Knowledge

Dielectrophoresis

Source đź“ť

1276:
proportional response of the strength and direction of the force that needs to be scaled to the model spectrum. So most models only consider the Clausius-Mossotti factor of a particle. The most used techniques are collection rate measurements: this is the simplest and most used technique – electrodes are submerged in a suspension with a known concentration of particles and the particles that collect at the electrode are counted; crossover measurements: the crossover frequency between positive and negative DEP is measured to characterise particles – this technique is used for smaller particles (e.g. viruses), that are difficult to count with the previous technique; particle velocity measurements: this technique measures the velocity and direction of the particles in an electric field gradient; measurement of the levitation height: the levitation height of a particle is proportional to the negative DEP force that is applied. Thus, this technique is good for characterising single particles and is mainly used for larger particles such as cells;
1295:
beam patterning. These small electrodes allow the handling of small bioparticles. The most used electrode geometries are isometric, polynomial, interdigitated, and crossbar. Isometric geometry is effective for particle manipulation with DEP but repelled particles do not collect in well defined areas and so separation into two homogeneous groups is difficult. Polynomial is a new geometry producing well defined differences in regions of high and low forces and so particles could be collected by positive and negative DEP. This electrode geometry showed that the electrical field was highest at the middle of the inter-electrode gaps. Interdigitated geometry comprises alternating electrode fingers of opposing polarities and is mainly used for dielectrophoretic trapping and analysis. Crossbar geometry is potentially useful for networks of interconnects.
20: 94:. Since the direction of the force is dependent on field gradient rather than field direction, DEP will occur in AC as well as DC electric fields; polarization (and hence the direction of the force) will depend on the relative polarizabilities of particle and medium. If the particle moves in the direction of increasing electric field, the behavior is referred to as positive DEP (sometime pDEP), if acting to move the particle away from high field regions, it is known as negative DEP (or nDEP). As the relative polarizabilities of the particle and medium are frequency-dependent, varying the energizing signal and measuring the way in which the force changes can be used to determine the electrical properties of particles; this also allows the elimination of 1337:
passes through the separation chamber, with an external separating force (a DEP force) being applied perpendicular to the flow. By means of different factors, such as diffusion and steric, hydrodynamic, dielectric and other effects, or a combination thereof, particles (<1 ÎĽm in diameter) with different dielectric or diffusive properties attain different positions away from the chamber wall, which, in turn, exhibit different characteristic concentration profile. Particles that move further away from the wall reach higher positions in the parabolic velocity profile of the liquid flowing through the chamber and will be eluted from the chamber at a faster rate.
57:. All particles exhibit dielectrophoretic activity in the presence of electric fields. However, the strength of the force depends strongly on the medium and particles' electrical properties, on the particles' shape and size, as well as on the frequency of the electric field. Consequently, fields of a particular frequency can manipulate particles with great selectivity. This has allowed, for example, the separation of cells or the orientation and manipulation of nanoparticles and nanowires. Furthermore, a study of the change in DEP force as a function of frequency can allow the electrical (or 883:, or, for sinusoidal voltages by dividing the right hand side by 2. These models ignores the fact that cells have a complex internal structure and are heterogeneous. A multi-shell model in a low conducting medium can be used to obtain information of the membrane conductivity and the permittivity of the cytoplasm. For a cell with a shell surrounding a homogeneous core with its surrounding medium considered as a layer, as seen in Figure 2, the overall dielectric response is obtained from a combination of the properties of the shell and core. 868:. When the electric field gradients are large, or when there is a field null running through the center of the particle, higher order terms become relevant, and result in higher forces. To be precise, the time-dependent equation only applies to lossless particles, because loss creates a lag between the field and the induced dipole. When averaged, the effect cancels out and the equation holds true for lossy particles as well. An equivalent time-averaged equation can be easily obtained by replacing 1197: 25: 24: 21: 26: 3199: 23: 1312:
build a separator, where mixtures of cells are forced through large numbers (>100) of wells in parallel; those experiencing positive DEP are trapped in the device whilst the rest are flushed. Switching off the field allows release of the trapped cells into a separate container. The highly parallel nature of the approach means that the chip can sort cells at much higher speeds, comparable to those used by
3211: 1263:. DEP can be used to separate particles with different sign polarizabilities as they move in different directions at a given frequency of the AC field applied. DEP has been applied for the separation of live and dead cells, with the remaining live cells still viable after separation or to force contact between selected single cells to study cell-cell interaction. DEP has been used to separate strains of 889: 408: 1304:
layers in a laminate, after which multiple "wells" are drilled through the structure. If one examines the walls of these wells, the layers appear as interdigitated electrodes running continuously around the walls of the tube. When alternating conducting layers are connected to the two phases of an AC signal, a field gradient formed along the walls moves cells by DEP.
1333:
opposite signs of force on different particle types to attract some of the particles and repel others. DEP retention uses the balance between DEP and fluid-flow forces. Particles experiencing repulsive and weak attractive DEP forces are eluted by fluid flow, whereas particles experiencing strong attractive DEP forces are trapped at electrode edges against flow drag.
699: 1192:{\displaystyle \varepsilon _{1eff}^{*}(\omega )=\varepsilon _{2}^{*}{\frac {({\frac {r_{2}}{r_{1}}})^{3}+2{\frac {\varepsilon _{1}^{*}-\varepsilon _{2}^{*}}{\varepsilon _{1}^{*}+2\varepsilon _{2}^{*}}}}{({\frac {r_{2}}{r_{1}}})^{3}-{\frac {\varepsilon _{1}^{*}-\varepsilon _{2}^{*}}{\varepsilon _{1}^{*}+2\varepsilon _{2}^{*}}}}}} 208: 69:
Although the phenomenon we now call dielectrophoresis was described in passing as far back as the early 20th century, it was only subject to serious study, named and first understood by Herbert Pohl in the 1950s. Recently, dielectrophoresis has been revived due to its potential in the manipulation of
1311:
measurements: positive DEP attracts the cells to the wall of the well, thus when probed with a light beam the well the light intensity increases through the well. The opposite is true for negative DEP, in which the light beam becomes obscured by the cells. Alternatively, the approach can be used to
1336:
Dielectrophoresis field-flow fractionation (DEP-FFF), introduced by Davis and Giddings, is a family of chromatographic-like separation methods. In DEP-FFF, DEP forces are combined with drag flow to fractionate a sample of different types of particles. Particles are injected into a carrier flow that
1345:
The use of photoconductive materials (for example, in lab-on-chip devices) allows for localized inducement of dielectrophoretic forces through the application of light. In addition, one can project an image to induce forces in a patterned illumination area, allowing for some complex manipulations.
1294:
At the start, electrodes were made mainly from wires or metal sheets. Nowadays, the electric field in DEP is created by means of electrodes which minimize the magnitude of the voltage needed. This has been possible using fabrication techniques such as photolithography, laser ablation and electron
89:
along the field lines, which can be either attractive or repulsive according to the orientation on the dipole. Since the field is non-uniform, the pole experiencing the greatest electric field will dominate over the other, and the particle will move. The orientation of the dipole is dependent on
1332:
The utilization of the difference between dielectrophoretic forces exerted on different particles in nonuniform electric fields is known as DEP separation. The exploitation of DEP forces has been classified into two groups: DEP migration and DEP retention. DEP migration uses DEP forces that exert
1303:
These electrodes were developed to offer a high-throughput yet low-cost alternative to conventional electrode structures for DEP. Rather than use photolithographic methods or other microengineering approaches, DEP-well electrodes are constructed from stacking successive conductive and insulating
1275:
DEP is mainly used for characterising cells measuring the changes in their electrical properties. To do this, many techniques are available to quantify the dielectrophoretic response, as it is not possible to directly measure the DEP force. These techniques rely on indirect measures, obtaining a
1223:
As biological cells have dielectric properties, dielectrophoresis has many biological and medical applications. Instruments capable of separating cancer cells from healthy cells have been made as well as isolating single cells from forensic mixed samples. Platelets have been separated from whole
1323:
This approach offers many advantages over conventional, photolithography-based devices but reducing cost, increasing the amount of sample which can be analysed simultaneously, and the simplicity of cell motion reduced to one dimension (where cells can only move radially towards or away from the
859:
in suspension. These equations are accurate for particles when the electric field gradients are not very large (e.g., close to electrode edges) or when the particle is not moving along an axis in which the field gradient is zero (such as at the center of an axisymmetric electrode array), as the
417:
and contains all the frequency dependence of the DEP force. Where the particle consists of nested spheres – the most common example of which is the approximation of a spherical cell composed of an inner part (the cytoplasm) surrounded by an outer layer (the cell membrane) – then this can be
532: 22: 1280:
sensing: particles collecting at the electrode edge have an influence on the impedance of the electrodes – this change can be monitored to quantify DEP. In order to study larger populations of cells, the properties can be obtained by analysing the dielectrophoretic spectra.
1215:
DEP has been also used in conjunction with semiconductor chip technology for the development of DEP array technology for the simultaneous management of thousands of cells in microfluidic devices. Single microelectrodes on the floor of a flow cell are managed by a
109:
dielectrophoresis (TWDEP). These require complex signal generation equipment in order to create the required rotating or traveling electric fields, and as a result of this complexity have found less favor among researchers than conventional dielectrophoresis.
1202:
where 1 is the core (in cellular terms, the cytoplasm), 2 is the shell (in a cell, the membrane). r1 is the radius from the centre of the sphere to the inside of the shell, and r2 is the radius from the centre of the sphere to the outside of the shell.
418:
represented by nested expressions for the shells and the way in which they interact, allowing the properties to be elucidated where there are sufficient parameters related to the number of unknowns being sought. For a more general field-aligned
403:{\displaystyle \langle F_{\mathrm {DEP} }\rangle =2\pi r^{3}\varepsilon _{m}{\textrm {Re}}\left\{{\frac {\varepsilon _{p}^{*}-\varepsilon _{m}^{*}}{\varepsilon _{p}^{*}+2\varepsilon _{m}^{*}}}\right\}\nabla \left|{\vec {E}}_{rms}\right|^{2}} 1211:
Dielectrophoresis can be used to manipulate, transport, separate and sort different types of particles. DEP is being applied in fields such as medical diagnostics, drug discovery, cell therapeutics, and particle filtration.
753: 2039:
Bolognesi et al., Scientific Reports, 2017, "Digital Sorting of Pure Cell Populations Enables Unambiguous Genetic Analysis of Heterogeneous Formalin-Fixed Paraffin-Embedded Tumors by Next Generation Sequencing",
694:{\displaystyle F_{\mathrm {DEP} }={\frac {\pi r^{2}l}{3}}\varepsilon _{m}{\textrm {Re}}\left\{{\frac {\varepsilon _{p}^{*}-\varepsilon _{m}^{*}}{\varepsilon _{m}^{*}}}\right\}\nabla \left|{\vec {E}}\right|^{2}} 2027:
Mesquita et al., Nature 2016, "Molecular analysis of circulating tumor cells identifies distinct copy-number profiles in patients with chemosensitive and chemorefractory small-cell lung cancer",
2214:
Chin, S., et al., Rapid assessment of early biophysical changes in K562 cells during apoptosis determined using dielectrophoresis. International Journal of Nanomedicine, 2006. 1(3): p. 333–337
2205:
Burt, J.P.H., R. Pethig, and M.S. Talary, Microelectrode devices for manipulating and analysing bioparticles. Transactions of the Institute of Measurement and Control, 1998. 20(2): p. 82–90
1590:
Constantinou, Marios; Rigas, Grigorios Panagiotis; Castro, Fernando A.; Stolojan, Vlad; Hoettges, Kai F.; Hughes, Michael P.; Adkins, Emily; Korgel, Brian A.; Shkunov, Maxim (2016-04-26).
524: 492: 200: 168: 85:
Dielectrophoresis occurs when a polarizable particle is suspended in a non-uniform electric field. The electric field polarizes the particle, and the poles then experience a
773: 1782:"Uber die Impedanz einer Suspension von kugelförmigen Teilchen mit einer Schale – ein Modell fur das dielektrische Verhalten von Zellsuspensionen und von Proteinlösungen" 1951:
Mahabadi, Sina; Labeed, Fatima H.; Hughes, Michael P. (2015-07-01). "Effects of cell detachment methods on the dielectric properties of adherent and suspension cells".
2580:
Gascoyne, P.R.C.; Huang, Y.; Pethig, R.; Vykoukal, J.; Becker, F.F. (1992). "Dielectrophoretic separation of mammalian cells studied by computerized image analysis".
2002: 821: 797: 2834:
Rousselet, G.H. Markx; Pethig, R. (1998). "Separation of erythrocytes and latex beads by dielectrophoretic levitation and hyperlayer field-flow fractionation".
841: 460: 440: 136: 2269:
Suehiro, Junya; Pethig, Ronald (1998). "The dielectrophoretic movement and positioning of a biological cell using a three-dimensional grid electrode system".
2524: 2354: 1784:[Impedance of a suspension of ball-shaped particles with a shell: a model for the dielectric behaviour of cell suspensions and protein solutions]. 1737:
Irimajiri, Akihiko; Hanai, Tetsuya; Inouye, Akira (1979). "A dielectric theory of "multi-stratified shell" model with its application to a lymphoma cell".
2376: 2052:
Fontana et al., FSI 2017, "Isolation and genetic analysis of pure cells from forensic biological mixtures: The precision of a digital approach",
118:
The simplest theoretical model is that of a homogeneous sphere surrounded by a conducting dielectric medium. For a homogeneous sphere of radius
707: 1307:
DEP-wells can be used in two modes; for analysis or separation. In the first, the dielectrophoretic properties of cells can be monitored by
1220:
chip to form thousands of dielectrophoretic "cages", each capable of capturing and moving one single cell under control of routing software.
1267:
and viruses. DEP can also be used to detect apoptosis soon after drug induction measuring the changes in electrophysiological properties.
91: 2985: 2358: 2015:
Polzer et al., EMBO 2014, Molecular profiling of single Circulating Tumor cells with diagnostic intention Polzer Et all EMBO 2014
3106: 2158:
Tellez Gabriel , EJCB, 2017, "Analysis of gap junctional intercellular communications using a dielectrophoresis-based microchip",
851:(as oblate spheroids) or long thin tubes (as prolate ellipsoids) allowing the approximation of the dielectrophoretic response of 1317: 1710:
Tathireddy, P.; Choi, Y-H; Skliar, M (2008). "Particle AC electrokinetics in planar interdigitated microelectrode geometry".
1509: 3137: 3066: 2065:
Pommer, Matthew S. (2008). "Dielectrophoretic separation of platelets from diluted whole blood in microfluidic channels".
3132: 3111: 1591: 2171:
Markx, G. H.; Dyda, P. A.; Pethig, R. (1996). "Dielectrophoretic separation of bacteria using a conductivity gradient".
3096: 1475: 1435: 1376: 2693:
Markx, G.H.; Rousselet, J.; Pethig, R. (1997). "DEP-FFF: Field-flow fractionation using non-uniform electric fields".
2650:
Giddings, J.C. (1993). "Field-Flow Fractionation: Analysis of macromolecular, colloidal, and particulate materials".
1410: 3215: 3101: 1833: 3142: 3091: 3031: 2259:
Allsop, D.W.E., Milner, K.R., Brown, A.P., Betts, W.B. (1999) Journal of Physics D: Applied Physics 32, 1066–1074
1313: 3046: 1324:
centre of the well). Devices manufactured to use the DEP-well principle are marketed under the DEPtech brand.
414: 3249: 3147: 3051: 2978: 1834:"Extraction of dielectric properties of multiple populations from dielectrophoretic collection spectrum data" 3259: 2232:
Hughes, M.P., Morgan, H., Rixon, F.J., Burt, J.P.H., Pethig, R. (1998), Biochim Biophys Acta 1425, 119–126
497: 465: 173: 141: 3026: 847:. This expression has been useful for approximating the dielectrophoretic behavior of particles such as 3005: 2953: 3184: 3036: 2779:"Separation of polystyrene microbeads using dielectrophoretic/gravitational field-flow-fractionation" 3244: 3203: 3021: 2971: 2623:
Davis, J.M.; Giddings, J.C. (1986). "Feasibility study of dielectrical field-flow fractionation".
758: 3254: 1346:
When manipulating living cells, optical dielectrophoresis provides a non-damaging alternative to
800: 2528: 1640:
Pohl, H. A. (1951). "The Motion and Precipitation of Suspensoids in Divergent Electric Fields".
1541: 1592:"Simultaneous Tunable Selection and Self-Assembly of Si Nanowires from Heterogeneous Feedstock" 3076: 3061: 806: 782: 2860:
Dongqing Li, ed. "Encyclopedia of Microfluidics and Nanofluidics". Springer, New York, 2008.
2377:"Dielectrophoresis-activated multiwell plate for label-free high-throughput drug assessment" 2375:
Hoettges, K. F.; HĂĽbner, Y.; Broche, L. M.; Ogin, S. L.; Kass, G. E.; Hughes, M. P. (2008).
3222: 3168: 2884: 2790: 2733: 2659: 2589: 2543: 2469:"Dielectrophoresis assisted loading and unloading of microwells for impedance spectroscopy" 2321: 2278: 2117: 1915: 1848: 1746: 1684: 1649: 1556: 1277: 856: 2108:
Pohl, H. A.; Hawk, I. (1966). "Separation of living and dead cells by dielectrophoresis".
8: 3163: 3071: 1900: 865: 776: 2912:
Jones, Thomas B. (2002). "On the Relationship of Dielectrophoresis and Electrowetting".
2888: 2794: 2737: 2663: 2593: 2547: 2325: 2282: 2121: 1919: 1852: 1750: 1688: 1653: 1560: 2811: 2778: 2754: 2721: 2605: 2559: 2501: 2468: 2449: 2337: 2294: 2141: 2090: 1984: 1872: 1811: 1572: 826: 445: 425: 121: 2847: 2802: 2745: 2555: 2290: 1860: 2929: 2900: 2896: 2816: 2759: 2675: 2609: 2506: 2488: 2441: 2399: 2341: 2333: 2298: 2188: 2184: 2133: 2082: 1976: 1968: 1933: 1864: 1803: 1762: 1758: 1622: 1614: 1576: 1568: 1505: 1471: 1431: 1406: 1372: 58: 2601: 2145: 2094: 2016: 1988: 1876: 1815: 3086: 2921: 2892: 2843: 2806: 2798: 2749: 2741: 2702: 2667: 2632: 2597: 2563: 2551: 2496: 2480: 2453: 2433: 2417:
Fatoyinbo, H. O.; Kamchis, D.; Whattingham, R.; Ogin, S. L.; Hughes, M. P. (2005).
2391: 2329: 2286: 2180: 2129: 2125: 2074: 1960: 1923: 1856: 1793: 1754: 1719: 1692: 1657: 1606: 1564: 1347: 1308: 852: 86: 2223:
Labeed, F.H., Coley, H.M., Hughes, M.P. (2006), Biochim Biophys Acta 1760, 922–929
1231:
DEP has made it possible to characterize and manipulate biological particles like
3056: 2994: 2722:"Introducing dielectrophoresis as a new force field for field-flow fractionation" 2312:
Huang, Y.; Pethig, R. (1991). "Electrode design for negative dielectrophoresis".
1892: 1723: 102: 95: 54: 16:
Particle motion in a non-uniform electric field due to dipole-field interactions
2418: 2053: 1369:
Dielectrophoresis: The Behavior of Neutral Matter in Nonuniform Electric Fields
1225: 848: 844: 106: 79: 71: 50: 2706: 2636: 3238: 3127: 3081: 2933: 2904: 2875:
Turcu, I; Lucaciu, C M (1989). "Dielectrophoresis: a spherical shell model".
2492: 2467:
Mansoorifar, Amin; Koklu, Anil; Sabuncu, Ahmet C.; Beskok, Ali (2017-06-01).
2437: 2159: 1972: 1618: 75: 2671: 1610: 2954:
Biological cell separation using dielectrophoresis in a microfluidic device
2510: 2484: 2445: 2403: 2137: 2086: 2078: 1980: 1964: 1937: 1868: 1807: 1626: 90:
the relative polarizability of the particle and medium, in accordance with
2820: 2763: 2679: 2192: 1798: 1781: 1928: 1766: 1252: 1232: 748:{\displaystyle \varepsilon ^{*}=\varepsilon +{\frac {i\sigma }{\omega }}} 2003:"Micro-fluidics cut cancer test from a day to an hour – IMEC Tech Forum" 1901:"Optical detection of asymmetric bacteria utilizing electro orientation" 1675:
Pohl, H. A. (1958). "Some effects of nonuniform fields on dielectrics".
1499: 2958: 1501:
Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices
1236: 46: 2959:
Sandia's dielectrophoresis device may revolutionize sample preparation
2925: 2395: 2241:
Watarai, H., Sakomoto, T., Tsukahara, S. (1997) Langmuir 13, 2417–2420
1696: 1661: 1244: 419: 30:
Dielectrophoresis assembling cancer cells in a 3D microfluidic model.
2041: 1264: 1256: 61:
in the case of cells) properties of the particle to be elucidated.
2963: 2028: 2777:
Wang, X.B.; Vykoukal, J.; Becker, F.F.; Gascoyne, P.R.C. (1998).
1832:
Broche, Lionel M.; Labeed, Fatima H.; Hughes, Michael P. (2005).
1260: 1240: 2416: 2250:
Kaler, K.V., Jones, T.B. (1990) Biophysical Journal 57, 173–182
1589: 861: 2720:
Huang, Y.; Wang, X.B.; Becker, F.F.; Gascoyne, P.R.C. (1997).
1889:
Pethig R. Dielectric Properties of Biological Materials, 1979.
2948: 2529:"Dielectrophoretic reconfiguration of nanowire interconnects" 2466: 2419:"A high-throughput 3-D composite dielectrophoretic separator" 1327: 42: 1709: 2695:
Journal of Liquid Chromatography & Related Technologies
2579: 1898: 1217: 2776: 1248: 2374: 1527:
Electrokinetically Driven Microfluidics and Nanofluidics
526:
the time-dependent dielectrophoretic force is given by:
2719: 1350:, as the intensity of light is about 1000 times less. 1542:"AC electrokinetics: Applications for nanotechnology" 892: 829: 809: 785: 761: 710: 535: 500: 468: 448: 428: 413:
The factor in curly brackets is known as the complex
211: 176: 144: 124: 98:
motion of particles due to inherent particle charge.
2692: 1950: 1827: 1825: 1736: 1831: 1524: 1270: 1191: 835: 815: 791: 767: 747: 693: 518: 486: 454: 434: 402: 194: 162: 130: 1822: 53:. This force does not require the particle to be 3236: 101:Phenomena associated with dielectrophoresis are 2833: 2365:155–173 (ed. M. Eshaghian-Wilner, Wiley, 2009). 2363:Bio-Inspired and Nanoscale Integrated Computing 2170: 1428:Nanoelectromechanics in engineering and biology 49:particle when it is subjected to a non-uniform 2877:Journal of Physics A: Mathematical and General 1403:AC Electrokinetics: Colloids and Nanoparticles 2979: 2949:AES Electrophoresis Society - Learning Center 2622: 2523: 2268: 1883: 494:in a medium with complex dielectric constant 2874: 2054:https://doi.org/10.1016/j.fsigen.2017.04.023 1340: 233: 212: 64: 2575: 2573: 2426:IEEE Transactions on Biomedical Engineering 2311: 1779: 1400: 2986: 2972: 1328:Dielectrophoresis field-flow fractionation 113: 2810: 2753: 2500: 1995: 1927: 1797: 1401:Morgan, Hywel; Green, Nicolas G. (2003). 3107:Temperature gradient gel electrophoresis 2649: 2570: 2107: 1899:Choi, J.W.; Pu, A.; Psaltis, D. (2006). 1396: 1394: 1392: 1390: 1388: 18: 1493: 1491: 1489: 1487: 1461: 1459: 1457: 1455: 1453: 1451: 1449: 1447: 1289: 3237: 2064: 1539: 1533: 1425: 1298: 170:in a medium with complex permittivity 2967: 2911: 2271:Journal of Physics D: Applied Physics 1497: 1465: 1419: 1385: 860:equations only take into account the 3210: 3138:Gel electrophoresis of nucleic acids 3067:Electrophoretic mobility shift assay 1674: 1639: 1518: 1484: 1444: 1366: 519:{\displaystyle \varepsilon _{m}^{*}} 487:{\displaystyle \varepsilon _{p}^{*}} 195:{\displaystyle \varepsilon _{m}^{*}} 163:{\displaystyle \varepsilon _{p}^{*}} 3133:DNA separation by silica adsorption 3112:Two-dimensional gel electrophoresis 2993: 1360: 704:The complex dielectric constant is 92:Maxwell–Wagner–Sillars polarization 13: 3097:Polyacrylamide gel electrophoresis 2867: 2582:Measurement Science and Technology 2314:Measurement Science and Technology 2160:DOI.org/10.1016/j.ejcb.2017.01.003 661: 548: 545: 542: 357: 227: 224: 221: 202:the (time-averaged) DEP force is: 14: 3271: 2942: 2625:Separation Science and Technology 2042:https://doi.org/10.1038/srep20944 1780:Pauly, H.; Schwan, H. P. (1959). 1284: 462:with complex dielectric constant 3209: 3198: 3197: 3102:Pulsed-field gel electrophoresis 1786:Zeitschrift fĂĽr Naturforschung B 1540:Hughes, Michael Pycraft (2000). 3143:Gel electrophoresis of proteins 3092:Moving-boundary electrophoresis 3032:Capillary electrochromatography 2854: 2827: 2770: 2713: 2686: 2643: 2616: 2517: 2460: 2410: 2368: 2359:Dielectrophoretic architectures 2348: 2305: 2262: 2253: 2244: 2235: 2226: 2217: 2208: 2199: 2164: 2152: 2101: 2058: 2046: 2033: 2029:https://doi.org/10.1038/nm.4239 2021: 2009: 1944: 1841:Physics in Medicine and Biology 1773: 1730: 1703: 1668: 1271:As a cell characterisation tool 1206: 3047:Difference gel electrophoresis 2130:10.1126/science.152.3722.647-a 1739:Journal of Theoretical Biology 1633: 1583: 1504:. Cambridge University Press. 1470:. Cambridge University Press. 1371:. Cambridge University Press. 1097: 1069: 975: 947: 923: 917: 675: 372: 1: 3148:Serum protein electrophoresis 3052:Discontinuous electrophoresis 2848:10.1016/s0927-7757(97)00279-3 2803:10.1016/s0006-3495(98)77975-5 2746:10.1016/s0006-3495(97)78144-x 1525:Chang, H.C.; Yao, L. (2009). 1468:Electromechanics of Particles 1353: 41:) is a phenomenon in which a 2185:10.1016/0168-1656(96)01617-3 1759:10.1016/0022-5193(79)90268-6 1724:10.1016/j.elstat.2008.09.002 864:formed and not higher order 823:is the field frequency, and 768:{\displaystyle \varepsilon } 7: 3027:Agarose gel electrophoresis 2556:10.1088/0957-4484/17/19/035 2291:10.1088/0022-3727/31/22/019 2017:DOI 10.15252/emmm.201404033 1861:10.1088/0031-9155/50/10/006 1224:blood with a DEP-activated 10: 3276: 3006:History of electrophoresis 2897:10.1088/0305-4470/22/8/014 2334:10.1088/0957-0233/2/12/005 1677:Journal of Applied Physics 1642:Journal of Applied Physics 1569:10.1088/0957-4484/11/2/314 1405:. Research Studies Press. 415:Clausius-Mossotti function 3193: 3185:Electrophoresis (journal) 3177: 3156: 3120: 3037:Capillary electrophoresis 3014: 3001: 2707:10.1080/10826079708005597 2637:10.1080/01496398608058390 2602:10.1088/0957-0233/3/5/001 1712:Journal of Electrostatics 1341:Optical dielectrophoresis 138:and complex permittivity 65:Background and properties 3022:Affinity electrophoresis 2438:10.1109/TBME.2005.847553 2173:Journal of Biotechnology 2836:Colloids and Surfaces A 2672:10.1126/science.8502990 1611:10.1021/acsnano.6b00005 816:{\displaystyle \omega } 801:electrical conductivity 792:{\displaystyle \sigma } 114:Dielectrophoretic force 2485:10.1002/elps.201700020 2079:10.1002/elps.200700607 1965:10.1002/elps.201500022 1426:Hughes, M. P. (2002). 1193: 857:tobacco mosaic viruses 837: 817: 793: 769: 749: 695: 520: 488: 456: 436: 404: 196: 164: 132: 31: 3077:Immunoelectrophoresis 3062:Electrochromatography 1799:10.1515/znb-1959-0213 1498:Kirby, B. J. (2010). 1466:Jones, T. B. (1995). 1194: 838: 818: 794: 770: 750: 696: 521: 489: 457: 437: 405: 197: 165: 133: 29: 3250:Analytical chemistry 3223:Analytical Chemistry 3169:Isoelectric focusing 2701:(16–17): 2857–2872. 2525:Wissner-Gross, A. D. 2384:Analytical Chemistry 1929:10.1364/OE.14.009780 1367:Pohl, H. A. (1978). 1290:Electrode geometries 890: 827: 807: 783: 759: 708: 533: 498: 466: 446: 426: 209: 174: 142: 122: 59:electrophysiological 3260:Colloidal chemistry 3164:Electrical mobility 3072:Gel electrophoresis 2889:1989JPhA...22..985T 2795:1998BpJ....74.2689W 2783:Biophysical Journal 2738:1997BpJ....73.1118H 2664:1993Sci...260.1456C 2658:(5113): 1456–1465. 2594:1992MeScT...3..439G 2548:2006Nanot..17.4986W 2355:A. D. Wissner-Gross 2326:1991MeScT...2.1142H 2283:1998JPhD...31.3298S 2122:1966Sci...152..647P 1920:2006OExpr..14.9780C 1853:2005PMB....50.2267B 1751:1979JThBi..78..251I 1689:1958JAP....29.1182P 1654:1951JAP....22..869P 1561:2000Nanot..11..124P 1299:DEP-well electrodes 1182: 1161: 1144: 1126: 1063: 1042: 1025: 1007: 943: 916: 777:dielectric constant 654: 638: 620: 515: 483: 349: 328: 311: 293: 191: 159: 1718:(11–12): 609–619. 1189: 1168: 1147: 1130: 1112: 1049: 1028: 1011: 993: 929: 893: 833: 813: 789: 765: 745: 691: 640: 624: 606: 516: 501: 484: 469: 452: 432: 400: 335: 314: 297: 279: 192: 177: 160: 145: 128: 32: 3232: 3231: 3042:Dielectrophoresis 2926:10.1021/la025616b 2920:(11): 4437–4443. 2542:(19): 4986–4990. 2479:(11): 1466–1474. 2396:10.1021/ac702083g 2320:(12): 1142–1146. 2277:(22): 3298–3305. 2005:. 7 October 2009. 1959:(13): 1493–1498. 1914:(21): 9780–9785. 1847:(10): 2267–2274. 1697:10.1063/1.1723398 1662:10.1063/1.1700065 1511:978-0-521-11903-0 1187: 1184: 1094: 1065: 972: 836:{\displaystyle i} 743: 678: 655: 596: 580: 455:{\displaystyle l} 435:{\displaystyle r} 375: 351: 269: 131:{\displaystyle r} 35:Dielectrophoresis 27: 3267: 3213: 3212: 3201: 3200: 3087:Isotachophoresis 2988: 2981: 2974: 2965: 2964: 2937: 2908: 2861: 2858: 2852: 2851: 2842:(1–3): 209–216. 2831: 2825: 2824: 2814: 2789:(5): 2689–2701. 2774: 2768: 2767: 2757: 2732:(2): 1118–1129. 2717: 2711: 2710: 2690: 2684: 2683: 2647: 2641: 2640: 2620: 2614: 2613: 2577: 2568: 2567: 2533: 2521: 2515: 2514: 2504: 2464: 2458: 2457: 2423: 2414: 2408: 2407: 2381: 2372: 2366: 2352: 2346: 2345: 2309: 2303: 2302: 2266: 2260: 2257: 2251: 2248: 2242: 2239: 2233: 2230: 2224: 2221: 2215: 2212: 2206: 2203: 2197: 2196: 2168: 2162: 2156: 2150: 2149: 2105: 2099: 2098: 2073:(6): 1213–1218. 2062: 2056: 2050: 2044: 2037: 2031: 2025: 2019: 2013: 2007: 2006: 1999: 1993: 1992: 1948: 1942: 1941: 1931: 1905: 1896: 1890: 1887: 1881: 1880: 1838: 1829: 1820: 1819: 1801: 1777: 1771: 1770: 1734: 1728: 1727: 1707: 1701: 1700: 1683:(8): 1182–1188. 1672: 1666: 1665: 1637: 1631: 1630: 1605:(4): 4384–4394. 1596: 1587: 1581: 1580: 1546: 1537: 1531: 1530: 1522: 1516: 1515: 1495: 1482: 1481: 1463: 1442: 1441: 1423: 1417: 1416: 1398: 1383: 1382: 1364: 1348:optical tweezers 1309:light absorption 1198: 1196: 1195: 1190: 1188: 1186: 1185: 1183: 1181: 1176: 1160: 1155: 1145: 1143: 1138: 1125: 1120: 1110: 1105: 1104: 1095: 1093: 1092: 1083: 1082: 1073: 1067: 1066: 1064: 1062: 1057: 1041: 1036: 1026: 1024: 1019: 1006: 1001: 991: 983: 982: 973: 971: 970: 961: 960: 951: 945: 942: 937: 915: 910: 853:carbon nanotubes 842: 840: 839: 834: 822: 820: 819: 814: 798: 796: 795: 790: 774: 772: 771: 766: 754: 752: 751: 746: 744: 739: 731: 720: 719: 700: 698: 697: 692: 690: 689: 684: 680: 679: 671: 660: 656: 653: 648: 639: 637: 632: 619: 614: 604: 598: 597: 594: 591: 590: 581: 576: 572: 571: 558: 553: 552: 551: 525: 523: 522: 517: 514: 509: 493: 491: 490: 485: 482: 477: 461: 459: 458: 453: 441: 439: 438: 433: 409: 407: 406: 401: 399: 398: 393: 389: 388: 377: 376: 368: 356: 352: 350: 348: 343: 327: 322: 312: 310: 305: 292: 287: 277: 271: 270: 267: 264: 263: 254: 253: 232: 231: 230: 201: 199: 198: 193: 190: 185: 169: 167: 166: 161: 158: 153: 137: 135: 134: 129: 45:is exerted on a 28: 3275: 3274: 3270: 3269: 3268: 3266: 3265: 3264: 3245:Electrophoresis 3235: 3234: 3233: 3228: 3189: 3173: 3152: 3116: 3057:Electroblotting 3010: 2997: 2995:Electrophoresis 2992: 2945: 2940: 2870: 2868:Further reading 2865: 2864: 2859: 2855: 2832: 2828: 2775: 2771: 2718: 2714: 2691: 2687: 2648: 2644: 2621: 2617: 2578: 2571: 2531: 2522: 2518: 2473:Electrophoresis 2465: 2461: 2421: 2415: 2411: 2379: 2373: 2369: 2353: 2349: 2310: 2306: 2267: 2263: 2258: 2254: 2249: 2245: 2240: 2236: 2231: 2227: 2222: 2218: 2213: 2209: 2204: 2200: 2169: 2165: 2157: 2153: 2116:(3722): 647–9. 2106: 2102: 2067:Electrophoresis 2063: 2059: 2051: 2047: 2038: 2034: 2026: 2022: 2014: 2010: 2001: 2000: 1996: 1953:Electrophoresis 1949: 1945: 1903: 1897: 1893: 1888: 1884: 1836: 1830: 1823: 1778: 1774: 1735: 1731: 1708: 1704: 1673: 1669: 1638: 1634: 1594: 1588: 1584: 1544: 1538: 1534: 1523: 1519: 1512: 1496: 1485: 1478: 1464: 1445: 1438: 1424: 1420: 1413: 1399: 1386: 1379: 1365: 1361: 1356: 1343: 1330: 1301: 1292: 1287: 1273: 1209: 1177: 1172: 1156: 1151: 1146: 1139: 1134: 1121: 1116: 1111: 1109: 1100: 1096: 1088: 1084: 1078: 1074: 1072: 1068: 1058: 1053: 1037: 1032: 1027: 1020: 1015: 1002: 997: 992: 990: 978: 974: 966: 962: 956: 952: 950: 946: 944: 938: 933: 911: 897: 891: 888: 887: 880: 849:red blood cells 828: 825: 824: 808: 805: 804: 784: 781: 780: 760: 757: 756: 732: 730: 715: 711: 709: 706: 705: 685: 670: 669: 665: 664: 649: 644: 633: 628: 615: 610: 605: 603: 599: 593: 592: 586: 582: 567: 563: 559: 557: 541: 540: 536: 534: 531: 530: 510: 505: 499: 496: 495: 478: 473: 467: 464: 463: 447: 444: 443: 427: 424: 423: 394: 378: 367: 366: 365: 361: 360: 344: 339: 323: 318: 313: 306: 301: 288: 283: 278: 276: 272: 266: 265: 259: 255: 249: 245: 220: 219: 215: 210: 207: 206: 186: 181: 175: 172: 171: 154: 149: 143: 140: 139: 123: 120: 119: 116: 103:electrorotation 96:electrophoretic 67: 19: 17: 12: 11: 5: 3273: 3263: 3262: 3257: 3255:Nanotechnology 3252: 3247: 3230: 3229: 3227: 3226: 3219: 3207: 3194: 3191: 3190: 3188: 3187: 3181: 3179: 3175: 3174: 3172: 3171: 3166: 3160: 3158: 3154: 3153: 3151: 3150: 3145: 3140: 3135: 3130: 3124: 3122: 3118: 3117: 3115: 3114: 3109: 3104: 3099: 3094: 3089: 3084: 3079: 3074: 3069: 3064: 3059: 3054: 3049: 3044: 3039: 3034: 3029: 3024: 3018: 3016: 3012: 3011: 3009: 3008: 3002: 2999: 2998: 2991: 2990: 2983: 2976: 2968: 2962: 2961: 2956: 2951: 2944: 2943:External links 2941: 2939: 2938: 2909: 2883:(8): 985–993. 2871: 2869: 2866: 2863: 2862: 2853: 2826: 2769: 2712: 2685: 2642: 2631:(9): 969–989. 2615: 2588:(5): 439–445. 2569: 2536:Nanotechnology 2516: 2459: 2409: 2367: 2347: 2304: 2261: 2252: 2243: 2234: 2225: 2216: 2207: 2198: 2163: 2151: 2100: 2057: 2045: 2032: 2020: 2008: 1994: 1943: 1908:Optics Express 1891: 1882: 1821: 1772: 1745:(2): 251–269. 1729: 1702: 1667: 1648:(7): 869–871. 1632: 1582: 1555:(2): 124–132. 1549:Nanotechnology 1532: 1517: 1510: 1483: 1477:978-0521019101 1476: 1443: 1437:978-0849311833 1436: 1418: 1411: 1384: 1378:978-0521216579 1377: 1358: 1357: 1355: 1352: 1342: 1339: 1329: 1326: 1300: 1297: 1291: 1288: 1286: 1285:Implementation 1283: 1272: 1269: 1208: 1205: 1200: 1199: 1180: 1175: 1171: 1167: 1164: 1159: 1154: 1150: 1142: 1137: 1133: 1129: 1124: 1119: 1115: 1108: 1103: 1099: 1091: 1087: 1081: 1077: 1071: 1061: 1056: 1052: 1048: 1045: 1040: 1035: 1031: 1023: 1018: 1014: 1010: 1005: 1000: 996: 989: 986: 981: 977: 969: 965: 959: 955: 949: 941: 936: 932: 928: 925: 922: 919: 914: 909: 906: 903: 900: 896: 878: 845:imaginary unit 832: 812: 788: 764: 742: 738: 735: 729: 726: 723: 718: 714: 702: 701: 688: 683: 677: 674: 668: 663: 659: 652: 647: 643: 636: 631: 627: 623: 618: 613: 609: 602: 589: 585: 579: 575: 570: 566: 562: 556: 550: 547: 544: 539: 513: 508: 504: 481: 476: 472: 451: 431: 411: 410: 397: 392: 387: 384: 381: 374: 371: 364: 359: 355: 347: 342: 338: 334: 331: 326: 321: 317: 309: 304: 300: 296: 291: 286: 282: 275: 262: 258: 252: 248: 244: 241: 238: 235: 229: 226: 223: 218: 214: 189: 184: 180: 157: 152: 148: 127: 115: 112: 107:traveling wave 72:microparticles 66: 63: 51:electric field 15: 9: 6: 4: 3: 2: 3272: 3261: 3258: 3256: 3253: 3251: 3248: 3246: 3243: 3242: 3240: 3225: 3224: 3220: 3218: 3217: 3208: 3206: 3205: 3196: 3195: 3192: 3186: 3183: 3182: 3180: 3176: 3170: 3167: 3165: 3162: 3161: 3159: 3155: 3149: 3146: 3144: 3141: 3139: 3136: 3134: 3131: 3129: 3128:DNA laddering 3126: 3125: 3123: 3119: 3113: 3110: 3108: 3105: 3103: 3100: 3098: 3095: 3093: 3090: 3088: 3085: 3083: 3082:Iontophoresis 3080: 3078: 3075: 3073: 3070: 3068: 3065: 3063: 3060: 3058: 3055: 3053: 3050: 3048: 3045: 3043: 3040: 3038: 3035: 3033: 3030: 3028: 3025: 3023: 3020: 3019: 3017: 3013: 3007: 3004: 3003: 3000: 2996: 2989: 2984: 2982: 2977: 2975: 2970: 2969: 2966: 2960: 2957: 2955: 2952: 2950: 2947: 2946: 2935: 2931: 2927: 2923: 2919: 2915: 2910: 2906: 2902: 2898: 2894: 2890: 2886: 2882: 2878: 2873: 2872: 2857: 2849: 2845: 2841: 2837: 2830: 2822: 2818: 2813: 2808: 2804: 2800: 2796: 2792: 2788: 2784: 2780: 2773: 2765: 2761: 2756: 2751: 2747: 2743: 2739: 2735: 2731: 2727: 2723: 2716: 2708: 2704: 2700: 2696: 2689: 2681: 2677: 2673: 2669: 2665: 2661: 2657: 2653: 2646: 2638: 2634: 2630: 2626: 2619: 2611: 2607: 2603: 2599: 2595: 2591: 2587: 2583: 2576: 2574: 2565: 2561: 2557: 2553: 2549: 2545: 2541: 2537: 2530: 2526: 2520: 2512: 2508: 2503: 2498: 2494: 2490: 2486: 2482: 2478: 2474: 2470: 2463: 2455: 2451: 2447: 2443: 2439: 2435: 2432:(7): 1347–9. 2431: 2427: 2420: 2413: 2405: 2401: 2397: 2393: 2390:(6): 2063–8. 2389: 2385: 2378: 2371: 2364: 2360: 2356: 2351: 2343: 2339: 2335: 2331: 2327: 2323: 2319: 2315: 2308: 2300: 2296: 2292: 2288: 2284: 2280: 2276: 2272: 2265: 2256: 2247: 2238: 2229: 2220: 2211: 2202: 2194: 2190: 2186: 2182: 2179:(2): 175–80. 2178: 2174: 2167: 2161: 2155: 2147: 2143: 2139: 2135: 2131: 2127: 2123: 2119: 2115: 2111: 2104: 2096: 2092: 2088: 2084: 2080: 2076: 2072: 2068: 2061: 2055: 2049: 2043: 2036: 2030: 2024: 2018: 2012: 2004: 1998: 1990: 1986: 1982: 1978: 1974: 1970: 1966: 1962: 1958: 1954: 1947: 1939: 1935: 1930: 1925: 1921: 1917: 1913: 1909: 1902: 1895: 1886: 1878: 1874: 1870: 1866: 1862: 1858: 1854: 1850: 1846: 1842: 1835: 1828: 1826: 1817: 1813: 1809: 1805: 1800: 1795: 1792:(2): 125–31. 1791: 1787: 1783: 1776: 1768: 1764: 1760: 1756: 1752: 1748: 1744: 1740: 1733: 1725: 1721: 1717: 1713: 1706: 1698: 1694: 1690: 1686: 1682: 1678: 1671: 1663: 1659: 1655: 1651: 1647: 1643: 1636: 1628: 1624: 1620: 1616: 1612: 1608: 1604: 1600: 1593: 1586: 1578: 1574: 1570: 1566: 1562: 1558: 1554: 1550: 1543: 1536: 1528: 1521: 1513: 1507: 1503: 1502: 1494: 1492: 1490: 1488: 1479: 1473: 1469: 1462: 1460: 1458: 1456: 1454: 1452: 1450: 1448: 1439: 1433: 1430:. CRC Press. 1429: 1422: 1414: 1412:9780863802553 1408: 1404: 1397: 1395: 1393: 1391: 1389: 1380: 1374: 1370: 1363: 1359: 1351: 1349: 1338: 1334: 1325: 1321: 1319: 1315: 1310: 1305: 1296: 1282: 1279: 1268: 1266: 1262: 1258: 1254: 1250: 1246: 1243:, pancreatic 1242: 1238: 1234: 1229: 1227: 1221: 1219: 1213: 1204: 1178: 1173: 1169: 1165: 1162: 1157: 1152: 1148: 1140: 1135: 1131: 1127: 1122: 1117: 1113: 1106: 1101: 1089: 1085: 1079: 1075: 1059: 1054: 1050: 1046: 1043: 1038: 1033: 1029: 1021: 1016: 1012: 1008: 1003: 998: 994: 987: 984: 979: 967: 963: 957: 953: 939: 934: 930: 926: 920: 912: 907: 904: 901: 898: 894: 886: 885: 884: 882: 881: 873: 872: 867: 863: 858: 854: 850: 846: 830: 810: 802: 786: 778: 762: 740: 736: 733: 727: 724: 721: 716: 712: 686: 681: 672: 666: 657: 650: 645: 641: 634: 629: 625: 621: 616: 611: 607: 600: 587: 583: 577: 573: 568: 564: 560: 554: 537: 529: 528: 527: 511: 506: 502: 479: 474: 470: 449: 429: 421: 416: 395: 390: 385: 382: 379: 369: 362: 353: 345: 340: 336: 332: 329: 324: 319: 315: 307: 302: 298: 294: 289: 284: 280: 273: 260: 256: 250: 246: 242: 239: 236: 216: 205: 204: 203: 187: 182: 178: 155: 150: 146: 125: 111: 108: 104: 99: 97: 93: 88: 83: 81: 77: 76:nanoparticles 73: 62: 60: 56: 52: 48: 44: 40: 36: 3221: 3214: 3202: 3121:Applications 3041: 2917: 2913: 2880: 2876: 2856: 2839: 2835: 2829: 2786: 2782: 2772: 2729: 2725: 2715: 2698: 2694: 2688: 2655: 2651: 2645: 2628: 2624: 2618: 2585: 2581: 2539: 2535: 2519: 2476: 2472: 2462: 2429: 2425: 2412: 2387: 2383: 2370: 2362: 2350: 2317: 2313: 2307: 2274: 2270: 2264: 2255: 2246: 2237: 2228: 2219: 2210: 2201: 2176: 2172: 2166: 2154: 2113: 2109: 2103: 2070: 2066: 2060: 2048: 2035: 2023: 2011: 1997: 1956: 1952: 1946: 1911: 1907: 1894: 1885: 1844: 1840: 1789: 1785: 1775: 1742: 1738: 1732: 1715: 1711: 1705: 1680: 1676: 1670: 1645: 1641: 1635: 1602: 1598: 1585: 1552: 1548: 1535: 1526: 1520: 1500: 1467: 1427: 1421: 1402: 1368: 1362: 1344: 1335: 1331: 1322: 1306: 1302: 1293: 1274: 1230: 1222: 1214: 1210: 1207:Applications 1201: 876: 875: 870: 869: 866:polarization 703: 412: 117: 100: 84: 68: 38: 34: 33: 1253:chromosomes 1233:blood cells 1226:cell sorter 442:and length 3239:Categories 3015:Techniques 2726:Biophys. J 1354:References 1237:stem cells 422:of radius 47:dielectric 2934:0743-7463 2905:0305-4470 2610:250817912 2493:1522-2683 2342:250866275 2299:250736983 1973:1522-2683 1619:1936-0851 1577:250885141 1278:impedance 1179:∗ 1170:ε 1158:∗ 1149:ε 1141:∗ 1132:ε 1128:− 1123:∗ 1114:ε 1107:− 1060:∗ 1051:ε 1039:∗ 1030:ε 1022:∗ 1013:ε 1009:− 1004:∗ 995:ε 940:∗ 931:ε 921:ω 913:∗ 895:ε 811:ω 787:σ 763:ε 741:ω 737:σ 725:ε 717:∗ 713:ε 676:→ 662:∇ 651:∗ 642:ε 635:∗ 626:ε 622:− 617:∗ 608:ε 584:ε 561:π 512:∗ 503:ε 480:∗ 471:ε 420:ellipsoid 373:→ 358:∇ 346:∗ 337:ε 325:∗ 316:ε 308:∗ 299:ε 295:− 290:∗ 281:ε 257:ε 243:π 234:⟩ 213:⟨ 188:∗ 179:ε 156:∗ 147:ε 3204:Category 3178:Journals 2914:Langmuir 2527:(2006). 2511:28256738 2446:16041999 2404:18278948 2146:26978519 2138:17779503 2095:13706981 2087:18288670 1989:23447597 1981:25884244 1938:19529369 1877:42216016 1869:15876666 1816:98661709 1808:13648651 1627:27002685 1599:ACS Nano 1265:bacteria 1257:proteins 755:, where 3216:Commons 2885:Bibcode 2821:9591693 2812:1299609 2791:Bibcode 2764:9251828 2755:1181008 2734:Bibcode 2680:8502990 2660:Bibcode 2652:Science 2590:Bibcode 2564:4590982 2544:Bibcode 2502:5547746 2454:5774015 2322:Bibcode 2279:Bibcode 2193:8987883 2118:Bibcode 2110:Science 1916:Bibcode 1849:Bibcode 1747:Bibcode 1685:Bibcode 1650:Bibcode 1557:Bibcode 1261:viruses 1245:β cells 1241:neurons 843:is the 799:is the 775:is the 55:charged 3157:Theory 2932:  2903:  2819:  2809:  2762:  2752:  2678:  2608:  2562:  2509:  2499:  2491:  2452:  2444:  2402:  2340:  2297:  2191:  2144:  2136:  2093:  2085:  1987:  1979:  1971:  1936:  1875:  1867:  1814:  1806:  1767:573830 1765:  1625:  1617:  1575:  1508:  1474:  1434:  1409:  1375:  862:dipole 2606:S2CID 2560:S2CID 2532:(PDF) 2450:S2CID 2422:(PDF) 2380:(PDF) 2338:S2CID 2295:S2CID 2142:S2CID 2091:S2CID 1985:S2CID 1904:(PDF) 1873:S2CID 1837:(PDF) 1812:S2CID 1595:(PDF) 1573:S2CID 1545:(PDF) 874:with 87:force 80:cells 43:force 2930:ISSN 2901:ISSN 2817:PMID 2760:PMID 2676:PMID 2507:PMID 2489:ISSN 2442:PMID 2400:PMID 2189:PMID 2134:PMID 2083:PMID 1977:PMID 1969:ISSN 1934:PMID 1865:PMID 1804:PMID 1763:PMID 1623:PMID 1615:ISSN 1506:ISBN 1472:ISBN 1432:ISBN 1407:ISBN 1373:ISBN 1318:FACS 1316:and 1314:MACS 1259:and 1218:CMOS 105:and 78:and 2922:doi 2893:doi 2844:doi 2840:140 2807:PMC 2799:doi 2750:PMC 2742:doi 2703:doi 2668:doi 2656:260 2633:doi 2598:doi 2552:doi 2497:PMC 2481:doi 2434:doi 2392:doi 2361:", 2357:, " 2330:doi 2287:doi 2181:doi 2126:doi 2114:152 2075:doi 1961:doi 1924:doi 1857:doi 1794:doi 1755:doi 1720:doi 1693:doi 1658:doi 1607:doi 1565:doi 1249:DNA 879:rms 855:or 39:DEP 3241:: 2928:. 2918:18 2916:. 2899:. 2891:. 2881:22 2879:. 2838:. 2815:. 2805:. 2797:. 2787:74 2785:. 2781:. 2758:. 2748:. 2740:. 2730:73 2728:. 2724:. 2699:20 2697:. 2674:. 2666:. 2654:. 2629:21 2627:. 2604:. 2596:. 2584:. 2572:^ 2558:. 2550:. 2540:17 2538:. 2534:. 2505:. 2495:. 2487:. 2477:38 2475:. 2471:. 2448:. 2440:. 2430:52 2428:. 2424:. 2398:. 2388:80 2386:. 2382:. 2336:. 2328:. 2316:. 2293:. 2285:. 2275:31 2273:. 2187:. 2177:51 2175:. 2140:. 2132:. 2124:. 2112:. 2089:. 2081:. 2071:29 2069:. 1983:. 1975:. 1967:. 1957:36 1955:. 1932:. 1922:. 1912:14 1910:. 1906:. 1871:. 1863:. 1855:. 1845:50 1843:. 1839:. 1824:^ 1810:. 1802:. 1790:14 1788:. 1761:. 1753:. 1743:78 1741:. 1716:66 1714:. 1691:. 1681:29 1679:. 1656:. 1646:22 1644:. 1621:. 1613:. 1603:10 1601:. 1597:. 1571:. 1563:. 1553:11 1551:. 1547:. 1486:^ 1446:^ 1387:^ 1320:. 1255:, 1251:, 1247:, 1239:, 1235:, 1228:. 803:, 779:, 595:Re 268:Re 82:. 74:, 2987:e 2980:t 2973:v 2936:. 2924:: 2907:. 2895:: 2887:: 2850:. 2846:: 2823:. 2801:: 2793:: 2766:. 2744:: 2736:: 2709:. 2705:: 2682:. 2670:: 2662:: 2639:. 2635:: 2612:. 2600:: 2592:: 2586:3 2566:. 2554:: 2546:: 2513:. 2483:: 2456:. 2436:: 2406:. 2394:: 2344:. 2332:: 2324:: 2318:2 2301:. 2289:: 2281:: 2195:. 2183:: 2148:. 2128:: 2120:: 2097:. 2077:: 1991:. 1963:: 1940:. 1926:: 1918:: 1879:. 1859:: 1851:: 1818:. 1796:: 1769:. 1757:: 1749:: 1726:. 1722:: 1699:. 1695:: 1687:: 1664:. 1660:: 1652:: 1629:. 1609:: 1579:. 1567:: 1559:: 1529:. 1514:. 1480:. 1440:. 1415:. 1381:. 1174:2 1166:2 1163:+ 1153:1 1136:2 1118:1 1102:3 1098:) 1090:1 1086:r 1080:2 1076:r 1070:( 1055:2 1047:2 1044:+ 1034:1 1017:2 999:1 988:2 985:+ 980:3 976:) 968:1 964:r 958:2 954:r 948:( 935:2 927:= 924:) 918:( 908:f 905:f 902:e 899:1 877:E 871:E 831:i 734:i 728:+ 722:= 687:2 682:| 673:E 667:| 658:} 646:m 630:m 612:p 601:{ 588:m 578:3 574:l 569:2 565:r 555:= 549:P 546:E 543:D 538:F 507:m 475:p 450:l 430:r 396:2 391:| 386:s 383:m 380:r 370:E 363:| 354:} 341:m 333:2 330:+ 320:p 303:m 285:p 274:{ 261:m 251:3 247:r 240:2 237:= 228:P 225:E 222:D 217:F 183:m 151:p 126:r 37:(

Index

force
dielectric
electric field
charged
electrophysiological
microparticles
nanoparticles
cells
force
Maxwell–Wagner–Sillars polarization
electrophoretic
electrorotation
traveling wave
Clausius-Mossotti function
ellipsoid
dielectric constant
electrical conductivity
imaginary unit
red blood cells
carbon nanotubes
tobacco mosaic viruses
dipole
polarization
CMOS
cell sorter
blood cells
stem cells
neurons
β cells
DNA

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑