 3627: 3602: 3598: 3569: 3565: 3541: 3516: 3512: 3488: 3468: 3465: 3460: 3456: 3430: 3426: 3400: 3396: 3375: 3353: 3349: 3328: 3308: 3299: 3280: 3276: 3264: 3248: 3226: 3222: 3201: 3179: 3175: 3149: 3145: 3141: 3136: 3132: 3124: 3123: 3122: 3100: 3096: 3091: 3086: 3082: 3075: 3070: 3066: 3058: 3057: 3056: 3040: 3036: 3027: 3025: 3012: 3007: 2989: 2985: 2957: 2954: 2944: 2940: 2925: 2920: 2902: 2898: 2886: 2881: 2863: 2859: 2831: 2828: 2818: 2814: 2799: 2794: 2776: 2772: 2760: 2755: 2736: 2733: 2730: 2724: 2719: 2715: 2703: 2698: 2682: 2662: 2635: 2632: 2622: 2618: 2603: 2598: 2597: 2596: 2577: 2573: 2561: 2551: 2535: 2503: 2499: 2471: 2467: 2463: 2460: 2450: 2446: 2422: 2419: 2416: 2413: 2410: 2407: 2404: 2401: 2398: 2373: 2370: 2366: 2340: 2336: 2310: 2307: 2303: 2275: 2271: 2267: 2264: 2254: 2251: 2247: 2223: 2220: 2215: 2211: 2207: 2202: 2198: 2172: 2169: 2165: 2137: 2133: 2129: 2126: 2116: 2113: 2109: 2085: 2082: 2077: 2073: 2047: 2044: 2040: 2016: 2013: 2010: 2007: 2004: 2001: 1998: 1995: 1992: 1967: 1964: 1960: 1931: 1927: 1903: 1900: 1897: 1894: 1891: 1888: 1885: 1882: 1879: 1854: 1851: 1847: 1818: 1815: 1811: 1807: 1804: 1801: 1796: 1793: 1789: 1785: 1780: 1777: 1773: 1766: 1761: 1757: 1734: 1702: 1698: 1674: 1652: 1620: 1616: 1590: 1587: 1584: 1574: 1570: 1546: 1526: 1523: 1520: 1498: 1469: 1437: 1433: 1407: 1378: 1363: 1358: 1356: 1352: 1334: 1319: 1314: 1298: 1266: 1262: 1238: 1235: 1228: 1224: 1219: 1215: 1208: 1204: 1199: 1195: 1188: 1184: 1179: 1154: 1150: 1145: 1141: 1134: 1130: 1125: 1102: 1098: 1094: 1089: 1085: 1062: 1058: 1035: 1031: 1006: 1002: 997: 993: 986: 982: 977: 954: 950: 946: 941: 937: 914: 910: 887: 883: 860: 856: 835: 832: 829: 826: 821: 817: 789: 785: 780: 756: 753: 750: 730: 703: 699: 694: 668: 636: 632: 608: 605: 598: 594: 589: 585: 582: 579: 572: 568: 563: 559: 552: 548: 543: 539: 532: 528: 523: 502: 499: 494: 490: 486: 483: 480: 475: 471: 467: 462: 458: 454: 449: 445: 424: 421: 418: 396: 392: 388: 383: 379: 358: 350: 346: 344: 340: 336: 333: 315: 283: 279: 267: 263: 247: 232: 214: 193: 191: 187: 183: 179: 175: 165: 163: 159: 155: 151: 133: 118: 114: 111: 93: 78: 60: 46: 42: 38: 34: 30: 26: 25:real analysis 22: 4824: 4795: 4774: 4750: 4741: 4733: 4729: 4724: 4716: 4711: 4650: 4601: 4570: 4566: 4515: 4513: 4490: 4468: 4442: 4420: 4326: 4281: 4259: 4257: 4248: 4247: 4224: 4202: 4180: 4154: 3952: 3930: 3908: 3857: 3855: 3846: 3845: 3818: 3777: 3774: 3773: 3750: 3728: 3693: 3652: 3648: 3647: 3300: 3166: 3120: 3022: 3020: 2557: 1949:is bounded, 1362:general case 1359: 1351:there exists 1315: 348: 347: 265: 264: 231:real numbers 229:(set of all 199: 171: 161: 28: 18: 4653:equilibrium 4417:limit point 4177:limit point 3649:Definition: 335:subsequence 113:subsequence 21:mathematics 4857:Categories 4762:References 4465:closed set 3388:. Because 2355:for which 2236:such that 2098:such that 1749:such that 809:be set to 411:for every 110:convergent 4831:EMS Press 4670:non-empty 4371:∈ 4305:∈ 4105:≥ 4040:, define 4023:∈ 3997:∈ 3788:⊆ 3663:⊆ 3466:⊆ 3142:≤ 2958:∈ 2832:∈ 2636:∈ 2464:∈ 2435:. Hence, 2417:… 2268:∈ 2221:⊆ 2208:⊆ 2130:∈ 2083:⊆ 2011:… 1898:… 1805:… 1588:∈ 1524:⊆ 1239:… 1236:≤ 1216:≤ 1196:≤ 1142:≤ 1023:. Again, 609:… 606:≥ 586:≥ 583:⋯ 580:≥ 560:≥ 540:≥ 503:… 484:⋯ 389:≤ 4676:See also 4395:. Since 3856:Suppose 3775:Theorem: 2707:We take 2607:Because 1916:. Since 848:. Then 332:monotone 190:analysis 4833:, 2001 4637:compact 4595:in the 3951:. Then 3481:, also 3026:theorem 158:bounded 4802:  4783:  4661:matrix 4258:Since 4249:Proof: 3847:Proof: 3841:closed 3651:A set 3261:is an 1836:where 1539:where 1077:where 154:closed 117:subset 108:has a 27:, the 4703:Notes 4463:is a 4415:is a 3121:with 1117:with 929:with 349:Proof 266:Lemma 196:Proof 182:lemma 4800:ISBN 4781:ISBN 4441:and 3448:and 1455:(in 1360:The 1095:< 994:< 969:and 947:< 500:< 487:< 481:< 468:< 455:< 422:> 176:and 156:and 35:and 4635:is 4536:of 4419:of 4179:of 3839:is 3813:is 3727:in 3688:is 3321:of 3265:of 1484:or 1320:in 1284:in 654:in 345:). 341:or 301:in 148:is 119:of 79:in 19:In 4859:: 4829:, 4823:, 4736:). 4719:). 4511:. 4467:, 4325:, 4255:) 3771:. 3640:. 3298:. 2595:: 192:. 164:. 4808:. 4789:. 4734:R 4730:R 4717:R 4621:n 4616:R 4578:A 4567:A 4551:n 4546:R 4523:A 4498:A 4476:x 4450:A 4428:A 4403:x 4381:n 4376:R 4368:x 4347:} 4342:n 4338:x 4334:{ 4308:A 4302:} 4297:n 4293:x 4289:{ 4267:A 4244:. 4232:A 4210:A 4188:A 4162:A 4141:} 4136:n 4132:x 4128:{ 4108:n 4101:| 4096:| 4090:n 4086:x 4081:| 4076:| 4053:n 4049:x 4027:N 4020:n 4000:A 3994:} 3989:n 3985:x 3981:{ 3960:A 3938:A 3916:A 3893:n 3888:R 3865:A 3849:( 3826:A 3798:n 3793:R 3785:A 3758:A 3736:A 3714:} 3709:n 3705:x 3701:{ 3673:n 3668:R 3660:A 3628:x 3608:) 3603:n 3599:x 3595:( 3575:) 3570:n 3566:x 3562:( 3542:x 3522:) 3517:n 3513:x 3509:( 3489:U 3469:U 3461:N 3457:I 3436:) 3431:n 3427:x 3423:( 3401:N 3397:I 3376:U 3354:N 3350:I 3329:x 3309:U 3286:) 3281:n 3277:x 3273:( 3249:x 3227:n 3223:I 3202:x 3180:n 3176:I 3150:n 3146:b 3137:n 3133:a 3106:] 3101:n 3097:b 3092:, 3087:n 3083:a 3079:[ 3076:= 3071:n 3067:I 3041:n 3037:I 2990:3 2986:I 2962:N 2955:n 2951:) 2945:n 2941:x 2937:( 2903:2 2899:I 2864:2 2860:I 2836:N 2829:n 2825:) 2819:n 2815:x 2811:( 2777:1 2773:I 2740:] 2737:S 2734:, 2731:s 2728:[ 2725:= 2720:1 2716:I 2695:. 2683:S 2663:s 2640:N 2633:n 2629:) 2623:n 2619:x 2615:( 2583:) 2578:n 2574:x 2570:( 2536:n 2531:R 2509:) 2504:n 2500:x 2496:( 2472:n 2468:K 2461:n 2457:) 2451:n 2447:x 2443:( 2423:n 2420:, 2414:, 2411:2 2408:, 2405:1 2402:= 2399:j 2379:) 2374:j 2371:n 2367:x 2363:( 2341:n 2337:K 2316:) 2311:2 2308:n 2304:x 2300:( 2276:2 2272:K 2265:n 2261:) 2255:2 2252:n 2248:x 2244:( 2224:I 2216:1 2212:K 2203:2 2199:K 2178:) 2173:2 2170:n 2166:x 2162:( 2138:1 2134:K 2127:n 2123:) 2117:1 2114:n 2110:x 2106:( 2086:I 2078:1 2074:K 2053:) 2048:1 2045:n 2041:x 2037:( 2017:n 2014:, 2008:, 2005:2 2002:, 1999:1 1996:= 1993:j 1973:) 1968:j 1965:n 1961:x 1957:( 1937:) 1932:n 1928:x 1924:( 1904:n 1901:, 1895:, 1892:2 1889:, 1886:1 1883:= 1880:j 1860:) 1855:j 1852:n 1848:x 1844:( 1824:) 1819:n 1816:n 1812:x 1808:, 1802:, 1797:2 1794:n 1790:x 1786:, 1781:1 1778:n 1774:x 1770:( 1767:= 1762:n 1758:x 1735:1 1730:R 1708:) 1703:n 1699:x 1695:( 1675:I 1653:n 1648:R 1626:) 1621:n 1617:x 1613:( 1591:K 1585:n 1581:) 1575:n 1571:x 1567:( 1547:I 1527:I 1521:K 1499:n 1494:R 1470:1 1465:R 1443:) 1438:n 1434:x 1430:( 1408:1 1403:R 1379:n 1374:R 1364:( 1335:1 1330:R 1299:1 1294:R 1272:) 1267:n 1263:x 1259:( 1229:3 1225:n 1220:x 1209:2 1205:n 1200:x 1189:1 1185:n 1180:x 1155:3 1151:n 1146:x 1135:2 1131:n 1126:x 1103:3 1099:n 1090:2 1086:n 1063:3 1059:n 1036:2 1032:n 1007:2 1003:n 998:x 987:1 983:n 978:x 955:2 951:n 942:1 938:n 915:2 911:n 888:1 884:n 861:1 857:n 836:1 833:+ 830:N 827:= 822:1 818:n 797:) 790:j 786:n 781:x 777:( 757:0 754:= 751:N 731:N 711:) 704:j 700:n 695:x 691:( 669:1 664:R 642:) 637:n 633:x 629:( 599:j 595:n 590:x 573:3 569:n 564:x 553:2 549:n 544:x 533:1 529:n 524:x 495:j 491:n 476:3 472:n 463:2 459:n 450:1 446:n 425:n 419:m 397:n 393:x 384:m 380:x 359:n 316:1 311:R 289:) 284:n 280:x 276:( 248:1 243:R 215:1 210:R 134:n 129:R 94:n 89:R 61:n 56:R

Index

mathematics
real analysis
Bernard Bolzano
Karl Weierstrass
result about convergence
Euclidean space
bounded sequence
convergent
subsequence
subset
sequentially compact
closed
bounded
Bernard Bolzano
Karl Weierstrass
lemma
intermediate value theorem
analysis
real numbers
monotone
subsequence
non-decreasing
non-increasing
bounded sequence
there exists
monotone convergence theorem
general case
nested intervals
Because '"`UNIQ--postMath-00000042-QINU`"' is bounded, this sequence has a lower bound '"`UNIQ--postMath-00000043-QINU`"' and an upper bound '"`UNIQ--postMath-00000044-QINU`"'.
We take '"`UNIQ--postMath-00000045-QINU`"' as the first interval for the sequence of nested intervals.

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.