Knowledge

Elementary symmetric polynomial

Source 📝

36: 2685: 1999: 608: 2680:{\displaystyle {\begin{aligned}e_{1}(X_{1},X_{2},X_{3},X_{4})&=X_{1}+X_{2}+X_{3}+X_{4},\\e_{2}(X_{1},X_{2},X_{3},X_{4})&=X_{1}X_{2}+X_{1}X_{3}+X_{1}X_{4}+X_{2}X_{3}+X_{2}X_{4}+X_{3}X_{4},\\e_{3}(X_{1},X_{2},X_{3},X_{4})&=X_{1}X_{2}X_{3}+X_{1}X_{2}X_{4}+X_{1}X_{3}X_{4}+X_{2}X_{3}X_{4},\\e_{4}(X_{1},X_{2},X_{3},X_{4})&=X_{1}X_{2}X_{3}X_{4}.\,\\\end{aligned}}} 1981: 232: 2977: 1314: 1634: 603:{\displaystyle {\begin{aligned}e_{1}(X_{1},X_{2},\dots ,X_{n})&=\sum _{1\leq j\leq n}X_{j},\\e_{2}(X_{1},X_{2},\dots ,X_{n})&=\sum _{1\leq j<k\leq n}X_{j}X_{k},\\e_{3}(X_{1},X_{2},\dots ,X_{n})&=\sum _{1\leq j<k<l\leq n}X_{j}X_{k}X_{l},\\\end{aligned}}} 3800: 4664: 1616: 907: 3468: 2705: 4244: 3967:
have equal lacunary parts. (This is because every monomial which can appear in a lacunary part must lack at least one variable, and thus can be transformed by a permutation of the variables into a monomial which contains only the variables
1092: 4408: 5406:
of elementary symmetric polynomials are linearly independent, is also easily proved. The lemma shows that all these products have different leading monomials, and this suffices: if a nontrivial linear combination of the
728: 1976:{\displaystyle {\begin{aligned}e_{1}(X_{1},X_{2},X_{3})&=X_{1}+X_{2}+X_{3},\\e_{2}(X_{1},X_{2},X_{3})&=X_{1}X_{2}+X_{1}X_{3}+X_{2}X_{3},\\e_{3}(X_{1},X_{2},X_{3})&=X_{1}X_{2}X_{3}.\,\\\end{aligned}}} 4948:, and also leads to a fairly direct procedure to effectively write a symmetric polynomial as a polynomial in the elementary symmetric ones. Assume the symmetric polynomial to be homogeneous of degree 3632: 4469: 2004: 1639: 1455: 237: 1450: 746: 5341:
is either zero or a symmetric polynomial with a strictly smaller leading monomial. Writing this difference inductively as a polynomial in the elementary symmetric polynomials, and adding back
3299: 2972:{\displaystyle \prod _{j=1}^{n}(\lambda -X_{j})=\lambda ^{n}-e_{1}(X_{1},\ldots ,X_{n})\lambda ^{n-1}+e_{2}(X_{1},\ldots ,X_{n})\lambda ^{n-2}+\cdots +(-1)^{n}e_{n}(X_{1},\ldots ,X_{n}).} 1432: 4099: 3077:. When we substitute these eigenvalues into the elementary symmetric polynomials, we obtain – up to their sign – the coefficients of the characteristic polynomial, which are 5249:. To count the occurrences of the individual variables in the resulting monomial, fill the column of the Young diagram corresponding to the factor concerned with the numbers 5446:) the largest leading monomial; the leading term of this contribution cannot be cancelled by any other contribution of the linear combination, which gives a contradiction. 3160: 3578:
of the homogeneous polynomial. The general case then follows by splitting an arbitrary symmetric polynomial into its homogeneous components (which are again symmetric).
1309:{\displaystyle e_{\lambda }(X_{1},\dots ,X_{n})=e_{\lambda _{1}}(X_{1},\dots ,X_{n})\cdot e_{\lambda _{2}}(X_{1},\dots ,X_{n})\cdots e_{\lambda _{m}}(X_{1},\dots ,X_{n})} 122:
is given by an expression involving only additions and multiplication of constants and elementary symmetric polynomials. There is one elementary symmetric polynomial of
4287: 116:, in the sense that any symmetric polynomial can be expressed as a polynomial in elementary symmetric polynomials. That is, any symmetric polynomial 65: 4853:) which by the inductive hypothesis can be expressed as a polynomial in the elementary symmetric functions. Combining the representations for 619: 17: 977:
is included among the elementary symmetric polynomials, but excluding it allows generally simpler formulation of results and properties.)
5435:
were zero, one focuses on the contribution in the linear combination with nonzero coefficient and with (as polynomial in the variables
5256:
of the variables, then all boxes in the first row contain 1, those in the second row 2, and so forth, which means the leading term is
5460: 3172: 3054:
their sign – the elementary symmetric polynomials. These relations between the roots and the coefficients of a polynomial are called
1027: 5267:
Now one proves by induction on the leading monomial in lexicographic order, that any nonzero homogeneous symmetric polynomial
3795:{\displaystyle P(X_{1},\ldots ,X_{n})=P_{\text{lacunary}}(X_{1},\ldots ,X_{n})+X_{1}\cdots X_{n}\cdot Q(X_{1},\ldots ,X_{n}).} 4659:{\displaystyle R(X_{1},\ldots ,X_{n-1},0)={\tilde {Q}}(\sigma _{1,n-1},\ldots ,\sigma _{n-1,n-1})=P(X_{1},\ldots ,X_{n-1},0)} 1611:{\displaystyle {\begin{aligned}e_{1}(X_{1},X_{2})&=X_{1}+X_{2},\\e_{2}(X_{1},X_{2})&=X_{1}X_{2}.\,\\\end{aligned}}} 902:{\displaystyle e_{k}(X_{1},\ldots ,X_{n})=\sum _{1\leq j_{1}<j_{2}<\cdots <j_{k}\leq n}X_{j_{1}}\dotsm X_{j_{k}},} 4878:
The uniqueness of the representation can be proved inductively in a similar way. (It is equivalent to the fact that the
5193:. The leading term of the product is the product of the leading terms of each factor (this is true whenever one uses a 5542: 5520: 3463:{\displaystyle P(X_{1},\ldots ,X_{n})=Q{\big (}e_{1}(X_{1},\ldots ,X_{n}),\ldots ,e_{n}(X_{1},\ldots ,X_{n}){\big )}} 87: 58: 5586: 3176: 3136:
variables. More specifically, the ring of symmetric polynomials with integer coefficients equals the integral
5591: 4239:{\displaystyle {\tilde {P}}(X_{1},\ldots ,X_{n-1})={\tilde {Q}}(\sigma _{1,n-1},\ldots ,\sigma _{n-1,n-1})} 1378: 4930:
The following proof is also inductive, but does not involve other polynomials than those symmetric in
5480: 4901: 3062: 48: 5475: 52: 44: 3143: 5485: 5008:, etc. Furthermore parametrize all products of elementary symmetric polynomials that have degree 3119: 5470: 5125:
is present only because traditionally this product is associated to the transpose partition of
3575: 3559: 3555: 3082: 123: 69: 4990:, in other words the dominant term of a polynomial is one with the highest occurring power of 5495: 5092:
arises for exactly one product of elementary symmetric polynomials, which we shall denote by
3008: 4403:{\displaystyle R(X_{1},\ldots ,X_{n}):={\tilde {Q}}(\sigma _{1,n},\ldots ,\sigma _{n-1,n}).} 3098:
is – up to the sign – the constant term of the characteristic polynomial, i.e. the value of
5455: 5378:
The fact that this expression is unique, or equivalently that all the products (monomials)
3588:
the result is trivial because every polynomial in one variable is automatically symmetric.
3127: 3074: 3018: 113: 8: 4969: 3864:
is symmetric, the lacunary part is determined by its terms containing only the variables
3055: 105: 5530: 5490: 3164: 3123: 3069:
is an example of application of Vieta's formulas. The roots of this polynomial are the
2695:
The elementary symmetric polynomials appear when we expand a linear factorization of a
5131:). The essential ingredient of the proof is the following simple property, which uses 5538: 5516: 5015: 3484: 1034: 5465: 3531: 3188: 3168: 3078: 2696: 138: 5285:
is symmetric, its leading monomial has weakly decreasing exponents, so it is some
5508: 3137: 5194: 5560: 5197:, like the lexicographic order used here), and the leading term of the factor 5580: 5065: 3109:. Thus the determinant of a square matrix is the product of the eigenvalues. 3066: 5279:
can be written as polynomial in the elementary symmetric polynomials. Since
5132: 1356:
elementary symmetric polynomials for the first four positive values of 
1026:
of variables, that is, taking variables with repetition, one arrives at the
4954:; different homogeneous components can be decomposed separately. Order the 3171:. For another system of symmetric polynomials with the same property see 3095: 3047: 101: 3070: 723:{\displaystyle e_{n}(X_{1},X_{2},\dots ,X_{n})=X_{1}X_{2}\cdots X_{n}.} 4910:.) The fact that the polynomial representation is unique implies that 3175:, and for a system with a similar, but slightly weaker, property see 3591:
Assume now that the theorem has been proved for all polynomials for
4955: 4790:
of all variables, which equals the elementary symmetric polynomial
1022:
variables. (By contrast, if one performs the same operation using
992:
there exists exactly one elementary symmetric polynomial of degree
4093:. By the inductive hypothesis, this polynomial can be written as 1037:(that is, a finite non-increasing sequence of positive integers) 4774:
has no lacunary part, and is therefore divisible by the product
3626:
can be decomposed as a sum of homogeneous symmetric polynomials
3182: 2982:
That is, when we substitute numerical values for the variables
150:, and it is formed by adding together all distinct products of 5064:
boxes, and arrange those columns from left to right to form a
4015:
are precisely the terms that survive the operation of setting
3051: 5369:
to it, one obtains the sought for polynomial expression for
3196:, denote the ring of symmetric polynomials in the variables 5074:
boxes in all. The shape of this diagram is a partition of
4837:
is a homogeneous symmetric polynomial of degree less than
3085:(the sum of the elements of the diagonal) is the value of 5562:
Prelude to Galois Theory: Exploring Symmetric Polynomials
5058:
come first, then build for each such factor a column of
5024:. Order the individual elementary symmetric polynomials 4727:
before each monomial which contains only the variables
3930:
before each monomial which contains only the variables
3094:, and thus the sum of the eigenvalues. Similarly, the 4472: 4290: 4102: 3635: 3302: 3146: 2708: 2002: 1637: 1453: 1381: 1095: 1086:, also called an elementary symmetric polynomial, by 749: 622: 235: 4999:, and among those the one with the highest power of 4752:. As we know, this shows that the lacunary part of 4050:, which is a symmetric polynomial in the variables 3483:. Another way of saying the same thing is that the 4658: 4402: 4238: 3924:having the same degree, and if the coefficient of 3794: 3462: 3154: 2971: 2679: 1975: 1610: 1426: 1308: 901: 722: 602: 5052:in the product so that those with larger indices 5578: 57:but its sources remain unclear because it lacks 4758:coincides with that of the original polynomial 4271:denote the elementary symmetric polynomials in 3112:The set of elementary symmetric polynomials in 3163:. (See below for a more general statement and 5014:(they are in fact homogeneous) as follows by 4972:, where the individual variables are ordered 3906:are two homogeneous symmetric polynomials in 3455: 3349: 3183:Fundamental theorem of symmetric polynomials 1004:variables. To form the one that has degree 3601:variables and all symmetric polynomials in 3269:This means that every symmetric polynomial 4869:one finds a polynomial representation for 4669:(the first equality holds because setting 3820:which contain only a proper subset of the 3814:is defined as the sum of all monomials in 3173:Complete homogeneous symmetric polynomials 3167:.) This fact is one of the foundations of 1028:complete homogeneous symmetric polynomials 5537:. Cambridge: Cambridge University Press. 5515:(2nd ed.). Oxford: Clarendon Press. 5507: 5461:Complete homogeneous symmetric polynomial 3614:. Every homogeneous symmetric polynomial 3148: 2672: 1968: 1603: 112:are one type of basic building block for 88:Learn how and when to remove this message 5558: 5513:Symmetric Functions and Hall Polynomials 4746:equals the corresponding coefficient of 3949:equals the corresponding coefficient of 3562:with respect to the number of variables 3554:The theorem may be proved for symmetric 164:The elementary symmetric polynomials in 5529: 1060:, one defines the symmetric polynomial 14: 5579: 5303:. Let the coefficient of this term be 4721:). In other words, the coefficient of 1010:, we take the sum of all products of 4925: 3844:, i.e., where at least one variable 29: 3226:. This is a polynomial ring in the 1427:{\displaystyle e_{1}(X_{1})=X_{1}.} 24: 3081:of the matrix. In particular, the 25: 5603: 5559:Trifonov, Martin (5 March 2024). 5552: 5535:Enumerative Combinatorics, Vol. 2 3996:which contain only the variables 3230:elementary symmetric polynomials 980:Thus, for each positive integer 110:elementary symmetric polynomials 34: 5135:for monomials in the variables 4026:to 0, so their sum equals 3549: 3021:are the values substituted for 4653: 4609: 4600: 4538: 4532: 4520: 4476: 4394: 4344: 4338: 4326: 4294: 4233: 4171: 4165: 4153: 4115: 4109: 3786: 3754: 3719: 3687: 3671: 3639: 3450: 3418: 3396: 3364: 3338: 3306: 3177:Power sum symmetric polynomial 2963: 2931: 2912: 2902: 2874: 2842: 2810: 2778: 2749: 2730: 2619: 2567: 2411: 2359: 2197: 2145: 2069: 2017: 1925: 1886: 1793: 1754: 1691: 1652: 1570: 1544: 1494: 1468: 1405: 1392: 1303: 1271: 1248: 1216: 1193: 1161: 1138: 1106: 792: 760: 678: 633: 519: 474: 399: 354: 295: 250: 13: 1: 5501: 4436:is a symmetric polynomial in 4281:Consider now the polynomial 3883:, i.e., which do not contain 2690: 159: 18:Elementary symmetric function 3293:has a unique representation 3155:{\displaystyle \mathbb {Z} } 7: 5449: 4764:. Therefore the difference 1345: 10: 5608: 4255:. Here the doubly indexed 613:and so forth, ending with 4902:algebraically independent 3805:Here the "lacunary part" 3063:characteristic polynomial 4843:(in fact degree at most 4454:, of the same degree as 4069:that we shall denote by 2699:: we have the identity 1350:The following lists the 43:This article includes a 5587:Homogeneous polynomials 5486:MacMahon Master theorem 3556:homogeneous polynomials 1320:Sometimes the notation 72:more precise citations. 5481:Maclaurin's inequality 5152:. The leading term of 4660: 4404: 4240: 3796: 3607:variables with degree 3574:, with respect to the 3464: 3156: 3007:, we obtain the monic 2973: 2729: 2681: 1977: 1612: 1428: 1310: 986:less than or equal to 903: 724: 604: 5496:Representation theory 5476:Newton's inequalities 5080:, and each partition 4661: 4405: 4241: 3894:. More precisely: If 3797: 3465: 3214:with coefficients in 3157: 3128:symmetric polynomials 3009:univariate polynomial 2974: 2709: 2682: 1978: 1613: 1429: 1311: 904: 725: 605: 114:symmetric polynomials 27:Mathematical function 5456:Symmetric polynomial 5133:multi-index notation 4470: 4288: 4100: 3633: 3473:for some polynomial 3300: 3144: 2706: 2000: 1635: 1451: 1379: 1093: 747: 620: 233: 156:distinct variables. 5592:Symmetric functions 5531:Stanley, Richard P. 5471:Newton's identities 1331:is used instead of 137:variables for each 106:commutative algebra 5491:Symmetric function 4656: 4463:, which satisfies 4400: 4236: 3792: 3460: 3152: 2969: 2677: 2675: 1973: 1971: 1608: 1606: 1424: 1306: 899: 858: 720: 600: 598: 562: 436: 326: 104:, specifically in 45:list of references 4970:lexicographically 4958:in the variables 4926:Alternative proof 4916:is isomorphic to 4535: 4341: 4168: 4112: 3990:But the terms of 3684: 3485:ring homomorphism 1035:integer partition 798: 529: 409: 305: 226:, are defined by 98: 97: 90: 16:(Redirected from 5599: 5573: 5571: 5570: 5565:(Video). YouTube 5548: 5526: 5509:Macdonald, I. G. 5466:Schur polynomial 5445: 5434: 5405: 5374: 5368: 5340: 5308: 5302: 5296: 5290: 5284: 5278: 5272: 5262: 5255: 5248: 5224: 5185: 5179: 5145: 5130: 5124: 5118: 5091: 5085: 5079: 5073: 5063: 5057: 5051: 5023: 5013: 5007: 4998: 4989: 4968: 4953: 4947: 4921: 4915: 4909: 4899: 4883: 4874: 4868: 4862: 4852: 4842: 4836: 4830: 4804: 4789: 4773: 4763: 4757: 4751: 4745: 4726: 4720: 4710: 4694: 4679: 4665: 4663: 4662: 4657: 4646: 4645: 4621: 4620: 4599: 4598: 4562: 4561: 4537: 4536: 4528: 4513: 4512: 4488: 4487: 4462: 4453: 4435: 4409: 4407: 4406: 4401: 4393: 4392: 4362: 4361: 4343: 4342: 4334: 4325: 4324: 4306: 4305: 4277: 4270: 4254: 4245: 4243: 4242: 4237: 4232: 4231: 4195: 4194: 4170: 4169: 4161: 4152: 4151: 4127: 4126: 4114: 4113: 4105: 4092: 4068: 4049: 4025: 4014: 3995: 3986: 3966: 3960: 3954: 3948: 3929: 3923: 3905: 3899: 3893: 3882: 3863: 3854: 3843: 3825: 3819: 3813: 3801: 3799: 3798: 3793: 3785: 3784: 3766: 3765: 3747: 3746: 3734: 3733: 3718: 3717: 3699: 3698: 3686: 3685: 3682: 3670: 3669: 3651: 3650: 3625: 3619: 3613: 3606: 3600: 3587: 3573: 3567: 3545: 3539: 3529: 3519: 3495: 3482: 3469: 3467: 3466: 3461: 3459: 3458: 3449: 3448: 3430: 3429: 3417: 3416: 3395: 3394: 3376: 3375: 3363: 3362: 3353: 3352: 3337: 3336: 3318: 3317: 3292: 3265: 3255: 3225: 3219: 3213: 3195: 3189:commutative ring 3169:invariant theory 3162: 3161: 3159: 3158: 3153: 3151: 3135: 3117: 3108: 3093: 3056:Vieta's formulas 3045: 3016: 3006: 2978: 2976: 2975: 2970: 2962: 2961: 2943: 2942: 2930: 2929: 2920: 2919: 2892: 2891: 2873: 2872: 2854: 2853: 2841: 2840: 2828: 2827: 2809: 2808: 2790: 2789: 2777: 2776: 2764: 2763: 2748: 2747: 2728: 2723: 2697:monic polynomial 2686: 2684: 2683: 2678: 2676: 2668: 2667: 2658: 2657: 2648: 2647: 2638: 2637: 2618: 2617: 2605: 2604: 2592: 2591: 2579: 2578: 2566: 2565: 2549: 2548: 2539: 2538: 2529: 2528: 2516: 2515: 2506: 2505: 2496: 2495: 2483: 2482: 2473: 2472: 2463: 2462: 2450: 2449: 2440: 2439: 2430: 2429: 2410: 2409: 2397: 2396: 2384: 2383: 2371: 2370: 2358: 2357: 2341: 2340: 2331: 2330: 2318: 2317: 2308: 2307: 2295: 2294: 2285: 2284: 2272: 2271: 2262: 2261: 2249: 2248: 2239: 2238: 2226: 2225: 2216: 2215: 2196: 2195: 2183: 2182: 2170: 2169: 2157: 2156: 2144: 2143: 2127: 2126: 2114: 2113: 2101: 2100: 2088: 2087: 2068: 2067: 2055: 2054: 2042: 2041: 2029: 2028: 2016: 2015: 1992: 1982: 1980: 1979: 1974: 1972: 1964: 1963: 1954: 1953: 1944: 1943: 1924: 1923: 1911: 1910: 1898: 1897: 1885: 1884: 1868: 1867: 1858: 1857: 1845: 1844: 1835: 1834: 1822: 1821: 1812: 1811: 1792: 1791: 1779: 1778: 1766: 1765: 1753: 1752: 1736: 1735: 1723: 1722: 1710: 1709: 1690: 1689: 1677: 1676: 1664: 1663: 1651: 1650: 1627: 1617: 1615: 1614: 1609: 1607: 1599: 1598: 1589: 1588: 1569: 1568: 1556: 1555: 1543: 1542: 1526: 1525: 1513: 1512: 1493: 1492: 1480: 1479: 1467: 1466: 1443: 1433: 1431: 1430: 1425: 1420: 1419: 1404: 1403: 1391: 1390: 1371: 1361: 1355: 1341: 1330: 1315: 1313: 1312: 1307: 1302: 1301: 1283: 1282: 1270: 1269: 1268: 1267: 1247: 1246: 1228: 1227: 1215: 1214: 1213: 1212: 1192: 1191: 1173: 1172: 1160: 1159: 1158: 1157: 1137: 1136: 1118: 1117: 1105: 1104: 1085: 1059: 1021: 1016:-subsets of the 1015: 1009: 1003: 997: 991: 985: 976: 949: 939: 908: 906: 905: 900: 895: 894: 893: 892: 875: 874: 873: 872: 857: 850: 849: 831: 830: 818: 817: 791: 790: 772: 771: 759: 758: 739: 733:In general, for 729: 727: 726: 721: 716: 715: 703: 702: 693: 692: 677: 676: 658: 657: 645: 644: 632: 631: 609: 607: 606: 601: 599: 592: 591: 582: 581: 572: 571: 561: 518: 517: 499: 498: 486: 485: 473: 472: 456: 455: 446: 445: 435: 398: 397: 379: 378: 366: 365: 353: 352: 336: 335: 325: 294: 293: 275: 274: 262: 261: 249: 248: 225: 215: 187: 169: 155: 149: 139:positive integer 136: 130: 121: 93: 86: 82: 79: 73: 68:this article by 59:inline citations 38: 37: 30: 21: 5607: 5606: 5602: 5601: 5600: 5598: 5597: 5596: 5577: 5576: 5568: 5566: 5555: 5545: 5523: 5504: 5452: 5444: 5436: 5432: 5423: 5416: 5408: 5403: 5394: 5387: 5379: 5370: 5366: 5357: 5350: 5342: 5338: 5329: 5322: 5310: 5304: 5298: 5297:a partition of 5292: 5286: 5280: 5274: 5268: 5257: 5250: 5247: 5238: 5232: 5226: 5222: 5213: 5206: 5198: 5181: 5177: 5168: 5161: 5153: 5144: 5136: 5126: 5120: 5117: 5108: 5101: 5093: 5087: 5081: 5075: 5069: 5059: 5053: 5049: 5040: 5033: 5025: 5019: 5009: 5006: 5000: 4997: 4991: 4988: 4979: 4973: 4967: 4959: 4949: 4946: 4937: 4931: 4928: 4917: 4911: 4905: 4897: 4891: 4885: 4879: 4870: 4864: 4854: 4844: 4838: 4832: 4831:, the quotient 4826: 4806: 4805:. Then writing 4803: 4791: 4787: 4781: 4775: 4765: 4759: 4753: 4747: 4744: 4734: 4728: 4722: 4712: 4709: 4696: 4693: 4681: 4678: 4670: 4635: 4631: 4616: 4612: 4576: 4572: 4545: 4541: 4527: 4526: 4502: 4498: 4483: 4479: 4471: 4468: 4467: 4461: 4455: 4452: 4443: 4437: 4433: 4424: 4414: 4376: 4372: 4351: 4347: 4333: 4332: 4320: 4316: 4301: 4297: 4289: 4286: 4285: 4272: 4269: 4256: 4250: 4209: 4205: 4178: 4174: 4160: 4159: 4141: 4137: 4122: 4118: 4104: 4103: 4101: 4098: 4097: 4090: 4080: 4070: 4067: 4057: 4051: 4047: 4037: 4027: 4024: 4016: 4013: 4003: 3997: 3991: 3985: 3975: 3969: 3962: 3956: 3950: 3947: 3937: 3931: 3925: 3922: 3913: 3907: 3901: 3895: 3892: 3884: 3881: 3871: 3865: 3859: 3853: 3845: 3842: 3833: 3827: 3821: 3815: 3812: 3806: 3780: 3776: 3761: 3757: 3742: 3738: 3729: 3725: 3713: 3709: 3694: 3690: 3681: 3677: 3665: 3661: 3646: 3642: 3634: 3631: 3630: 3621: 3615: 3608: 3602: 3592: 3582: 3569: 3568:and, for fixed 3563: 3552: 3541: 3535: 3521: 3516: 3510: 3502: 3497: 3493: 3488: 3474: 3454: 3453: 3444: 3440: 3425: 3421: 3412: 3408: 3390: 3386: 3371: 3367: 3358: 3354: 3348: 3347: 3332: 3328: 3313: 3309: 3301: 3298: 3297: 3286: 3280: 3270: 3257: 3253: 3244: 3236: 3231: 3221: 3215: 3212: 3203: 3197: 3191: 3185: 3147: 3145: 3142: 3141: 3140: 3138:polynomial ring 3131: 3113: 3107: 3099: 3092: 3086: 3044: 3035: 3028: 3022: 3012: 3011:(with variable 3005: 2996: 2989: 2983: 2957: 2953: 2938: 2934: 2925: 2921: 2915: 2911: 2881: 2877: 2868: 2864: 2849: 2845: 2836: 2832: 2817: 2813: 2804: 2800: 2785: 2781: 2772: 2768: 2759: 2755: 2743: 2739: 2724: 2713: 2707: 2704: 2703: 2693: 2674: 2673: 2663: 2659: 2653: 2649: 2643: 2639: 2633: 2629: 2622: 2613: 2609: 2600: 2596: 2587: 2583: 2574: 2570: 2561: 2557: 2554: 2553: 2544: 2540: 2534: 2530: 2524: 2520: 2511: 2507: 2501: 2497: 2491: 2487: 2478: 2474: 2468: 2464: 2458: 2454: 2445: 2441: 2435: 2431: 2425: 2421: 2414: 2405: 2401: 2392: 2388: 2379: 2375: 2366: 2362: 2353: 2349: 2346: 2345: 2336: 2332: 2326: 2322: 2313: 2309: 2303: 2299: 2290: 2286: 2280: 2276: 2267: 2263: 2257: 2253: 2244: 2240: 2234: 2230: 2221: 2217: 2211: 2207: 2200: 2191: 2187: 2178: 2174: 2165: 2161: 2152: 2148: 2139: 2135: 2132: 2131: 2122: 2118: 2109: 2105: 2096: 2092: 2083: 2079: 2072: 2063: 2059: 2050: 2046: 2037: 2033: 2024: 2020: 2011: 2007: 2003: 2001: 1998: 1997: 1987: 1970: 1969: 1959: 1955: 1949: 1945: 1939: 1935: 1928: 1919: 1915: 1906: 1902: 1893: 1889: 1880: 1876: 1873: 1872: 1863: 1859: 1853: 1849: 1840: 1836: 1830: 1826: 1817: 1813: 1807: 1803: 1796: 1787: 1783: 1774: 1770: 1761: 1757: 1748: 1744: 1741: 1740: 1731: 1727: 1718: 1714: 1705: 1701: 1694: 1685: 1681: 1672: 1668: 1659: 1655: 1646: 1642: 1638: 1636: 1633: 1632: 1622: 1605: 1604: 1594: 1590: 1584: 1580: 1573: 1564: 1560: 1551: 1547: 1538: 1534: 1531: 1530: 1521: 1517: 1508: 1504: 1497: 1488: 1484: 1475: 1471: 1462: 1458: 1454: 1452: 1449: 1448: 1438: 1415: 1411: 1399: 1395: 1386: 1382: 1380: 1377: 1376: 1366: 1357: 1351: 1348: 1340: 1332: 1329: 1321: 1297: 1293: 1278: 1274: 1263: 1259: 1258: 1254: 1242: 1238: 1223: 1219: 1208: 1204: 1203: 1199: 1187: 1183: 1168: 1164: 1153: 1149: 1148: 1144: 1132: 1128: 1113: 1109: 1100: 1096: 1094: 1091: 1090: 1083: 1074: 1066: 1061: 1057: 1048: 1038: 1017: 1011: 1005: 999: 993: 987: 981: 974: 965: 958: 951: 941: 937: 928: 921: 913: 888: 884: 883: 879: 868: 864: 863: 859: 845: 841: 826: 822: 813: 809: 802: 786: 782: 767: 763: 754: 750: 748: 745: 744: 734: 711: 707: 698: 694: 688: 684: 672: 668: 653: 649: 640: 636: 627: 623: 621: 618: 617: 597: 596: 587: 583: 577: 573: 567: 563: 533: 522: 513: 509: 494: 490: 481: 477: 468: 464: 461: 460: 451: 447: 441: 437: 413: 402: 393: 389: 374: 370: 361: 357: 348: 344: 341: 340: 331: 327: 309: 298: 289: 285: 270: 266: 257: 253: 244: 240: 236: 234: 231: 230: 217: 213: 204: 197: 189: 186: 177: 171: 165: 162: 151: 141: 132: 126: 117: 94: 83: 77: 74: 63: 49:related reading 39: 35: 28: 23: 22: 15: 12: 11: 5: 5605: 5595: 5594: 5589: 5575: 5574: 5554: 5553:External links 5551: 5550: 5549: 5543: 5527: 5521: 5503: 5500: 5499: 5498: 5493: 5488: 5483: 5478: 5473: 5468: 5463: 5458: 5451: 5448: 5440: 5428: 5421: 5412: 5399: 5392: 5383: 5362: 5355: 5346: 5334: 5327: 5318: 5265: 5264: 5243: 5236: 5230: 5218: 5211: 5202: 5195:monomial order 5173: 5166: 5157: 5140: 5113: 5106: 5097: 5045: 5038: 5029: 5004: 4995: 4984: 4980:> ... > 4977: 4963: 4942: 4935: 4927: 4924: 4904:over the ring 4895: 4889: 4818: 4795: 4785: 4779: 4739: 4732: 4700: 4685: 4674: 4667: 4666: 4655: 4652: 4649: 4644: 4641: 4638: 4634: 4630: 4627: 4624: 4619: 4615: 4611: 4608: 4605: 4602: 4597: 4594: 4591: 4588: 4585: 4582: 4579: 4575: 4571: 4568: 4565: 4560: 4557: 4554: 4551: 4548: 4544: 4540: 4534: 4531: 4525: 4522: 4519: 4516: 4511: 4508: 4505: 4501: 4497: 4494: 4491: 4486: 4482: 4478: 4475: 4459: 4448: 4441: 4429: 4422: 4411: 4410: 4399: 4396: 4391: 4388: 4385: 4382: 4379: 4375: 4371: 4368: 4365: 4360: 4357: 4354: 4350: 4346: 4340: 4337: 4331: 4328: 4323: 4319: 4315: 4312: 4309: 4304: 4300: 4296: 4293: 4260: 4247: 4246: 4235: 4230: 4227: 4224: 4221: 4218: 4215: 4212: 4208: 4204: 4201: 4198: 4193: 4190: 4187: 4184: 4181: 4177: 4173: 4167: 4164: 4158: 4155: 4150: 4147: 4144: 4140: 4136: 4133: 4130: 4125: 4121: 4117: 4111: 4108: 4085: 4078: 4062: 4055: 4042: 4035: 4020: 4008: 4001: 3980: 3973: 3942: 3935: 3918: 3911: 3888: 3876: 3869: 3849: 3838: 3831: 3810: 3803: 3802: 3791: 3788: 3783: 3779: 3775: 3772: 3769: 3764: 3760: 3756: 3753: 3750: 3745: 3741: 3737: 3732: 3728: 3724: 3721: 3716: 3712: 3708: 3705: 3702: 3697: 3693: 3689: 3680: 3676: 3673: 3668: 3664: 3660: 3657: 3654: 3649: 3645: 3641: 3638: 3551: 3548: 3514: 3508: 3500: 3491: 3471: 3470: 3457: 3452: 3447: 3443: 3439: 3436: 3433: 3428: 3424: 3420: 3415: 3411: 3407: 3404: 3401: 3398: 3393: 3389: 3385: 3382: 3379: 3374: 3370: 3366: 3361: 3357: 3351: 3346: 3343: 3340: 3335: 3331: 3327: 3324: 3321: 3316: 3312: 3308: 3305: 3284: 3278: 3249: 3242: 3234: 3208: 3201: 3184: 3181: 3150: 3103: 3090: 3040: 3033: 3026: 3001: 2994: 2987: 2980: 2979: 2968: 2965: 2960: 2956: 2952: 2949: 2946: 2941: 2937: 2933: 2928: 2924: 2918: 2914: 2910: 2907: 2904: 2901: 2898: 2895: 2890: 2887: 2884: 2880: 2876: 2871: 2867: 2863: 2860: 2857: 2852: 2848: 2844: 2839: 2835: 2831: 2826: 2823: 2820: 2816: 2812: 2807: 2803: 2799: 2796: 2793: 2788: 2784: 2780: 2775: 2771: 2767: 2762: 2758: 2754: 2751: 2746: 2742: 2738: 2735: 2732: 2727: 2722: 2719: 2716: 2712: 2692: 2689: 2688: 2687: 2671: 2666: 2662: 2656: 2652: 2646: 2642: 2636: 2632: 2628: 2625: 2623: 2621: 2616: 2612: 2608: 2603: 2599: 2595: 2590: 2586: 2582: 2577: 2573: 2569: 2564: 2560: 2556: 2555: 2552: 2547: 2543: 2537: 2533: 2527: 2523: 2519: 2514: 2510: 2504: 2500: 2494: 2490: 2486: 2481: 2477: 2471: 2467: 2461: 2457: 2453: 2448: 2444: 2438: 2434: 2428: 2424: 2420: 2417: 2415: 2413: 2408: 2404: 2400: 2395: 2391: 2387: 2382: 2378: 2374: 2369: 2365: 2361: 2356: 2352: 2348: 2347: 2344: 2339: 2335: 2329: 2325: 2321: 2316: 2312: 2306: 2302: 2298: 2293: 2289: 2283: 2279: 2275: 2270: 2266: 2260: 2256: 2252: 2247: 2243: 2237: 2233: 2229: 2224: 2220: 2214: 2210: 2206: 2203: 2201: 2199: 2194: 2190: 2186: 2181: 2177: 2173: 2168: 2164: 2160: 2155: 2151: 2147: 2142: 2138: 2134: 2133: 2130: 2125: 2121: 2117: 2112: 2108: 2104: 2099: 2095: 2091: 2086: 2082: 2078: 2075: 2073: 2071: 2066: 2062: 2058: 2053: 2049: 2045: 2040: 2036: 2032: 2027: 2023: 2019: 2014: 2010: 2006: 2005: 1984: 1983: 1967: 1962: 1958: 1952: 1948: 1942: 1938: 1934: 1931: 1929: 1927: 1922: 1918: 1914: 1909: 1905: 1901: 1896: 1892: 1888: 1883: 1879: 1875: 1874: 1871: 1866: 1862: 1856: 1852: 1848: 1843: 1839: 1833: 1829: 1825: 1820: 1816: 1810: 1806: 1802: 1799: 1797: 1795: 1790: 1786: 1782: 1777: 1773: 1769: 1764: 1760: 1756: 1751: 1747: 1743: 1742: 1739: 1734: 1730: 1726: 1721: 1717: 1713: 1708: 1704: 1700: 1697: 1695: 1693: 1688: 1684: 1680: 1675: 1671: 1667: 1662: 1658: 1654: 1649: 1645: 1641: 1640: 1619: 1618: 1602: 1597: 1593: 1587: 1583: 1579: 1576: 1574: 1572: 1567: 1563: 1559: 1554: 1550: 1546: 1541: 1537: 1533: 1532: 1529: 1524: 1520: 1516: 1511: 1507: 1503: 1500: 1498: 1496: 1491: 1487: 1483: 1478: 1474: 1470: 1465: 1461: 1457: 1456: 1435: 1434: 1423: 1418: 1414: 1410: 1407: 1402: 1398: 1394: 1389: 1385: 1347: 1344: 1336: 1325: 1318: 1317: 1305: 1300: 1296: 1292: 1289: 1286: 1281: 1277: 1273: 1266: 1262: 1257: 1253: 1250: 1245: 1241: 1237: 1234: 1231: 1226: 1222: 1218: 1211: 1207: 1202: 1198: 1195: 1190: 1186: 1182: 1179: 1176: 1171: 1167: 1163: 1156: 1152: 1147: 1143: 1140: 1135: 1131: 1127: 1124: 1121: 1116: 1112: 1108: 1103: 1099: 1079: 1072: 1064: 1053: 1046: 970: 963: 956: 950:. (Sometimes, 933: 926: 917: 910: 909: 898: 891: 887: 882: 878: 871: 867: 862: 856: 853: 848: 844: 840: 837: 834: 829: 825: 821: 816: 812: 808: 805: 801: 797: 794: 789: 785: 781: 778: 775: 770: 766: 762: 757: 753: 731: 730: 719: 714: 710: 706: 701: 697: 691: 687: 683: 680: 675: 671: 667: 664: 661: 656: 652: 648: 643: 639: 635: 630: 626: 611: 610: 595: 590: 586: 580: 576: 570: 566: 560: 557: 554: 551: 548: 545: 542: 539: 536: 532: 528: 525: 523: 521: 516: 512: 508: 505: 502: 497: 493: 489: 484: 480: 476: 471: 467: 463: 462: 459: 454: 450: 444: 440: 434: 431: 428: 425: 422: 419: 416: 412: 408: 405: 403: 401: 396: 392: 388: 385: 382: 377: 373: 369: 364: 360: 356: 351: 347: 343: 342: 339: 334: 330: 324: 321: 318: 315: 312: 308: 304: 301: 299: 297: 292: 288: 284: 281: 278: 273: 269: 265: 260: 256: 252: 247: 243: 239: 238: 209: 202: 193: 182: 175: 161: 158: 96: 95: 53:external links 42: 40: 33: 26: 9: 6: 4: 3: 2: 5604: 5593: 5590: 5588: 5585: 5584: 5582: 5564: 5563: 5557: 5556: 5546: 5544:0-521-56069-1 5540: 5536: 5532: 5528: 5524: 5522:0-19-850450-0 5518: 5514: 5510: 5506: 5505: 5497: 5494: 5492: 5489: 5487: 5484: 5482: 5479: 5477: 5474: 5472: 5469: 5467: 5464: 5462: 5459: 5457: 5454: 5453: 5447: 5443: 5439: 5431: 5427: 5420: 5415: 5411: 5402: 5398: 5391: 5386: 5382: 5376: 5373: 5365: 5361: 5354: 5349: 5345: 5337: 5333: 5326: 5321: 5317: 5313: 5307: 5301: 5295: 5289: 5283: 5277: 5271: 5260: 5254: 5246: 5242: 5235: 5229: 5221: 5217: 5210: 5205: 5201: 5196: 5192: 5189: 5188: 5187: 5184: 5176: 5172: 5165: 5160: 5156: 5151: 5147: 5143: 5139: 5134: 5129: 5123: 5116: 5112: 5105: 5100: 5096: 5090: 5084: 5078: 5072: 5067: 5066:Young diagram 5062: 5056: 5048: 5044: 5037: 5032: 5028: 5022: 5017: 5012: 5003: 4994: 4987: 4983: 4976: 4971: 4966: 4962: 4957: 4952: 4945: 4941: 4934: 4923: 4920: 4914: 4908: 4903: 4898: 4888: 4882: 4876: 4873: 4867: 4861: 4857: 4851: 4847: 4841: 4835: 4829: 4825: 4821: 4817: 4813: 4809: 4802: 4798: 4794: 4788: 4778: 4772: 4768: 4762: 4756: 4750: 4742: 4738: 4731: 4725: 4719: 4715: 4707: 4703: 4699: 4692: 4688: 4684: 4680:to 0 in 4677: 4673: 4650: 4647: 4642: 4639: 4636: 4632: 4628: 4625: 4622: 4617: 4613: 4606: 4603: 4595: 4592: 4589: 4586: 4583: 4580: 4577: 4573: 4569: 4566: 4563: 4558: 4555: 4552: 4549: 4546: 4542: 4529: 4523: 4517: 4514: 4509: 4506: 4503: 4499: 4495: 4492: 4489: 4484: 4480: 4473: 4466: 4465: 4464: 4458: 4451: 4447: 4440: 4432: 4428: 4421: 4417: 4397: 4389: 4386: 4383: 4380: 4377: 4373: 4369: 4366: 4363: 4358: 4355: 4352: 4348: 4335: 4329: 4321: 4317: 4313: 4310: 4307: 4302: 4298: 4291: 4284: 4283: 4282: 4279: 4275: 4267: 4263: 4259: 4253: 4228: 4225: 4222: 4219: 4216: 4213: 4210: 4206: 4202: 4199: 4196: 4191: 4188: 4185: 4182: 4179: 4175: 4162: 4156: 4148: 4145: 4142: 4138: 4134: 4131: 4128: 4123: 4119: 4106: 4096: 4095: 4094: 4088: 4084: 4077: 4073: 4065: 4061: 4054: 4045: 4041: 4034: 4030: 4023: 4019: 4011: 4007: 4000: 3994: 3988: 3983: 3979: 3972: 3965: 3959: 3953: 3945: 3941: 3934: 3928: 3921: 3917: 3910: 3904: 3898: 3891: 3887: 3879: 3875: 3868: 3862: 3856: 3855:is missing. 3852: 3848: 3841: 3837: 3830: 3824: 3818: 3809: 3789: 3781: 3777: 3773: 3770: 3767: 3762: 3758: 3751: 3748: 3743: 3739: 3735: 3730: 3726: 3722: 3714: 3710: 3706: 3703: 3700: 3695: 3691: 3678: 3674: 3666: 3662: 3658: 3655: 3652: 3647: 3643: 3636: 3629: 3628: 3627: 3624: 3618: 3612: 3605: 3599: 3595: 3589: 3585: 3579: 3577: 3572: 3566: 3561: 3557: 3547: 3544: 3538: 3533: 3528: 3524: 3517: 3507: 3503: 3494: 3486: 3481: 3477: 3445: 3441: 3437: 3434: 3431: 3426: 3422: 3413: 3409: 3405: 3402: 3399: 3391: 3387: 3383: 3380: 3377: 3372: 3368: 3359: 3355: 3344: 3341: 3333: 3329: 3325: 3322: 3319: 3314: 3310: 3303: 3296: 3295: 3294: 3291: 3287: 3277: 3273: 3267: 3264: 3260: 3252: 3248: 3241: 3237: 3229: 3224: 3218: 3211: 3207: 3200: 3194: 3190: 3180: 3178: 3174: 3170: 3166: 3139: 3134: 3129: 3125: 3121: 3116: 3110: 3106: 3102: 3097: 3089: 3084: 3080: 3076: 3072: 3068: 3067:square matrix 3064: 3059: 3057: 3053: 3049: 3043: 3039: 3032: 3025: 3020: 3015: 3010: 3004: 3000: 2993: 2986: 2966: 2958: 2954: 2950: 2947: 2944: 2939: 2935: 2926: 2922: 2916: 2908: 2905: 2899: 2896: 2893: 2888: 2885: 2882: 2878: 2869: 2865: 2861: 2858: 2855: 2850: 2846: 2837: 2833: 2829: 2824: 2821: 2818: 2814: 2805: 2801: 2797: 2794: 2791: 2786: 2782: 2773: 2769: 2765: 2760: 2756: 2752: 2744: 2740: 2736: 2733: 2725: 2720: 2717: 2714: 2710: 2702: 2701: 2700: 2698: 2669: 2664: 2660: 2654: 2650: 2644: 2640: 2634: 2630: 2626: 2624: 2614: 2610: 2606: 2601: 2597: 2593: 2588: 2584: 2580: 2575: 2571: 2562: 2558: 2550: 2545: 2541: 2535: 2531: 2525: 2521: 2517: 2512: 2508: 2502: 2498: 2492: 2488: 2484: 2479: 2475: 2469: 2465: 2459: 2455: 2451: 2446: 2442: 2436: 2432: 2426: 2422: 2418: 2416: 2406: 2402: 2398: 2393: 2389: 2385: 2380: 2376: 2372: 2367: 2363: 2354: 2350: 2342: 2337: 2333: 2327: 2323: 2319: 2314: 2310: 2304: 2300: 2296: 2291: 2287: 2281: 2277: 2273: 2268: 2264: 2258: 2254: 2250: 2245: 2241: 2235: 2231: 2227: 2222: 2218: 2212: 2208: 2204: 2202: 2192: 2188: 2184: 2179: 2175: 2171: 2166: 2162: 2158: 2153: 2149: 2140: 2136: 2128: 2123: 2119: 2115: 2110: 2106: 2102: 2097: 2093: 2089: 2084: 2080: 2076: 2074: 2064: 2060: 2056: 2051: 2047: 2043: 2038: 2034: 2030: 2025: 2021: 2012: 2008: 1996: 1995: 1994: 1990: 1965: 1960: 1956: 1950: 1946: 1940: 1936: 1932: 1930: 1920: 1916: 1912: 1907: 1903: 1899: 1894: 1890: 1881: 1877: 1869: 1864: 1860: 1854: 1850: 1846: 1841: 1837: 1831: 1827: 1823: 1818: 1814: 1808: 1804: 1800: 1798: 1788: 1784: 1780: 1775: 1771: 1767: 1762: 1758: 1749: 1745: 1737: 1732: 1728: 1724: 1719: 1715: 1711: 1706: 1702: 1698: 1696: 1686: 1682: 1678: 1673: 1669: 1665: 1660: 1656: 1647: 1643: 1631: 1630: 1629: 1625: 1600: 1595: 1591: 1585: 1581: 1577: 1575: 1565: 1561: 1557: 1552: 1548: 1539: 1535: 1527: 1522: 1518: 1514: 1509: 1505: 1501: 1499: 1489: 1485: 1481: 1476: 1472: 1463: 1459: 1447: 1446: 1445: 1441: 1421: 1416: 1412: 1408: 1400: 1396: 1387: 1383: 1375: 1374: 1373: 1369: 1363: 1360: 1354: 1343: 1339: 1335: 1328: 1324: 1298: 1294: 1290: 1287: 1284: 1279: 1275: 1264: 1260: 1255: 1251: 1243: 1239: 1235: 1232: 1229: 1224: 1220: 1209: 1205: 1200: 1196: 1188: 1184: 1180: 1177: 1174: 1169: 1165: 1154: 1150: 1145: 1141: 1133: 1129: 1125: 1122: 1119: 1114: 1110: 1101: 1097: 1089: 1088: 1087: 1082: 1078: 1071: 1067: 1056: 1052: 1045: 1041: 1036: 1031: 1029: 1025: 1020: 1014: 1008: 1002: 996: 990: 984: 978: 973: 969: 962: 955: 948: 944: 936: 932: 925: 920: 916: 896: 889: 885: 880: 876: 869: 865: 860: 854: 851: 846: 842: 838: 835: 832: 827: 823: 819: 814: 810: 806: 803: 799: 795: 787: 783: 779: 776: 773: 768: 764: 755: 751: 743: 742: 741: 737: 717: 712: 708: 704: 699: 695: 689: 685: 681: 673: 669: 665: 662: 659: 654: 650: 646: 641: 637: 628: 624: 616: 615: 614: 593: 588: 584: 578: 574: 568: 564: 558: 555: 552: 549: 546: 543: 540: 537: 534: 530: 526: 524: 514: 510: 506: 503: 500: 495: 491: 487: 482: 478: 469: 465: 457: 452: 448: 442: 438: 432: 429: 426: 423: 420: 417: 414: 410: 406: 404: 394: 390: 386: 383: 380: 375: 371: 367: 362: 358: 349: 345: 337: 332: 328: 322: 319: 316: 313: 310: 306: 302: 300: 290: 286: 282: 279: 276: 271: 267: 263: 258: 254: 245: 241: 229: 228: 227: 224: 220: 212: 208: 201: 196: 192: 185: 181: 174: 168: 157: 154: 148: 144: 140: 135: 129: 125: 120: 115: 111: 107: 103: 92: 89: 81: 71: 67: 61: 60: 54: 50: 46: 41: 32: 31: 19: 5567:. Retrieved 5561: 5534: 5512: 5441: 5437: 5429: 5425: 5418: 5413: 5409: 5400: 5396: 5389: 5384: 5380: 5377: 5371: 5363: 5359: 5352: 5347: 5343: 5335: 5331: 5324: 5319: 5315: 5311: 5305: 5299: 5293: 5287: 5281: 5275: 5269: 5266: 5258: 5252: 5244: 5240: 5233: 5227: 5219: 5215: 5208: 5203: 5199: 5190: 5182: 5174: 5170: 5163: 5158: 5154: 5149: 5148: 5141: 5137: 5127: 5121: 5114: 5110: 5103: 5098: 5094: 5088: 5082: 5076: 5070: 5060: 5054: 5046: 5042: 5035: 5030: 5026: 5020: 5010: 5001: 4992: 4985: 4981: 4974: 4964: 4960: 4950: 4943: 4939: 4932: 4929: 4918: 4912: 4906: 4893: 4886: 4884:polynomials 4880: 4877: 4871: 4865: 4859: 4855: 4849: 4845: 4839: 4833: 4827: 4823: 4819: 4815: 4811: 4807: 4800: 4796: 4792: 4783: 4776: 4770: 4766: 4760: 4754: 4748: 4740: 4736: 4729: 4723: 4717: 4713: 4705: 4701: 4697: 4690: 4686: 4682: 4675: 4671: 4668: 4456: 4449: 4445: 4438: 4430: 4426: 4419: 4415: 4412: 4280: 4278:variables. 4273: 4265: 4261: 4257: 4251: 4248: 4086: 4082: 4075: 4071: 4063: 4059: 4052: 4043: 4039: 4032: 4028: 4021: 4017: 4009: 4005: 3998: 3992: 3989: 3981: 3977: 3970: 3963: 3957: 3951: 3943: 3939: 3932: 3926: 3919: 3915: 3908: 3902: 3896: 3889: 3885: 3877: 3873: 3866: 3860: 3857: 3850: 3846: 3839: 3835: 3828: 3822: 3816: 3807: 3804: 3622: 3616: 3610: 3603: 3597: 3593: 3590: 3583: 3581:In the case 3580: 3570: 3564: 3558:by a double 3553: 3550:Proof sketch 3542: 3536: 3526: 3522: 3512: 3505: 3498: 3489: 3479: 3475: 3472: 3289: 3282: 3275: 3271: 3268: 3262: 3258: 3250: 3246: 3239: 3232: 3227: 3222: 3216: 3209: 3205: 3198: 3192: 3186: 3132: 3114: 3111: 3104: 3100: 3087: 3060: 3048:coefficients 3041: 3037: 3030: 3023: 3013: 3002: 2998: 2991: 2984: 2981: 2694: 1988: 1985: 1623: 1620: 1439: 1436: 1367: 1364: 1358: 1352: 1349: 1337: 1333: 1326: 1322: 1319: 1080: 1076: 1069: 1062: 1054: 1050: 1043: 1039: 1032: 1023: 1018: 1012: 1006: 1000: 994: 988: 982: 979: 971: 967: 960: 953: 946: 942: 934: 930: 923: 918: 914: 911: 735: 732: 612: 222: 218: 210: 206: 199: 194: 190: 183: 179: 172: 166: 163: 152: 146: 142: 133: 127: 118: 109: 99: 84: 78:January 2017 75: 64:Please help 56: 5225:is clearly 5068:containing 3532:isomorphism 3530:defines an 3487:that sends 3096:determinant 3071:eigenvalues 102:mathematics 70:introducing 5581:Categories 5569:2024-03-26 5502:References 5273:of degree 5016:partitions 4711:, for all 3826:variables 3525:= 1, ..., 3261:= 1, ..., 3118:variables 3079:invariants 3046:and whose 2691:Properties 740:we define 221:= 1, ..., 188:, written 170:variables 160:Definition 4956:monomials 4640:− 4626:… 4593:− 4581:− 4574:σ 4567:… 4556:− 4543:σ 4533:~ 4507:− 4493:… 4381:− 4374:σ 4367:… 4349:σ 4339:~ 4311:… 4249:for some 4226:− 4214:− 4207:σ 4200:… 4189:− 4176:σ 4166:~ 4146:− 4132:… 4110:~ 3771:… 3749:⋅ 3736:⋯ 3704:… 3656:… 3560:induction 3435:… 3403:… 3381:… 3323:… 3120:generates 2948:… 2906:− 2897:⋯ 2886:− 2879:λ 2859:… 2822:− 2815:λ 2795:… 2766:− 2757:λ 2737:− 2734:λ 2711:∏ 1288:… 1261:λ 1252:⋯ 1233:… 1206:λ 1197:⋅ 1178:… 1151:λ 1123:… 1102:λ 1033:Given an 1024:multisets 877:⋯ 852:≤ 836:⋯ 807:≤ 800:∑ 777:… 705:⋯ 663:… 556:≤ 538:≤ 531:∑ 504:… 430:≤ 418:≤ 411:∑ 384:… 320:≤ 314:≤ 307:∑ 280:… 5533:(1999). 5511:(1995). 5450:See also 5417: ( 5388: ( 5351: ( 5323: ( 5251:1, ..., 5207: ( 5162: ( 5102: ( 4460:lacunary 3858:Because 3811:lacunary 3683:lacunary 3534:between 3187:For any 3017:) whose 1346:Examples 912:so that 5424:, ..., 5395:, ..., 5358:, ..., 5330:, ..., 5309:, then 5261:  5214:, ..., 5169:, ..., 5119:) (the 5109:, ..., 5041:, ..., 4938:, ..., 4892:, ..., 4735:, ..., 4444:, ..., 4425:, ..., 4081:, ..., 4058:, ..., 4038:, ..., 4004:, ..., 3976:, ..., 3955:, then 3938:, ..., 3914:, ..., 3872:, ..., 3834:, ..., 3511:, ..., 3281:, ..., 3245:, ..., 3204:, ..., 3073:of the 3036:, ..., 2997:, ..., 1075:, ..., 1049:, ..., 966:, ..., 929:, ..., 205:, ..., 178:, ..., 66:improve 5541:  5519:  4695:gives 3576:degree 3075:matrix 3050:are – 124:degree 108:, the 5291:with 5191:Proof 5150:Lemma 4716:< 4413:Then 3609:< 3596:< 3165:proof 3083:trace 3065:of a 3052:up to 3019:roots 945:> 938:) = 0 51:, or 5539:ISBN 5517:ISBN 4900:are 4863:and 4048:, 0) 3961:and 3900:and 3540:and 3520:for 3288:) ∈ 3256:for 3124:ring 3122:the 3061:The 1986:For 1621:For 1437:For 1365:For 952:1 = 839:< 833:< 820:< 550:< 544:< 424:< 216:for 5239:··· 5180:is 5086:of 5018:of 4875:. 4782:··· 4743:− 1 4708:− 1 4276:− 1 4268:− 1 4089:− 1 4066:− 1 4046:− 1 4012:− 1 3987:.) 3984:− 1 3946:− 1 3880:− 1 3620:in 3586:= 1 3496:to 3220:by 3130:in 3126:of 1991:= 4 1626:= 3 1444:: 1442:= 2 1370:= 1 1042:= ( 1030:.) 998:in 940:if 738:≥ 0 131:in 100:In 5583:: 5375:. 5344:ce 5316:ce 5314:− 5186:. 5146:. 4922:. 4858:− 4848:− 4814:= 4810:− 4769:− 4330::= 4252:Q̃ 4072:P̃ 3546:. 3478:∈ 3266:. 3179:. 3058:. 3029:, 2990:, 1993:: 1628:: 1372:: 1362:. 1342:. 145:≤ 55:, 47:, 5572:. 5547:. 5525:. 5442:i 5438:X 5433:) 5430:n 5426:X 5422:1 5419:X 5414:λ 5410:e 5404:) 5401:n 5397:X 5393:1 5390:X 5385:λ 5381:e 5372:P 5367:) 5364:n 5360:X 5356:1 5353:X 5348:λ 5339:) 5336:n 5332:X 5328:1 5325:X 5320:λ 5312:P 5306:c 5300:d 5294:λ 5288:X 5282:P 5276:d 5270:P 5263:. 5259:X 5253:i 5245:i 5241:X 5237:2 5234:X 5231:1 5228:X 5223:) 5220:n 5216:X 5212:1 5209:X 5204:i 5200:e 5183:X 5178:) 5175:n 5171:X 5167:1 5164:X 5159:λ 5155:e 5142:i 5138:X 5128:λ 5122:t 5115:n 5111:X 5107:1 5104:X 5099:λ 5095:e 5089:d 5083:λ 5077:d 5071:d 5061:i 5055:i 5050:) 5047:n 5043:X 5039:1 5036:X 5034:( 5031:i 5027:e 5021:d 5011:d 5005:2 5002:X 4996:1 4993:X 4986:n 4982:X 4978:1 4975:X 4965:i 4961:X 4951:d 4944:n 4940:X 4936:1 4933:X 4919:A 4913:A 4907:A 4896:n 4894:e 4890:1 4887:e 4881:n 4872:P 4866:R 4860:R 4856:P 4850:n 4846:d 4840:d 4834:Q 4828:Q 4824:n 4822:, 4820:n 4816:σ 4812:R 4808:P 4801:n 4799:, 4797:n 4793:σ 4786:n 4784:X 4780:1 4777:X 4771:R 4767:P 4761:P 4755:R 4749:P 4741:n 4737:X 4733:1 4730:X 4724:R 4718:n 4714:j 4706:n 4704:, 4702:j 4698:σ 4691:n 4689:, 4687:j 4683:σ 4676:n 4672:X 4654:) 4651:0 4648:, 4643:1 4637:n 4633:X 4629:, 4623:, 4618:1 4614:X 4610:( 4607:P 4604:= 4601:) 4596:1 4590:n 4587:, 4584:1 4578:n 4570:, 4564:, 4559:1 4553:n 4550:, 4547:1 4539:( 4530:Q 4524:= 4521:) 4518:0 4515:, 4510:1 4504:n 4500:X 4496:, 4490:, 4485:1 4481:X 4477:( 4474:R 4457:P 4450:n 4446:X 4442:1 4439:X 4434:) 4431:n 4427:X 4423:1 4420:X 4418:( 4416:R 4398:. 4395:) 4390:n 4387:, 4384:1 4378:n 4370:, 4364:, 4359:n 4356:, 4353:1 4345:( 4336:Q 4327:) 4322:n 4318:X 4314:, 4308:, 4303:1 4299:X 4295:( 4292:R 4274:n 4266:n 4264:, 4262:j 4258:σ 4234:) 4229:1 4223:n 4220:, 4217:1 4211:n 4203:, 4197:, 4192:1 4186:n 4183:, 4180:1 4172:( 4163:Q 4157:= 4154:) 4149:1 4143:n 4139:X 4135:, 4129:, 4124:1 4120:X 4116:( 4107:P 4091:) 4087:n 4083:X 4079:1 4076:X 4074:( 4064:n 4060:X 4056:1 4053:X 4044:n 4040:X 4036:1 4033:X 4031:( 4029:P 4022:n 4018:X 4010:n 4006:X 4002:1 3999:X 3993:P 3982:n 3978:X 3974:1 3971:X 3964:B 3958:A 3952:B 3944:n 3940:X 3936:1 3933:X 3927:A 3920:n 3916:X 3912:1 3909:X 3903:B 3897:A 3890:n 3886:X 3878:n 3874:X 3870:1 3867:X 3861:P 3851:j 3847:X 3840:n 3836:X 3832:1 3829:X 3823:n 3817:P 3808:P 3790:. 3787:) 3782:n 3778:X 3774:, 3768:, 3763:1 3759:X 3755:( 3752:Q 3744:n 3740:X 3731:1 3727:X 3723:+ 3720:) 3715:n 3711:X 3707:, 3701:, 3696:1 3692:X 3688:( 3679:P 3675:= 3672:) 3667:n 3663:X 3659:, 3653:, 3648:1 3644:X 3640:( 3637:P 3623:A 3617:P 3611:d 3604:n 3598:n 3594:m 3584:n 3571:n 3565:n 3543:A 3537:A 3527:n 3523:k 3518:) 3515:n 3513:X 3509:1 3506:X 3504:( 3501:k 3499:e 3492:k 3490:Y 3480:A 3476:Q 3456:) 3451:) 3446:n 3442:X 3438:, 3432:, 3427:1 3423:X 3419:( 3414:n 3410:e 3406:, 3400:, 3397:) 3392:n 3388:X 3384:, 3378:, 3373:1 3369:X 3365:( 3360:1 3356:e 3350:( 3345:Q 3342:= 3339:) 3334:n 3330:X 3326:, 3320:, 3315:1 3311:X 3307:( 3304:P 3290:A 3285:n 3283:X 3279:1 3276:X 3274:( 3272:P 3263:n 3259:k 3254:) 3251:n 3247:X 3243:1 3240:X 3238:( 3235:k 3233:e 3228:n 3223:A 3217:A 3210:n 3206:X 3202:1 3199:X 3193:A 3149:Z 3133:n 3115:n 3105:n 3101:e 3091:1 3088:e 3042:n 3038:X 3034:2 3031:X 3027:1 3024:X 3014:λ 3003:n 2999:X 2995:2 2992:X 2988:1 2985:X 2967:. 2964:) 2959:n 2955:X 2951:, 2945:, 2940:1 2936:X 2932:( 2927:n 2923:e 2917:n 2913:) 2909:1 2903:( 2900:+ 2894:+ 2889:2 2883:n 2875:) 2870:n 2866:X 2862:, 2856:, 2851:1 2847:X 2843:( 2838:2 2834:e 2830:+ 2825:1 2819:n 2811:) 2806:n 2802:X 2798:, 2792:, 2787:1 2783:X 2779:( 2774:1 2770:e 2761:n 2753:= 2750:) 2745:j 2741:X 2731:( 2726:n 2721:1 2718:= 2715:j 2670:. 2665:4 2661:X 2655:3 2651:X 2645:2 2641:X 2635:1 2631:X 2627:= 2620:) 2615:4 2611:X 2607:, 2602:3 2598:X 2594:, 2589:2 2585:X 2581:, 2576:1 2572:X 2568:( 2563:4 2559:e 2551:, 2546:4 2542:X 2536:3 2532:X 2526:2 2522:X 2518:+ 2513:4 2509:X 2503:3 2499:X 2493:1 2489:X 2485:+ 2480:4 2476:X 2470:2 2466:X 2460:1 2456:X 2452:+ 2447:3 2443:X 2437:2 2433:X 2427:1 2423:X 2419:= 2412:) 2407:4 2403:X 2399:, 2394:3 2390:X 2386:, 2381:2 2377:X 2373:, 2368:1 2364:X 2360:( 2355:3 2351:e 2343:, 2338:4 2334:X 2328:3 2324:X 2320:+ 2315:4 2311:X 2305:2 2301:X 2297:+ 2292:3 2288:X 2282:2 2278:X 2274:+ 2269:4 2265:X 2259:1 2255:X 2251:+ 2246:3 2242:X 2236:1 2232:X 2228:+ 2223:2 2219:X 2213:1 2209:X 2205:= 2198:) 2193:4 2189:X 2185:, 2180:3 2176:X 2172:, 2167:2 2163:X 2159:, 2154:1 2150:X 2146:( 2141:2 2137:e 2129:, 2124:4 2120:X 2116:+ 2111:3 2107:X 2103:+ 2098:2 2094:X 2090:+ 2085:1 2081:X 2077:= 2070:) 2065:4 2061:X 2057:, 2052:3 2048:X 2044:, 2039:2 2035:X 2031:, 2026:1 2022:X 2018:( 2013:1 2009:e 1989:n 1966:. 1961:3 1957:X 1951:2 1947:X 1941:1 1937:X 1933:= 1926:) 1921:3 1917:X 1913:, 1908:2 1904:X 1900:, 1895:1 1891:X 1887:( 1882:3 1878:e 1870:, 1865:3 1861:X 1855:2 1851:X 1847:+ 1842:3 1838:X 1832:1 1828:X 1824:+ 1819:2 1815:X 1809:1 1805:X 1801:= 1794:) 1789:3 1785:X 1781:, 1776:2 1772:X 1768:, 1763:1 1759:X 1755:( 1750:2 1746:e 1738:, 1733:3 1729:X 1725:+ 1720:2 1716:X 1712:+ 1707:1 1703:X 1699:= 1692:) 1687:3 1683:X 1679:, 1674:2 1670:X 1666:, 1661:1 1657:X 1653:( 1648:1 1644:e 1624:n 1601:. 1596:2 1592:X 1586:1 1582:X 1578:= 1571:) 1566:2 1562:X 1558:, 1553:1 1549:X 1545:( 1540:2 1536:e 1528:, 1523:2 1519:X 1515:+ 1510:1 1506:X 1502:= 1495:) 1490:2 1486:X 1482:, 1477:1 1473:X 1469:( 1464:1 1460:e 1440:n 1422:. 1417:1 1413:X 1409:= 1406:) 1401:1 1397:X 1393:( 1388:1 1384:e 1368:n 1359:n 1353:n 1338:k 1334:e 1327:k 1323:σ 1316:. 1304:) 1299:n 1295:X 1291:, 1285:, 1280:1 1276:X 1272:( 1265:m 1256:e 1249:) 1244:n 1240:X 1236:, 1230:, 1225:1 1221:X 1217:( 1210:2 1201:e 1194:) 1189:n 1185:X 1181:, 1175:, 1170:1 1166:X 1162:( 1155:1 1146:e 1142:= 1139:) 1134:n 1130:X 1126:, 1120:, 1115:1 1111:X 1107:( 1098:e 1084:) 1081:n 1077:X 1073:1 1070:X 1068:( 1065:λ 1063:e 1058:) 1055:m 1051:λ 1047:1 1044:λ 1040:λ 1019:n 1013:k 1007:k 1001:n 995:k 989:n 983:k 975:) 972:n 968:X 964:1 961:X 959:( 957:0 954:e 947:n 943:k 935:n 931:X 927:1 924:X 922:( 919:k 915:e 897:, 890:k 886:j 881:X 870:1 866:j 861:X 855:n 847:k 843:j 828:2 824:j 815:1 811:j 804:1 796:= 793:) 788:n 784:X 780:, 774:, 769:1 765:X 761:( 756:k 752:e 736:k 718:. 713:n 709:X 700:2 696:X 690:1 686:X 682:= 679:) 674:n 670:X 666:, 660:, 655:2 651:X 647:, 642:1 638:X 634:( 629:n 625:e 594:, 589:l 585:X 579:k 575:X 569:j 565:X 559:n 553:l 547:k 541:j 535:1 527:= 520:) 515:n 511:X 507:, 501:, 496:2 492:X 488:, 483:1 479:X 475:( 470:3 466:e 458:, 453:k 449:X 443:j 439:X 433:n 427:k 421:j 415:1 407:= 400:) 395:n 391:X 387:, 381:, 376:2 372:X 368:, 363:1 359:X 355:( 350:2 346:e 338:, 333:j 329:X 323:n 317:j 311:1 303:= 296:) 291:n 287:X 283:, 277:, 272:2 268:X 264:, 259:1 255:X 251:( 246:1 242:e 223:n 219:k 214:) 211:n 207:X 203:1 200:X 198:( 195:k 191:e 184:n 180:X 176:1 173:X 167:n 153:d 147:n 143:d 134:n 128:d 119:P 91:) 85:( 80:) 76:( 62:. 20:)

Index

Elementary symmetric function
list of references
related reading
external links
inline citations
improve
introducing
Learn how and when to remove this message
mathematics
commutative algebra
symmetric polynomials
degree
positive integer
complete homogeneous symmetric polynomials
integer partition
monic polynomial
univariate polynomial
roots
coefficients
up to
Vieta's formulas
characteristic polynomial
square matrix
eigenvalues
matrix
invariants
trace
determinant
generates
ring

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.