Knowledge

Amorphous solid

Source đź“ť

129: 113: 428: 245:. Since the theory of tunneling two-level states (TLSs) does not address the origin of the density of TLSs, this theory cannot explain the universality of internal friction, which in turn is proportional to the density of scattering TLSs. The theoretical significance of this important and unsolved problem was highlighted by 601:
The occurrence of amorphous phases turned out to be a phenomenon of particular interest for the studying of thin-film growth. The growth of polycrystalline films is often used and preceded by an initial amorphous layer, the thickness of which may amount to only a few nm. The most investigated example
339:
technique is performed in transmission electron microscopes capable of reaching sub-Angstrom resolution. A collection of 2D images taken at numerous different tilt angles is acquired from the sample in question, and then used to reconstruct a 3D image. After image acquisition, a significant amount of
302:
diffraction, the diffraction patterns of amorphous materials are characterized by broad and diffuse peaks. As a result, detailed analysis and complementary techniques are required to extract real space structural information from the diffraction patterns of amorphous materials. It is useful to obtain
307:
analysis can be performed on diffraction data to determine the probability of finding a pair of atoms separated by a certain distance. Another type of analysis that is done with diffraction data of amorphous materials is radial distribution function analysis, which measures the number of atoms found
289:
Due to the lack of long-range order, standard crystallographic techniques are often inadequate in determining the structure of amorphous solids. A variety of electron, X-ray, and computation-based techniques have been used to characterize amorphous materials. Multi-modal analysis is very common for
120:
Amorphous materials have an internal structure of molecular-scale structural blocks that can be similar to the basic structural units in the crystalline phase of the same compound. Unlike in crystalline materials, however, no long-range regularity exists: amorphous materials cannot be described by
351:
is another transmission electron microscopy based technique that is sensitive to the medium range order of amorphous materials. Structural fluctuations arising from different forms of medium range order can be detected with this method. Fluctuation electron microscopy experiments can be done in
1880:
Hsieh, Yi-Ling; Ilevbare, Grace A.; Van Eerdenbrugh, Bernard; Box, Karl J.; Sanchez-Felix, Manuel Vincente; Taylor, Lynne S. (2012-05-12). "pH-Induced Precipitation Behavior of Weakly Basic Compounds: Determination of Extent and Duration of Supersaturation Using Potentiometric Titration and
340:
processing must be done to correct for issues such as drift, noise, and scan distortion. High quality analysis and processing using atomic electron tomography results in a 3D reconstruction of an amorphous material detailing the atomic positions of the different species that are present.
606:
to grow out of the amorphous phase only after the latter has exceeded a certain thickness, the precise value of which depends on deposition temperature, background pressure, and various other process parameters. The phenomenon has been interpreted in the framework of
1204:
Yang, Yao; Zhou, Jihan; Zhu, Fan; Yuan, Yakun; Chang, Dillan J.; Kim, Dennis S.; Pham, Minh; Rana, Arjun; Tian, Xuezeng; Yao, Yonggang; Osher, Stanley J.; Schmid, Andreas K.; Hu, Liangbing; Ercius, Peter; Miao, Jianwei (March 31, 2021).
229:
On the phenomenological level, many of these properties were described by a collection of tunneling two-level systems. Nevertheless, the microscopic theory of these properties is still missing after more than 50 years of the research.
273:; nevertheless, relaxation at the surface, along with interfacial effects, distorts the atomic positions and decreases structural order. Even the most advanced structural characterization techniques, such as 2143: 1474: 1573:
Movchan, B. A.; Demchishin, A. V. (1969). "Study of the Structure and Properties of Thick Vacuum Condensates of Nickel, Titanium, Tungsten, Aluminium Oxide and Zirconium Dioxide".
474:
Amorphous solids typically exhibit higher localization of heat carriers compared to crystalline, giving rise to low thermal conductivity. Products for thermal protection, such as
364:
Simulation and modeling techniques are often combined with experimental methods to characterize structures of amorphous materials. Commonly used computational techniques include
179:
At very low temperatures (below 1-10 K), large family of amorphous solids have various similar low-temperature properties. Although there are various theoretical models, neither
551:
than their crystalline counterparts as a result of the higher solubility of the amorphous phase. However, certain compounds can undergo precipitation in their amorphous form
515:
etc. (and combinations of these) in most cases consist of amorphous phases of these compounds. Much research is carried out into thin amorphous films as a gas separating
1989:
Magnuson, Martin; Andersson, Matilda; Lu, Jun; Hultman, Lars; Jansson, Ulf (2012). "Electronic Structure and Chemical Bonding of Amorphous Chromium Carbide Thin Films".
412:), which is the ratio of deposition temperature to melting temperature. According to these models, a necessary condition for the occurrence of amorphous phases is that ( 667:
Experimental studies of the phenomenon require a clearly defined state of the substrate surface—and its contaminant density, etc.—upon which the thin film is deposited.
649:
In the case of a hydrogenated amorphous silicon, the missing long-range order between silicon atoms is partly induced by the presence of hydrogen in the percent range.
401:
thickness that are deposited onto a substrate. So-called structure zone models were developed to describe the microstructure of thin films as a function of the
319:
is an atomic scale probe making it useful for studying materials lacking in long range order. Spectra obtained using this method provide information on the
463: 69:" and "glassy solid" are sometimes used synonymously with amorphous solid; however, these terms refer specifically to amorphous materials that undergo a 237:
quantity of internal friction is nearly universal in these materials. This quantity is a dimensionless ratio (up to a numerical constant) of the phonon
308:
at varying radial distances away from an arbitrary reference atom. From these techniques, the local order of an amorphous material can be elucidated.
1603:
Thornton, John A. (1974), "Influence of Apparatus Geometry and Deposition Conditions on the Structure and Topography of Thick Sputtered Coatings",
184: 640:
For higher values, the surface diffusion of deposited atomic species would allow for the formation of crystallites with long-range atomic order.
1187: 1932:
Dengale, Swapnil Jayant; Grohganz, Holger; Rades, Thomas; Löbmann, Korbinian (May 2016). "Recent Advances in Co-amorphous Drug Formulations".
450:
made by Buckel and Hilsch. The superconductivity of amorphous metals, including amorphous metallic thin films, is now understood to be due to
2110: 1700:
Baggioli, Matteo; Setty, Chandan; Zaccone, Alessio (2020). "Effective Theory of Superconductivity in Strongly Coupled Amorphous Materials".
210:. From 1970s, low-temperature properties of amorphous solids were studied experimentally in great detail. For all of these substances, 1340:"Synchrotron X-Ray and Neutron Diffraction, Total Scattering, and Small-Angle Scattering Techniques for Rechargeable Battery Research" 608: 720:"True intrinsic mechanical behaviour of semi-crystalline and amorphous polymers: Influences of volume deformation and cavities shape" 353: 1605: 303:
diffraction data from both X-ray and neutron sources as they have different scattering properties and provide complementary data.
1162:
Goldstein, Joseph I.; Newbury, Dale E.; Michael, Joseph R.; Ritchie, Nicholas W. M.; Scott, John Henry J.; Joy, David C. (2018).
981:
Anderson, P.W.; Halperin, B.I.; Varma, C.M (1972). "Anomalous low-temperature thermal properties of glasses and spin glasses".
602:
is represented by the unoriented molecules of thin polycrystalline silicon films. Wedge-shaped polycrystals were identified by
2257: 1552: 1076: 957: 906: 777: 702: 932:
Low-Temperature Thermal and Vibrational Properties of Disordered Solids. A Half-Century of Universal "Anomalies" of Glasses
611:
of stages that predicts the formation of phases to proceed with increasing condensation time towards increasing stability.
139:
Although amorphous materials lack long range order, they exhibit localized order on small length scales. By convention,
1171: 2089: 628: 603: 278: 1856: 1092:
Pohl, R.O.; etc, etc (2002). "Low-temperature thermal conductivity and acoustic attenuation in amorphous solids".
348: 2057:"Amorphous-crystalline phase transition during the growth of thin films: The case of microcrystalline silicon" 1639:
Buckel, W.; Hilsch, R. (1956). "Supraleitung und elektrischer Widerstand neuartiger Zinn-Wismut-Legierungen".
1811:
de Vos, Renate M.; Verweij, Henk (1998). "High-Selectivity, High-Flux Silica Membranes for Gas Separation".
168: 122: 17: 519:
layer. The technologically most important thin amorphous film is probably represented by a few nm thin SiO
891:
Low-Energy Excitations in Disordered Solids. A Story of the 'Universal' Phenomena of Structural Tunneling
1453: 419:) has to be smaller than 0.3. The deposition temperature must be below 30% of the melting temperature. 304: 31: 851: 719: 2252: 2247: 1764:
Zhou, Wu-Xing; Cheng, Yuan; Chen, Ke-Qiu; Xie, Guofeng; Wang, Tian; Zhang, Gang (September 9, 2019).
442:
Regarding their applications, amorphous metallic layers played an important role in the discovery of
365: 121:
the repetition of a finite unit cell. Statistical measures, such as the atomic density function and
1991: 1397:"Theoretical formulation of amorphous radial distribution function based on wavelet transformation" 801:
Mavračić, Juraj; Mocanu, Felix C.; Deringer, Volker L.; Csányi, Gábor; Elliott, Stephen R. (2018).
570: 195: 38: 1287:
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
553: 544: 327:, and species surrounding the atom in question as well as the distances at which they are found. 128: 1532: 281:, can have difficulty distinguishing amorphous and crystalline structures at short size scales. 402: 1283:"The rise of the X-ray atomic pair distribution function method: a series of fortunate events" 658:
An initial amorphous layer was observed in many studies of thin polycrystalline silicon films.
1765: 1575: 532: 2073: 2010: 1822: 1719: 1648: 1614: 1486: 1408: 1294: 1228: 1136: 1127:
Leggett, A.J. (1991). "Amorphous materials at low temperatures: why are they so similar?".
1101: 1025: 990: 811: 574: 215: 8: 2022: 516: 459: 324: 188: 2077: 2014: 1826: 1723: 1652: 1618: 1490: 1412: 1298: 1232: 1140: 1105: 1029: 994: 218:
has nearly quadratic temperature dependence. These properties are conventionally called
2169: 2135: 2034: 2000: 1914: 1793: 1743: 1709: 1664: 1510: 1434: 1377: 1315: 1282: 1260: 1218: 1181: 1041: 963: 935: 912: 783: 505: 373: 369: 316: 2055:
Birkholz, M.; Selle, B.; Fuhs, W.; Christiansen, S.; Strunk, H. P.; Reich, R. (2001).
802: 2139: 2026: 1957: 1949: 1906: 1898: 1838: 1813: 1797: 1785: 1747: 1668: 1548: 1514: 1502: 1438: 1426: 1381: 1369: 1361: 1320: 1264: 1252: 1244: 1206: 1167: 1148: 1072: 1045: 967: 953: 916: 902: 871: 829: 787: 773: 739: 698: 528: 443: 274: 258: 223: 42: 2038: 1918: 2127: 2081: 2018: 1941: 1890: 1830: 1777: 1735: 1727: 1656: 1622: 1540: 1494: 1416: 1351: 1310: 1302: 1236: 1144: 1109: 1064: 1033: 998: 945: 894: 863: 819: 765: 731: 491: 199: 180: 164: 156: 74: 70: 58: 1834: 867: 112: 2106: 735: 586: 548: 498: 487: 475: 447: 431: 320: 246: 1731: 852:"Atomic-level structure and structure–property relationship in metallic glasses" 824: 143:
extends only to the nearest neighbor shell, typically only 1-2 atomic spacings.
2118: 2085: 1945: 1240: 578: 478:
coatings and insulation, rely on materials with ultralow thermal conductivity.
299: 242: 94: 1894: 1544: 1113: 1068: 1002: 769: 2241: 1953: 1902: 1789: 1506: 1430: 1365: 1248: 875: 743: 427: 262: 211: 207: 2131: 2064: 2030: 1961: 1910: 1781: 1356: 1339: 1324: 1306: 1256: 833: 566: 174: 2056: 1842: 1473:
Zhou, Jihan; Yang, Yongsoo; Ercius, Peter; Miao, Jianwei (April 9, 2020).
1207:"Determining the three-dimensional atomic structure of an amorphous solid" 557:, and can then decrease mutual bioavailability if administered together. 455: 203: 1739: 1498: 1660: 1037: 582: 398: 336: 238: 1626: 1421: 1396: 1373: 585:
are mostly due to glass shards and other porous minerals not becoming
1857:"Hydrogenated Amorphous Silicon - an overview | ScienceDirect Topics" 803:"Similarity Between Amorphous and Crystalline Phases: The Case of TiO 764:. Lecture Notes in Physics. Vol. 1015 (1st ed.). Springer. 435: 394: 390: 1685:
Buckel, W. (1961). "The influence of crystal bonds on film growth".
1531:
Voyles, Paul; Hwang, Jinwoo (2012-10-12), Kaufmann, Elton N. (ed.),
1714: 1223: 940: 214:
has a (nearly) linear dependence as a function of temperature, and
125:, are more useful in describing the structure of amorphous solids. 2216: 2005: 1539:, Hoboken, NJ, USA: John Wiley & Sons, Inc., pp. com138, 949: 898: 2182: 590: 266: 82: 78: 62: 1879: 1687:
Elektrische en Magnetische Eigenschappen van dunne Metallaagies
1016:
Phillips, W.A. (1972). "Tunneling states in amorphous solids".
524: 451: 311: 261:
at the atomic-length scale due to the nature of intermolecular
2207: 2201:
The Physics of Structurally Disordered Matter: An Introduction
1161: 198:
aiming to understand these substances at high temperatures of
2054: 523:
layers serving as isolator above the conducting channel of a
150: 132: 66: 54: 1395:
Senjaya, Deriyan; Supardi, Adri; Zaidan, Andi (2020-12-09).
800: 1931: 631:
for more information on non-crystalline material structure.
270: 1988: 593:
soils contain the highest amounts of amorphous materials.
1475:"Atomic electron tomography in three and four dimensions" 269:, short-range order encompasses a large fraction of the 175:
Universal low-temperature properties of amorphous solids
155: 147:
may extend beyond the short range order by 1-2 nm.
2111:"Studien über die Bildung und Umwandlung fester Körper" 547:, some amorphous drugs have been shown to offer higher 284: 135:
is a commonly encountered example of amorphous solids.
2217:
D.A. Adler; B.B. Schwartz; M.C. Steele, eds. (1969).
1061:
Tunneling Systems in Amorphous and Crystalline Solids
980: 1699: 1394: 1164:
Scanning Electron Microscopy and X-ray Microanalysis
163:
The freezing from liquid state to amorphous solid -
2225: 717: 697:(1st ed.). Springer Dordrecht. pp. 1–11. 1472: 718:Ponçot, M.; Addiego, F.; Dahoun, A. (2013-01-01). 695:Properties and Applications of Amorphous Materials 343: 298:Unlike crystalline materials which exhibit strong 2208:N.H. March; R.A. Street; M.P. Tosi, eds. (1969). 1572: 525:metal-oxide semiconductor field-effect transistor 462:can be rationalized based on the strong-coupling 2239: 1763: 293: 73:. Examples of amorphous solids include glasses, 30:"Amorphous" redirects here. For other uses, see 1203: 565:Amorphous materials in soil strongly influence 389:Amorphous phases are important constituents of 167:- is considered one of the very important and 1810: 1766:"Thermal Conductivity of Amorphous Materials" 1052: 330: 257:Amorphous materials will have some degree of 1638: 930:Grushin, Adolfo G. (2022). Ramos, M. (ed.). 692: 317:X-ray absorption fine-structure spectroscopy 312:X-ray absorption fine-structure spectroscopy 252: 2176: 2050: 2048: 1680: 1678: 1530: 1120: 1009: 888: 882: 359: 2219:Physical Properties of Amorphous Materials 2189: 1186:: CS1 maint: location missing publisher ( 151:Fundamental properties of amorphous solids 2198: 2163: 2004: 1713: 1420: 1355: 1314: 1222: 1058: 939: 823: 354:scanning transmission electron microscope 194:Amorphous solids is an important area of 2099: 2045: 1881:Correlation to Solid State Properties". 1693: 1675: 1632: 1606:Journal of Vacuum Science and Technology 1602: 1596: 1566: 1451: 1280: 1085: 1015: 923: 581:of soils. The low bulk density and high 531:(Si:H) is of technical significance for 426: 379: 222:being very different from properties of 127: 111: 2228:Amorphous and Nanocrystalline Materials 2105: 1804: 1338:Ren, Yang; Zuo, Xiaobing (2018-06-13). 1126: 1091: 929: 889:Stephens, Robert B.; Liu, Xiao (2021). 849: 759: 393:. Thin films are solid layers of a few 384: 14: 2240: 1684: 1337: 974: 2210:Amorphous Solids and the Liquid State 1759: 1757: 1526: 1524: 1468: 1466: 1276: 1274: 1199: 1197: 538: 481: 469: 2226:A. Inoue; K. Hasimoto, eds. (1969). 1281:Billinge, Simon J. L. (2019-06-17). 845: 843: 755: 753: 688: 686: 684: 422: 285:Characterization of amorphous solids 1452:Newville, Matthew (July 22, 2004). 850:Cheng, Y. Q.; Ma, E. (2011-05-01). 724:International Journal of Plasticity 24: 2179:The Physics of Amorphous Materials 2157: 1754: 1521: 1463: 1271: 1194: 183:nor low-temperature properties of 25: 2269: 1533:"Fluctuation Electron Microscopy" 1166:(Fourth ed.). New York, NY. 840: 750: 693:Thorpe., M.F.; Tichy, L. (2001). 681: 2149:from the original on 2017-03-08. 2095:from the original on 2010-03-31. 1978:. Marcel Dekker. pp. 93–94. 629:structure of liquids and glasses 604:transmission electron microscopy 279:transmission electron microscopy 2166:The Physics of Amorphous Solids 1982: 1968: 1925: 1873: 1849: 1445: 1388: 1331: 1155: 661: 652: 643: 634: 621: 349:Fluctuation electron microscopy 344:Fluctuation electron microscopy 116:Crystalline vs. amorphous solid 2023:10.1088/0953-8984/24/22/225004 1934:Advanced Drug Delivery Reviews 1059:Esquinazi, Pablo, ed. (1998). 794: 711: 529:hydrogenated amorphous silicon 13: 1: 1835:10.1126/science.279.5357.1710 1770:Advanced Functional Materials 1537:Characterization of Materials 868:10.1016/j.pmatsci.2010.12.002 856:Progress in Materials Science 674: 294:X-ray and neutron diffraction 265:. Furthermore, in very small 2258:Unsolved problems in physics 1976:Encyclopedia of Soil Science 1149:10.1016/0921-4526(91)90246-B 736:10.1016/j.ijplas.2012.07.007 169:unsolved problems of physics 123:radial distribution function 107: 88: 61:that is characteristic of a 7: 2192:Theory of Disordered Solids 1732:10.1103/PhysRevB.101.214502 825:10.1021/acs.jpclett.8b01067 762:Theory of Disordered Solids 560: 187:are well understood on the 10: 2274: 2086:10.1103/PhysRevB.64.085402 1946:10.1016/j.addr.2015.12.009 1585:Russian-language version: 1401:AIP Conference Proceedings 1241:10.1038/s41586-021-03354-0 1018:J. Low Temp. Phys., Pp 751 331:Atomic electron tomography 305:Pair distribution function 32:Amorphous (disambiguation) 29: 1895:10.1007/s11095-012-0759-8 1545:10.1002/0471266965.com138 1114:10.1080/14786437208229210 1069:10.1007/978-3-662-03695-2 1003:10.1080/14786437208229210 770:10.1007/978-3-031-24706-4 366:density functional theory 253:Nano-structured materials 1992:J. Phys. Condens. Matter 614: 596: 360:Computational techniques 196:condensed matter physics 93:The term comes from the 39:condensed matter physics 1883:Pharmaceutical Research 545:pharmaceutical industry 77:, and certain types of 2132:10.1515/zpch-1897-2233 1782:10.1002/adfm.201903829 1454:"Fundamentals of XAFS" 1357:10.1002/smtd.201800064 1307:10.1098/rsta.2018.0413 983:Philosophical Magazine 579:water holding capacity 466:of superconductivity. 439: 403:homologous temperature 136: 117: 1861:www.sciencedirect.com 1587:Fiz. Metal Metalloved 1576:Phys. Met. Metallogr. 533:thin-film solar cells 430: 380:Uses and observations 290:amorphous materials. 131: 115: 51:non-crystalline solid 27:Non-crystalline solid 2177:S.R. Elliot (1990). 812:J. Phys. Chem. Lett. 760:Zaccone, A. (2023). 385:Amorphous thin films 335:The atomic electron 216:thermal conductivity 159:at high temperatures 2190:A. Zaccone (2023). 2078:2001PhRvB..64h5402B 2015:2012JPCM...24v5004M 1827:1998Sci...279.1710D 1821:(5357): 1710–1711. 1724:2020PhRvB.101u4502B 1653:1956ZPhy..146...27B 1619:1974JVST...11..666T 1499:10.1557/mrs.2020.88 1491:2020MRSBu..45..290Z 1413:2020AIPC.2314b0001S 1299:2019RSPTA.37780413B 1233:2021Natur.592...60Y 1141:1991PhyB..169..322L 1106:1972PMag...25....1A 1030:1972JLTP....7..351P 995:1972PMag...25....1A 571:aggregate stability 460:structural disorder 438:, but high strength 325:coordination number 189:fundamental physics 2199:N. Cusack (1969). 2170:Wiley Interscience 2164:R. Zallen (1969). 1689:. Leuven, Belgium. 1661:10.1007/BF01326000 1293:(2147): 20180413. 1038:10.1007/BF00660072 539:Pharmaceutical use 482:Technological uses 470:Thermal protection 440: 370:molecular dynamics 224:crystalline solids 145:Medium range order 137: 118: 2203:. IOP Publishing. 1889:(10): 2738–2753. 1702:Physical Review B 1627:10.1116/1.1312732 1554:978-0-471-26696-9 1422:10.1063/5.0034410 1078:978-3-642-08371-6 959:978-1-80061-257-0 908:978-981-12-1724-1 818:(11): 2985–2990. 779:978-3-031-24705-7 704:978-0-7923-6811-3 464:Eliashberg theory 444:superconductivity 423:Superconductivity 275:X-ray diffraction 259:short-range order 141:short range order 104:("shape, form"). 100:("without"), and 43:materials science 16:(Redirected from 2265: 2253:Phases of matter 2248:Amorphous solids 2231: 2222: 2213: 2204: 2195: 2186: 2181:(2nd ed.). 2173: 2151: 2150: 2148: 2115: 2107:Ostwald, Wilhelm 2103: 2097: 2096: 2094: 2061: 2052: 2043: 2042: 2008: 1986: 1980: 1979: 1972: 1966: 1965: 1929: 1923: 1922: 1877: 1871: 1870: 1868: 1867: 1853: 1847: 1846: 1808: 1802: 1801: 1761: 1752: 1751: 1717: 1697: 1691: 1690: 1682: 1673: 1672: 1636: 1630: 1629: 1600: 1594: 1583: 1570: 1564: 1563: 1562: 1561: 1528: 1519: 1518: 1470: 1461: 1460: 1458: 1449: 1443: 1442: 1424: 1392: 1386: 1385: 1359: 1335: 1329: 1328: 1318: 1278: 1269: 1268: 1226: 1201: 1192: 1191: 1185: 1177: 1159: 1153: 1152: 1135:(1–4): 322–327. 1124: 1118: 1117: 1089: 1083: 1082: 1056: 1050: 1049: 1024:(3–4): 351–360. 1013: 1007: 1006: 978: 972: 971: 943: 927: 921: 920: 886: 880: 879: 847: 838: 837: 827: 798: 792: 791: 757: 748: 747: 715: 709: 708: 690: 668: 665: 659: 656: 650: 647: 641: 638: 632: 625: 527:(MOSFET). Also, 488:optical coatings 448:amorphous metals 432:Amorphous metals 352:conventional or 263:chemical bonding 200:glass transition 181:glass transition 165:glass transition 157:Glass transition 75:metallic glasses 71:glass transition 59:long-range order 21: 2273: 2272: 2268: 2267: 2266: 2264: 2263: 2262: 2238: 2237: 2235: 2160: 2158:Further reading 2155: 2154: 2146: 2113: 2104: 2100: 2092: 2059: 2053: 2046: 1987: 1983: 1974: 1973: 1969: 1930: 1926: 1878: 1874: 1865: 1863: 1855: 1854: 1850: 1809: 1805: 1762: 1755: 1698: 1694: 1683: 1676: 1637: 1633: 1601: 1597: 1584: 1571: 1567: 1559: 1557: 1555: 1529: 1522: 1471: 1464: 1456: 1450: 1446: 1393: 1389: 1336: 1332: 1279: 1272: 1217:(7852): 60–64. 1202: 1195: 1179: 1178: 1174: 1160: 1156: 1125: 1121: 1090: 1086: 1079: 1057: 1053: 1014: 1010: 979: 975: 960: 928: 924: 909: 887: 883: 848: 841: 806: 799: 795: 780: 758: 751: 716: 712: 705: 691: 682: 677: 672: 671: 666: 662: 657: 653: 648: 644: 639: 635: 626: 622: 617: 599: 563: 549:bioavailability 541: 522: 513: 509: 502: 495: 484: 476:thermal barrier 472: 425: 417: 410: 387: 382: 362: 346: 333: 321:oxidation state 314: 296: 287: 255: 247:Anthony Leggett 177: 161: 153: 110: 91: 57:that lacks the 47:amorphous solid 35: 28: 23: 22: 15: 12: 11: 5: 2271: 2261: 2260: 2255: 2250: 2233: 2232: 2223: 2214: 2205: 2196: 2187: 2174: 2159: 2156: 2153: 2152: 2119:Z. Phys. Chem. 2098: 2044: 1999:(22): 225004. 1981: 1967: 1924: 1872: 1848: 1803: 1776:(8): 1903829. 1753: 1708:(21): 214502. 1692: 1674: 1631: 1613:(4): 666–670, 1595: 1565: 1553: 1520: 1485:(4): 290–297. 1462: 1444: 1387: 1350:(8): 1800064. 1330: 1270: 1193: 1173:978-1493966745 1172: 1154: 1119: 1094:Revs. Mod Phys 1084: 1077: 1051: 1008: 973: 958: 922: 907: 881: 862:(4): 379–473. 839: 804: 793: 778: 749: 710: 703: 679: 678: 676: 673: 670: 669: 660: 651: 642: 633: 619: 618: 616: 613: 609:Ostwald's rule 598: 595: 562: 559: 540: 537: 520: 511: 507: 500: 493: 483: 480: 471: 468: 458:. The role of 456:Cooper pairing 424: 421: 415: 408: 386: 383: 381: 378: 372:, and reverse 361: 358: 345: 342: 332: 329: 313: 310: 295: 292: 286: 283: 254: 251: 243:mean free path 241:to the phonon 233:Remarkably, a 176: 173: 160: 154: 152: 149: 109: 106: 90: 87: 26: 9: 6: 4: 3: 2: 2270: 2259: 2256: 2254: 2251: 2249: 2246: 2245: 2243: 2236: 2229: 2224: 2220: 2215: 2211: 2206: 2202: 2197: 2193: 2188: 2184: 2180: 2175: 2171: 2167: 2162: 2161: 2145: 2141: 2137: 2133: 2129: 2125: 2122:(in German). 2121: 2120: 2112: 2108: 2102: 2091: 2087: 2083: 2079: 2075: 2072:(8): 085402. 2071: 2067: 2066: 2058: 2051: 2049: 2040: 2036: 2032: 2028: 2024: 2020: 2016: 2012: 2007: 2002: 1998: 1994: 1993: 1985: 1977: 1971: 1963: 1959: 1955: 1951: 1947: 1943: 1939: 1935: 1928: 1920: 1916: 1912: 1908: 1904: 1900: 1896: 1892: 1888: 1884: 1876: 1862: 1858: 1852: 1844: 1840: 1836: 1832: 1828: 1824: 1820: 1816: 1815: 1807: 1799: 1795: 1791: 1787: 1783: 1779: 1775: 1771: 1767: 1760: 1758: 1749: 1745: 1741: 1737: 1733: 1729: 1725: 1721: 1716: 1711: 1707: 1703: 1696: 1688: 1681: 1679: 1670: 1666: 1662: 1658: 1654: 1650: 1646: 1642: 1635: 1628: 1624: 1620: 1616: 1612: 1608: 1607: 1599: 1592: 1588: 1581: 1578: 1577: 1569: 1556: 1550: 1546: 1542: 1538: 1534: 1527: 1525: 1516: 1512: 1508: 1504: 1500: 1496: 1492: 1488: 1484: 1480: 1476: 1469: 1467: 1455: 1448: 1440: 1436: 1432: 1428: 1423: 1418: 1414: 1410: 1407:(1): 020001. 1406: 1402: 1398: 1391: 1383: 1379: 1375: 1371: 1367: 1363: 1358: 1353: 1349: 1345: 1344:Small Methods 1341: 1334: 1326: 1322: 1317: 1312: 1308: 1304: 1300: 1296: 1292: 1288: 1284: 1277: 1275: 1266: 1262: 1258: 1254: 1250: 1246: 1242: 1238: 1234: 1230: 1225: 1220: 1216: 1212: 1208: 1200: 1198: 1189: 1183: 1175: 1169: 1165: 1158: 1150: 1146: 1142: 1138: 1134: 1130: 1123: 1115: 1111: 1107: 1103: 1099: 1095: 1088: 1080: 1074: 1070: 1066: 1062: 1055: 1047: 1043: 1039: 1035: 1031: 1027: 1023: 1019: 1012: 1004: 1000: 996: 992: 988: 984: 977: 969: 965: 961: 955: 951: 950:10.1142/q0371 947: 942: 937: 933: 926: 918: 914: 910: 904: 900: 899:10.1142/11746 896: 892: 885: 877: 873: 869: 865: 861: 857: 853: 846: 844: 835: 831: 826: 821: 817: 814: 813: 808: 797: 789: 785: 781: 775: 771: 767: 763: 756: 754: 745: 741: 737: 733: 729: 725: 721: 714: 706: 700: 696: 689: 687: 685: 680: 664: 655: 646: 637: 630: 624: 620: 612: 610: 605: 594: 592: 588: 584: 580: 576: 572: 568: 558: 556: 555: 550: 546: 536: 534: 530: 526: 518: 514: 503: 496: 489: 479: 477: 467: 465: 461: 457: 453: 449: 445: 437: 433: 429: 420: 418: 411: 404: 400: 396: 392: 377: 375: 371: 367: 357: 355: 350: 341: 338: 328: 326: 322: 318: 309: 306: 301: 291: 282: 280: 276: 272: 268: 264: 260: 250: 248: 244: 240: 236: 235:dimensionless 231: 227: 225: 221: 217: 213: 212:specific heat 209: 208:absolute zero 205: 201: 197: 192: 190: 186: 185:glassy solids 182: 172: 170: 166: 158: 148: 146: 142: 134: 130: 126: 124: 114: 105: 103: 99: 96: 86: 84: 80: 76: 72: 68: 65:. The terms " 64: 60: 56: 52: 48: 44: 40: 33: 19: 2234: 2227: 2218: 2209: 2200: 2191: 2178: 2165: 2123: 2117: 2101: 2069: 2065:Phys. Rev. B 2063: 1996: 1990: 1984: 1975: 1970: 1937: 1933: 1927: 1886: 1882: 1875: 1864:. Retrieved 1860: 1851: 1818: 1812: 1806: 1773: 1769: 1740:10486/703598 1705: 1701: 1695: 1686: 1647:(1): 27–38. 1644: 1640: 1634: 1610: 1604: 1598: 1590: 1586: 1579: 1574: 1568: 1558:, retrieved 1536: 1482: 1479:MRS Bulletin 1478: 1447: 1404: 1400: 1390: 1347: 1343: 1333: 1290: 1286: 1214: 1210: 1163: 1157: 1132: 1128: 1122: 1097: 1093: 1087: 1060: 1054: 1021: 1017: 1011: 986: 982: 976: 931: 925: 890: 884: 859: 855: 815: 810: 796: 761: 727: 723: 713: 694: 663: 654: 645: 636: 623: 600: 567:bulk density 564: 552: 542: 485: 473: 441: 413: 406: 388: 363: 347: 334: 315: 297: 288: 256: 234: 232: 228: 219: 204:temperatures 193: 178: 162: 144: 140: 138: 119: 101: 97: 92: 50: 46: 36: 18:Glassy phase 2230:. Springer. 2221:. Springer. 2212:. Springer. 2194:. Springer. 2126:: 289–330. 1940:: 116–125. 730:: 126–139. 583:void ratios 399:micrometres 397:to tens of 374:Monte Carlo 202:and at low 2242:Categories 1866:2023-10-17 1715:2001.00404 1593:: 653-660. 1560:2022-12-07 1224:2004.02266 1100:(1): 991. 989:(1): 1–9. 941:2010.02851 675:References 575:plasticity 490:made from 454:-mediated 395:nanometres 391:thin films 337:tomography 239:wavelength 2140:100328323 2006:1205.0678 1954:0169-409X 1903:0724-8741 1798:203143442 1790:1616-301X 1748:209531947 1669:119405703 1515:216408488 1507:0883-7694 1439:234542087 1431:0094-243X 1382:139693137 1366:2366-9608 1265:214802235 1249:1476-4687 1182:cite book 1129:Physica B 1046:119873202 968:222140882 917:224844997 876:0079-6425 788:259299183 744:0749-6419 587:compacted 436:toughness 434:have low 220:anomalous 108:Structure 89:Etymology 2144:Archived 2109:(1897). 2090:Archived 2039:13135386 2031:22553115 1962:26805787 1919:15502736 1911:22580905 1582:: 83–90. 1325:31030657 1257:33790443 834:29763315 627:See the 561:In soils 517:membrane 267:crystals 206:towards 83:polymers 79:plastics 2183:Longman 2074:Bibcode 2011:Bibcode 1843:9497287 1823:Bibcode 1814:Science 1720:Bibcode 1649:Bibcode 1641:Z. Phys 1615:Bibcode 1589:(1969) 1487:Bibcode 1409:Bibcode 1374:1558997 1316:6501893 1295:Bibcode 1229:Bibcode 1137:Bibcode 1102:Bibcode 1026:Bibcode 991:Bibcode 591:Andisol 554:in vivo 543:In the 486:Today, 191:level. 63:crystal 53:) is a 2138:  2037:  2029:  1960:  1952:  1917:  1909:  1901:  1841:  1796:  1788:  1746:  1667:  1551:  1513:  1505:  1437:  1429:  1380:  1372:  1364:  1323:  1313:  1263:  1255:  1247:  1211:Nature 1170:  1075:  1044:  966:  956:  915:  905:  874:  832:  786:  776:  742:  701:  577:, and 452:phonon 356:mode. 102:morphĂ© 2147:(PDF) 2136:S2CID 2114:(PDF) 2093:(PDF) 2060:(PDF) 2035:S2CID 2001:arXiv 1915:S2CID 1794:S2CID 1744:S2CID 1710:arXiv 1665:S2CID 1511:S2CID 1457:(PDF) 1435:S2CID 1378:S2CID 1261:S2CID 1219:arXiv 1042:S2CID 964:S2CID 936:arXiv 913:S2CID 784:S2CID 615:Notes 597:Phase 300:Bragg 271:atoms 133:Glass 95:Greek 67:glass 55:solid 45:, an 2027:PMID 1958:PMID 1950:ISSN 1907:PMID 1899:ISSN 1839:PMID 1786:ISSN 1549:ISBN 1503:ISSN 1427:ISSN 1405:2314 1370:OSTI 1362:ISSN 1321:PMID 1253:PMID 1245:ISSN 1188:link 1168:ISBN 1073:ISBN 954:ISBN 903:ISBN 872:ISSN 830:PMID 774:ISBN 740:ISSN 699:ISBN 277:and 81:and 49:(or 41:and 2128:doi 2082:doi 2019:doi 1942:doi 1938:100 1891:doi 1831:doi 1819:279 1778:doi 1736:hdl 1728:doi 1706:101 1657:doi 1645:146 1623:doi 1541:doi 1495:doi 1417:doi 1352:doi 1311:PMC 1303:doi 1291:377 1237:doi 1215:592 1145:doi 1133:169 1110:doi 1065:doi 1034:doi 999:doi 946:doi 895:doi 864:doi 820:doi 766:doi 732:doi 499:SiO 492:TiO 446:in 37:In 2244:: 2168:. 2142:. 2134:. 2124:22 2116:. 2088:. 2080:. 2070:64 2068:. 2062:. 2047:^ 2033:. 2025:. 2017:. 2009:. 1997:24 1995:. 1956:. 1948:. 1936:. 1913:. 1905:. 1897:. 1887:29 1885:. 1859:. 1837:. 1829:. 1817:. 1792:. 1784:. 1774:30 1772:. 1768:. 1756:^ 1742:. 1734:. 1726:. 1718:. 1704:. 1677:^ 1663:. 1655:. 1643:. 1621:, 1611:11 1609:, 1591:28 1580:28 1547:, 1535:, 1523:^ 1509:. 1501:. 1493:. 1483:45 1481:. 1477:. 1465:^ 1433:. 1425:. 1415:. 1403:. 1399:. 1376:. 1368:. 1360:. 1346:. 1342:. 1319:. 1309:. 1301:. 1289:. 1285:. 1273:^ 1259:. 1251:. 1243:. 1235:. 1227:. 1213:. 1209:. 1196:^ 1184:}} 1180:{{ 1143:. 1131:. 1108:. 1098:74 1096:. 1071:. 1063:. 1040:. 1032:. 1020:. 997:. 987:25 985:. 962:. 952:. 944:. 934:. 911:. 901:. 893:. 870:. 860:56 858:. 854:. 842:^ 828:. 809:. 782:. 772:. 752:^ 738:. 728:40 726:. 722:. 683:^ 589:. 573:, 569:, 535:. 506:Ta 504:, 497:, 376:. 368:, 323:, 249:. 226:. 171:. 85:. 2185:. 2172:. 2130:: 2084:: 2076:: 2041:. 2021:: 2013:: 2003:: 1964:. 1944:: 1921:. 1893:: 1869:. 1845:. 1833:: 1825:: 1800:. 1780:: 1750:. 1738:: 1730:: 1722:: 1712:: 1671:. 1659:: 1651:: 1625:: 1617:: 1543:: 1517:. 1497:: 1489:: 1459:. 1441:. 1419:: 1411:: 1384:. 1354:: 1348:2 1327:. 1305:: 1297:: 1267:. 1239:: 1231:: 1221:: 1190:) 1176:. 1151:. 1147:: 1139:: 1116:. 1112:: 1104:: 1081:. 1067:: 1048:. 1036:: 1028:: 1022:7 1005:. 1001:: 993:: 970:. 948:: 938:: 919:. 897:: 878:. 866:: 836:. 822:: 816:9 807:" 805:2 790:. 768:: 746:. 734:: 707:. 521:2 512:5 510:O 508:2 501:2 494:2 416:h 414:T 409:h 407:T 405:( 98:a 34:. 20:)

Index

Glassy phase
Amorphous (disambiguation)
condensed matter physics
materials science
solid
long-range order
crystal
glass
glass transition
metallic glasses
plastics
polymers
Greek

radial distribution function

Glass
Glass transition
glass transition
unsolved problems of physics
glass transition
glassy solids
fundamental physics
condensed matter physics
glass transition
temperatures
absolute zero
specific heat
thermal conductivity
crystalline solids

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑