Knowledge

Completeness of the real numbers

Source 📝

1231:
states that every continuous function that attains both negative and positive values has a root. This is a consequence of the least upper bound property, but it can also be used to prove the least upper bound property if treated as an axiom. (The definition of continuity does not depend on any form
1179:
where the law of the excluded middle does not hold, the full form of the least upper bound property fails for the Dedekind reals, while the open induction property remains true in most models (following from Brouwer's bar theorem) and is strong enough to give short proofs of key theorems.
112:. Different versions of this axiom are all equivalent in the sense that any ordered field that satisfies one form of completeness satisfies all of them, apart from Cauchy completeness and nested intervals theorem, which are strictly weaker in that there are 1198:
by Körner) states that every nondecreasing, bounded sequence of real numbers converges. This can be viewed as a special case of the least upper bound property, but it can also be used fairly directly to prove the Cauchy completeness of the real numbers.
998:
Nested intervals theorem shares the same logical status as Cauchy completeness in this spectrum of expressions of completeness. In other words, nested intervals theorem by itself is weaker than other forms of completeness, although taken together with
603:. If one were to repeat the construction of real numbers with Dedekind cuts (i.e., "close" the set of real numbers by adding all possible Dedekind cuts), one would obtain no additional numbers because the real numbers are already Dedekind complete. 688: 832: 986: 556: 481: 1175:
The open induction principle can be shown to be equivalent to Dedekind completeness for arbitrary ordered sets under the order topology, using proofs by contradiction. In weaker foundations such as in
708:
Cauchy completeness is related to the construction of the real numbers using Cauchy sequences. Essentially, this method defines a real number to be the limit of a Cauchy sequence of rational numbers.
226: 991:
is a nested sequence of closed intervals in the rational numbers whose intersection is empty. (In the real numbers, the intersection of these intervals contains the number
396:
of the real numbers is generated by a real number. In a synthetic approach to the real numbers, this is the version of completeness that is most often included as an axiom.
601: 1170: 1137: 1099: 1516: 705:. Though this is a Cauchy sequence of rational numbers, it does not converge to any rational number. (In this real number line, this sequence converges to pi.) 1232:
of completeness, so there is no circularity: what is meant is that the intermediate value theorem and the least upper bound property are equivalent statements.)
1029: 1061: 1190: 638: 572: 772: 891: 487: 412: 101: 1561: 1466: 1435: 169: 119:
that are ordered and Cauchy complete. When the real numbers are instead constructed using a model, completeness becomes a
1427: 1320: 1412: 1393: 1370: 1351: 1328: 1305: 1273: 881:
does not satisfy the nested interval theorem. For example, the sequence (whose terms are derived from the digits of
1511: 730:, Cauchy completeness is weaker than the other forms of completeness on this page. But Cauchy completeness and the 57: 1209: 113: 1241: 33:
that, intuitively, implies that there are no "gaps" (in Dedekind's terminology) or "missing points" in the
370: 1459: 1227: 132: 49:, completeness is equivalent to the statement that any infinite string of decimal digits is actually a 1521: 1501: 1293: 862: 1104: 1261: 582: 575:
based on the idea of using Dedekind cuts of rational numbers to name real numbers; e.g. the cut
763: 50: 1587: 1551: 1452: 1176: 720: 712: 384: 366: 85: 163:
does not have the least upper bound property. An example is the subset of rational numbers
1546: 1066: 1000: 731: 619: 116: 20: 8: 1491: 73: 1340: 1014: 1034: 1531: 1431: 1408: 1389: 1382: 1366: 1347: 1324: 1301: 1269: 1217:. Again, this theorem is equivalent to the other forms of completeness given above. 150: 42: 1388:. Walter Rudin Student Series in Advanced Mathematics (3rd ed.). McGraw-Hill. 743: 632:
is not Cauchy complete. An example is the following sequence of rational numbers:
1541: 878: 626: 615: 400: 157: 38: 1526: 1581: 1536: 727: 715:, Cauchy completeness can be generalized to a notion of completeness for any 683:{\displaystyle 3,\quad 3.1,\quad 3.14,\quad 3.142,\quad 3.1416,\quad \ldots } 105: 568:
does not have a minimum, so this cut is not generated by a rational number.
231:
This set has an upper bound. However, this set has no least upper bound in
1266:
A companion to analysis: a second first and first second course in analysis
716: 393: 30: 827:{\displaystyle I_{1}\;\supset \;I_{2}\;\supset \;I_{3}\;\supset \;\cdots } 1475: 1214: 146: 97: 1566: 1496: 981:{\displaystyle \;\supset \;\;\supset \;\;\supset \;\;\supset \;\cdots } 1556: 551:{\displaystyle R=\{x\in \mathbb {Q} \mid x^{2}\geq 2\wedge x>0\}.} 34: 1337: 1213:
states that every bounded sequence of real numbers has a convergent
365:
The least upper bound property can be generalized to the setting of
1486: 476:{\displaystyle L=\{x\in \mathbb {Q} \mid x^{2}\leq 2\vee x<0\}.} 142: 1365:. Undergraduate Texts in Mathematics. New York: Springer Verlag. 1011:
The open induction principle states that a non-empty open subset
120: 69: 46: 1402: 766:, and suppose that these intervals are nested in the sense that 1444: 61: 237:: the least upper bound as a subset of the reals would be 406:
is not Dedekind complete. An example is the Dedekind cut
992: 882: 702: 352:, etc., such that we never find a least-upper-bound of 221:{\displaystyle S=\{x\in \mathbb {Q} \mid x^{2}<2\}.} 41:, whose corresponding number line has a "gap" at each 1140: 1107: 1069: 1037: 1017: 894: 775: 641: 585: 490: 415: 337:. We can proceed similarly to find an upper bound of 172: 1346:(3rd ed.). New York City: John Wiley and Sons. 1292: 314:. However, we can choose a smaller upper bound, say 1381: 1339: 1164: 1131: 1093: 1055: 1023: 980: 826: 682: 595: 550: 475: 220: 1220: 1063:must be equal to the entire interval, if for any 392:Dedekind completeness is the property that every 1579: 76:forms of completeness, the most prominent being 1421: 1360: 1338:Bartle, Robert G.; Sherbert, Donald R. (2000). 1314: 1183: 1006: 1202: 861:. The nested interval theorem states that the 72:proven from the construction. There are many 1460: 1379: 734:taken together are equivalent to the others. 325:for the same reasons, but it is smaller than 126: 542: 497: 467: 422: 387:for more general concepts bearing this name. 212: 179: 1403:Dangello, Frank; Seyfried, Michael (1999). 737: 60:used, completeness may take the form of an 1467: 1453: 974: 970: 954: 950: 934: 930: 914: 910: 820: 816: 805: 801: 790: 786: 153:(or supremum) in the set of real numbers. 1254: 507: 432: 189: 376: 91: 1580: 1317:Mathematical Analysis: An Introduction 1260: 752:is another form of completeness. Let 606: 1448: 1517:Decidability of first-order theories 1424:A Radical Approach to Real Analysis 1384:Principles of Mathematical Analysis 13: 1323:. New York City: Springer Verlag. 1321:Undergraduate Texts in Mathematics 1286: 1003:, it is equivalent to the others. 14: 1599: 321:; this is also an upper bound of 145:subset of real numbers having an 1474: 573:construction of the real numbers 58:construction of the real numbers 697:th term in the sequence is the 676: 669: 662: 655: 648: 291:is certainly an upper bound of 257:, there is another upper bound 149:(or bounded above) must have a 108:satisfying some version of the 1221:The intermediate value theorem 1153: 1141: 1132:{\displaystyle [a,r)\subset S} 1120: 1108: 1088: 1076: 1050: 1038: 967: 955: 947: 935: 927: 915: 907: 895: 333:is not a least-upper-bound of 86:completeness as a metric space 1: 1342:Introduction to Real Analysis 1247: 1196:fundamental axiom of analysis 701:th decimal approximation for 1242:List of real analysis topics 1191:monotone convergence theorem 1184:Monotone convergence theorem 1007:The open induction principle 874:contains exactly one point. 614:is the statement that every 564:does not have a maximum and 7: 1298:Principles of real analysis 1296:; Burkinshaw, Owen (1998). 1235: 1210:Bolzano–Weierstrass theorem 1203:Bolzano–Weierstrass theorem 596:{\displaystyle {\sqrt {2}}} 579:described above would name 371:completeness (order theory) 241:, but it does not exist in 123:or collection of theorems. 37:. This contrasts with the 10: 1604: 1405:Introductory Real Analysis 1300:(3rd ed.). Academic. 1294:Aliprantis, Charalambos D. 1228:intermediate value theorem 741: 139:least-upper-bound property 133:Least-upper-bound property 130: 127:Least upper bound property 18: 1522:Extended real number line 1482: 1165:{\displaystyle \subset S} 306:; that is, no element of 1422:Bressoud, David (2007). 1361:Abbott, Stephen (2001). 1315:Browder, Andrew (1996). 865:of all of the intervals 762:be a sequence of closed 738:Nested intervals theorem 19:Not to be confused with 750:nested interval theorem 1380:Rudin, Walter (1976). 1363:Understanding Analysis 1262:Körner, Thomas William 1166: 1133: 1095: 1057: 1025: 982: 885:in the suggested way) 837:Moreover, assume that 828: 684: 597: 552: 477: 367:partially ordered sets 247:. For any upper bound 222: 53:for some real number. 51:decimal representation 16:Concept in mathematics 1562:Tarski axiomatization 1552:Real coordinate space 1502:Cantor–Dedekind axiom 1177:constructive analysis 1167: 1134: 1096: 1094:{\displaystyle r\in } 1058: 1026: 983: 829: 721:complete metric space 713:mathematical analysis 685: 598: 553: 478: 385:Dedekind completeness 377:Dedekind completeness 341:that is smaller than 223: 102:defined synthetically 92:Forms of completeness 78:Dedekind completeness 47:decimal number system 29:is a property of the 1547:Rational zeta series 1138: 1105: 1067: 1035: 1015: 1001:Archimedean property 892: 879:rational number line 773: 732:Archimedean property 639: 627:rational number line 583: 488: 413: 401:rational number line 170: 158:rational number line 21:Completeness (logic) 1492:Absolute difference 612:Cauchy completeness 607:Cauchy completeness 280:For instance, take 82:Cauchy completeness 1194:(described as the 1162: 1129: 1091: 1053: 1021: 978: 824: 680: 622:to a real number. 593: 548: 473: 218: 141:states that every 117:Archimedean fields 110:completeness axiom 66:completeness axiom 1575: 1574: 1532:Irrational number 1437:978-0-88385-747-2 1024:{\displaystyle S} 591: 151:least upper bound 56:Depending on the 1595: 1469: 1462: 1455: 1446: 1445: 1441: 1418: 1399: 1387: 1376: 1357: 1345: 1334: 1311: 1280: 1279: 1258: 1171: 1169: 1168: 1163: 1136: 1135: 1130: 1100: 1098: 1097: 1092: 1062: 1060: 1059: 1056:{\displaystyle } 1054: 1031:of the interval 1030: 1028: 1027: 1022: 987: 985: 984: 979: 873: 860: 853: 833: 831: 830: 825: 815: 814: 800: 799: 785: 784: 761: 744:Nested intervals 689: 687: 686: 681: 618:of real numbers 602: 600: 599: 594: 592: 587: 557: 555: 554: 549: 523: 522: 510: 482: 480: 479: 474: 448: 447: 435: 361: 355: 351: 344: 340: 336: 332: 328: 324: 320: 313: 309: 305: 299:is positive and 298: 294: 290: 286: 276: 266: 256: 246: 240: 236: 227: 225: 224: 219: 205: 204: 192: 39:rational numbers 35:real number line 1603: 1602: 1598: 1597: 1596: 1594: 1593: 1592: 1578: 1577: 1576: 1571: 1542:Rational number 1478: 1473: 1438: 1415: 1407:. Brooks Cole. 1396: 1373: 1354: 1331: 1308: 1289: 1287:Further reading 1284: 1283: 1276: 1268:. AMS Chelsea. 1259: 1255: 1250: 1238: 1223: 1205: 1186: 1139: 1106: 1103: 1102: 1101:, we have that 1068: 1065: 1064: 1036: 1033: 1032: 1016: 1013: 1012: 1009: 893: 890: 889: 871: 866: 855: 850: 843: 838: 810: 806: 795: 791: 780: 776: 774: 771: 770: 758: 753: 746: 740: 640: 637: 636: 616:Cauchy sequence 609: 586: 584: 581: 580: 518: 514: 506: 489: 486: 485: 443: 439: 431: 414: 411: 410: 379: 357: 353: 346: 342: 338: 334: 330: 326: 322: 315: 311: 310:is larger than 307: 300: 296: 292: 288: 281: 268: 258: 248: 242: 238: 232: 200: 196: 188: 171: 168: 167: 135: 129: 94: 68:), or may be a 45:value. In the 24: 17: 12: 11: 5: 1601: 1591: 1590: 1573: 1572: 1570: 1569: 1564: 1559: 1554: 1549: 1544: 1539: 1534: 1529: 1527:Gregory number 1524: 1519: 1514: 1509: 1504: 1499: 1494: 1489: 1483: 1480: 1479: 1472: 1471: 1464: 1457: 1449: 1443: 1442: 1436: 1419: 1413: 1400: 1394: 1377: 1371: 1358: 1352: 1335: 1329: 1312: 1306: 1288: 1285: 1282: 1281: 1274: 1252: 1251: 1249: 1246: 1245: 1244: 1237: 1234: 1222: 1219: 1204: 1201: 1185: 1182: 1161: 1158: 1155: 1152: 1149: 1146: 1143: 1128: 1125: 1122: 1119: 1116: 1113: 1110: 1090: 1087: 1084: 1081: 1078: 1075: 1072: 1052: 1049: 1046: 1043: 1040: 1020: 1008: 1005: 989: 988: 977: 973: 969: 966: 963: 960: 957: 953: 949: 946: 943: 940: 937: 933: 929: 926: 923: 920: 917: 913: 909: 906: 903: 900: 897: 869: 848: 841: 835: 834: 823: 819: 813: 809: 804: 798: 794: 789: 783: 779: 756: 742:Main article: 739: 736: 691: 690: 679: 675: 672: 668: 665: 661: 658: 654: 651: 647: 644: 608: 605: 590: 559: 558: 547: 544: 541: 538: 535: 532: 529: 526: 521: 517: 513: 509: 505: 502: 499: 496: 493: 483: 472: 469: 466: 463: 460: 457: 454: 451: 446: 442: 438: 434: 430: 427: 424: 421: 418: 390: 389: 378: 375: 229: 228: 217: 214: 211: 208: 203: 199: 195: 191: 187: 184: 181: 178: 175: 131:Main article: 128: 125: 93: 90: 15: 9: 6: 4: 3: 2: 1600: 1589: 1586: 1585: 1583: 1568: 1565: 1563: 1560: 1558: 1555: 1553: 1550: 1548: 1545: 1543: 1540: 1538: 1537:Normal number 1535: 1533: 1530: 1528: 1525: 1523: 1520: 1518: 1515: 1513: 1510: 1508: 1505: 1503: 1500: 1498: 1495: 1493: 1490: 1488: 1485: 1484: 1481: 1477: 1470: 1465: 1463: 1458: 1456: 1451: 1450: 1447: 1439: 1433: 1429: 1425: 1420: 1416: 1414:9780395959336 1410: 1406: 1401: 1397: 1395:9780070542358 1391: 1386: 1385: 1378: 1374: 1372:0-387-95060-5 1368: 1364: 1359: 1355: 1353:0-471-32148-6 1349: 1344: 1343: 1336: 1332: 1330:0-387-94614-4 1326: 1322: 1318: 1313: 1309: 1307:0-12-050257-7 1303: 1299: 1295: 1291: 1290: 1277: 1275:9780821834473 1271: 1267: 1263: 1257: 1253: 1243: 1240: 1239: 1233: 1230: 1229: 1218: 1216: 1212: 1211: 1200: 1197: 1193: 1192: 1181: 1178: 1173: 1159: 1156: 1150: 1147: 1144: 1126: 1123: 1117: 1114: 1111: 1085: 1082: 1079: 1073: 1070: 1047: 1044: 1041: 1018: 1004: 1002: 996: 994: 975: 971: 964: 961: 958: 951: 944: 941: 938: 931: 924: 921: 918: 911: 904: 901: 898: 888: 887: 886: 884: 880: 875: 872: 864: 858: 851: 844: 821: 817: 811: 807: 802: 796: 792: 787: 781: 777: 769: 768: 767: 765: 759: 751: 745: 735: 733: 729: 728:ordered field 724: 722: 718: 714: 709: 706: 704: 700: 696: 677: 673: 670: 666: 663: 659: 656: 652: 649: 645: 642: 635: 634: 633: 631: 628: 623: 621: 617: 613: 604: 588: 578: 574: 569: 567: 563: 545: 539: 536: 533: 530: 527: 524: 519: 515: 511: 503: 500: 494: 491: 484: 470: 464: 461: 458: 455: 452: 449: 444: 440: 436: 428: 425: 419: 416: 409: 408: 407: 405: 402: 397: 395: 388: 386: 381: 380: 374: 372: 368: 363: 360: 349: 318: 303: 284: 278: 275: 271: 265: 261: 255: 251: 245: 235: 215: 209: 206: 201: 197: 193: 185: 182: 176: 173: 166: 165: 164: 162: 159: 154: 152: 148: 144: 140: 134: 124: 122: 118: 115: 111: 107: 106:ordered field 103: 99: 89: 87: 83: 79: 75: 71: 67: 63: 59: 54: 52: 48: 44: 40: 36: 32: 28: 22: 1588:Real numbers 1512:Construction 1507:Completeness 1506: 1476:Real numbers 1423: 1404: 1383: 1362: 1341: 1316: 1297: 1265: 1256: 1226: 1224: 1208: 1206: 1195: 1189: 1187: 1174: 1010: 997: 990: 876: 867: 863:intersection 856: 846: 839: 836: 754: 749: 747: 725: 717:metric space 710: 707: 698: 694: 692: 629: 624: 611: 610: 576: 570: 565: 561: 560: 403: 398: 394:Dedekind cut 391: 382: 364: 358: 347: 316: 301: 282: 279: 273: 269: 263: 259: 253: 249: 243: 233: 230: 160: 155: 138: 136: 109: 98:real numbers 95: 81: 77: 65: 55: 31:real numbers 27:Completeness 26: 25: 1215:subsequence 571:There is a 147:upper bound 1567:Vitali set 1497:Cantor set 1248:References 304:= 2.25 ≥ 2 74:equivalent 43:irrational 1557:Real line 1157:⊂ 1124:⊂ 1074:∈ 976:⋯ 972:⊃ 952:⊃ 932:⊃ 912:⊃ 822:⋯ 818:⊃ 803:⊃ 788:⊃ 764:intervals 693:Here the 678:… 620:converges 531:∧ 525:≥ 512:∣ 504:∈ 456:∨ 450:≤ 437:∣ 429:∈ 194:∣ 186:∈ 1582:Category 1487:0.999... 1264:(2004). 1236:See also 295:, since 143:nonempty 726:For an 719:. See 369:. See 287:, then 121:theorem 100:can be 70:theorem 1434:  1411:  1392:  1369:  1350:  1327:  1304:  1272:  671:3.1416 350:= 1.42 345:, say 319:= 1.45 104:as an 965:3.142 959:3.141 664:3.142 577:(L,R) 329:, so 285:= 1.5 272:< 267:with 64:(the 62:axiom 1432:ISBN 1409:ISBN 1390:ISBN 1367:ISBN 1348:ISBN 1325:ISBN 1302:ISBN 1270:ISBN 1225:The 1207:The 1188:The 945:3.15 939:3.14 877:The 859:→ +∞ 748:The 657:3.14 625:The 537:> 462:< 399:The 383:See 207:< 156:The 137:The 96:The 80:and 1428:MAA 995:.) 925:3.2 919:3.1 854:as 852:→ 0 711:In 650:3.1 356:in 114:non 88:). 1584:: 1430:. 1426:. 1319:. 1172:. 993:pi 883:pi 845:− 760:= 723:. 703:pi 373:. 362:. 277:. 262:∈ 252:∈ 239:√2 1468:e 1461:t 1454:v 1440:. 1417:. 1398:. 1375:. 1356:. 1333:. 1310:. 1278:. 1160:S 1154:] 1151:r 1148:, 1145:a 1142:[ 1127:S 1121:) 1118:r 1115:, 1112:a 1109:[ 1089:] 1086:b 1083:, 1080:a 1077:[ 1071:r 1051:] 1048:b 1045:, 1042:a 1039:[ 1019:S 968:] 962:, 956:[ 948:] 942:, 936:[ 928:] 922:, 916:[ 908:] 905:4 902:, 899:3 896:[ 870:n 868:I 857:n 849:n 847:a 842:n 840:b 812:3 808:I 797:2 793:I 782:1 778:I 757:n 755:I 699:n 695:n 674:, 667:, 660:, 653:, 646:, 643:3 630:Q 589:2 566:R 562:L 546:. 543:} 540:0 534:x 528:2 520:2 516:x 508:Q 501:x 498:{ 495:= 492:R 471:. 468:} 465:0 459:x 453:2 445:2 441:x 433:Q 426:x 423:{ 420:= 417:L 404:Q 359:Q 354:S 348:z 343:y 339:S 335:S 331:x 327:x 323:S 317:y 312:x 308:S 302:x 297:x 293:S 289:x 283:x 274:x 270:y 264:Q 260:y 254:Q 250:x 244:Q 234:Q 216:. 213:} 210:2 202:2 198:x 190:Q 183:x 180:{ 177:= 174:S 161:Q 84:( 23:.

Index

Completeness (logic)
real numbers
real number line
rational numbers
irrational
decimal number system
decimal representation
construction of the real numbers
axiom
theorem
equivalent
completeness as a metric space
real numbers
defined synthetically
ordered field
non
Archimedean fields
theorem
Least-upper-bound property
nonempty
upper bound
least upper bound
rational number line
partially ordered sets
completeness (order theory)
Dedekind completeness
Dedekind cut
rational number line
construction of the real numbers
Cauchy sequence

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.