Knowledge

Tensor rank decomposition

Source 📝

5586: 5214: 5581:{\displaystyle {\begin{aligned}{\mathcal {A}}_{m}&=m(\mathbf {u} +{\frac {1}{m}}\mathbf {v} )\otimes (\mathbf {u} +{\frac {1}{m}}\mathbf {v} )\otimes (\mathbf {u} +{\frac {1}{m}}\mathbf {v} )-m\mathbf {u} \otimes \mathbf {u} \otimes \mathbf {u} \\&=\mathbf {u} \otimes \mathbf {u} \otimes \mathbf {v} +\mathbf {u} \otimes \mathbf {v} \otimes \mathbf {u} +\mathbf {v} \otimes \mathbf {u} \otimes \mathbf {u} +{\frac {1}{m}}(\mathbf {u} \otimes \mathbf {v} \otimes \mathbf {v} +\mathbf {v} \otimes \mathbf {u} \otimes \mathbf {v} +\mathbf {v} \otimes \mathbf {v} \otimes \mathbf {u} )+{\frac {1}{m^{2}}}\mathbf {v} \otimes \mathbf {v} \otimes \mathbf {v} \end{aligned}}} 5203: 9481: 1554: 6854: 10165: 5042: 9320: 9644: 6557: 1352: 1783: 932: 9948: 5758: 9221: 5198:{\displaystyle {\mathcal {A}}=\mathbf {u} \otimes \mathbf {u} \otimes \mathbf {v} +\mathbf {u} \otimes \mathbf {v} \otimes \mathbf {u} +\mathbf {v} \otimes \mathbf {u} \otimes \mathbf {u} ,\quad {\text{with }}\|\mathbf {u} \|=\|\mathbf {v} \|=1{\text{ and }}\langle \mathbf {u} ,\mathbf {v} \rangle \neq 1.} 9476:{\displaystyle {\mathcal {A}}=\mathbf {u} \otimes \mathbf {u} \otimes \mathbf {v} +\mathbf {u} \otimes \mathbf {v} \otimes \mathbf {u} +\mathbf {v} \otimes \mathbf {u} \otimes \mathbf {u} ,\quad {\text{with }}\|\mathbf {u} \|=\|\mathbf {v} \|=1{\text{ and }}\langle \mathbf {u} ,\mathbf {v} \rangle \neq 1} 10203:
A common partial solution to the ill-posedness problem consists of imposing an additional inequality constraint that bounds the norm of the individual rank-1 terms by some constant. Other constraints that result in a closed set, and, thus, well-posed optimization problem, include imposing positivity
10294:
In machine learning, the CP-decomposition is the central ingredient in learning probabilistic latent variables models via the technique of moment-matching. For example, consider the multi-view model which is a probabilistic latent variable model. In this model, the generation of samples are posited
9492: 2368:
will be a rank-1 tensor with probability zero, a rank-2 tensor with positive probability, and rank-3 with positive probability. On the other hand, a randomly sampled complex tensor of the same size will be a rank-1 tensor with probability zero, a rank-2 tensor with probability one, and a rank-3
1549:{\displaystyle {\mathcal {A}}=\mathbf {x} _{1}\otimes \mathbf {x} _{2}\otimes \mathbf {x} _{3}+\mathbf {x} _{1}\otimes \mathbf {y} _{2}\otimes \mathbf {y} _{3}-\mathbf {y} _{1}\otimes \mathbf {x} _{2}\otimes \mathbf {y} _{3}+\mathbf {y} _{1}\otimes \mathbf {y} _{2}\otimes \mathbf {x} _{3},} 9832: 1345:
The rank of a tensor depends on the field over which the tensor is decomposed. It is known that some real tensors may admit a complex decomposition whose rank is strictly less than the rank of a real decomposition of the same tensor. As an example, consider the following real tensor
6849:{\displaystyle {\mathcal {A}}=\sum _{i=1}^{r}\mathbf {a} _{i}\otimes \mathbf {b} _{i}=\sum _{i=1}^{r}\mathbf {a} _{i}\mathbf {b} _{i}^{T}=AB^{T}=(AX^{-1})(BX^{T})^{T}=\sum _{i=1}^{r}\mathbf {c} _{i}\mathbf {d} _{i}^{T}=\sum _{i=1}^{r}\mathbf {c} _{i}\otimes \mathbf {d} _{i},} 10200:. It was, in addition, shown that a random low-rank tensor over the reals may not admit a rank-2 approximation with positive probability, leading to the understanding that the ill-posedness problem is an important consideration when employing the tensor rank decomposition. 1628: 765: 4624: 10160:{\displaystyle \|\mathbf {a} _{i,n}^{1}\otimes \mathbf {a} _{i,n}^{2}\otimes \cdots \otimes \mathbf {a} _{i,n}^{M}\|_{F}\to \infty {\text{ and }}\|\mathbf {a} _{j,n}^{1}\otimes \mathbf {a} _{j,n}^{2}\otimes \cdots \otimes \mathbf {a} _{j,n}^{M}\|_{F}\to \infty } 5637: 9055: 10673:, this can be interpreted as the co-occurrence of words in a document. Then the coefficients in the decomposition of this empirical moment tensor can be interpreted as the probability of choosing a specific topic and each column of the factor matrix 449: 3118: 9270:. A solution to aforementioned problem may sometimes not exist because the set over which one optimizes is not closed. As such, a minimizer may not exist, even though an infimum would exist. In particular, it is known that certain so-called 77:
in 1927 and later rediscovered several times, notably in psychometrics. The CP decomposition is referred to as CANDECOMP, PARAFAC, or CANDECOMP/PARAFAC (CP). Note that the PARAFAC2 rank decomposition is a variation of the CP decomposition.
2688:
When the first factor is very large with respect to the other factors in the tensor product, then the tensor space essentially behaves as a matrix space. The generic rank of tensors living in an unbalanced tensor spaces is known to equal
7589: 705: 2996: 6086: 2206:
only forms an open set of positive measure in the Euclidean topology. There may exist Euclidean-open sets of tensors of rank strictly higher than the generic rank. All ranks appearing on open sets in the Euclidean topology are called
9639:{\displaystyle {\mathcal {A}}_{n}=n(\mathbf {u} +{\frac {1}{n}}\mathbf {v} )\otimes (\mathbf {u} +{\frac {1}{n}}\mathbf {v} )\otimes (\mathbf {u} +{\frac {1}{n}}\mathbf {v} )-n\mathbf {u} \otimes \mathbf {u} \otimes \mathbf {u} } 2805: 6187: 3931: 3800: 2426: 2334: 2275: 3704: 9701: 7369: 2671: 8509: 3182: 8634: 1274: 7261:
is a closed set in the Zariski topology, the decomposition on the right-hand side is a sum of a different set of rank-1 tensors than the decomposition on the left-hand side, entailing that order-2 tensors of rank
6526: 3496: 1616: 617: 7951: 1848: 8051: 6303: 3606: 10254: 4278:
that can be admitted by any of the tensors in a tensor space is unknown in general; even a conjecture about this maximum rank is missing. Presently, the best general upper bound states that the maximum rank
2870: 5895: 5841: 1778:{\displaystyle {\mathcal {A}}={\frac {1}{2}}({\bar {\mathbf {z} }}_{1}\otimes \mathbf {z} _{2}\otimes {\bar {\mathbf {z} }}_{3}+\mathbf {z} _{1}\otimes {\bar {\mathbf {z} }}_{2}\otimes \mathbf {z} _{3}),} 8878: 8202: 1335: 1031: 10664: 7493: 927:{\displaystyle {\mathcal {A}}=\sum _{r=1}^{R}\lambda _{r}\mathbf {a} _{0,r}\otimes \mathbf {a} _{1,r}\otimes \mathbf {a} _{2,r}\dots \otimes \mathbf {a} _{c,r}\otimes \cdots \otimes \mathbf {a} _{C,r},} 4746: 4401: 2489: 2047: 531: 4468: 1205: 7722: 7841: 4460: 4264: 2548: 10226: 9876: 7239: 5219: 4341: 3387: 4787: 8812: 8715: 8401: 8319: 8107: 5753:{\displaystyle {\mathcal {A}}=\mathbf {a} _{1}\otimes \mathbf {a} _{2}\otimes \cdots \otimes \mathbf {a} _{M}=\mathbf {b} _{1}\otimes \mathbf {b} _{2}\otimes \cdots \otimes \mathbf {b} _{M}} 4177: 5952: 972: 3976: 9216:{\displaystyle \min _{\mathbf {a} _{i}^{m}\in F^{I_{m}}}\|{\mathcal {A}}-\sum _{i=1}^{r}\mathbf {a} _{i}^{1}\otimes \mathbf {a} _{i}^{2}\otimes \cdots \otimes \mathbf {a} _{i}^{M}\|_{F},} 8949: 4843: 3330: 3268: 6901: 4682: 2211:. The smallest typical rank is called the generic rank; this definition applies to both complex and real tensors. The generic rank of tensor spaces was initially studied in 1983 by 2204: 2102: 1943: 4093: 4015: 232: 9940: 9695:
tensors that converges to a tensor of strictly higher rank needs to admit at least two individual rank-1 terms whose norms become unbounded. Stated formally, whenever a sequence
7117: 6381: 6218: 10350: 7186: 2366: 9257: 9021: 6405: 6350: 5976: 4997: 4949: 4895: 338: 7639: 1063: 363: 264: 186: 11291: 11269: 10194: 9902: 9673: 7045: 6986: 5785: 5615: 1877: 311: 289: 7428: 10220: 3010: 6927: 11832:
Domanov, Ignat; De Lathauwer, Lieven (January 2017). "Canonical polyadic decomposition of third-order tensors: Relaxed uniqueness conditions and algebraic algorithm".
8747: 8228: 4119: 9047: 8908: 8263: 7395: 7286: 6552: 5024: 4925: 7752: 7669: 7498: 630: 11779:
Domanov, Ignat; Lathauwer, Lieven De (January 2014). "Canonical Polyadic Decomposition of Third-Order Tensors: Reduction to Generalized Eigenvalue Decomposition".
2910: 8535: 8427: 8345: 8133: 6431: 6001: 11958:
Lorber, Avraham. (October 1985). "Features of quantifying chemical composition from two-dimensional data array by the rank annihilation factor analysis method".
6326: 10714: 10452: 10390: 10370: 9693: 9312: 9292: 8997: 8977: 7609: 7259: 6238: 6110: 5996: 4969: 4871: 4139: 3202: 2890: 2149: 2125: 1987: 1963: 1103: 1083: 757: 737: 358: 151: 131: 10196:. This phenomenon is often encountered when attempting to approximate a tensor using numerical optimization algorithms. It is sometimes called the problem of 12036:
Sands, Richard; Young, Forrest W. (March 1980). "Component models for three-way data: An alternating least squares algorithm with optimal scaling features".
2695: 6115: 11236: 11091: 6243: 3808: 3710: 2372: 2280: 2221: 1618:. The rank of this tensor over the reals is known to be 3, while its complex rank is only 2 because it is the sum of a complex rank-1 tensor with its 12185:
Anandkumar, Animashree; Ge, Rong; Hsu, Daniel; Kakade, Sham M; Telgarsky, Matus (2014). "Tensor decompositions for learning latent variable models".
11462:
Chiantini, L.; Ottaviani, G.; Vannieuwenhoven, N. (2014-01-01). "An Algorithm For Generic and Low-Rank Specific Identifiability of Complex Tensors".
11153: 10980: 12132:
Bernardi, Alessandra; Daleo, Noah S.; Hauenstein, Jonathan D.; Mourrain, Bernard (December 2017). "Tensor decomposition and homotopy continuation".
11240: 11095: 11012: 9827:{\displaystyle {\mathcal {A}}_{n}=\sum _{i=1}^{r}\mathbf {a} _{i,n}^{1}\otimes \mathbf {a} _{i,n}^{2}\otimes \cdots \otimes \mathbf {a} _{i,n}^{M}} 3978:
is defective (13 and not the expected 14), the generic rank in that space is still the expected one, 4. Similarly, the set of tensors of rank 5 in
10283: 4121:. In 2011, a major breakthrough was established by Catalisano, Geramita, and Gimigliano who proved that the expected dimension of the set of rank 11677:
Hauenstein, J. D.; Oeding, L.; Ottaviani, G.; Sommese, A. J. (2016). "Homotopy techniques for tensor decomposition and perfect identifiability".
11332: 11244: 11099: 10823: 3614: 7294: 2560: 11144: 10928: 8435: 3126: 5617:. Therefore, its border rank is 2, which is strictly less than its rank. When the two vectors are orthogonal, this example is also known as a 11198: 11148: 11003: 1229: 8543: 6444: 3395: 11336: 1562: 536: 2336:
is 2. Practically, this means that a randomly sampled real tensor (from a continuous probability measure on the space of tensors) of size
11394: 7849: 1791: 11568:
Chiantini, L.; Ottaviani, G.; Vannieuwenhoven, N. (2017-01-01). "Effective Criteria for Specific Identifiability of Tensors and Forms".
11390: 10827: 3508: 11885:
Faber, Nicolaas (Klaas) M.; Ferré, Joan; Boqué, Ricard (January 2001). "Iteratively reweighted generalized rank annihilation method".
7956: 4179:
is the expected one except for rank 3 tensors in the 4 factor case, yet the expected rank in that case is still 4. As a consequence,
11386: 10745: 1220: 82: 2816: 12672: 11140: 11007: 10932: 5846: 5790: 8817: 8141: 1279: 977: 12079:
Bernardi, A.; Brachat, J.; Comon, P.; Mourrain, B. (May 2013). "General tensor decomposition, moment matrices and applications".
10457: 7433: 4619:{\displaystyle r_{\mbox{max}}(I_{1},\ldots ,I_{M})\leq \min \left\{\prod _{m=2}^{M}I_{m},2\cdot r(I_{1},\ldots ,I_{M})\right\},} 4691: 4346: 2434: 1992: 12821: 454: 11443: 1143: 7677: 1219:
that the tensor represents. A simple polynomial-time algorithm exists for certifying that a tensor is of rank 1, namely the
11399: 7765: 4406: 4182: 2494: 2431:
The generic rank of tensor spaces depends on the distinction between balanced and unbalanced tensor spaces. A tensor space
11515:
Bocci, Cristiano; Chiantini, Luca; Ottaviani, Giorgio (2014-12-01). "Refined methods for the identifiability of tensors".
10878: 9840: 7191: 11207: 11108: 11066: 4282: 3339: 188:. Multiple indices that one might encounter when referring to the multiple modes of a tensor are conveniently denoted by 12856: 12535: 10793: 8951:
that is not identifiability-unbalanced is expected to be identifiable (modulo the exceptional cases in small spaces).
4751: 12315: 8764: 8353: 8271: 8059: 4144: 8639: 5904: 940: 12737: 3936: 2127:: every tensor in the aforementioned space is either of rank less than the generic rank, or it is the limit in the 17: 10299:
random variables known as the different "views" of the hidden variable. For example, assume there are three views
5030: 4792: 4020:
The AOP conjecture has been proved completely in a number of special cases. Lickteig showed already in 1985 that
12273: 10295:
as follows: there exists a hidden random variable that is not observed directly, given which, there are several
8913: 3273: 3211: 11993:
Sanchez, Eugenio; Kowalski, Bruce R. (January 1990). "Tensorial resolution: A direct trilinear decomposition".
6859: 10879:"Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-modal factor analysis" 12588: 12520: 10730: 4748:. It is well-known that the foregoing inequality may be strict. For instance, the generic rank of tensors in 6352:
can be obtained by permuting the order of the summands. Observe that in a tensor rank decomposition all the
4632: 2154: 2052: 1893: 12959: 12613: 10735: 10266: 10248: 4023: 3981: 191: 12851: 9907: 12278: 7050: 6355: 6192: 12662: 12482: 10302: 7430:. For simplicity in notation, assume without loss of generality that the factors are ordered such that 7122: 4017:
is defective (44 and not the expected 45), but the generic rank in that space is still the expected 6.
2339: 9266:
It was shown in a 2008 paper by de Silva and Lim that the above standard approximation problem may be
444:{\displaystyle {\mathcal {A}}\in \mathbb {C} ^{I_{1}\times I_{2}\times \dots I_{m}\times \dots I_{M}}} 12334: 10296: 12816: 12233: 11621:
Chiantini, L.; Ottaviani, G. (2012-01-01). "On Generic Identifiability of 3-Tensors of Small Rank".
9229: 9002: 6386: 6331: 5957: 4978: 4930: 4876: 319: 12918: 12836: 12790: 12497: 7618: 3113:{\displaystyle \Pi =\prod _{m=1}^{M}I_{m}\quad {\text{and}}\quad \Sigma =\sum _{m=1}^{M}(I_{m}-1).} 1036: 237: 159: 11274: 11252: 10173: 9881: 9652: 6991: 6932: 5763: 5594: 3389:
because it is only conjecturally correct. It is known that the true generic rank always satisfies
1860: 294: 272: 12888: 12575: 12492: 12462: 10260: 7612: 7400: 12846: 12702: 12657: 12287: 12228: 10911: 6906: 74: 57:
is a variant of the tensor rank decomposition, in which the tensor is approximated as a sum of
7584:{\displaystyle S_{r}\subset F^{I_{1}}\otimes \cdots F^{I_{m}}\otimes \cdots \otimes F^{I_{M}}} 3270:
is the least rank that is expected to occur on a set of positive Euclidean measure. The value
1121:. If the number of terms is not minimal, then the above decomposition is often referred to as 700:{\displaystyle {\mathcal {A}}\in {\mathbb {F} }^{I_{0}\times I_{1}\times \ldots \times I_{C}}} 12928: 12883: 12363: 12308: 11723: 11341: 10725: 8732: 8207: 4098: 2991:{\displaystyle r_{E}(I_{1},\ldots ,I_{M})=\left\lceil {\frac {\Pi }{\Sigma +1}}\right\rceil } 2218:
As an illustration of the above concepts, it is known that both 2 and 3 are typical ranks of
10771: 9026: 8887: 8233: 7374: 7265: 6531: 6081:{\displaystyle {\mathcal {A}}\in F^{I_{1}}\otimes F^{I_{2}}\otimes \cdots \otimes F^{I_{M}}} 5006: 4904: 12903: 12831: 12717: 12583: 12545: 12477: 12220: 10750: 10740: 9294:, even though the limit of the sequence converges to a tensor of rank strictly higher than 7730: 7647: 8: 12780: 12603: 12593: 12442: 12427: 12383: 10874: 10208:
strictly less than unity between the rank-1 terms appearing in the sought decomposition.
8514: 8406: 8324: 8112: 6410: 28: 12224: 11010:(2008). "Tensor Rank and the Ill-Posedness of the Best Low-Rank Approximation Problem". 6308: 12913: 12770: 12623: 12437: 12373: 12246: 12167: 12141: 12114: 12088: 12061: 12018: 11867: 11841: 11814: 11788: 11761: 11735: 11704: 11686: 11656: 11630: 11603: 11577: 11550: 11524: 11497: 11471: 11368: 11350: 11180: 11162: 11039: 11021: 10962: 10944: 10853: 10676: 10395: 10375: 10355: 9678: 9297: 9277: 8982: 8962: 7594: 7244: 6223: 6095: 5981: 4954: 4856: 4124: 3187: 2875: 2134: 2128: 2110: 1972: 1948: 1088: 1068: 742: 722: 343: 136: 116: 11898: 11122: 11103: 4971:
is the least value for which such a convergent sequence exists, then it is called the
2800:{\displaystyle r(I_{1},\ldots ,I_{M})=\min \left\{I_{1},\prod _{m=2}^{M}I_{m}\right\}} 2369:
tensor with probability zero. It is even known that the generic rank-3 real tensor in
12908: 12677: 12652: 12467: 12378: 12358: 12171: 12159: 12106: 12065: 12053: 12022: 12010: 11975: 11940: 11902: 11871: 11859: 11806: 11765: 11753: 11648: 11595: 11554: 11542: 11489: 11439: 11221: 11202: 11076: 11061: 3001: 2810: 1619: 1208: 98: 90: 12250: 12118: 11818: 11749: 11708: 11660: 11607: 11501: 11372: 11184: 10857: 10716:
corresponds to probabilities of words in the vocabulary in the corresponding topic.
6182:{\displaystyle \{{\mathcal {A}}_{1},{\mathcal {A}}_{2},\ldots ,{\mathcal {A}}_{r}\}} 5208:
It can be approximated arbitrarily well by the following sequence of rank-2 tensors
12964: 12923: 12598: 12565: 12550: 12432: 12301: 12238: 12151: 12098: 12045: 12002: 11967: 11932: 11923:; Ross, R. T.; Abel, R. B. (October 1993). "A Decomposition for Three-Way Arrays". 11894: 11851: 11798: 11745: 11696: 11640: 11587: 11534: 11481: 11431: 11408: 11360: 11312: 11216: 11172: 11117: 11071: 11043: 11031: 10966: 10954: 10845: 10802: 8761:
expected to be at least two in case 8 with exception of the two identifiable cases
3205: 1966: 11317: 11248: 11176: 2892:
is some indeterminate closed set in the Zariski topology, equals the above value.
12893: 12841: 12785: 12765: 12667: 12555: 12422: 12393: 12208: 12155: 11057: 10788: 9486:
can be approximated arbitrarily well by the following sequence of rank-2 tensors
3926:{\displaystyle r(I_{1},\ldots ,I_{m},\ldots ,I_{M})=r_{E}(I_{1},\ldots ,I_{M})+1} 3795:{\displaystyle F^{(m+1)\times (m+1)\times 2\times 2}{\text{ with }}m=2,3,\ldots } 2212: 1854: 156:
Indices are denoted by a combination of lowercase and upper case italic letters,
94: 9675:. This example neatly illustrates the general principle that a sequence of rank- 2421:{\displaystyle \mathbb {R} ^{2}\otimes \mathbb {R} ^{2}\otimes \mathbb {R} ^{2}} 2329:{\displaystyle \mathbb {C} ^{2}\otimes \mathbb {C} ^{2}\otimes \mathbb {C} ^{2}} 2270:{\displaystyle \mathbb {R} ^{2}\otimes \mathbb {R} ^{2}\otimes \mathbb {R} ^{2}} 12933: 12898: 12795: 12628: 12618: 12608: 12530: 12502: 12487: 12472: 12388: 10893: 10830:(1970). "Analysis of individual differences in multidimensional scaling via an 10670: 9260: 12878: 12102: 11855: 11538: 11435: 11364: 12953: 12870: 12775: 12687: 12560: 12163: 12110: 12057: 12014: 11979: 11944: 11906: 11863: 11810: 11757: 11700: 11652: 11599: 11546: 11493: 11397:(1980). "Approximate solutions for the bilinear form computational problem". 10836: 10205: 9274:
may be approximated arbitrarily well by a sequence of tensor of rank at most
1216: 102: 7758:
in this case), unless either one of the following exceptional cases holds:
1226:
The rank of the tensor of zeros is zero by convention. The rank of a tensor
12938: 12742: 12727: 12692: 12540: 12525: 12006: 11920: 3699:{\displaystyle F^{(2m+1)\times (2m+1)\times 3}{\text{ with }}m=1,2,\ldots } 86: 70: 10806: 7364:{\displaystyle F^{I_{1}}\otimes F^{I_{2}}\otimes \cdots \otimes F^{I_{M}}} 5026:
they may differ. Border tensors were first studied in the context of fast
2666:{\displaystyle I_{1}>1+\prod _{m=2}^{M}I_{m}-\sum _{m=2}^{M}(I_{m}-1),} 12826: 12800: 12722: 12411: 12350: 10791:(1927). "The expression of a tensor or a polyadic as a sum of products". 8504:{\displaystyle F^{2}\otimes F^{2}\otimes F^{2}\otimes F^{2}\otimes F^{2}} 6092:
if every of its tensor rank decompositions is the sum of the same set of
3177:{\displaystyle \mathbb {C} ^{I_{1}\times \cdots \times I_{M}}\setminus Z} 2813:. More precisely, the rank of every tensor in an unbalanced tensor space 1212: 66: 11971: 3004:
for complex tensors and on a Euclidean-open set for real tensors, where
12707: 12049: 11591: 10849: 8629:{\textstyle r_{E}(I_{1},I_{2},\ldots ,I_{M})={\frac {\Pi }{\Sigma +1}}} 1879:: real matrix rank and complex matrix rank coincide for real matrices. 1269:{\displaystyle \mathbf {a} _{1}\otimes \cdots \otimes \mathbf {a} _{M}} 12242: 11802: 11644: 11485: 11104:"Ranks of tensors, secant varieties of Segre varieties and fat points" 11035: 8954: 6521:{\displaystyle F^{I_{1}}\otimes F^{I_{2}}\simeq F^{I_{1}\times I_{2}}} 3491:{\displaystyle r(I_{1},\ldots ,I_{M})\geq r_{E}(I_{1},\ldots ,I_{M}).} 2904:
generic rank of tensors living in a balanced tensor space is equal to
12682: 12633: 11167: 11026: 8979:
decomposition closest (in the usual Euclidean topology) to some rank-
8721:
In these exceptional cases, the generic (and also minimum) number of
2105: 1611:{\displaystyle \mathbf {x} _{i},\mathbf {y} _{j}\in \mathbb {R} ^{2}} 612:{\displaystyle {\mathcal {A}}_{i_{1},i_{2},\dots ,i_{m},\dots i_{M}}} 133:
and an upper bound scalar is denoted by an upper case italic letter,
12211:; Bader, Brett W. (2009). "Tensor Decompositions and Applications". 11936: 11412: 10958: 7946:{\textstyle I_{1}>\prod _{m=2}^{M}i_{m}-\sum _{m=2}^{M}(I_{m}-1)} 3805:
In each of these exceptional cases, the generic rank is known to be
1136:
Contrary to the case of matrices, computing the rank of a tensor is
12712: 12697: 12146: 11846: 11691: 11582: 1853:
In contrast, the rank of real matrices will never decrease under a
1843:{\displaystyle \mathbf {z} _{k}=\mathbf {x} _{k}+i\mathbf {y} _{k}} 12093: 11793: 11740: 11635: 11529: 11476: 11355: 10949: 2151:. In the case of real tensors, the set of tensors of rank at most 12406: 12368: 11567: 11461: 8046:{\textstyle r\geq \prod _{m=2}^{M}I_{m}-\sum _{m=2}^{M}(I_{m}-1)} 7611:. Then, the following statement was proved to be correct using a 6298:{\displaystyle {\mathcal {A}}=\sum _{i=1}^{r}{\mathcal {A}}_{i},} 5618: 3601:{\displaystyle r(I_{1},\ldots ,I_{M})=r_{E}(I_{1},\ldots ,I_{M})} 1137: 85:
computes orthonormal mode matrices and has found applications in
12286:(free exploratory multivariate data analysis software linked to 11676: 10392:. Then the empirical third moment of this latent variable model 12732: 12324: 12131: 10272: 1140:. The only notable well-understood case consists of tensors in 1109:
of the tensor, and the decomposition is often referred to as a
10772:"Automatic Unsupervised Tensor Mining with Quality Assessment" 2865:{\displaystyle F^{I_{1}\times \cdots \times I_{M}}\setminus Z} 707:
is a collection of multivariate observations organized into a
81:
Another popular generalization of the matrix SVD known as the
12283: 11151:(2009). "Induction for secant varieties of Segre varieties". 7291:
The situation changes completely for higher-order tensors in
5890:{\displaystyle \mathbf {a} _{m}=\lambda _{m}\mathbf {b} _{m}} 5836:{\displaystyle \lambda _{1}\lambda _{2}\cdots \lambda _{M}=1} 51:
is minimal. Computing this decomposition is an open problem.
12078: 11235: 11090: 8873:{\displaystyle F^{3}\otimes F^{2}\otimes F^{2}\otimes F^{2}} 8197:{\displaystyle F^{n}\otimes F^{n}\otimes F^{2}\otimes F^{2}} 4999:. For order-2 tensors, i.e., matrices, rank and border rank 1330:{\displaystyle \mathbf {a} _{m}\in F^{I_{m}}\setminus \{0\}} 1026:{\displaystyle \mathbf {a} _{m,r}\in {\mathbb {F} }^{I_{m}}} 10659:{\displaystyle E=\sum _{i=1}^{k}Pr(h=i)E\otimes E\otimes E} 7488:{\displaystyle I_{1}\geq I_{2}\geq \cdots \geq I_{M}\geq 2} 113:
A scalar variable is denoted by lower case italic letters,
12293: 5036:
A classic example of a border tensor is the rank-3 tensor
3208:, is expected to equal the above value. For real tensors, 2049:. In the case of complex tensors, tensors of rank at most 719:+1. Every tensor may be represented with a suitably large 4741:{\displaystyle F^{I_{1}}\otimes \cdots \otimes F^{I_{M}}} 4396:{\displaystyle F^{I_{1}}\otimes \cdots \otimes F^{I_{M}}} 2484:{\displaystyle F^{I_{1}}\otimes \cdots \otimes F^{I_{M}}} 2042:{\displaystyle F^{I_{1}}\otimes \cdots \otimes F^{I_{M}}} 316:
A higher order tensor is denoted by calligraphic letters,
526:{\displaystyle a_{i_{1},i_{2},\dots ,i_{m},\dots i_{M}}} 11514: 1200:{\displaystyle F^{I_{m}}\otimes F^{I_{n}}\otimes F^{2}} 10834:-way generalization of 'Eckart–Young' decomposition". 8916: 8642: 8546: 7959: 7852: 7717:{\displaystyle {\mathcal {A}}\in S_{r}\setminus Z_{r}} 5978:
are called identifiable or essentially unique. A rank-
4901:
if there exists a sequence of tensors of rank at most
4801: 4477: 4291: 269:
A vector is denoted by a lower case bold Times Roman,
65:. The CP decomposition has found some applications in 12184: 11277: 11255: 10679: 10460: 10398: 10378: 10358: 10305: 10176: 9951: 9910: 9884: 9843: 9704: 9681: 9655: 9495: 9323: 9300: 9280: 9232: 9058: 9029: 9005: 8985: 8965: 8890: 8820: 8767: 8735: 8517: 8438: 8409: 8356: 8327: 8274: 8236: 8210: 8144: 8115: 8062: 7836:{\displaystyle r>r_{E}(I_{1},I_{2},\ldots ,I_{M})} 7768: 7733: 7680: 7650: 7621: 7597: 7501: 7436: 7403: 7377: 7297: 7268: 7247: 7194: 7125: 7053: 6994: 6935: 6909: 6862: 6560: 6534: 6447: 6413: 6389: 6358: 6334: 6311: 6246: 6226: 6195: 6118: 6098: 6004: 5984: 5960: 5907: 5849: 5793: 5766: 5640: 5634:
It follows from the definition of a pure tensor that
5597: 5217: 5045: 5009: 4981: 4957: 4933: 4907: 4879: 4859: 4795: 4754: 4694: 4635: 4471: 4455:{\displaystyle I_{1}\geq I_{2}\geq \cdots \geq I_{M}} 4409: 4349: 4285: 4259:{\displaystyle r(2,2,\ldots ,2)=r_{E}(2,2,\ldots ,2)} 4185: 4147: 4127: 4101: 4026: 3984: 3939: 3811: 3713: 3617: 3511: 3398: 3342: 3276: 3214: 3190: 3129: 3013: 2913: 2878: 2819: 2698: 2563: 2543:{\displaystyle I_{1}\geq I_{2}\geq \cdots \geq I_{M}} 2497: 2437: 2375: 2342: 2283: 2224: 2157: 2137: 2113: 2055: 1995: 1975: 1951: 1896: 1863: 1794: 1631: 1565: 1355: 1282: 1232: 1146: 1091: 1071: 1039: 980: 943: 768: 745: 725: 633: 539: 457: 366: 346: 322: 297: 275: 240: 194: 162: 139: 119: 12178: 11139: 9871:{\displaystyle {\mathcal {A}}_{n}\to {\mathcal {A}}} 7234:{\displaystyle X\in \mathrm {GL} _{n}(F)\setminus Z} 4845:, while it is known that the maximum rank equals 3. 11831: 8955:
Ill-posedness of the standard approximation problem
6240:thus has only one essentially unique decomposition 4336:{\displaystyle r_{\mbox{max}}(I_{1},\ldots ,I_{M})} 3382:{\displaystyle F^{I_{1}\times \cdots \times I_{M}}} 291:and a matrix is denoted by bold upper case letters 11620: 11285: 11263: 10708: 10658: 10446: 10384: 10364: 10344: 10188: 10159: 9934: 9896: 9870: 9826: 9687: 9667: 9638: 9475: 9306: 9286: 9251: 9215: 9041: 9015: 8991: 8971: 8943: 8902: 8872: 8806: 8741: 8709: 8628: 8529: 8503: 8421: 8395: 8339: 8313: 8257: 8222: 8196: 8127: 8101: 8045: 7945: 7835: 7746: 7716: 7663: 7633: 7603: 7583: 7487: 7422: 7389: 7363: 7280: 7253: 7233: 7180: 7111: 7039: 6980: 6921: 6895: 6848: 6546: 6520: 6425: 6399: 6375: 6344: 6320: 6297: 6232: 6212: 6181: 6104: 6080: 5990: 5970: 5946: 5889: 5835: 5779: 5752: 5609: 5580: 5197: 5018: 4991: 4963: 4943: 4919: 4889: 4865: 4837: 4781: 4740: 4676: 4618: 4454: 4395: 4335: 4258: 4171: 4133: 4113: 4087: 4009: 3970: 3933:. Note that while the set of tensors of rank 3 in 3925: 3794: 3698: 3600: 3490: 3381: 3324: 3262: 3196: 3176: 3112: 2990: 2884: 2864: 2799: 2665: 2542: 2483: 2420: 2360: 2328: 2269: 2198: 2143: 2119: 2096: 2041: 1981: 1957: 1937: 1871: 1842: 1777: 1610: 1548: 1329: 1268: 1199: 1097: 1077: 1057: 1025: 966: 926: 751: 731: 699: 611: 525: 443: 352: 332: 305: 283: 258: 226: 180: 145: 125: 11724:"On the identifiability of binary Segre products" 11339:(2015). "On maximum, typical and generic ranks". 11331: 11154:Transactions of the American Mathematical Society 11062:"Rank and optimal computation of generic tensors" 8959:The rank approximation problem asks for the rank- 12951: 11925:SIAM Journal on Matrix Analysis and Applications 11919: 11781:SIAM Journal on Matrix Analysis and Applications 11778: 11623:SIAM Journal on Matrix Analysis and Applications 11570:SIAM Journal on Matrix Analysis and Applications 11464:SIAM Journal on Matrix Analysis and Applications 11430:. Graduate Texts in Mathematics. Vol. 133. 11013:SIAM Journal on Matrix Analysis and Applications 9060: 7641:, and it is conjectured to be valid in general: 6554:. This follows essentially from the observation 4782:{\displaystyle \mathbb {R} ^{2\times 2\times 2}} 4522: 2740: 11992: 11887:Chemometrics and Intelligent Laboratory Systems 11884: 11385: 10787: 8807:{\displaystyle F^{5}\otimes F^{4}\otimes F^{3}} 8710:{\textstyle r=r_{E}(I_{1},I_{2},\ldots ,I_{M})} 8396:{\displaystyle F^{6}\otimes F^{6}\otimes F^{3}} 8314:{\displaystyle F^{4}\otimes F^{4}\otimes F^{4}} 8102:{\displaystyle F^{4}\otimes F^{4}\otimes F^{3}} 7846:The space is identifiability-unbalanced, i.e., 4172:{\displaystyle 2\times 2\times \cdots \times 2} 11721: 10279:General polynomial system solving algorithms: 5947:{\displaystyle \{\mathbf {a} _{m}\}_{m=1}^{M}} 967:{\displaystyle \lambda _{r}\in {\mathbb {R} }} 12309: 10454:is a rank 3 tensor and can be decomposed as: 7591:denote the set of tensors of rank bounded by 3971:{\displaystyle F^{2\times 2\times 2\times 2}} 43:is the decomposition of a tensor as a sum of 10935:(2013). "Most tensor problems are NP-Hard". 10912:"Aptera: Automatic PARAFAC2 Tensor Analysis" 10822: 10255:simultaneous generalized Schur decomposition 10142: 10057: 10037: 9952: 9464: 9448: 9434: 9426: 9420: 9412: 9240: 9233: 9201: 9103: 6176: 6119: 5924: 5908: 5186: 5170: 5156: 5148: 5142: 5134: 3123:More precisely, the rank of every tensor in 1324: 1318: 11002: 8944:{\textstyle r<{\frac {\Pi }{\Sigma +1}}} 6528:, i.e., matrices, are not identifiable for 6383:'s are distinct, for otherwise the rank of 4838:{\displaystyle r_{\mbox{max}}(2,2,2)\leq 4} 2683: 12316: 12302: 12207: 12134:Differential Geometry and Its Applications 12035: 11722:Bocci, Cristiano; Chiantini, Luca (2013). 11135: 11133: 6436: 3325:{\displaystyle r_{E}(I_{1},\ldots ,I_{M})} 3263:{\displaystyle r_{E}(I_{1},\ldots ,I_{M})} 12257: 12232: 12145: 12092: 11845: 11792: 11739: 11690: 11634: 11581: 11528: 11475: 11354: 11316: 11279: 11257: 11220: 11166: 11121: 11075: 11025: 10998: 10996: 10994: 10979: 10948: 10927: 10746:Higher-order singular value decomposition 6896:{\displaystyle X\in \mathrm {GL} _{r}(F)} 4757: 3132: 2895: 2408: 2393: 2378: 2316: 2301: 2286: 2257: 2242: 2227: 1865: 1598: 1221:higher-order singular value decomposition 1085:is minimal in the above expression, then 1005: 959: 647: 379: 83:higher-order singular value decomposition 12673:Covariance and contravariance of vectors 12187:The Journal of Machine Learning Research 11197: 11056: 10873: 10818: 10816: 8884:In summary, the generic tensor of order 5003:coincide, however, for tensors of order 3608:, with the following exceptional cases: 3505:states that equality is expected, i.e., 3204:is some indeterminate closed set in the 11130: 10869: 10867: 10769: 6220:'s are of rank 1. An identifiable rank- 4789:is two, so that the above bound yields 14: 12952: 11957: 11517:Annali di Matematica Pura ed Applicata 11425: 10991: 10227:alternating slice-wise diagonalisation 10211: 4677:{\displaystyle r(I_{1},\ldots ,I_{M})} 2199:{\displaystyle r(I_{1},\ldots ,I_{M})} 2097:{\displaystyle r(I_{1},\ldots ,I_{M})} 1969:of the set of tensors of rank at most 1938:{\displaystyle r(I_{1},\ldots ,I_{M})} 1207:, whose rank can be obtained from the 1119:Canonical Polyadic Decomposition (CPD) 55:Canonical polyadic decomposition (CPD) 12297: 11672: 11670: 11457: 11455: 10813: 4088:{\displaystyle r(n,n,n)=r_{E}(n,n,n)} 4010:{\displaystyle F^{4\times 4\times 3}} 227:{\displaystyle 1\leq i_{m}\leq I_{m}} 11400:SIAM Journal on Scientific Computing 10864: 5033:by Bini, Lotti, and Romani in 1980. 2428:will be of complex rank equal to 2. 61:rank-1 tensors for a user-specified 11834:Linear Algebra and Its Applications 11208:Linear Algebra and Its Applications 11109:Linear Algebra and Its Applications 11067:Linear Algebra and Its Applications 10372:-state categorical hidden variable 9935:{\displaystyle 1\leq i\neq j\leq r} 9904:, then there should exist at least 1340: 24: 12536:Tensors in curvilinear coordinates 12279:Parallel Factor Analysis (PARAFAC) 12260:Tensors: Geometry and Applications 12201: 11667: 11452: 10985:Tensors: Geometry and Applications 10909: 10794:Journal of Mathematics and Physics 10183: 10154: 10049: 9891: 9863: 9847: 9708: 9662: 9499: 9326: 9108: 9008: 8929: 8925: 8736: 8614: 8610: 7683: 7671:in the Zariski topology such that 7622: 7288:are generically not identifiable. 7206: 7203: 7112:{\displaystyle AX^{-1}=_{i=1}^{r}} 6874: 6871: 6563: 6392: 6376:{\displaystyle {\mathcal {A}}_{i}} 6362: 6337: 6281: 6249: 6213:{\displaystyle {\mathcal {A}}_{i}} 6199: 6165: 6142: 6125: 6007: 5963: 5901:. For this reason, the parameters 5643: 5629: 5604: 5225: 5048: 4984: 4936: 4882: 3058: 3014: 2972: 2968: 1634: 1358: 771: 636: 543: 369: 325: 25: 12976: 12267: 10345:{\displaystyle x_{1},x_{2},x_{3}} 10244:General optimization algorithms: 7701: 7225: 7188:. It can be shown that for every 7181:{\displaystyle BX^{T}=_{i=1}^{r}} 3503:Abo–Ottaviani–Peterson conjecture 3168: 2856: 2361:{\displaystyle 2\times 2\times 2} 1315: 10892:: 84. No. 10,085. Archived from 10886:UCLA Working Papers in Phonetics 10120: 10088: 10062: 10015: 9983: 9957: 9803: 9771: 9745: 9632: 9624: 9616: 9602: 9584: 9570: 9552: 9538: 9520: 9460: 9452: 9430: 9416: 9399: 9391: 9383: 9375: 9367: 9359: 9351: 9343: 9335: 9185: 9159: 9139: 9066: 8138:The space is the defective case 8056:The space is the defective case 7147: 7078: 7006: 6947: 6833: 6818: 6777: 6765: 6657: 6645: 6609: 6594: 5913: 5877: 5852: 5740: 5719: 5704: 5689: 5668: 5653: 5570: 5562: 5554: 5526: 5518: 5510: 5502: 5494: 5486: 5478: 5470: 5462: 5441: 5433: 5425: 5417: 5409: 5401: 5393: 5385: 5377: 5362: 5354: 5346: 5332: 5314: 5300: 5282: 5268: 5250: 5182: 5174: 5152: 5138: 5121: 5113: 5105: 5097: 5089: 5081: 5073: 5065: 5057: 5031:matrix multiplication algorithms 1830: 1812: 1797: 1759: 1738: 1720: 1699: 1681: 1660: 1583: 1568: 1533: 1518: 1503: 1488: 1473: 1458: 1443: 1428: 1413: 1398: 1383: 1368: 1285: 1256: 1235: 983: 905: 878: 854: 833: 812: 299: 277: 12125: 12081:Journal of Symbolic Computation 12072: 12029: 11986: 11951: 11913: 11878: 11825: 11772: 11750:10.1090/s1056-3911-2011-00592-4 11715: 11614: 11561: 11508: 11428:Algebraic Geometry SpringerLink 11419: 11379: 11325: 11229: 11191: 11084: 10289: 9878:(in the Euclidean topology) as 9406: 8758:proved to be two in case 7; and 8636:is an integer, and the rank is 5128: 4269: 3057: 3051: 1882: 11297:-times) are not defective for 11050: 10973: 10921: 10903: 10781: 10763: 10703: 10690: 10683: 10653: 10640: 10626: 10617: 10604: 10590: 10581: 10568: 10554: 10548: 10536: 10503: 10464: 10441: 10402: 10180: 10151: 10046: 9888: 9858: 9659: 9606: 9580: 9574: 9548: 9542: 9516: 9252:{\displaystyle \|\cdot \|_{F}} 9049:. That is, one seeks to solve 9016:{\displaystyle {\mathcal {A}}} 8704: 8659: 8602: 8557: 8040: 8021: 7940: 7921: 7830: 7785: 7222: 7216: 7158: 7142: 7089: 7073: 7017: 7001: 6958: 6942: 6890: 6884: 6730: 6713: 6710: 6691: 6400:{\displaystyle {\mathcal {A}}} 6345:{\displaystyle {\mathcal {A}}} 6328:tensor rank decompositions of 5971:{\displaystyle {\mathcal {A}}} 5601: 5530: 5458: 5336: 5310: 5304: 5278: 5272: 5246: 4992:{\displaystyle {\mathcal {A}}} 4944:{\displaystyle {\mathcal {A}}} 4890:{\displaystyle {\mathcal {A}}} 4848: 4826: 4808: 4671: 4639: 4605: 4573: 4516: 4484: 4330: 4298: 4253: 4229: 4213: 4189: 4082: 4064: 4048: 4030: 3914: 3882: 3866: 3815: 3749: 3737: 3731: 3719: 3659: 3644: 3638: 3623: 3595: 3563: 3547: 3515: 3482: 3450: 3434: 3402: 3319: 3287: 3257: 3225: 3104: 3085: 2956: 2924: 2734: 2702: 2657: 2638: 2193: 2161: 2131:of a sequence of tensors from 2091: 2059: 1932: 1900: 1769: 1742: 1703: 1664: 1652: 1131: 333:{\displaystyle {\mathcal {A}}} 13: 1: 12589:Exterior covariant derivative 12521:Tensor (intrinsic definition) 12258:Landsberg, Joseph M. (2012). 11899:10.1016/s0169-7439(00)00117-9 11728:Journal of Algebraic Geometry 11318:10.1090/s1056-3911-10-00537-0 11305:Journal of Algebraic Geometry 11177:10.1090/s0002-9947-08-04725-9 11123:10.1016/s0024-3795(02)00352-x 10756: 10731:Multilinear subspace learning 8755:expected to be six in case 6; 7953:, and the rank is too large: 7634:{\displaystyle \Pi <15000} 5624: 1965:such that the closure in the 1945:is defined as the least rank 1058:{\displaystyle 1\leq m\leq M} 622: 259:{\displaystyle 1\leq m\leq M} 181:{\displaystyle 1\leq i\leq I} 12614:Raising and lowering indices 12156:10.1016/j.difgeo.2017.07.009 11286:{\displaystyle \mathbb {P} } 11264:{\displaystyle \mathbb {P} } 11222:10.1016/0024-3795(85)90070-9 11077:10.1016/0024-3795(83)80041-x 10736:Singular value decomposition 10267:nonlinear conjugate gradient 10249:simultaneous diagonalization 10189:{\displaystyle n\to \infty } 9897:{\displaystyle n\to \infty } 9668:{\displaystyle n\to \infty } 8540:The space is perfect, i.e., 7615:for all spaces of dimension 7040:{\displaystyle B=_{i=1}^{r}} 6981:{\displaystyle A=_{i=1}^{r}} 5780:{\displaystyle \lambda _{k}} 5610:{\displaystyle m\to \infty } 3332:is often referred to as the 1872:{\displaystyle \mathbb {C} } 306:{\displaystyle \mathbf {A} } 284:{\displaystyle \mathbf {a} } 7: 12852:Gluon field strength tensor 12323: 10719: 8752:proved to be two in case 5; 7423:{\displaystyle I_{m}\geq 2} 5760:if and only if there exist 1111:(tensor) rank decomposition 1065:. When the number of terms 739:as a linear combination of 108: 10: 12981: 12663:Cartan formalism (physics) 12483:Penrose graphical notation 7644:There exists a closed set 2277:while the generic rank of 1215:normal form of the linear 12869: 12809: 12758: 12751: 12643: 12574: 12511: 12455: 12402: 12349: 12342: 12335:Glossary of tensor theory 12331: 12103:10.1016/j.jsc.2012.05.012 11856:10.1016/j.laa.2016.10.019 11539:10.1007/s10231-013-0352-8 11436:10.1007/978-1-4757-2189-8 11365:10.1007/s00208-014-1150-3 10297:conditionally independent 10221:alternating least squares 6922:{\displaystyle r\times r} 33:tensor rank decomposition 12919:Gregorio Ricci-Curbastro 12791:Riemann curvature tensor 12498:Van der Waerden notation 11701:10.1515/crelle-2016-0067 11203:"Typical tensorial rank" 10770:Papalexakis, Evangelos. 10669:In applications such as 10216:Alternating algorithms: 7756:generically identifiable 4266:for all binary tensors. 2684:Unbalanced tensor spaces 1127:Polyadic decomposition'. 1115:minimal CP decomposition 12889:Elwin Bruno Christoffel 12822:Angular momentum tensor 12493:Tetrad (index notation) 12463:Abstract index notation 11995:Journal of Chemometrics 10240:moment-based algorithms 10237:pencil-based algorithms 8742:{\displaystyle \infty } 8223:{\displaystyle n\geq 2} 7762:The rank is too large: 7613:computer-assisted proof 6437:Generic identifiability 4114:{\displaystyle n\neq 3} 73:. It was introduced by 12703:Levi-Civita connection 12007:10.1002/cem.1180040105 11287: 11265: 10710: 10660: 10529: 10448: 10386: 10366: 10346: 10190: 10161: 9936: 9898: 9872: 9837:has the property that 9828: 9742: 9689: 9669: 9640: 9477: 9308: 9288: 9253: 9217: 9136: 9043: 9042:{\displaystyle r<s} 9017: 8993: 8973: 8945: 8904: 8903:{\displaystyle M>2} 8874: 8808: 8743: 8711: 8630: 8531: 8505: 8423: 8397: 8341: 8315: 8259: 8258:{\displaystyle r=2n-1} 8224: 8198: 8129: 8103: 8047: 8020: 7986: 7947: 7920: 7886: 7837: 7748: 7718: 7665: 7635: 7605: 7585: 7489: 7424: 7391: 7390:{\displaystyle M>2} 7365: 7282: 7281:{\displaystyle r>1} 7255: 7235: 7182: 7113: 7041: 6982: 6923: 6897: 6850: 6815: 6762: 6642: 6591: 6548: 6547:{\displaystyle r>1} 6522: 6427: 6401: 6377: 6346: 6322: 6299: 6277: 6234: 6214: 6183: 6106: 6082: 5992: 5972: 5948: 5891: 5837: 5781: 5754: 5611: 5582: 5199: 5020: 5019:{\displaystyle \geq 3} 4993: 4965: 4945: 4921: 4920:{\displaystyle r<s} 4891: 4867: 4839: 4783: 4742: 4678: 4620: 4550: 4456: 4397: 4337: 4260: 4173: 4135: 4115: 4089: 4011: 3972: 3927: 3796: 3700: 3602: 3492: 3383: 3326: 3264: 3198: 3178: 3114: 3084: 3040: 2992: 2896:Balanced tensor spaces 2886: 2866: 2801: 2781: 2667: 2637: 2603: 2544: 2485: 2422: 2362: 2330: 2271: 2200: 2145: 2121: 2098: 2043: 1983: 1959: 1939: 1873: 1844: 1779: 1612: 1550: 1331: 1276:is one, provided that 1270: 1201: 1099: 1079: 1059: 1027: 968: 928: 799: 753: 733: 701: 613: 527: 445: 354: 334: 307: 285: 260: 228: 182: 147: 127: 75:Frank Lauren Hitchcock 47:rank-1 tensors, where 12929:Jan Arnoldus Schouten 12884:Augustin-Louis Cauchy 12364:Differential geometry 11342:Mathematische Annalen 11288: 11266: 11249:"Secant varieties of 10807:10.1002/sapm192761164 10726:Latent class analysis 10711: 10661: 10509: 10449: 10387: 10367: 10347: 10284:homotopy continuation 10191: 10162: 9937: 9899: 9873: 9829: 9722: 9690: 9670: 9641: 9478: 9309: 9289: 9254: 9218: 9116: 9044: 9018: 8994: 8974: 8946: 8905: 8875: 8809: 8749:in the first 4 cases; 8744: 8712: 8631: 8532: 8506: 8424: 8398: 8342: 8316: 8260: 8225: 8199: 8130: 8104: 8048: 8000: 7966: 7948: 7900: 7866: 7838: 7749: 7747:{\displaystyle S_{r}} 7719: 7666: 7664:{\displaystyle Z_{r}} 7636: 7606: 7586: 7490: 7425: 7392: 7366: 7283: 7256: 7236: 7183: 7114: 7042: 6983: 6924: 6898: 6851: 6795: 6742: 6622: 6571: 6549: 6523: 6428: 6402: 6378: 6347: 6323: 6300: 6257: 6235: 6215: 6184: 6107: 6083: 5993: 5973: 5949: 5892: 5838: 5782: 5755: 5612: 5583: 5200: 5021: 4994: 4966: 4946: 4922: 4892: 4868: 4840: 4784: 4743: 4679: 4621: 4530: 4457: 4398: 4338: 4261: 4174: 4136: 4116: 4090: 4012: 3973: 3928: 3797: 3701: 3603: 3493: 3384: 3334:expected generic rank 3327: 3265: 3199: 3179: 3115: 3064: 3020: 2993: 2887: 2867: 2802: 2761: 2668: 2617: 2583: 2545: 2486: 2423: 2363: 2331: 2272: 2201: 2146: 2122: 2099: 2044: 1984: 1960: 1940: 1874: 1845: 1780: 1613: 1551: 1332: 1271: 1202: 1100: 1080: 1060: 1028: 969: 929: 779: 754: 734: 702: 614: 528: 446: 355: 335: 308: 286: 261: 229: 183: 148: 128: 12904:Carl Friedrich Gauss 12837:stress–energy tensor 12832:Cauchy stress tensor 12584:Covariant derivative 12546:Antisymmetric tensor 12478:Multi-index notation 11960:Analytical Chemistry 11679:J. Reine Angew. Math 11426:Harris, Joe (1992). 11275: 11253: 10899:on October 10, 2004. 10875:Harshman, Richard A. 10751:Tensor decomposition 10741:Tucker decomposition 10677: 10458: 10396: 10376: 10356: 10303: 10198:diverging components 10174: 9949: 9908: 9882: 9841: 9702: 9679: 9653: 9493: 9321: 9314:. The rank-3 tensor 9298: 9278: 9230: 9056: 9027: 9003: 8983: 8963: 8914: 8888: 8818: 8765: 8733: 8640: 8544: 8515: 8436: 8407: 8354: 8325: 8272: 8234: 8208: 8142: 8113: 8060: 7957: 7850: 7766: 7731: 7678: 7648: 7619: 7595: 7499: 7434: 7401: 7375: 7295: 7266: 7245: 7192: 7123: 7051: 6992: 6933: 6907: 6860: 6558: 6532: 6445: 6411: 6387: 6356: 6332: 6309: 6244: 6224: 6193: 6116: 6096: 6002: 5982: 5958: 5905: 5847: 5791: 5764: 5638: 5595: 5215: 5043: 5007: 4979: 4955: 4931: 4905: 4877: 4857: 4793: 4752: 4692: 4633: 4469: 4407: 4347: 4283: 4183: 4145: 4125: 4099: 4024: 3982: 3937: 3809: 3711: 3615: 3509: 3396: 3340: 3336:of the tensor space 3274: 3212: 3188: 3127: 3011: 2911: 2876: 2817: 2696: 2561: 2495: 2435: 2373: 2340: 2281: 2222: 2155: 2135: 2111: 2053: 1993: 1989:is the entire space 1973: 1949: 1894: 1861: 1792: 1629: 1563: 1353: 1280: 1230: 1144: 1089: 1069: 1037: 978: 941: 766: 743: 723: 631: 537: 455: 364: 344: 320: 295: 273: 238: 192: 160: 137: 117: 12960:Multilinear algebra 12781:Nonmetricity tensor 12636:(2nd-order tensors) 12604:Hodge star operator 12594:Exterior derivative 12443:Transport phenomena 12428:Continuum mechanics 12384:Multilinear algebra 12225:2009SIAMR..51..455K 11972:10.1021/ac00289a052 10273:limited memory BFGS 10261:Levenberg–Marquardt 10233:Direct algorithms: 10212:Calculating the CPD 10140: 10108: 10082: 10035: 10003: 9977: 9823: 9791: 9765: 9199: 9173: 9153: 9080: 8725:decompositions is 8530:{\displaystyle r=5} 8422:{\displaystyle r=8} 8340:{\displaystyle r=6} 8128:{\displaystyle r=5} 7177: 7108: 7036: 6977: 6791: 6671: 6441:Order-2 tensors in 6426:{\displaystyle r-1} 5954:of a rank-1 tensor 5943: 340:. An element of an 29:multilinear algebra 12914:Tullio Levi-Civita 12857:Metric tensor (GR) 12771:Levi-Civita symbol 12624:Tensor contraction 12438:General relativity 12374:Euclidean geometry 12050:10.1007/bf02293598 11592:10.1137/16m1090132 11283: 11261: 11070:. 52/53: 645–685. 10937:Journal of the ACM 10850:10.1007/BF02310791 10706: 10656: 10444: 10382: 10362: 10342: 10186: 10157: 10118: 10086: 10060: 10013: 9981: 9955: 9932: 9894: 9868: 9824: 9801: 9769: 9743: 9685: 9665: 9636: 9473: 9304: 9284: 9249: 9213: 9183: 9157: 9137: 9102: 9064: 9039: 9013: 8989: 8969: 8941: 8900: 8870: 8804: 8739: 8707: 8626: 8527: 8501: 8419: 8393: 8337: 8311: 8255: 8230:, and the rank is 8220: 8194: 8125: 8099: 8043: 7943: 7833: 7744: 7714: 7661: 7631: 7601: 7581: 7485: 7420: 7387: 7361: 7278: 7251: 7231: 7178: 7157: 7109: 7088: 7037: 7016: 6978: 6957: 6919: 6893: 6846: 6775: 6655: 6544: 6518: 6423: 6397: 6373: 6342: 6321:{\displaystyle r!} 6318: 6295: 6230: 6210: 6179: 6102: 6078: 5988: 5968: 5944: 5923: 5887: 5833: 5777: 5750: 5607: 5578: 5576: 5195: 5016: 4989: 4961: 4941: 4917: 4887: 4863: 4835: 4805: 4779: 4738: 4674: 4616: 4481: 4452: 4393: 4333: 4295: 4256: 4169: 4141:tensors of format 4131: 4111: 4085: 4007: 3968: 3923: 3792: 3696: 3598: 3488: 3379: 3322: 3260: 3194: 3174: 3110: 2988: 2882: 2862: 2797: 2663: 2540: 2481: 2418: 2358: 2326: 2267: 2196: 2141: 2129:Euclidean topology 2117: 2094: 2039: 1979: 1955: 1935: 1869: 1840: 1775: 1608: 1546: 1327: 1266: 1197: 1095: 1075: 1055: 1023: 964: 924: 749: 729: 697: 609: 523: 441: 350: 330: 303: 281: 256: 224: 178: 143: 123: 12947: 12946: 12909:Hermann Grassmann 12865: 12864: 12817:Moment of inertia 12678:Differential form 12653:Affine connection 12468:Einstein notation 12451: 12450: 12379:Exterior calculus 12359:Coordinate system 12243:10.1137/07070111X 11966:(12): 2395–2397. 11803:10.1137/130916084 11645:10.1137/110829180 11486:10.1137/140961389 11445:978-1-4419-3099-6 11237:Catalisano, M. V. 11092:Catalisano, M. V. 11036:10.1137/06066518x 10709:{\displaystyle E} 10447:{\displaystyle E} 10385:{\displaystyle h} 10365:{\displaystyle k} 10055: 9688:{\displaystyle r} 9599: 9567: 9535: 9446: 9410: 9307:{\displaystyle r} 9287:{\displaystyle r} 9059: 8992:{\displaystyle s} 8972:{\displaystyle r} 8939: 8624: 7604:{\displaystyle r} 7254:{\displaystyle Z} 6903:is an invertible 6407:would be at most 6233:{\displaystyle r} 6112:distinct tensors 6105:{\displaystyle r} 5991:{\displaystyle r} 5551: 5456: 5329: 5297: 5265: 5168: 5132: 4964:{\displaystyle r} 4866:{\displaystyle s} 4804: 4480: 4294: 4134:{\displaystyle s} 3769: 3673: 3197:{\displaystyle Z} 3055: 3002:almost everywhere 2982: 2885:{\displaystyle Z} 2811:almost everywhere 2676:and it is called 2144:{\displaystyle S} 2120:{\displaystyle S} 1982:{\displaystyle r} 1958:{\displaystyle r} 1745: 1706: 1667: 1650: 1620:complex conjugate 1123:CANDECOMP/PARAFAC 1098:{\displaystyle R} 1078:{\displaystyle R} 752:{\displaystyle r} 732:{\displaystyle R} 711:-way array where 353:{\displaystyle M} 146:{\displaystyle A} 126:{\displaystyle a} 99:computer graphics 91:signal processing 16:(Redirected from 12972: 12924:Bernhard Riemann 12756: 12755: 12599:Exterior product 12566:Two-point tensor 12551:Symmetric tensor 12433:Electromagnetism 12347: 12346: 12318: 12311: 12304: 12295: 12294: 12274:PARAFAC Tutorial 12263: 12254: 12236: 12209:Kolda, Tamara G. 12195: 12194: 12182: 12176: 12175: 12149: 12129: 12123: 12122: 12096: 12076: 12070: 12069: 12033: 12027: 12026: 11990: 11984: 11983: 11955: 11949: 11948: 11931:(4): 1064–1083. 11917: 11911: 11910: 11882: 11876: 11875: 11849: 11829: 11823: 11822: 11796: 11776: 11770: 11769: 11743: 11719: 11713: 11712: 11694: 11674: 11665: 11664: 11638: 11629:(3): 1018–1037. 11618: 11612: 11611: 11585: 11565: 11559: 11558: 11532: 11523:(6): 1691–1702. 11512: 11506: 11505: 11479: 11470:(4): 1265–1287. 11459: 11450: 11449: 11423: 11417: 11416: 11383: 11377: 11376: 11358: 11329: 11323: 11322: 11320: 11292: 11290: 11289: 11284: 11282: 11270: 11268: 11267: 11262: 11260: 11233: 11227: 11226: 11224: 11199:Lickteig, Thomas 11195: 11189: 11188: 11170: 11137: 11128: 11127: 11125: 11116:(1–3): 263–285. 11088: 11082: 11081: 11079: 11054: 11048: 11047: 11029: 11020:(3): 1084–1127. 11000: 10989: 10988: 10981:Landsberg, J. M. 10977: 10971: 10970: 10952: 10925: 10919: 10918: 10916: 10907: 10901: 10900: 10898: 10883: 10871: 10862: 10861: 10820: 10811: 10810: 10801:(1–4): 164–189. 10785: 10779: 10778: 10776: 10767: 10715: 10713: 10712: 10707: 10693: 10665: 10663: 10662: 10657: 10643: 10638: 10637: 10607: 10602: 10601: 10571: 10566: 10565: 10528: 10523: 10502: 10501: 10489: 10488: 10476: 10475: 10453: 10451: 10450: 10445: 10440: 10439: 10427: 10426: 10414: 10413: 10391: 10389: 10388: 10383: 10371: 10369: 10368: 10363: 10351: 10349: 10348: 10343: 10341: 10340: 10328: 10327: 10315: 10314: 10195: 10193: 10192: 10187: 10166: 10164: 10163: 10158: 10150: 10149: 10139: 10134: 10123: 10107: 10102: 10091: 10081: 10076: 10065: 10056: 10053: 10045: 10044: 10034: 10029: 10018: 10002: 9997: 9986: 9976: 9971: 9960: 9941: 9939: 9938: 9933: 9903: 9901: 9900: 9895: 9877: 9875: 9874: 9869: 9867: 9866: 9857: 9856: 9851: 9850: 9833: 9831: 9830: 9825: 9822: 9817: 9806: 9790: 9785: 9774: 9764: 9759: 9748: 9741: 9736: 9718: 9717: 9712: 9711: 9694: 9692: 9691: 9686: 9674: 9672: 9671: 9666: 9645: 9643: 9642: 9637: 9635: 9627: 9619: 9605: 9600: 9592: 9587: 9573: 9568: 9560: 9555: 9541: 9536: 9528: 9523: 9509: 9508: 9503: 9502: 9482: 9480: 9479: 9474: 9463: 9455: 9447: 9444: 9433: 9419: 9411: 9408: 9402: 9394: 9386: 9378: 9370: 9362: 9354: 9346: 9338: 9330: 9329: 9313: 9311: 9310: 9305: 9293: 9291: 9290: 9285: 9258: 9256: 9255: 9250: 9248: 9247: 9222: 9220: 9219: 9214: 9209: 9208: 9198: 9193: 9188: 9172: 9167: 9162: 9152: 9147: 9142: 9135: 9130: 9112: 9111: 9101: 9100: 9099: 9098: 9097: 9079: 9074: 9069: 9048: 9046: 9045: 9040: 9022: 9020: 9019: 9014: 9012: 9011: 8998: 8996: 8995: 8990: 8978: 8976: 8975: 8970: 8950: 8948: 8947: 8942: 8940: 8938: 8924: 8909: 8907: 8906: 8901: 8879: 8877: 8876: 8871: 8869: 8868: 8856: 8855: 8843: 8842: 8830: 8829: 8813: 8811: 8810: 8805: 8803: 8802: 8790: 8789: 8777: 8776: 8748: 8746: 8745: 8740: 8716: 8714: 8713: 8708: 8703: 8702: 8684: 8683: 8671: 8670: 8658: 8657: 8635: 8633: 8632: 8627: 8625: 8623: 8609: 8601: 8600: 8582: 8581: 8569: 8568: 8556: 8555: 8536: 8534: 8533: 8528: 8511:and the rank is 8510: 8508: 8507: 8502: 8500: 8499: 8487: 8486: 8474: 8473: 8461: 8460: 8448: 8447: 8428: 8426: 8425: 8420: 8403:and the rank is 8402: 8400: 8399: 8394: 8392: 8391: 8379: 8378: 8366: 8365: 8346: 8344: 8343: 8338: 8321:and the rank is 8320: 8318: 8317: 8312: 8310: 8309: 8297: 8296: 8284: 8283: 8264: 8262: 8261: 8256: 8229: 8227: 8226: 8221: 8203: 8201: 8200: 8195: 8193: 8192: 8180: 8179: 8167: 8166: 8154: 8153: 8134: 8132: 8131: 8126: 8109:and the rank is 8108: 8106: 8105: 8100: 8098: 8097: 8085: 8084: 8072: 8071: 8052: 8050: 8049: 8044: 8033: 8032: 8019: 8014: 7996: 7995: 7985: 7980: 7952: 7950: 7949: 7944: 7933: 7932: 7919: 7914: 7896: 7895: 7885: 7880: 7862: 7861: 7842: 7840: 7839: 7834: 7829: 7828: 7810: 7809: 7797: 7796: 7784: 7783: 7753: 7751: 7750: 7745: 7743: 7742: 7723: 7721: 7720: 7715: 7713: 7712: 7700: 7699: 7687: 7686: 7670: 7668: 7667: 7662: 7660: 7659: 7640: 7638: 7637: 7632: 7610: 7608: 7607: 7602: 7590: 7588: 7587: 7582: 7580: 7579: 7578: 7577: 7554: 7553: 7552: 7551: 7531: 7530: 7529: 7528: 7511: 7510: 7494: 7492: 7491: 7486: 7478: 7477: 7459: 7458: 7446: 7445: 7429: 7427: 7426: 7421: 7413: 7412: 7396: 7394: 7393: 7388: 7370: 7368: 7367: 7362: 7360: 7359: 7358: 7357: 7334: 7333: 7332: 7331: 7314: 7313: 7312: 7311: 7287: 7285: 7284: 7279: 7260: 7258: 7257: 7252: 7240: 7238: 7237: 7232: 7215: 7214: 7209: 7187: 7185: 7184: 7179: 7176: 7171: 7156: 7155: 7150: 7138: 7137: 7118: 7116: 7115: 7110: 7107: 7102: 7087: 7086: 7081: 7069: 7068: 7046: 7044: 7043: 7038: 7035: 7030: 7015: 7014: 7009: 6987: 6985: 6984: 6979: 6976: 6971: 6956: 6955: 6950: 6928: 6926: 6925: 6920: 6902: 6900: 6899: 6894: 6883: 6882: 6877: 6855: 6853: 6852: 6847: 6842: 6841: 6836: 6827: 6826: 6821: 6814: 6809: 6790: 6785: 6780: 6774: 6773: 6768: 6761: 6756: 6738: 6737: 6728: 6727: 6709: 6708: 6687: 6686: 6670: 6665: 6660: 6654: 6653: 6648: 6641: 6636: 6618: 6617: 6612: 6603: 6602: 6597: 6590: 6585: 6567: 6566: 6553: 6551: 6550: 6545: 6527: 6525: 6524: 6519: 6517: 6516: 6515: 6514: 6502: 6501: 6484: 6483: 6482: 6481: 6464: 6463: 6462: 6461: 6432: 6430: 6429: 6424: 6406: 6404: 6403: 6398: 6396: 6395: 6382: 6380: 6379: 6374: 6372: 6371: 6366: 6365: 6351: 6349: 6348: 6343: 6341: 6340: 6327: 6325: 6324: 6319: 6304: 6302: 6301: 6296: 6291: 6290: 6285: 6284: 6276: 6271: 6253: 6252: 6239: 6237: 6236: 6231: 6219: 6217: 6216: 6211: 6209: 6208: 6203: 6202: 6188: 6186: 6185: 6180: 6175: 6174: 6169: 6168: 6152: 6151: 6146: 6145: 6135: 6134: 6129: 6128: 6111: 6109: 6108: 6103: 6087: 6085: 6084: 6079: 6077: 6076: 6075: 6074: 6051: 6050: 6049: 6048: 6031: 6030: 6029: 6028: 6011: 6010: 5997: 5995: 5994: 5989: 5977: 5975: 5974: 5969: 5967: 5966: 5953: 5951: 5950: 5945: 5942: 5937: 5922: 5921: 5916: 5896: 5894: 5893: 5888: 5886: 5885: 5880: 5874: 5873: 5861: 5860: 5855: 5842: 5840: 5839: 5834: 5826: 5825: 5813: 5812: 5803: 5802: 5786: 5784: 5783: 5778: 5776: 5775: 5759: 5757: 5756: 5751: 5749: 5748: 5743: 5728: 5727: 5722: 5713: 5712: 5707: 5698: 5697: 5692: 5677: 5676: 5671: 5662: 5661: 5656: 5647: 5646: 5616: 5614: 5613: 5608: 5587: 5585: 5584: 5579: 5577: 5573: 5565: 5557: 5552: 5550: 5549: 5537: 5529: 5521: 5513: 5505: 5497: 5489: 5481: 5473: 5465: 5457: 5449: 5444: 5436: 5428: 5420: 5412: 5404: 5396: 5388: 5380: 5369: 5365: 5357: 5349: 5335: 5330: 5322: 5317: 5303: 5298: 5290: 5285: 5271: 5266: 5258: 5253: 5235: 5234: 5229: 5228: 5204: 5202: 5201: 5196: 5185: 5177: 5169: 5166: 5155: 5141: 5133: 5130: 5124: 5116: 5108: 5100: 5092: 5084: 5076: 5068: 5060: 5052: 5051: 5025: 5023: 5022: 5017: 4998: 4996: 4995: 4990: 4988: 4987: 4970: 4968: 4967: 4962: 4950: 4948: 4947: 4942: 4940: 4939: 4926: 4924: 4923: 4918: 4896: 4894: 4893: 4888: 4886: 4885: 4872: 4870: 4869: 4864: 4844: 4842: 4841: 4836: 4807: 4806: 4802: 4788: 4786: 4785: 4780: 4778: 4777: 4760: 4747: 4745: 4744: 4739: 4737: 4736: 4735: 4734: 4711: 4710: 4709: 4708: 4683: 4681: 4680: 4675: 4670: 4669: 4651: 4650: 4625: 4623: 4622: 4617: 4612: 4608: 4604: 4603: 4585: 4584: 4560: 4559: 4549: 4544: 4515: 4514: 4496: 4495: 4483: 4482: 4478: 4461: 4459: 4458: 4453: 4451: 4450: 4432: 4431: 4419: 4418: 4402: 4400: 4399: 4394: 4392: 4391: 4390: 4389: 4366: 4365: 4364: 4363: 4342: 4340: 4339: 4334: 4329: 4328: 4310: 4309: 4297: 4296: 4292: 4265: 4263: 4262: 4257: 4228: 4227: 4178: 4176: 4175: 4170: 4140: 4138: 4137: 4132: 4120: 4118: 4117: 4112: 4095:, provided that 4094: 4092: 4091: 4086: 4063: 4062: 4016: 4014: 4013: 4008: 4006: 4005: 3977: 3975: 3974: 3969: 3967: 3966: 3932: 3930: 3929: 3924: 3913: 3912: 3894: 3893: 3881: 3880: 3865: 3864: 3846: 3845: 3827: 3826: 3801: 3799: 3798: 3793: 3770: 3768: with  3767: 3765: 3764: 3705: 3703: 3702: 3697: 3674: 3672: with  3671: 3669: 3668: 3607: 3605: 3604: 3599: 3594: 3593: 3575: 3574: 3562: 3561: 3546: 3545: 3527: 3526: 3497: 3495: 3494: 3489: 3481: 3480: 3462: 3461: 3449: 3448: 3433: 3432: 3414: 3413: 3388: 3386: 3385: 3380: 3378: 3377: 3376: 3375: 3357: 3356: 3331: 3329: 3328: 3323: 3318: 3317: 3299: 3298: 3286: 3285: 3269: 3267: 3266: 3261: 3256: 3255: 3237: 3236: 3224: 3223: 3206:Zariski topology 3203: 3201: 3200: 3195: 3183: 3181: 3180: 3175: 3167: 3166: 3165: 3164: 3146: 3145: 3135: 3119: 3117: 3116: 3111: 3097: 3096: 3083: 3078: 3056: 3053: 3050: 3049: 3039: 3034: 2997: 2995: 2994: 2989: 2987: 2983: 2981: 2967: 2955: 2954: 2936: 2935: 2923: 2922: 2891: 2889: 2888: 2883: 2871: 2869: 2868: 2863: 2855: 2854: 2853: 2852: 2834: 2833: 2806: 2804: 2803: 2798: 2796: 2792: 2791: 2790: 2780: 2775: 2757: 2756: 2733: 2732: 2714: 2713: 2672: 2670: 2669: 2664: 2650: 2649: 2636: 2631: 2613: 2612: 2602: 2597: 2573: 2572: 2549: 2547: 2546: 2541: 2539: 2538: 2520: 2519: 2507: 2506: 2490: 2488: 2487: 2482: 2480: 2479: 2478: 2477: 2454: 2453: 2452: 2451: 2427: 2425: 2424: 2419: 2417: 2416: 2411: 2402: 2401: 2396: 2387: 2386: 2381: 2367: 2365: 2364: 2359: 2335: 2333: 2332: 2327: 2325: 2324: 2319: 2310: 2309: 2304: 2295: 2294: 2289: 2276: 2274: 2273: 2268: 2266: 2265: 2260: 2251: 2250: 2245: 2236: 2235: 2230: 2205: 2203: 2202: 2197: 2192: 2191: 2173: 2172: 2150: 2148: 2147: 2142: 2126: 2124: 2123: 2118: 2103: 2101: 2100: 2095: 2090: 2089: 2071: 2070: 2048: 2046: 2045: 2040: 2038: 2037: 2036: 2035: 2012: 2011: 2010: 2009: 1988: 1986: 1985: 1980: 1967:Zariski topology 1964: 1962: 1961: 1956: 1944: 1942: 1941: 1936: 1931: 1930: 1912: 1911: 1878: 1876: 1875: 1870: 1868: 1849: 1847: 1846: 1841: 1839: 1838: 1833: 1821: 1820: 1815: 1806: 1805: 1800: 1784: 1782: 1781: 1776: 1768: 1767: 1762: 1753: 1752: 1747: 1746: 1741: 1736: 1729: 1728: 1723: 1714: 1713: 1708: 1707: 1702: 1697: 1690: 1689: 1684: 1675: 1674: 1669: 1668: 1663: 1658: 1651: 1643: 1638: 1637: 1617: 1615: 1614: 1609: 1607: 1606: 1601: 1592: 1591: 1586: 1577: 1576: 1571: 1555: 1553: 1552: 1547: 1542: 1541: 1536: 1527: 1526: 1521: 1512: 1511: 1506: 1497: 1496: 1491: 1482: 1481: 1476: 1467: 1466: 1461: 1452: 1451: 1446: 1437: 1436: 1431: 1422: 1421: 1416: 1407: 1406: 1401: 1392: 1391: 1386: 1377: 1376: 1371: 1362: 1361: 1341:Field dependence 1336: 1334: 1333: 1328: 1314: 1313: 1312: 1311: 1294: 1293: 1288: 1275: 1273: 1272: 1267: 1265: 1264: 1259: 1244: 1243: 1238: 1206: 1204: 1203: 1198: 1196: 1195: 1183: 1182: 1181: 1180: 1163: 1162: 1161: 1160: 1104: 1102: 1101: 1096: 1084: 1082: 1081: 1076: 1064: 1062: 1061: 1056: 1032: 1030: 1029: 1024: 1022: 1021: 1020: 1019: 1009: 1008: 998: 997: 986: 973: 971: 970: 965: 963: 962: 953: 952: 933: 931: 930: 925: 920: 919: 908: 893: 892: 881: 869: 868: 857: 848: 847: 836: 827: 826: 815: 809: 808: 798: 793: 775: 774: 759:rank-1 tensors: 758: 756: 755: 750: 738: 736: 735: 730: 718: 714: 710: 706: 704: 703: 698: 696: 695: 694: 693: 675: 674: 662: 661: 651: 650: 640: 639: 618: 616: 615: 610: 608: 607: 606: 605: 590: 589: 571: 570: 558: 557: 547: 546: 532: 530: 529: 524: 522: 521: 520: 519: 504: 503: 485: 484: 472: 471: 450: 448: 447: 442: 440: 439: 438: 437: 422: 421: 406: 405: 393: 392: 382: 373: 372: 359: 357: 356: 351: 339: 337: 336: 331: 329: 328: 312: 310: 309: 304: 302: 290: 288: 287: 282: 280: 265: 263: 262: 257: 233: 231: 230: 225: 223: 222: 210: 209: 187: 185: 184: 179: 152: 150: 149: 144: 132: 130: 129: 124: 21: 18:CP decomposition 12980: 12979: 12975: 12974: 12973: 12971: 12970: 12969: 12950: 12949: 12948: 12943: 12894:Albert Einstein 12861: 12842:Einstein tensor 12805: 12786:Ricci curvature 12766:Kronecker delta 12752:Notable tensors 12747: 12668:Connection form 12645: 12639: 12570: 12556:Tensor operator 12513: 12507: 12447: 12423:Computer vision 12416: 12398: 12394:Tensor calculus 12338: 12327: 12322: 12270: 12234:10.1.1.153.2059 12204: 12202:Further reading 12199: 12198: 12193:(1): 2773–2832. 12183: 12179: 12130: 12126: 12077: 12073: 12034: 12030: 11991: 11987: 11956: 11952: 11937:10.1137/0614071 11921:Leurgans, S. E. 11918: 11914: 11883: 11879: 11830: 11826: 11777: 11773: 11720: 11716: 11675: 11668: 11619: 11615: 11566: 11562: 11513: 11509: 11460: 11453: 11446: 11424: 11420: 11413:10.1137/0209053 11384: 11380: 11330: 11326: 11278: 11276: 11273: 11272: 11256: 11254: 11251: 11250: 11241:Geramita, A. V. 11234: 11230: 11196: 11192: 11138: 11131: 11096:Geramita, A. V. 11089: 11085: 11055: 11051: 11001: 10992: 10978: 10974: 10959:10.1145/2512329 10926: 10922: 10914: 10908: 10904: 10896: 10881: 10872: 10865: 10821: 10814: 10789:F. L. Hitchcock 10786: 10782: 10774: 10768: 10764: 10759: 10722: 10689: 10678: 10675: 10674: 10639: 10633: 10629: 10603: 10597: 10593: 10567: 10561: 10557: 10524: 10513: 10497: 10493: 10484: 10480: 10471: 10467: 10459: 10456: 10455: 10435: 10431: 10422: 10418: 10409: 10405: 10397: 10394: 10393: 10377: 10374: 10373: 10357: 10354: 10353: 10336: 10332: 10323: 10319: 10310: 10306: 10304: 10301: 10300: 10292: 10214: 10175: 10172: 10171: 10145: 10141: 10135: 10124: 10119: 10103: 10092: 10087: 10077: 10066: 10061: 10054: and  10052: 10040: 10036: 10030: 10019: 10014: 9998: 9987: 9982: 9972: 9961: 9956: 9950: 9947: 9946: 9909: 9906: 9905: 9883: 9880: 9879: 9862: 9861: 9852: 9846: 9845: 9844: 9842: 9839: 9838: 9818: 9807: 9802: 9786: 9775: 9770: 9760: 9749: 9744: 9737: 9726: 9713: 9707: 9706: 9705: 9703: 9700: 9699: 9680: 9677: 9676: 9654: 9651: 9650: 9631: 9623: 9615: 9601: 9591: 9583: 9569: 9559: 9551: 9537: 9527: 9519: 9504: 9498: 9497: 9496: 9494: 9491: 9490: 9459: 9451: 9445: and  9443: 9429: 9415: 9407: 9398: 9390: 9382: 9374: 9366: 9358: 9350: 9342: 9334: 9325: 9324: 9322: 9319: 9318: 9299: 9296: 9295: 9279: 9276: 9275: 9243: 9239: 9231: 9228: 9227: 9204: 9200: 9194: 9189: 9184: 9168: 9163: 9158: 9148: 9143: 9138: 9131: 9120: 9107: 9106: 9093: 9089: 9088: 9084: 9075: 9070: 9065: 9063: 9057: 9054: 9053: 9028: 9025: 9024: 9007: 9006: 9004: 9001: 9000: 8984: 8981: 8980: 8964: 8961: 8960: 8957: 8928: 8923: 8915: 8912: 8911: 8889: 8886: 8885: 8864: 8860: 8851: 8847: 8838: 8834: 8825: 8821: 8819: 8816: 8815: 8798: 8794: 8785: 8781: 8772: 8768: 8766: 8763: 8762: 8734: 8731: 8730: 8698: 8694: 8679: 8675: 8666: 8662: 8653: 8649: 8641: 8638: 8637: 8613: 8608: 8596: 8592: 8577: 8573: 8564: 8560: 8551: 8547: 8545: 8542: 8541: 8516: 8513: 8512: 8495: 8491: 8482: 8478: 8469: 8465: 8456: 8452: 8443: 8439: 8437: 8434: 8433: 8408: 8405: 8404: 8387: 8383: 8374: 8370: 8361: 8357: 8355: 8352: 8351: 8326: 8323: 8322: 8305: 8301: 8292: 8288: 8279: 8275: 8273: 8270: 8269: 8235: 8232: 8231: 8209: 8206: 8205: 8188: 8184: 8175: 8171: 8162: 8158: 8149: 8145: 8143: 8140: 8139: 8114: 8111: 8110: 8093: 8089: 8080: 8076: 8067: 8063: 8061: 8058: 8057: 8028: 8024: 8015: 8004: 7991: 7987: 7981: 7970: 7958: 7955: 7954: 7928: 7924: 7915: 7904: 7891: 7887: 7881: 7870: 7857: 7853: 7851: 7848: 7847: 7824: 7820: 7805: 7801: 7792: 7788: 7779: 7775: 7767: 7764: 7763: 7738: 7734: 7732: 7729: 7728: 7725:is identifiable 7708: 7704: 7695: 7691: 7682: 7681: 7679: 7676: 7675: 7655: 7651: 7649: 7646: 7645: 7620: 7617: 7616: 7596: 7593: 7592: 7573: 7569: 7568: 7564: 7547: 7543: 7542: 7538: 7524: 7520: 7519: 7515: 7506: 7502: 7500: 7497: 7496: 7473: 7469: 7454: 7450: 7441: 7437: 7435: 7432: 7431: 7408: 7404: 7402: 7399: 7398: 7376: 7373: 7372: 7353: 7349: 7348: 7344: 7327: 7323: 7322: 7318: 7307: 7303: 7302: 7298: 7296: 7293: 7292: 7267: 7264: 7263: 7246: 7243: 7242: 7210: 7202: 7201: 7193: 7190: 7189: 7172: 7161: 7151: 7146: 7145: 7133: 7129: 7124: 7121: 7120: 7103: 7092: 7082: 7077: 7076: 7061: 7057: 7052: 7049: 7048: 7031: 7020: 7010: 7005: 7004: 6993: 6990: 6989: 6972: 6961: 6951: 6946: 6945: 6934: 6931: 6930: 6908: 6905: 6904: 6878: 6870: 6869: 6861: 6858: 6857: 6837: 6832: 6831: 6822: 6817: 6816: 6810: 6799: 6786: 6781: 6776: 6769: 6764: 6763: 6757: 6746: 6733: 6729: 6723: 6719: 6701: 6697: 6682: 6678: 6666: 6661: 6656: 6649: 6644: 6643: 6637: 6626: 6613: 6608: 6607: 6598: 6593: 6592: 6586: 6575: 6562: 6561: 6559: 6556: 6555: 6533: 6530: 6529: 6510: 6506: 6497: 6493: 6492: 6488: 6477: 6473: 6472: 6468: 6457: 6453: 6452: 6448: 6446: 6443: 6442: 6439: 6412: 6409: 6408: 6391: 6390: 6388: 6385: 6384: 6367: 6361: 6360: 6359: 6357: 6354: 6353: 6336: 6335: 6333: 6330: 6329: 6310: 6307: 6306: 6286: 6280: 6279: 6278: 6272: 6261: 6248: 6247: 6245: 6242: 6241: 6225: 6222: 6221: 6204: 6198: 6197: 6196: 6194: 6191: 6190: 6170: 6164: 6163: 6162: 6147: 6141: 6140: 6139: 6130: 6124: 6123: 6122: 6117: 6114: 6113: 6097: 6094: 6093: 6070: 6066: 6065: 6061: 6044: 6040: 6039: 6035: 6024: 6020: 6019: 6015: 6006: 6005: 6003: 6000: 5999: 5983: 5980: 5979: 5962: 5961: 5959: 5956: 5955: 5938: 5927: 5917: 5912: 5911: 5906: 5903: 5902: 5881: 5876: 5875: 5869: 5865: 5856: 5851: 5850: 5848: 5845: 5844: 5821: 5817: 5808: 5804: 5798: 5794: 5792: 5789: 5788: 5771: 5767: 5765: 5762: 5761: 5744: 5739: 5738: 5723: 5718: 5717: 5708: 5703: 5702: 5693: 5688: 5687: 5672: 5667: 5666: 5657: 5652: 5651: 5642: 5641: 5639: 5636: 5635: 5632: 5630:Identifiability 5627: 5596: 5593: 5592: 5575: 5574: 5569: 5561: 5553: 5545: 5541: 5536: 5525: 5517: 5509: 5501: 5493: 5485: 5477: 5469: 5461: 5448: 5440: 5432: 5424: 5416: 5408: 5400: 5392: 5384: 5376: 5367: 5366: 5361: 5353: 5345: 5331: 5321: 5313: 5299: 5289: 5281: 5267: 5257: 5249: 5236: 5230: 5224: 5223: 5222: 5218: 5216: 5213: 5212: 5181: 5173: 5167: and  5165: 5151: 5137: 5129: 5120: 5112: 5104: 5096: 5088: 5080: 5072: 5064: 5056: 5047: 5046: 5044: 5041: 5040: 5008: 5005: 5004: 4983: 4982: 4980: 4977: 4976: 4956: 4953: 4952: 4935: 4934: 4932: 4929: 4928: 4927:whose limit is 4906: 4903: 4902: 4881: 4880: 4878: 4875: 4874: 4858: 4855: 4854: 4851: 4800: 4796: 4794: 4791: 4790: 4761: 4756: 4755: 4753: 4750: 4749: 4730: 4726: 4725: 4721: 4704: 4700: 4699: 4695: 4693: 4690: 4689: 4684:is the (least) 4665: 4661: 4646: 4642: 4634: 4631: 4630: 4599: 4595: 4580: 4576: 4555: 4551: 4545: 4534: 4529: 4525: 4510: 4506: 4491: 4487: 4476: 4472: 4470: 4467: 4466: 4446: 4442: 4427: 4423: 4414: 4410: 4408: 4405: 4404: 4385: 4381: 4380: 4376: 4359: 4355: 4354: 4350: 4348: 4345: 4344: 4324: 4320: 4305: 4301: 4290: 4286: 4284: 4281: 4280: 4272: 4223: 4219: 4184: 4181: 4180: 4146: 4143: 4142: 4126: 4123: 4122: 4100: 4097: 4096: 4058: 4054: 4025: 4022: 4021: 3989: 3985: 3983: 3980: 3979: 3944: 3940: 3938: 3935: 3934: 3908: 3904: 3889: 3885: 3876: 3872: 3860: 3856: 3841: 3837: 3822: 3818: 3810: 3807: 3806: 3766: 3718: 3714: 3712: 3709: 3708: 3670: 3622: 3618: 3616: 3613: 3612: 3589: 3585: 3570: 3566: 3557: 3553: 3541: 3537: 3522: 3518: 3510: 3507: 3506: 3476: 3472: 3457: 3453: 3444: 3440: 3428: 3424: 3409: 3405: 3397: 3394: 3393: 3371: 3367: 3352: 3348: 3347: 3343: 3341: 3338: 3337: 3313: 3309: 3294: 3290: 3281: 3277: 3275: 3272: 3271: 3251: 3247: 3232: 3228: 3219: 3215: 3213: 3210: 3209: 3189: 3186: 3185: 3160: 3156: 3141: 3137: 3136: 3131: 3130: 3128: 3125: 3124: 3092: 3088: 3079: 3068: 3052: 3045: 3041: 3035: 3024: 3012: 3009: 3008: 2971: 2966: 2962: 2950: 2946: 2931: 2927: 2918: 2914: 2912: 2909: 2908: 2898: 2877: 2874: 2873: 2848: 2844: 2829: 2825: 2824: 2820: 2818: 2815: 2814: 2786: 2782: 2776: 2765: 2752: 2748: 2747: 2743: 2728: 2724: 2709: 2705: 2697: 2694: 2693: 2686: 2645: 2641: 2632: 2621: 2608: 2604: 2598: 2587: 2568: 2564: 2562: 2559: 2558: 2534: 2530: 2515: 2511: 2502: 2498: 2496: 2493: 2492: 2473: 2469: 2468: 2464: 2447: 2443: 2442: 2438: 2436: 2433: 2432: 2412: 2407: 2406: 2397: 2392: 2391: 2382: 2377: 2376: 2374: 2371: 2370: 2341: 2338: 2337: 2320: 2315: 2314: 2305: 2300: 2299: 2290: 2285: 2284: 2282: 2279: 2278: 2261: 2256: 2255: 2246: 2241: 2240: 2231: 2226: 2225: 2223: 2220: 2219: 2213:Volker Strassen 2187: 2183: 2168: 2164: 2156: 2153: 2152: 2136: 2133: 2132: 2112: 2109: 2108: 2085: 2081: 2066: 2062: 2054: 2051: 2050: 2031: 2027: 2026: 2022: 2005: 2001: 2000: 1996: 1994: 1991: 1990: 1974: 1971: 1970: 1950: 1947: 1946: 1926: 1922: 1907: 1903: 1895: 1892: 1891: 1885: 1864: 1862: 1859: 1858: 1855:field extension 1834: 1829: 1828: 1816: 1811: 1810: 1801: 1796: 1795: 1793: 1790: 1789: 1763: 1758: 1757: 1748: 1737: 1735: 1734: 1733: 1724: 1719: 1718: 1709: 1698: 1696: 1695: 1694: 1685: 1680: 1679: 1670: 1659: 1657: 1656: 1655: 1642: 1633: 1632: 1630: 1627: 1626: 1602: 1597: 1596: 1587: 1582: 1581: 1572: 1567: 1566: 1564: 1561: 1560: 1537: 1532: 1531: 1522: 1517: 1516: 1507: 1502: 1501: 1492: 1487: 1486: 1477: 1472: 1471: 1462: 1457: 1456: 1447: 1442: 1441: 1432: 1427: 1426: 1417: 1412: 1411: 1402: 1397: 1396: 1387: 1382: 1381: 1372: 1367: 1366: 1357: 1356: 1354: 1351: 1350: 1343: 1307: 1303: 1302: 1298: 1289: 1284: 1283: 1281: 1278: 1277: 1260: 1255: 1254: 1239: 1234: 1233: 1231: 1228: 1227: 1191: 1187: 1176: 1172: 1171: 1167: 1156: 1152: 1151: 1147: 1145: 1142: 1141: 1134: 1090: 1087: 1086: 1070: 1067: 1066: 1038: 1035: 1034: 1015: 1011: 1010: 1004: 1003: 1002: 987: 982: 981: 979: 976: 975: 958: 957: 948: 944: 942: 939: 938: 909: 904: 903: 882: 877: 876: 858: 853: 852: 837: 832: 831: 816: 811: 810: 804: 800: 794: 783: 770: 769: 767: 764: 763: 744: 741: 740: 724: 721: 720: 716: 712: 708: 689: 685: 670: 666: 657: 653: 652: 646: 645: 644: 635: 634: 632: 629: 628: 625: 601: 597: 585: 581: 566: 562: 553: 549: 548: 542: 541: 540: 538: 535: 534: 515: 511: 499: 495: 480: 476: 467: 463: 462: 458: 456: 453: 452: 433: 429: 417: 413: 401: 397: 388: 384: 383: 378: 377: 368: 367: 365: 362: 361: 345: 342: 341: 324: 323: 321: 318: 317: 298: 296: 293: 292: 276: 274: 271: 270: 239: 236: 235: 218: 214: 205: 201: 193: 190: 189: 161: 158: 157: 138: 135: 134: 118: 115: 114: 111: 95:computer vision 23: 22: 15: 12: 11: 5: 12978: 12968: 12967: 12962: 12945: 12944: 12942: 12941: 12936: 12934:Woldemar Voigt 12931: 12926: 12921: 12916: 12911: 12906: 12901: 12899:Leonhard Euler 12896: 12891: 12886: 12881: 12875: 12873: 12871:Mathematicians 12867: 12866: 12863: 12862: 12860: 12859: 12854: 12849: 12844: 12839: 12834: 12829: 12824: 12819: 12813: 12811: 12807: 12806: 12804: 12803: 12798: 12796:Torsion tensor 12793: 12788: 12783: 12778: 12773: 12768: 12762: 12760: 12753: 12749: 12748: 12746: 12745: 12740: 12735: 12730: 12725: 12720: 12715: 12710: 12705: 12700: 12695: 12690: 12685: 12680: 12675: 12670: 12665: 12660: 12655: 12649: 12647: 12641: 12640: 12638: 12637: 12631: 12629:Tensor product 12626: 12621: 12619:Symmetrization 12616: 12611: 12609:Lie derivative 12606: 12601: 12596: 12591: 12586: 12580: 12578: 12572: 12571: 12569: 12568: 12563: 12558: 12553: 12548: 12543: 12538: 12533: 12531:Tensor density 12528: 12523: 12517: 12515: 12509: 12508: 12506: 12505: 12503:Voigt notation 12500: 12495: 12490: 12488:Ricci calculus 12485: 12480: 12475: 12473:Index notation 12470: 12465: 12459: 12457: 12453: 12452: 12449: 12448: 12446: 12445: 12440: 12435: 12430: 12425: 12419: 12417: 12415: 12414: 12409: 12403: 12400: 12399: 12397: 12396: 12391: 12389:Tensor algebra 12386: 12381: 12376: 12371: 12369:Dyadic algebra 12366: 12361: 12355: 12353: 12344: 12340: 12339: 12332: 12329: 12328: 12321: 12320: 12313: 12306: 12298: 12292: 12291: 12281: 12276: 12269: 12268:External links 12266: 12265: 12264: 12255: 12219:(3): 455–500. 12203: 12200: 12197: 12196: 12177: 12124: 12071: 12028: 11985: 11950: 11912: 11893:(1–2): 67–90. 11877: 11824: 11787:(2): 636–660. 11771: 11714: 11666: 11613: 11576:(2): 656–681. 11560: 11507: 11451: 11444: 11418: 11407:(4): 692–697. 11378: 11333:Blehkerman, G. 11324: 11311:(2): 295–327. 11281: 11259: 11245:Gimigliano, A. 11228: 11190: 11161:(2): 767–792. 11129: 11100:Gimigliano, A. 11083: 11049: 10990: 10972: 10920: 10917:. ASONAM 2022. 10910:Gujral, Ekta. 10902: 10863: 10844:(3): 283–319. 10824:Carroll, J. D. 10812: 10780: 10761: 10760: 10758: 10755: 10754: 10753: 10748: 10743: 10738: 10733: 10728: 10721: 10718: 10705: 10702: 10699: 10696: 10692: 10688: 10685: 10682: 10671:topic modeling 10655: 10652: 10649: 10646: 10642: 10636: 10632: 10628: 10625: 10622: 10619: 10616: 10613: 10610: 10606: 10600: 10596: 10592: 10589: 10586: 10583: 10580: 10577: 10574: 10570: 10564: 10560: 10556: 10553: 10550: 10547: 10544: 10541: 10538: 10535: 10532: 10527: 10522: 10519: 10516: 10512: 10508: 10505: 10500: 10496: 10492: 10487: 10483: 10479: 10474: 10470: 10466: 10463: 10443: 10438: 10434: 10430: 10425: 10421: 10417: 10412: 10408: 10404: 10401: 10381: 10361: 10339: 10335: 10331: 10326: 10322: 10318: 10313: 10309: 10291: 10288: 10287: 10286: 10277: 10276: 10270: 10264: 10258: 10252: 10242: 10241: 10238: 10231: 10230: 10224: 10213: 10210: 10185: 10182: 10179: 10168: 10167: 10156: 10153: 10148: 10144: 10138: 10133: 10130: 10127: 10122: 10117: 10114: 10111: 10106: 10101: 10098: 10095: 10090: 10085: 10080: 10075: 10072: 10069: 10064: 10059: 10051: 10048: 10043: 10039: 10033: 10028: 10025: 10022: 10017: 10012: 10009: 10006: 10001: 9996: 9993: 9990: 9985: 9980: 9975: 9970: 9967: 9964: 9959: 9954: 9931: 9928: 9925: 9922: 9919: 9916: 9913: 9893: 9890: 9887: 9865: 9860: 9855: 9849: 9835: 9834: 9821: 9816: 9813: 9810: 9805: 9800: 9797: 9794: 9789: 9784: 9781: 9778: 9773: 9768: 9763: 9758: 9755: 9752: 9747: 9740: 9735: 9732: 9729: 9725: 9721: 9716: 9710: 9684: 9664: 9661: 9658: 9647: 9646: 9634: 9630: 9626: 9622: 9618: 9614: 9611: 9608: 9604: 9598: 9595: 9590: 9586: 9582: 9579: 9576: 9572: 9566: 9563: 9558: 9554: 9550: 9547: 9544: 9540: 9534: 9531: 9526: 9522: 9518: 9515: 9512: 9507: 9501: 9484: 9483: 9472: 9469: 9466: 9462: 9458: 9454: 9450: 9442: 9439: 9436: 9432: 9428: 9425: 9422: 9418: 9414: 9405: 9401: 9397: 9393: 9389: 9385: 9381: 9377: 9373: 9369: 9365: 9361: 9357: 9353: 9349: 9345: 9341: 9337: 9333: 9328: 9303: 9283: 9272:border tensors 9261:Frobenius norm 9246: 9242: 9238: 9235: 9224: 9223: 9212: 9207: 9203: 9197: 9192: 9187: 9182: 9179: 9176: 9171: 9166: 9161: 9156: 9151: 9146: 9141: 9134: 9129: 9126: 9123: 9119: 9115: 9110: 9105: 9096: 9092: 9087: 9083: 9078: 9073: 9068: 9062: 9038: 9035: 9032: 9010: 8988: 8968: 8956: 8953: 8937: 8934: 8931: 8927: 8922: 8919: 8899: 8896: 8893: 8882: 8881: 8867: 8863: 8859: 8854: 8850: 8846: 8841: 8837: 8833: 8828: 8824: 8801: 8797: 8793: 8788: 8784: 8780: 8775: 8771: 8759: 8756: 8753: 8750: 8738: 8719: 8718: 8706: 8701: 8697: 8693: 8690: 8687: 8682: 8678: 8674: 8669: 8665: 8661: 8656: 8652: 8648: 8645: 8622: 8619: 8616: 8612: 8607: 8604: 8599: 8595: 8591: 8588: 8585: 8580: 8576: 8572: 8567: 8563: 8559: 8554: 8550: 8538: 8526: 8523: 8520: 8498: 8494: 8490: 8485: 8481: 8477: 8472: 8468: 8464: 8459: 8455: 8451: 8446: 8442: 8430: 8418: 8415: 8412: 8390: 8386: 8382: 8377: 8373: 8369: 8364: 8360: 8348: 8336: 8333: 8330: 8308: 8304: 8300: 8295: 8291: 8287: 8282: 8278: 8266: 8254: 8251: 8248: 8245: 8242: 8239: 8219: 8216: 8213: 8191: 8187: 8183: 8178: 8174: 8170: 8165: 8161: 8157: 8152: 8148: 8136: 8124: 8121: 8118: 8096: 8092: 8088: 8083: 8079: 8075: 8070: 8066: 8054: 8042: 8039: 8036: 8031: 8027: 8023: 8018: 8013: 8010: 8007: 8003: 7999: 7994: 7990: 7984: 7979: 7976: 7973: 7969: 7965: 7962: 7942: 7939: 7936: 7931: 7927: 7923: 7918: 7913: 7910: 7907: 7903: 7899: 7894: 7890: 7884: 7879: 7876: 7873: 7869: 7865: 7860: 7856: 7844: 7832: 7827: 7823: 7819: 7816: 7813: 7808: 7804: 7800: 7795: 7791: 7787: 7782: 7778: 7774: 7771: 7741: 7737: 7711: 7707: 7703: 7698: 7694: 7690: 7685: 7658: 7654: 7630: 7627: 7624: 7600: 7576: 7572: 7567: 7563: 7560: 7557: 7550: 7546: 7541: 7537: 7534: 7527: 7523: 7518: 7514: 7509: 7505: 7484: 7481: 7476: 7472: 7468: 7465: 7462: 7457: 7453: 7449: 7444: 7440: 7419: 7416: 7411: 7407: 7386: 7383: 7380: 7356: 7352: 7347: 7343: 7340: 7337: 7330: 7326: 7321: 7317: 7310: 7306: 7301: 7277: 7274: 7271: 7250: 7230: 7227: 7224: 7221: 7218: 7213: 7208: 7205: 7200: 7197: 7175: 7170: 7167: 7164: 7160: 7154: 7149: 7144: 7141: 7136: 7132: 7128: 7106: 7101: 7098: 7095: 7091: 7085: 7080: 7075: 7072: 7067: 7064: 7060: 7056: 7034: 7029: 7026: 7023: 7019: 7013: 7008: 7003: 7000: 6997: 6975: 6970: 6967: 6964: 6960: 6954: 6949: 6944: 6941: 6938: 6918: 6915: 6912: 6892: 6889: 6886: 6881: 6876: 6873: 6868: 6865: 6845: 6840: 6835: 6830: 6825: 6820: 6813: 6808: 6805: 6802: 6798: 6794: 6789: 6784: 6779: 6772: 6767: 6760: 6755: 6752: 6749: 6745: 6741: 6736: 6732: 6726: 6722: 6718: 6715: 6712: 6707: 6704: 6700: 6696: 6693: 6690: 6685: 6681: 6677: 6674: 6669: 6664: 6659: 6652: 6647: 6640: 6635: 6632: 6629: 6625: 6621: 6616: 6611: 6606: 6601: 6596: 6589: 6584: 6581: 6578: 6574: 6570: 6565: 6543: 6540: 6537: 6513: 6509: 6505: 6500: 6496: 6491: 6487: 6480: 6476: 6471: 6467: 6460: 6456: 6451: 6438: 6435: 6422: 6419: 6416: 6394: 6370: 6364: 6339: 6317: 6314: 6294: 6289: 6283: 6275: 6270: 6267: 6264: 6260: 6256: 6251: 6229: 6207: 6201: 6178: 6173: 6167: 6161: 6158: 6155: 6150: 6144: 6138: 6133: 6127: 6121: 6101: 6073: 6069: 6064: 6060: 6057: 6054: 6047: 6043: 6038: 6034: 6027: 6023: 6018: 6014: 6009: 5987: 5965: 5941: 5936: 5933: 5930: 5926: 5920: 5915: 5910: 5884: 5879: 5872: 5868: 5864: 5859: 5854: 5832: 5829: 5824: 5820: 5816: 5811: 5807: 5801: 5797: 5774: 5770: 5747: 5742: 5737: 5734: 5731: 5726: 5721: 5716: 5711: 5706: 5701: 5696: 5691: 5686: 5683: 5680: 5675: 5670: 5665: 5660: 5655: 5650: 5645: 5631: 5628: 5626: 5623: 5606: 5603: 5600: 5589: 5588: 5572: 5568: 5564: 5560: 5556: 5548: 5544: 5540: 5535: 5532: 5528: 5524: 5520: 5516: 5512: 5508: 5504: 5500: 5496: 5492: 5488: 5484: 5480: 5476: 5472: 5468: 5464: 5460: 5455: 5452: 5447: 5443: 5439: 5435: 5431: 5427: 5423: 5419: 5415: 5411: 5407: 5403: 5399: 5395: 5391: 5387: 5383: 5379: 5375: 5372: 5370: 5368: 5364: 5360: 5356: 5352: 5348: 5344: 5341: 5338: 5334: 5328: 5325: 5320: 5316: 5312: 5309: 5306: 5302: 5296: 5293: 5288: 5284: 5280: 5277: 5274: 5270: 5264: 5261: 5256: 5252: 5248: 5245: 5242: 5239: 5237: 5233: 5227: 5221: 5220: 5206: 5205: 5194: 5191: 5188: 5184: 5180: 5176: 5172: 5164: 5161: 5158: 5154: 5150: 5147: 5144: 5140: 5136: 5127: 5123: 5119: 5115: 5111: 5107: 5103: 5099: 5095: 5091: 5087: 5083: 5079: 5075: 5071: 5067: 5063: 5059: 5055: 5050: 5015: 5012: 4986: 4960: 4938: 4916: 4913: 4910: 4884: 4862: 4850: 4847: 4834: 4831: 4828: 4825: 4822: 4819: 4816: 4813: 4810: 4799: 4776: 4773: 4770: 4767: 4764: 4759: 4733: 4729: 4724: 4720: 4717: 4714: 4707: 4703: 4698: 4673: 4668: 4664: 4660: 4657: 4654: 4649: 4645: 4641: 4638: 4627: 4626: 4615: 4611: 4607: 4602: 4598: 4594: 4591: 4588: 4583: 4579: 4575: 4572: 4569: 4566: 4563: 4558: 4554: 4548: 4543: 4540: 4537: 4533: 4528: 4524: 4521: 4518: 4513: 4509: 4505: 4502: 4499: 4494: 4490: 4486: 4475: 4449: 4445: 4441: 4438: 4435: 4430: 4426: 4422: 4417: 4413: 4388: 4384: 4379: 4375: 4372: 4369: 4362: 4358: 4353: 4332: 4327: 4323: 4319: 4316: 4313: 4308: 4304: 4300: 4289: 4271: 4268: 4255: 4252: 4249: 4246: 4243: 4240: 4237: 4234: 4231: 4226: 4222: 4218: 4215: 4212: 4209: 4206: 4203: 4200: 4197: 4194: 4191: 4188: 4168: 4165: 4162: 4159: 4156: 4153: 4150: 4130: 4110: 4107: 4104: 4084: 4081: 4078: 4075: 4072: 4069: 4066: 4061: 4057: 4053: 4050: 4047: 4044: 4041: 4038: 4035: 4032: 4029: 4004: 4001: 3998: 3995: 3992: 3988: 3965: 3962: 3959: 3956: 3953: 3950: 3947: 3943: 3922: 3919: 3916: 3911: 3907: 3903: 3900: 3897: 3892: 3888: 3884: 3879: 3875: 3871: 3868: 3863: 3859: 3855: 3852: 3849: 3844: 3840: 3836: 3833: 3830: 3825: 3821: 3817: 3814: 3803: 3802: 3791: 3788: 3785: 3782: 3779: 3776: 3773: 3763: 3760: 3757: 3754: 3751: 3748: 3745: 3742: 3739: 3736: 3733: 3730: 3727: 3724: 3721: 3717: 3706: 3695: 3692: 3689: 3686: 3683: 3680: 3677: 3667: 3664: 3661: 3658: 3655: 3652: 3649: 3646: 3643: 3640: 3637: 3634: 3631: 3628: 3625: 3621: 3597: 3592: 3588: 3584: 3581: 3578: 3573: 3569: 3565: 3560: 3556: 3552: 3549: 3544: 3540: 3536: 3533: 3530: 3525: 3521: 3517: 3514: 3499: 3498: 3487: 3484: 3479: 3475: 3471: 3468: 3465: 3460: 3456: 3452: 3447: 3443: 3439: 3436: 3431: 3427: 3423: 3420: 3417: 3412: 3408: 3404: 3401: 3374: 3370: 3366: 3363: 3360: 3355: 3351: 3346: 3321: 3316: 3312: 3308: 3305: 3302: 3297: 3293: 3289: 3284: 3280: 3259: 3254: 3250: 3246: 3243: 3240: 3235: 3231: 3227: 3222: 3218: 3193: 3173: 3170: 3163: 3159: 3155: 3152: 3149: 3144: 3140: 3134: 3121: 3120: 3109: 3106: 3103: 3100: 3095: 3091: 3087: 3082: 3077: 3074: 3071: 3067: 3063: 3060: 3048: 3044: 3038: 3033: 3030: 3027: 3023: 3019: 3016: 2999: 2998: 2986: 2980: 2977: 2974: 2970: 2965: 2961: 2958: 2953: 2949: 2945: 2942: 2939: 2934: 2930: 2926: 2921: 2917: 2897: 2894: 2881: 2861: 2858: 2851: 2847: 2843: 2840: 2837: 2832: 2828: 2823: 2808: 2807: 2795: 2789: 2785: 2779: 2774: 2771: 2768: 2764: 2760: 2755: 2751: 2746: 2742: 2739: 2736: 2731: 2727: 2723: 2720: 2717: 2712: 2708: 2704: 2701: 2685: 2682: 2674: 2673: 2662: 2659: 2656: 2653: 2648: 2644: 2640: 2635: 2630: 2627: 2624: 2620: 2616: 2611: 2607: 2601: 2596: 2593: 2590: 2586: 2582: 2579: 2576: 2571: 2567: 2537: 2533: 2529: 2526: 2523: 2518: 2514: 2510: 2505: 2501: 2476: 2472: 2467: 2463: 2460: 2457: 2450: 2446: 2441: 2415: 2410: 2405: 2400: 2395: 2390: 2385: 2380: 2357: 2354: 2351: 2348: 2345: 2323: 2318: 2313: 2308: 2303: 2298: 2293: 2288: 2264: 2259: 2254: 2249: 2244: 2239: 2234: 2229: 2195: 2190: 2186: 2182: 2179: 2176: 2171: 2167: 2163: 2160: 2140: 2116: 2093: 2088: 2084: 2080: 2077: 2074: 2069: 2065: 2061: 2058: 2034: 2030: 2025: 2021: 2018: 2015: 2008: 2004: 1999: 1978: 1954: 1934: 1929: 1925: 1921: 1918: 1915: 1910: 1906: 1902: 1899: 1884: 1881: 1867: 1837: 1832: 1827: 1824: 1819: 1814: 1809: 1804: 1799: 1786: 1785: 1774: 1771: 1766: 1761: 1756: 1751: 1744: 1740: 1732: 1727: 1722: 1717: 1712: 1705: 1701: 1693: 1688: 1683: 1678: 1673: 1666: 1662: 1654: 1649: 1646: 1641: 1636: 1605: 1600: 1595: 1590: 1585: 1580: 1575: 1570: 1557: 1556: 1545: 1540: 1535: 1530: 1525: 1520: 1515: 1510: 1505: 1500: 1495: 1490: 1485: 1480: 1475: 1470: 1465: 1460: 1455: 1450: 1445: 1440: 1435: 1430: 1425: 1420: 1415: 1410: 1405: 1400: 1395: 1390: 1385: 1380: 1375: 1370: 1365: 1360: 1342: 1339: 1326: 1323: 1320: 1317: 1310: 1306: 1301: 1297: 1292: 1287: 1263: 1258: 1253: 1250: 1247: 1242: 1237: 1194: 1190: 1186: 1179: 1175: 1170: 1166: 1159: 1155: 1150: 1133: 1130: 1105:is called the 1094: 1074: 1054: 1051: 1048: 1045: 1042: 1018: 1014: 1007: 1001: 996: 993: 990: 985: 961: 956: 951: 947: 935: 934: 923: 918: 915: 912: 907: 902: 899: 896: 891: 888: 885: 880: 875: 872: 867: 864: 861: 856: 851: 846: 843: 840: 835: 830: 825: 822: 819: 814: 807: 803: 797: 792: 789: 786: 782: 778: 773: 748: 728: 692: 688: 684: 681: 678: 673: 669: 665: 660: 656: 649: 643: 638: 627:A data tensor 624: 621: 604: 600: 596: 593: 588: 584: 580: 577: 574: 569: 565: 561: 556: 552: 545: 518: 514: 510: 507: 502: 498: 494: 491: 488: 483: 479: 475: 470: 466: 461: 451:is denoted by 436: 432: 428: 425: 420: 416: 412: 409: 404: 400: 396: 391: 387: 381: 376: 371: 360:-order tensor 349: 327: 301: 279: 255: 252: 249: 246: 243: 221: 217: 213: 208: 204: 200: 197: 177: 174: 171: 168: 165: 142: 122: 110: 107: 9: 6: 4: 3: 2: 12977: 12966: 12963: 12961: 12958: 12957: 12955: 12940: 12937: 12935: 12932: 12930: 12927: 12925: 12922: 12920: 12917: 12915: 12912: 12910: 12907: 12905: 12902: 12900: 12897: 12895: 12892: 12890: 12887: 12885: 12882: 12880: 12877: 12876: 12874: 12872: 12868: 12858: 12855: 12853: 12850: 12848: 12845: 12843: 12840: 12838: 12835: 12833: 12830: 12828: 12825: 12823: 12820: 12818: 12815: 12814: 12812: 12808: 12802: 12799: 12797: 12794: 12792: 12789: 12787: 12784: 12782: 12779: 12777: 12776:Metric tensor 12774: 12772: 12769: 12767: 12764: 12763: 12761: 12757: 12754: 12750: 12744: 12741: 12739: 12736: 12734: 12731: 12729: 12726: 12724: 12721: 12719: 12716: 12714: 12711: 12709: 12706: 12704: 12701: 12699: 12696: 12694: 12691: 12689: 12688:Exterior form 12686: 12684: 12681: 12679: 12676: 12674: 12671: 12669: 12666: 12664: 12661: 12659: 12656: 12654: 12651: 12650: 12648: 12642: 12635: 12632: 12630: 12627: 12625: 12622: 12620: 12617: 12615: 12612: 12610: 12607: 12605: 12602: 12600: 12597: 12595: 12592: 12590: 12587: 12585: 12582: 12581: 12579: 12577: 12573: 12567: 12564: 12562: 12561:Tensor bundle 12559: 12557: 12554: 12552: 12549: 12547: 12544: 12542: 12539: 12537: 12534: 12532: 12529: 12527: 12524: 12522: 12519: 12518: 12516: 12510: 12504: 12501: 12499: 12496: 12494: 12491: 12489: 12486: 12484: 12481: 12479: 12476: 12474: 12471: 12469: 12466: 12464: 12461: 12460: 12458: 12454: 12444: 12441: 12439: 12436: 12434: 12431: 12429: 12426: 12424: 12421: 12420: 12418: 12413: 12410: 12408: 12405: 12404: 12401: 12395: 12392: 12390: 12387: 12385: 12382: 12380: 12377: 12375: 12372: 12370: 12367: 12365: 12362: 12360: 12357: 12356: 12354: 12352: 12348: 12345: 12341: 12337: 12336: 12330: 12326: 12319: 12314: 12312: 12307: 12305: 12300: 12299: 12296: 12289: 12285: 12282: 12280: 12277: 12275: 12272: 12271: 12261: 12256: 12252: 12248: 12244: 12240: 12235: 12230: 12226: 12222: 12218: 12214: 12210: 12206: 12205: 12192: 12188: 12181: 12173: 12169: 12165: 12161: 12157: 12153: 12148: 12143: 12139: 12135: 12128: 12120: 12116: 12112: 12108: 12104: 12100: 12095: 12090: 12086: 12082: 12075: 12067: 12063: 12059: 12055: 12051: 12047: 12043: 12039: 12038:Psychometrika 12032: 12024: 12020: 12016: 12012: 12008: 12004: 12000: 11996: 11989: 11981: 11977: 11973: 11969: 11965: 11961: 11954: 11946: 11942: 11938: 11934: 11930: 11926: 11922: 11916: 11908: 11904: 11900: 11896: 11892: 11888: 11881: 11873: 11869: 11865: 11861: 11857: 11853: 11848: 11843: 11839: 11835: 11828: 11820: 11816: 11812: 11808: 11804: 11800: 11795: 11790: 11786: 11782: 11775: 11767: 11763: 11759: 11755: 11751: 11747: 11742: 11737: 11733: 11729: 11725: 11718: 11710: 11706: 11702: 11698: 11693: 11688: 11685:(753): 1–22. 11684: 11680: 11673: 11671: 11662: 11658: 11654: 11650: 11646: 11642: 11637: 11632: 11628: 11624: 11617: 11609: 11605: 11601: 11597: 11593: 11589: 11584: 11579: 11575: 11571: 11564: 11556: 11552: 11548: 11544: 11540: 11536: 11531: 11526: 11522: 11518: 11511: 11503: 11499: 11495: 11491: 11487: 11483: 11478: 11473: 11469: 11465: 11458: 11456: 11447: 11441: 11437: 11433: 11429: 11422: 11414: 11410: 11406: 11402: 11401: 11396: 11392: 11388: 11382: 11374: 11370: 11366: 11362: 11357: 11352: 11349:(3–4): 1–11. 11348: 11344: 11343: 11338: 11334: 11328: 11319: 11314: 11310: 11306: 11302: 11300: 11296: 11246: 11242: 11238: 11232: 11223: 11218: 11214: 11210: 11209: 11204: 11200: 11194: 11186: 11182: 11178: 11174: 11169: 11164: 11160: 11156: 11155: 11150: 11146: 11145:Ottaviani, G. 11142: 11136: 11134: 11124: 11119: 11115: 11111: 11110: 11105: 11101: 11097: 11093: 11087: 11078: 11073: 11069: 11068: 11063: 11059: 11053: 11045: 11041: 11037: 11033: 11028: 11023: 11019: 11015: 11014: 11009: 11005: 10999: 10997: 10995: 10986: 10982: 10976: 10968: 10964: 10960: 10956: 10951: 10946: 10942: 10938: 10934: 10930: 10929:Hillar, C. J. 10924: 10913: 10906: 10895: 10891: 10887: 10880: 10876: 10870: 10868: 10859: 10855: 10851: 10847: 10843: 10839: 10838: 10837:Psychometrika 10833: 10829: 10825: 10819: 10817: 10808: 10804: 10800: 10796: 10795: 10790: 10784: 10773: 10766: 10762: 10752: 10749: 10747: 10744: 10742: 10739: 10737: 10734: 10732: 10729: 10727: 10724: 10723: 10717: 10700: 10697: 10694: 10686: 10680: 10672: 10667: 10650: 10647: 10644: 10634: 10630: 10623: 10620: 10614: 10611: 10608: 10598: 10594: 10587: 10584: 10578: 10575: 10572: 10562: 10558: 10551: 10545: 10542: 10539: 10533: 10530: 10525: 10520: 10517: 10514: 10510: 10506: 10498: 10494: 10490: 10485: 10481: 10477: 10472: 10468: 10461: 10436: 10432: 10428: 10423: 10419: 10415: 10410: 10406: 10399: 10379: 10359: 10337: 10333: 10329: 10324: 10320: 10316: 10311: 10307: 10298: 10285: 10282: 10281: 10280: 10274: 10271: 10268: 10265: 10262: 10259: 10256: 10253: 10250: 10247: 10246: 10245: 10239: 10236: 10235: 10234: 10228: 10225: 10222: 10219: 10218: 10217: 10209: 10207: 10206:inner product 10204:or a bounded 10201: 10199: 10177: 10146: 10136: 10131: 10128: 10125: 10115: 10112: 10109: 10104: 10099: 10096: 10093: 10083: 10078: 10073: 10070: 10067: 10041: 10031: 10026: 10023: 10020: 10010: 10007: 10004: 9999: 9994: 9991: 9988: 9978: 9973: 9968: 9965: 9962: 9945: 9944: 9943: 9929: 9926: 9923: 9920: 9917: 9914: 9911: 9885: 9853: 9819: 9814: 9811: 9808: 9798: 9795: 9792: 9787: 9782: 9779: 9776: 9766: 9761: 9756: 9753: 9750: 9738: 9733: 9730: 9727: 9723: 9719: 9714: 9698: 9697: 9696: 9682: 9656: 9628: 9620: 9612: 9609: 9596: 9593: 9588: 9577: 9564: 9561: 9556: 9545: 9532: 9529: 9524: 9513: 9510: 9505: 9489: 9488: 9487: 9470: 9467: 9456: 9440: 9437: 9423: 9403: 9395: 9387: 9379: 9371: 9363: 9355: 9347: 9339: 9331: 9317: 9316: 9315: 9301: 9281: 9273: 9269: 9264: 9262: 9244: 9236: 9210: 9205: 9195: 9190: 9180: 9177: 9174: 9169: 9164: 9154: 9149: 9144: 9132: 9127: 9124: 9121: 9117: 9113: 9094: 9090: 9085: 9081: 9076: 9071: 9052: 9051: 9050: 9036: 9033: 9030: 8986: 8966: 8952: 8935: 8932: 8920: 8917: 8897: 8894: 8891: 8865: 8861: 8857: 8852: 8848: 8844: 8839: 8835: 8831: 8826: 8822: 8799: 8795: 8791: 8786: 8782: 8778: 8773: 8769: 8760: 8757: 8754: 8751: 8729:proved to be 8728: 8727: 8726: 8724: 8699: 8695: 8691: 8688: 8685: 8680: 8676: 8672: 8667: 8663: 8654: 8650: 8646: 8643: 8620: 8617: 8605: 8597: 8593: 8589: 8586: 8583: 8578: 8574: 8570: 8565: 8561: 8552: 8548: 8539: 8524: 8521: 8518: 8496: 8492: 8488: 8483: 8479: 8475: 8470: 8466: 8462: 8457: 8453: 8449: 8444: 8440: 8432:The space is 8431: 8416: 8413: 8410: 8388: 8384: 8380: 8375: 8371: 8367: 8362: 8358: 8350:The space is 8349: 8334: 8331: 8328: 8306: 8302: 8298: 8293: 8289: 8285: 8280: 8276: 8268:The space is 8267: 8252: 8249: 8246: 8243: 8240: 8237: 8217: 8214: 8211: 8189: 8185: 8181: 8176: 8172: 8168: 8163: 8159: 8155: 8150: 8146: 8137: 8122: 8119: 8116: 8094: 8090: 8086: 8081: 8077: 8073: 8068: 8064: 8055: 8037: 8034: 8029: 8025: 8016: 8011: 8008: 8005: 8001: 7997: 7992: 7988: 7982: 7977: 7974: 7971: 7967: 7963: 7960: 7937: 7934: 7929: 7925: 7916: 7911: 7908: 7905: 7901: 7897: 7892: 7888: 7882: 7877: 7874: 7871: 7867: 7863: 7858: 7854: 7845: 7825: 7821: 7817: 7814: 7811: 7806: 7802: 7798: 7793: 7789: 7780: 7776: 7772: 7769: 7761: 7760: 7759: 7757: 7739: 7735: 7726: 7709: 7705: 7696: 7692: 7688: 7674: 7656: 7652: 7642: 7628: 7625: 7614: 7598: 7574: 7570: 7565: 7561: 7558: 7555: 7548: 7544: 7539: 7535: 7532: 7525: 7521: 7516: 7512: 7507: 7503: 7482: 7479: 7474: 7470: 7466: 7463: 7460: 7455: 7451: 7447: 7442: 7438: 7417: 7414: 7409: 7405: 7384: 7381: 7378: 7354: 7350: 7345: 7341: 7338: 7335: 7328: 7324: 7319: 7315: 7308: 7304: 7299: 7289: 7275: 7272: 7269: 7248: 7228: 7219: 7211: 7198: 7195: 7173: 7168: 7165: 7162: 7152: 7139: 7134: 7130: 7126: 7104: 7099: 7096: 7093: 7083: 7070: 7065: 7062: 7058: 7054: 7032: 7027: 7024: 7021: 7011: 6998: 6995: 6973: 6968: 6965: 6962: 6952: 6939: 6936: 6916: 6913: 6910: 6887: 6879: 6866: 6863: 6843: 6838: 6828: 6823: 6811: 6806: 6803: 6800: 6796: 6792: 6787: 6782: 6770: 6758: 6753: 6750: 6747: 6743: 6739: 6734: 6724: 6720: 6716: 6705: 6702: 6698: 6694: 6688: 6683: 6679: 6675: 6672: 6667: 6662: 6650: 6638: 6633: 6630: 6627: 6623: 6619: 6614: 6604: 6599: 6587: 6582: 6579: 6576: 6572: 6568: 6541: 6538: 6535: 6511: 6507: 6503: 6498: 6494: 6489: 6485: 6478: 6474: 6469: 6465: 6458: 6454: 6449: 6434: 6420: 6417: 6414: 6368: 6315: 6312: 6292: 6287: 6273: 6268: 6265: 6262: 6258: 6254: 6227: 6205: 6171: 6159: 6156: 6153: 6148: 6136: 6131: 6099: 6091: 6071: 6067: 6062: 6058: 6055: 6052: 6045: 6041: 6036: 6032: 6025: 6021: 6016: 6012: 5985: 5939: 5934: 5931: 5928: 5918: 5900: 5882: 5870: 5866: 5862: 5857: 5830: 5827: 5822: 5818: 5814: 5809: 5805: 5799: 5795: 5772: 5768: 5745: 5735: 5732: 5729: 5724: 5714: 5709: 5699: 5694: 5684: 5681: 5678: 5673: 5663: 5658: 5648: 5622: 5620: 5598: 5566: 5558: 5546: 5542: 5538: 5533: 5522: 5514: 5506: 5498: 5490: 5482: 5474: 5466: 5453: 5450: 5445: 5437: 5429: 5421: 5413: 5405: 5397: 5389: 5381: 5373: 5371: 5358: 5350: 5342: 5339: 5326: 5323: 5318: 5307: 5294: 5291: 5286: 5275: 5262: 5259: 5254: 5243: 5240: 5238: 5231: 5211: 5210: 5209: 5192: 5189: 5178: 5162: 5159: 5145: 5125: 5117: 5109: 5101: 5093: 5085: 5077: 5069: 5061: 5053: 5039: 5038: 5037: 5034: 5032: 5029: 5013: 5010: 5002: 4974: 4958: 4914: 4911: 4908: 4900: 4899:border tensor 4860: 4846: 4832: 4829: 4823: 4820: 4817: 4814: 4811: 4797: 4774: 4771: 4768: 4765: 4762: 4731: 4727: 4722: 4718: 4715: 4712: 4705: 4701: 4696: 4687: 4666: 4662: 4658: 4655: 4652: 4647: 4643: 4636: 4613: 4609: 4600: 4596: 4592: 4589: 4586: 4581: 4577: 4570: 4567: 4564: 4561: 4556: 4552: 4546: 4541: 4538: 4535: 4531: 4526: 4519: 4511: 4507: 4503: 4500: 4497: 4492: 4488: 4473: 4465: 4464: 4463: 4447: 4443: 4439: 4436: 4433: 4428: 4424: 4420: 4415: 4411: 4386: 4382: 4377: 4373: 4370: 4367: 4360: 4356: 4351: 4325: 4321: 4317: 4314: 4311: 4306: 4302: 4287: 4277: 4267: 4250: 4247: 4244: 4241: 4238: 4235: 4232: 4224: 4220: 4216: 4210: 4207: 4204: 4201: 4198: 4195: 4192: 4186: 4166: 4163: 4160: 4157: 4154: 4151: 4148: 4128: 4108: 4105: 4102: 4079: 4076: 4073: 4070: 4067: 4059: 4055: 4051: 4045: 4042: 4039: 4036: 4033: 4027: 4018: 4002: 3999: 3996: 3993: 3990: 3986: 3963: 3960: 3957: 3954: 3951: 3948: 3945: 3941: 3920: 3917: 3909: 3905: 3901: 3898: 3895: 3890: 3886: 3877: 3873: 3869: 3861: 3857: 3853: 3850: 3847: 3842: 3838: 3834: 3831: 3828: 3823: 3819: 3812: 3789: 3786: 3783: 3780: 3777: 3774: 3771: 3761: 3758: 3755: 3752: 3746: 3743: 3740: 3734: 3728: 3725: 3722: 3715: 3707: 3693: 3690: 3687: 3684: 3681: 3678: 3675: 3665: 3662: 3656: 3653: 3650: 3647: 3641: 3635: 3632: 3629: 3626: 3619: 3611: 3610: 3609: 3590: 3586: 3582: 3579: 3576: 3571: 3567: 3558: 3554: 3550: 3542: 3538: 3534: 3531: 3528: 3523: 3519: 3512: 3504: 3485: 3477: 3473: 3469: 3466: 3463: 3458: 3454: 3445: 3441: 3437: 3429: 3425: 3421: 3418: 3415: 3410: 3406: 3399: 3392: 3391: 3390: 3372: 3368: 3364: 3361: 3358: 3353: 3349: 3344: 3335: 3314: 3310: 3306: 3303: 3300: 3295: 3291: 3282: 3278: 3252: 3248: 3244: 3241: 3238: 3233: 3229: 3220: 3216: 3207: 3191: 3171: 3161: 3157: 3153: 3150: 3147: 3142: 3138: 3107: 3101: 3098: 3093: 3089: 3080: 3075: 3072: 3069: 3065: 3061: 3046: 3042: 3036: 3031: 3028: 3025: 3021: 3017: 3007: 3006: 3005: 3003: 2984: 2978: 2975: 2963: 2959: 2951: 2947: 2943: 2940: 2937: 2932: 2928: 2919: 2915: 2907: 2906: 2905: 2903: 2893: 2879: 2859: 2849: 2845: 2841: 2838: 2835: 2830: 2826: 2821: 2812: 2793: 2787: 2783: 2777: 2772: 2769: 2766: 2762: 2758: 2753: 2749: 2744: 2737: 2729: 2725: 2721: 2718: 2715: 2710: 2706: 2699: 2692: 2691: 2690: 2681: 2679: 2660: 2654: 2651: 2646: 2642: 2633: 2628: 2625: 2622: 2618: 2614: 2609: 2605: 2599: 2594: 2591: 2588: 2584: 2580: 2577: 2574: 2569: 2565: 2557: 2556: 2555: 2553: 2535: 2531: 2527: 2524: 2521: 2516: 2512: 2508: 2503: 2499: 2474: 2470: 2465: 2461: 2458: 2455: 2448: 2444: 2439: 2429: 2413: 2403: 2398: 2388: 2383: 2355: 2352: 2349: 2346: 2343: 2321: 2311: 2306: 2296: 2291: 2262: 2252: 2247: 2237: 2232: 2216: 2214: 2210: 2209:typical ranks 2188: 2184: 2180: 2177: 2174: 2169: 2165: 2158: 2138: 2130: 2114: 2107: 2086: 2082: 2078: 2075: 2072: 2067: 2063: 2056: 2032: 2028: 2023: 2019: 2016: 2013: 2006: 2002: 1997: 1976: 1968: 1952: 1927: 1923: 1919: 1916: 1913: 1908: 1904: 1897: 1890: 1880: 1856: 1851: 1835: 1825: 1822: 1817: 1807: 1802: 1772: 1764: 1754: 1749: 1730: 1725: 1715: 1710: 1691: 1686: 1676: 1671: 1647: 1644: 1639: 1625: 1624: 1623: 1621: 1603: 1593: 1588: 1578: 1573: 1543: 1538: 1528: 1523: 1513: 1508: 1498: 1493: 1483: 1478: 1468: 1463: 1453: 1448: 1438: 1433: 1423: 1418: 1408: 1403: 1393: 1388: 1378: 1373: 1363: 1349: 1348: 1347: 1338: 1321: 1308: 1304: 1299: 1295: 1290: 1261: 1251: 1248: 1245: 1240: 1224: 1222: 1218: 1217:matrix pencil 1214: 1210: 1192: 1188: 1184: 1177: 1173: 1168: 1164: 1157: 1153: 1148: 1139: 1129: 1128: 1124: 1120: 1116: 1112: 1108: 1092: 1072: 1052: 1049: 1046: 1043: 1040: 1016: 1012: 999: 994: 991: 988: 954: 949: 945: 921: 916: 913: 910: 900: 897: 894: 889: 886: 883: 873: 870: 865: 862: 859: 849: 844: 841: 838: 828: 823: 820: 817: 805: 801: 795: 790: 787: 784: 780: 776: 762: 761: 760: 746: 726: 690: 686: 682: 679: 676: 671: 667: 663: 658: 654: 641: 620: 602: 598: 594: 591: 586: 582: 578: 575: 572: 567: 563: 559: 554: 550: 516: 512: 508: 505: 500: 496: 492: 489: 486: 481: 477: 473: 468: 464: 459: 434: 430: 426: 423: 418: 414: 410: 407: 402: 398: 394: 389: 385: 374: 347: 314: 267: 253: 250: 247: 244: 241: 219: 215: 211: 206: 202: 198: 195: 175: 172: 169: 166: 163: 154: 140: 120: 106: 104: 103:psychometrics 100: 96: 92: 88: 84: 79: 76: 72: 68: 64: 60: 56: 52: 50: 46: 42: 41:decomposition 40: 34: 30: 19: 12939:Hermann Weyl 12743:Vector space 12728:Pseudotensor 12693:Fiber bundle 12646:abstractions 12541:Mixed tensor 12526:Tensor field 12333: 12259: 12216: 12212: 12190: 12186: 12180: 12137: 12133: 12127: 12084: 12080: 12074: 12044:(1): 39–67. 12041: 12037: 12031: 12001:(1): 29–45. 11998: 11994: 11988: 11963: 11959: 11953: 11928: 11924: 11915: 11890: 11886: 11880: 11837: 11833: 11827: 11784: 11780: 11774: 11731: 11727: 11717: 11682: 11678: 11626: 11622: 11616: 11573: 11569: 11563: 11520: 11516: 11510: 11467: 11463: 11427: 11421: 11404: 11398: 11381: 11346: 11340: 11327: 11308: 11304: 11298: 11294: 11231: 11212: 11206: 11193: 11168:math/0607191 11158: 11152: 11149:Peterson, C. 11113: 11107: 11086: 11065: 11058:Strassen, V. 11052: 11027:math/0607647 11017: 11011: 11004:de Silva, V. 10984: 10975: 10940: 10936: 10923: 10905: 10894:the original 10889: 10885: 10841: 10835: 10831: 10798: 10792: 10783: 10765: 10668: 10293: 10290:Applications 10278: 10243: 10232: 10215: 10202: 10197: 10169: 9836: 9648: 9485: 9271: 9267: 9265: 9225: 8958: 8883: 8722: 8720: 7755: 7724: 7673:every tensor 7672: 7643: 7290: 6440: 6090:identifiable 6089: 5898: 5633: 5590: 5207: 5035: 5027: 5000: 4972: 4898: 4897:is called a 4852: 4686:generic rank 4685: 4628: 4462:, satisfies 4276:maximum rank 4275: 4273: 4270:Maximum rank 4019: 3804: 3502: 3500: 3333: 3122: 3000: 2901: 2899: 2809: 2687: 2677: 2675: 2551: 2550:, is called 2430: 2217: 2208: 1889:generic rank 1888: 1886: 1883:Generic rank 1852: 1787: 1558: 1344: 1225: 1135: 1126: 1122: 1118: 1114: 1110: 1106: 936: 626: 315: 268: 155: 112: 87:econometrics 80: 71:chemometrics 62: 58: 54: 53: 48: 44: 38: 36: 32: 26: 12879:Élie Cartan 12827:Spin tensor 12801:Weyl tensor 12759:Mathematics 12723:Multivector 12514:definitions 12412:Engineering 12351:Mathematics 11840:: 342–375. 11734:(1): 1–11. 11337:Teitler, Z. 10943:(6): 1–39. 5028:approximate 4973:border rank 4849:Border rank 2680:otherwise. 1213:Weierstrass 1132:Tensor rank 67:linguistics 12954:Categories 12708:Linear map 12576:Operations 12284:FactoMineR 12147:1512.04312 12140:: 78–105. 11847:1501.07251 11692:1501.00090 11583:1609.00123 11395:Romani, F. 11215:: 95–120. 10757:References 9942:such that 9409:with  7754:is called 6189:where the 6088:is called 5787:such that 5625:Properties 5131:with  2552:unbalanced 623:Definition 12847:EM tensor 12683:Dimension 12634:Transpose 12229:CiteSeerX 12172:119147635 12164:0926-2245 12111:0747-7171 12094:1105.1229 12087:: 51–71. 12066:121003817 12058:0033-3123 12023:120459386 12015:0886-9383 11980:0003-2700 11945:0895-4798 11907:0169-7439 11872:119729978 11864:0024-3795 11811:0895-4798 11794:1312.2848 11766:119671913 11758:1056-3911 11741:1105.3643 11653:0895-4798 11636:1103.2696 11600:0895-4798 11555:119721371 11547:0373-3114 11530:1303.6915 11494:0895-4798 11477:1403.4157 11391:Lotti, G. 11356:1402.2371 10950:0911.1393 10828:Chang, J. 10621:⊗ 10585:⊗ 10511:∑ 10491:⊗ 10478:⊗ 10429:⊗ 10416:⊗ 10184:∞ 10181:→ 10155:∞ 10152:→ 10143:‖ 10116:⊗ 10113:⋯ 10110:⊗ 10084:⊗ 10058:‖ 10050:∞ 10047:→ 10038:‖ 10011:⊗ 10008:⋯ 10005:⊗ 9979:⊗ 9953:‖ 9927:≤ 9921:≠ 9915:≤ 9892:∞ 9889:→ 9859:→ 9799:⊗ 9796:⋯ 9793:⊗ 9767:⊗ 9724:∑ 9663:∞ 9660:→ 9629:⊗ 9621:⊗ 9610:− 9578:⊗ 9546:⊗ 9468:≠ 9465:⟩ 9449:⟨ 9435:‖ 9427:‖ 9421:‖ 9413:‖ 9396:⊗ 9388:⊗ 9372:⊗ 9364:⊗ 9348:⊗ 9340:⊗ 9268:ill-posed 9241:‖ 9237:⋅ 9234:‖ 9202:‖ 9181:⊗ 9178:⋯ 9175:⊗ 9155:⊗ 9118:∑ 9114:− 9104:‖ 9082:∈ 8930:Σ 8926:Π 8910:and rank 8858:⊗ 8845:⊗ 8832:⊗ 8792:⊗ 8779:⊗ 8737:∞ 8689:… 8615:Σ 8611:Π 8587:… 8489:⊗ 8476:⊗ 8463:⊗ 8450:⊗ 8381:⊗ 8368:⊗ 8299:⊗ 8286:⊗ 8250:− 8215:≥ 8182:⊗ 8169:⊗ 8156:⊗ 8087:⊗ 8074:⊗ 8035:− 8002:∑ 7998:− 7968:∏ 7964:≥ 7935:− 7902:∑ 7898:− 7868:∏ 7815:… 7702:∖ 7689:∈ 7623:Π 7562:⊗ 7559:⋯ 7556:⊗ 7536:⋯ 7533:⊗ 7513:⊂ 7480:≥ 7467:≥ 7464:⋯ 7461:≥ 7448:≥ 7415:≥ 7342:⊗ 7339:⋯ 7336:⊗ 7316:⊗ 7226:∖ 7199:∈ 7063:− 6914:× 6867:∈ 6829:⊗ 6797:∑ 6744:∑ 6703:− 6624:∑ 6605:⊗ 6573:∑ 6504:× 6486:≃ 6466:⊗ 6418:− 6259:∑ 6157:… 6059:⊗ 6056:⋯ 6053:⊗ 6033:⊗ 6013:∈ 5867:λ 5819:λ 5815:⋯ 5806:λ 5796:λ 5769:λ 5736:⊗ 5733:⋯ 5730:⊗ 5715:⊗ 5685:⊗ 5682:⋯ 5679:⊗ 5664:⊗ 5605:∞ 5602:→ 5567:⊗ 5559:⊗ 5523:⊗ 5515:⊗ 5499:⊗ 5491:⊗ 5475:⊗ 5467:⊗ 5438:⊗ 5430:⊗ 5414:⊗ 5406:⊗ 5390:⊗ 5382:⊗ 5359:⊗ 5351:⊗ 5340:− 5308:⊗ 5276:⊗ 5190:≠ 5187:⟩ 5171:⟨ 5157:‖ 5149:‖ 5143:‖ 5135:‖ 5118:⊗ 5110:⊗ 5094:⊗ 5086:⊗ 5070:⊗ 5062:⊗ 5011:≥ 4830:≤ 4772:× 4766:× 4719:⊗ 4716:⋯ 4713:⊗ 4656:… 4590:… 4568:⋅ 4532:∏ 4520:≤ 4501:… 4440:≥ 4437:⋯ 4434:≥ 4421:≥ 4374:⊗ 4371:⋯ 4368:⊗ 4315:… 4245:… 4205:… 4164:× 4161:⋯ 4158:× 4152:× 4106:≠ 4000:× 3994:× 3961:× 3955:× 3949:× 3899:… 3851:… 3832:… 3790:… 3759:× 3753:× 3735:× 3694:… 3663:× 3642:× 3580:… 3532:… 3467:… 3438:≥ 3419:… 3365:× 3362:⋯ 3359:× 3304:… 3242:… 3169:∖ 3154:× 3151:⋯ 3148:× 3099:− 3066:∑ 3059:Σ 3022:∏ 3015:Π 2973:Σ 2969:Π 2941:… 2857:∖ 2842:× 2839:⋯ 2836:× 2763:∏ 2719:… 2652:− 2619:∑ 2615:− 2585:∏ 2554:whenever 2528:≥ 2525:⋯ 2522:≥ 2509:≥ 2462:⊗ 2459:⋯ 2456:⊗ 2404:⊗ 2389:⊗ 2353:× 2347:× 2312:⊗ 2297:⊗ 2253:⊗ 2238:⊗ 2178:… 2106:dense set 2076:… 2020:⊗ 2017:⋯ 2014:⊗ 1917:… 1755:⊗ 1743:¯ 1731:⊗ 1704:¯ 1692:⊗ 1677:⊗ 1665:¯ 1622:, namely 1594:∈ 1529:⊗ 1514:⊗ 1484:⊗ 1469:⊗ 1454:− 1439:⊗ 1424:⊗ 1394:⊗ 1379:⊗ 1316:∖ 1296:∈ 1252:⊗ 1249:⋯ 1246:⊗ 1209:Kronecker 1185:⊗ 1165:⊗ 1050:≤ 1044:≤ 1000:∈ 955:∈ 946:λ 901:⊗ 898:⋯ 895:⊗ 874:⊗ 871:⋯ 850:⊗ 829:⊗ 802:λ 781:∑ 683:× 680:… 677:× 664:× 642:∈ 595:… 576:… 509:… 490:… 427:… 424:× 411:… 408:× 395:× 375:∈ 251:≤ 245:≤ 212:≤ 199:≤ 173:≤ 167:≤ 12713:Manifold 12698:Geodesic 12456:Notation 12251:16074195 12213:SIAM Rev 12119:14181289 11819:14851072 11709:16324593 11661:43781880 11608:23983015 11502:28478606 11387:Bini, D. 11373:14309435 11271:× ··· × 11247:(2011). 11201:(1985). 11185:59069541 11102:(2002). 11060:(1983). 10983:(2012). 10877:(1970). 10858:50364581 10720:See also 10275:(L-BFGS) 9023:, where 8204:, where 7397:and all 7241:, where 6929:matrix, 6305:and all 5897:for all 4403:, where 3184:, where 2985:⌉ 2964:⌈ 2902:expected 2872:, where 2678:balanced 2491:, where 109:Notation 12965:Tensors 12810:Physics 12644:Related 12407:Physics 12325:Tensors 12221:Bibcode 11141:Abo, H. 11044:7159193 11008:Lim, L. 10967:1460452 10933:Lim, L. 9259:is the 8999:tensor 8723:complex 5998:tensor 5619:W state 4873:tensor 4853:A rank- 2104:form a 1138:NP-hard 234:where 12738:Vector 12733:Spinor 12718:Matrix 12512:Tensor 12262:. AMS. 12249:  12231:  12170:  12162:  12117:  12109:  12064:  12056:  12021:  12013:  11978:  11943:  11905:  11870:  11862:  11817:  11809:  11764:  11756:  11707:  11659:  11651:  11606:  11598:  11553:  11545:  11500:  11492:  11442:  11371:  11183:  11042:  10987:. AMS. 10965:  10856:  10257:(SGSD) 9226:where 7495:. Let 6856:where 5001:always 4629:where 1788:where 1559:where 1033:where 937:where 101:, and 31:, the 12658:Basis 12343:Scope 12247:S2CID 12168:S2CID 12142:arXiv 12115:S2CID 12089:arXiv 12062:S2CID 12019:S2CID 11868:S2CID 11842:arXiv 11815:S2CID 11789:arXiv 11762:S2CID 11736:arXiv 11705:S2CID 11687:arXiv 11657:S2CID 11631:arXiv 11604:S2CID 11578:arXiv 11551:S2CID 11525:arXiv 11498:S2CID 11472:arXiv 11369:S2CID 11351:arXiv 11181:S2CID 11163:arXiv 11040:S2CID 11022:arXiv 10963:S2CID 10945:arXiv 10915:(PDF) 10897:(PDF) 10882:(PDF) 10854:S2CID 10775:(PDF) 10352:of a 10269:(NCG) 10229:(ASD) 10223:(ALS) 7629:15000 7371:with 4951:. If 1117:, or 37:rank- 12160:ISSN 12107:ISSN 12054:ISSN 12011:ISSN 11976:ISSN 11941:ISSN 11903:ISSN 11860:ISSN 11807:ISSN 11754:ISSN 11683:2019 11649:ISSN 11596:ISSN 11543:ISSN 11490:ISSN 11440:ISBN 11301:≥ 5" 10263:(LM) 10251:(SD) 9034:< 8921:< 8895:> 8814:and 8429:; or 7864:> 7773:> 7626:< 7382:> 7273:> 7119:and 6539:> 5843:and 4912:< 4274:The 3501:The 2900:The 2575:> 1887:The 1107:rank 974:and 69:and 12239:doi 12152:doi 12099:doi 12046:doi 12003:doi 11968:doi 11933:doi 11895:doi 11852:doi 11838:513 11799:doi 11746:doi 11697:doi 11641:doi 11588:doi 11535:doi 11521:193 11482:doi 11432:doi 11409:doi 11361:doi 11347:362 11313:doi 11217:doi 11173:doi 11159:361 11118:doi 11114:355 11072:doi 11032:doi 10955:doi 10846:doi 10803:doi 10170:as 9649:as 9061:min 5591:as 4975:of 4803:max 4688:of 4523:min 4479:max 4343:of 4293:max 3054:and 2741:min 1857:to 533:or 105:. 35:or 27:In 12956:: 12245:. 12237:. 12227:. 12217:51 12215:. 12191:15 12189:. 12166:. 12158:. 12150:. 12138:55 12136:. 12113:. 12105:. 12097:. 12085:52 12083:. 12060:. 12052:. 12042:45 12040:. 12017:. 12009:. 11997:. 11974:. 11964:57 11962:. 11939:. 11929:14 11927:. 11901:. 11891:55 11889:. 11866:. 11858:. 11850:. 11836:. 11813:. 11805:. 11797:. 11785:35 11783:. 11760:. 11752:. 11744:. 11732:22 11730:. 11726:. 11703:. 11695:. 11681:. 11669:^ 11655:. 11647:. 11639:. 11627:33 11625:. 11602:. 11594:. 11586:. 11574:38 11572:. 11549:. 11541:. 11533:. 11519:. 11496:. 11488:. 11480:. 11468:35 11466:. 11454:^ 11438:. 11403:. 11393:; 11389:; 11367:. 11359:. 11345:. 11335:; 11309:20 11307:. 11303:. 11243:; 11239:; 11213:69 11211:. 11205:. 11179:. 11171:. 11157:. 11147:; 11143:; 11132:^ 11112:. 11106:. 11098:; 11094:; 11064:. 11038:. 11030:. 11018:30 11016:. 11006:; 10993:^ 10961:. 10953:. 10941:60 10939:. 10931:; 10890:16 10888:. 10884:. 10866:^ 10852:. 10842:35 10840:. 10826:; 10815:^ 10797:. 10666:. 9263:. 7047:, 6988:, 6433:. 5621:. 5193:1. 2215:. 1850:. 1337:. 1223:. 1125:, 1113:, 619:. 313:. 266:. 153:. 97:, 93:, 89:, 12317:e 12310:t 12303:v 12290:) 12288:R 12253:. 12241:: 12223:: 12174:. 12154:: 12144:: 12121:. 12101:: 12091:: 12068:. 12048:: 12025:. 12005:: 11999:4 11982:. 11970:: 11947:. 11935:: 11909:. 11897:: 11874:. 11854:: 11844:: 11821:. 11801:: 11791:: 11768:. 11748:: 11738:: 11711:. 11699:: 11689:: 11663:. 11643:: 11633:: 11610:. 11590:: 11580:: 11557:. 11537:: 11527:: 11504:. 11484:: 11474:: 11448:. 11434:: 11415:. 11411:: 11405:9 11375:. 11363:: 11353:: 11321:. 11315:: 11299:n 11295:n 11293:( 11280:P 11258:P 11225:. 11219:: 11187:. 11175:: 11165:: 11126:. 11120:: 11080:. 11074:: 11046:. 11034:: 11024:: 10969:. 10957:: 10947:: 10860:. 10848:: 10832:n 10809:. 10805:: 10799:6 10777:. 10704:] 10701:i 10698:= 10695:h 10691:| 10687:x 10684:[ 10681:E 10654:] 10651:i 10648:= 10645:h 10641:| 10635:3 10631:x 10627:[ 10624:E 10618:] 10615:i 10612:= 10609:h 10605:| 10599:2 10595:x 10591:[ 10588:E 10582:] 10579:i 10576:= 10573:h 10569:| 10563:1 10559:x 10555:[ 10552:E 10549:) 10546:i 10543:= 10540:h 10537:( 10534:r 10531:P 10526:k 10521:1 10518:= 10515:i 10507:= 10504:] 10499:3 10495:x 10486:2 10482:x 10473:1 10469:x 10465:[ 10462:E 10442:] 10437:3 10433:x 10424:2 10420:x 10411:1 10407:x 10403:[ 10400:E 10380:h 10360:k 10338:3 10334:x 10330:, 10325:2 10321:x 10317:, 10312:1 10308:x 10178:n 10147:F 10137:M 10132:n 10129:, 10126:j 10121:a 10105:2 10100:n 10097:, 10094:j 10089:a 10079:1 10074:n 10071:, 10068:j 10063:a 10042:F 10032:M 10027:n 10024:, 10021:i 10016:a 10000:2 9995:n 9992:, 9989:i 9984:a 9974:1 9969:n 9966:, 9963:i 9958:a 9930:r 9924:j 9918:i 9912:1 9886:n 9864:A 9854:n 9848:A 9820:M 9815:n 9812:, 9809:i 9804:a 9788:2 9783:n 9780:, 9777:i 9772:a 9762:1 9757:n 9754:, 9751:i 9746:a 9739:r 9734:1 9731:= 9728:i 9720:= 9715:n 9709:A 9683:r 9657:n 9633:u 9625:u 9617:u 9613:n 9607:) 9603:v 9597:n 9594:1 9589:+ 9585:u 9581:( 9575:) 9571:v 9565:n 9562:1 9557:+ 9553:u 9549:( 9543:) 9539:v 9533:n 9530:1 9525:+ 9521:u 9517:( 9514:n 9511:= 9506:n 9500:A 9471:1 9461:v 9457:, 9453:u 9441:1 9438:= 9431:v 9424:= 9417:u 9404:, 9400:u 9392:u 9384:v 9380:+ 9376:u 9368:v 9360:u 9356:+ 9352:v 9344:u 9336:u 9332:= 9327:A 9302:r 9282:r 9245:F 9211:, 9206:F 9196:M 9191:i 9186:a 9170:2 9165:i 9160:a 9150:1 9145:i 9140:a 9133:r 9128:1 9125:= 9122:i 9109:A 9095:m 9091:I 9086:F 9077:m 9072:i 9067:a 9037:s 9031:r 9009:A 8987:s 8967:r 8936:1 8933:+ 8918:r 8898:2 8892:M 8880:. 8866:2 8862:F 8853:2 8849:F 8840:2 8836:F 8827:3 8823:F 8800:3 8796:F 8787:4 8783:F 8774:5 8770:F 8717:. 8705:) 8700:M 8696:I 8692:, 8686:, 8681:2 8677:I 8673:, 8668:1 8664:I 8660:( 8655:E 8651:r 8647:= 8644:r 8621:1 8618:+ 8606:= 8603:) 8598:M 8594:I 8590:, 8584:, 8579:2 8575:I 8571:, 8566:1 8562:I 8558:( 8553:E 8549:r 8537:. 8525:5 8522:= 8519:r 8497:2 8493:F 8484:2 8480:F 8471:2 8467:F 8458:2 8454:F 8445:2 8441:F 8417:8 8414:= 8411:r 8389:3 8385:F 8376:6 8372:F 8363:6 8359:F 8347:; 8335:6 8332:= 8329:r 8307:4 8303:F 8294:4 8290:F 8281:4 8277:F 8265:; 8253:1 8247:n 8244:2 8241:= 8238:r 8218:2 8212:n 8190:2 8186:F 8177:2 8173:F 8164:n 8160:F 8151:n 8147:F 8135:; 8123:5 8120:= 8117:r 8095:3 8091:F 8082:4 8078:F 8069:4 8065:F 8053:; 8041:) 8038:1 8030:m 8026:I 8022:( 8017:M 8012:2 8009:= 8006:m 7993:m 7989:I 7983:M 7978:2 7975:= 7972:m 7961:r 7941:) 7938:1 7930:m 7926:I 7922:( 7917:M 7912:2 7909:= 7906:m 7893:m 7889:i 7883:M 7878:2 7875:= 7872:m 7859:1 7855:I 7843:; 7831:) 7826:M 7822:I 7818:, 7812:, 7807:2 7803:I 7799:, 7794:1 7790:I 7786:( 7781:E 7777:r 7770:r 7740:r 7736:S 7727:( 7710:r 7706:Z 7697:r 7693:S 7684:A 7657:r 7653:Z 7599:r 7575:M 7571:I 7566:F 7549:m 7545:I 7540:F 7526:1 7522:I 7517:F 7508:r 7504:S 7483:2 7475:M 7471:I 7456:2 7452:I 7443:1 7439:I 7418:2 7410:m 7406:I 7385:2 7379:M 7355:M 7351:I 7346:F 7329:2 7325:I 7320:F 7309:1 7305:I 7300:F 7276:1 7270:r 7249:Z 7229:Z 7223:) 7220:F 7217:( 7212:n 7207:L 7204:G 7196:X 7174:r 7169:1 7166:= 7163:i 7159:] 7153:i 7148:d 7143:[ 7140:= 7135:T 7131:X 7127:B 7105:r 7100:1 7097:= 7094:i 7090:] 7084:i 7079:c 7074:[ 7071:= 7066:1 7059:X 7055:A 7033:r 7028:1 7025:= 7022:i 7018:] 7012:i 7007:b 7002:[ 6999:= 6996:B 6974:r 6969:1 6966:= 6963:i 6959:] 6953:i 6948:a 6943:[ 6940:= 6937:A 6917:r 6911:r 6891:) 6888:F 6885:( 6880:r 6875:L 6872:G 6864:X 6844:, 6839:i 6834:d 6824:i 6819:c 6812:r 6807:1 6804:= 6801:i 6793:= 6788:T 6783:i 6778:d 6771:i 6766:c 6759:r 6754:1 6751:= 6748:i 6740:= 6735:T 6731:) 6725:T 6721:X 6717:B 6714:( 6711:) 6706:1 6699:X 6695:A 6692:( 6689:= 6684:T 6680:B 6676:A 6673:= 6668:T 6663:i 6658:b 6651:i 6646:a 6639:r 6634:1 6631:= 6628:i 6620:= 6615:i 6610:b 6600:i 6595:a 6588:r 6583:1 6580:= 6577:i 6569:= 6564:A 6542:1 6536:r 6512:2 6508:I 6499:1 6495:I 6490:F 6479:2 6475:I 6470:F 6459:1 6455:I 6450:F 6421:1 6415:r 6393:A 6369:i 6363:A 6338:A 6316:! 6313:r 6293:, 6288:i 6282:A 6274:r 6269:1 6266:= 6263:i 6255:= 6250:A 6228:r 6206:i 6200:A 6177:} 6172:r 6166:A 6160:, 6154:, 6149:2 6143:A 6137:, 6132:1 6126:A 6120:{ 6100:r 6072:M 6068:I 6063:F 6046:2 6042:I 6037:F 6026:1 6022:I 6017:F 6008:A 5986:r 5964:A 5940:M 5935:1 5932:= 5929:m 5925:} 5919:m 5914:a 5909:{ 5899:m 5883:m 5878:b 5871:m 5863:= 5858:m 5853:a 5831:1 5828:= 5823:M 5810:2 5800:1 5773:k 5746:M 5741:b 5725:2 5720:b 5710:1 5705:b 5700:= 5695:M 5690:a 5674:2 5669:a 5659:1 5654:a 5649:= 5644:A 5599:m 5571:v 5563:v 5555:v 5547:2 5543:m 5539:1 5534:+ 5531:) 5527:u 5519:v 5511:v 5507:+ 5503:v 5495:u 5487:v 5483:+ 5479:v 5471:v 5463:u 5459:( 5454:m 5451:1 5446:+ 5442:u 5434:u 5426:v 5422:+ 5418:u 5410:v 5402:u 5398:+ 5394:v 5386:u 5378:u 5374:= 5363:u 5355:u 5347:u 5343:m 5337:) 5333:v 5327:m 5324:1 5319:+ 5315:u 5311:( 5305:) 5301:v 5295:m 5292:1 5287:+ 5283:u 5279:( 5273:) 5269:v 5263:m 5260:1 5255:+ 5251:u 5247:( 5244:m 5241:= 5232:m 5226:A 5183:v 5179:, 5175:u 5163:1 5160:= 5153:v 5146:= 5139:u 5126:, 5122:u 5114:u 5106:v 5102:+ 5098:u 5090:v 5082:u 5078:+ 5074:v 5066:u 5058:u 5054:= 5049:A 5014:3 4985:A 4959:r 4937:A 4915:s 4909:r 4883:A 4861:s 4833:4 4827:) 4824:2 4821:, 4818:2 4815:, 4812:2 4809:( 4798:r 4775:2 4769:2 4763:2 4758:R 4732:M 4728:I 4723:F 4706:1 4702:I 4697:F 4672:) 4667:M 4663:I 4659:, 4653:, 4648:1 4644:I 4640:( 4637:r 4614:, 4610:} 4606:) 4601:M 4597:I 4593:, 4587:, 4582:1 4578:I 4574:( 4571:r 4565:2 4562:, 4557:m 4553:I 4547:M 4542:2 4539:= 4536:m 4527:{ 4517:) 4512:M 4508:I 4504:, 4498:, 4493:1 4489:I 4485:( 4474:r 4448:M 4444:I 4429:2 4425:I 4416:1 4412:I 4387:M 4383:I 4378:F 4361:1 4357:I 4352:F 4331:) 4326:M 4322:I 4318:, 4312:, 4307:1 4303:I 4299:( 4288:r 4254:) 4251:2 4248:, 4242:, 4239:2 4236:, 4233:2 4230:( 4225:E 4221:r 4217:= 4214:) 4211:2 4208:, 4202:, 4199:2 4196:, 4193:2 4190:( 4187:r 4167:2 4155:2 4149:2 4129:s 4109:3 4103:n 4083:) 4080:n 4077:, 4074:n 4071:, 4068:n 4065:( 4060:E 4056:r 4052:= 4049:) 4046:n 4043:, 4040:n 4037:, 4034:n 4031:( 4028:r 4003:3 3997:4 3991:4 3987:F 3964:2 3958:2 3952:2 3946:2 3942:F 3921:1 3918:+ 3915:) 3910:M 3906:I 3902:, 3896:, 3891:1 3887:I 3883:( 3878:E 3874:r 3870:= 3867:) 3862:M 3858:I 3854:, 3848:, 3843:m 3839:I 3835:, 3829:, 3824:1 3820:I 3816:( 3813:r 3787:, 3784:3 3781:, 3778:2 3775:= 3772:m 3762:2 3756:2 3750:) 3747:1 3744:+ 3741:m 3738:( 3732:) 3729:1 3726:+ 3723:m 3720:( 3716:F 3691:, 3688:2 3685:, 3682:1 3679:= 3676:m 3666:3 3660:) 3657:1 3654:+ 3651:m 3648:2 3645:( 3639:) 3636:1 3633:+ 3630:m 3627:2 3624:( 3620:F 3596:) 3591:M 3587:I 3583:, 3577:, 3572:1 3568:I 3564:( 3559:E 3555:r 3551:= 3548:) 3543:M 3539:I 3535:, 3529:, 3524:1 3520:I 3516:( 3513:r 3486:. 3483:) 3478:M 3474:I 3470:, 3464:, 3459:1 3455:I 3451:( 3446:E 3442:r 3435:) 3430:M 3426:I 3422:, 3416:, 3411:1 3407:I 3403:( 3400:r 3373:M 3369:I 3354:1 3350:I 3345:F 3320:) 3315:M 3311:I 3307:, 3301:, 3296:1 3292:I 3288:( 3283:E 3279:r 3258:) 3253:M 3249:I 3245:, 3239:, 3234:1 3230:I 3226:( 3221:E 3217:r 3192:Z 3172:Z 3162:M 3158:I 3143:1 3139:I 3133:C 3108:. 3105:) 3102:1 3094:m 3090:I 3086:( 3081:M 3076:1 3073:= 3070:m 3062:= 3047:m 3043:I 3037:M 3032:1 3029:= 3026:m 3018:= 2979:1 2976:+ 2960:= 2957:) 2952:M 2948:I 2944:, 2938:, 2933:1 2929:I 2925:( 2920:E 2916:r 2880:Z 2860:Z 2850:M 2846:I 2831:1 2827:I 2822:F 2794:} 2788:m 2784:I 2778:M 2773:2 2770:= 2767:m 2759:, 2754:1 2750:I 2745:{ 2738:= 2735:) 2730:M 2726:I 2722:, 2716:, 2711:1 2707:I 2703:( 2700:r 2661:, 2658:) 2655:1 2647:m 2643:I 2639:( 2634:M 2629:2 2626:= 2623:m 2610:m 2606:I 2600:M 2595:2 2592:= 2589:m 2581:+ 2578:1 2570:1 2566:I 2536:M 2532:I 2517:2 2513:I 2504:1 2500:I 2475:M 2471:I 2466:F 2449:1 2445:I 2440:F 2414:2 2409:R 2399:2 2394:R 2384:2 2379:R 2356:2 2350:2 2344:2 2322:2 2317:C 2307:2 2302:C 2292:2 2287:C 2263:2 2258:R 2248:2 2243:R 2233:2 2228:R 2194:) 2189:M 2185:I 2181:, 2175:, 2170:1 2166:I 2162:( 2159:r 2139:S 2115:S 2092:) 2087:M 2083:I 2079:, 2073:, 2068:1 2064:I 2060:( 2057:r 2033:M 2029:I 2024:F 2007:1 2003:I 1998:F 1977:r 1953:r 1933:) 1928:M 1924:I 1920:, 1914:, 1909:1 1905:I 1901:( 1898:r 1866:C 1836:k 1831:y 1826:i 1823:+ 1818:k 1813:x 1808:= 1803:k 1798:z 1773:, 1770:) 1765:3 1760:z 1750:2 1739:z 1726:1 1721:z 1716:+ 1711:3 1700:z 1687:2 1682:z 1672:1 1661:z 1653:( 1648:2 1645:1 1640:= 1635:A 1604:2 1599:R 1589:j 1584:y 1579:, 1574:i 1569:x 1544:, 1539:3 1534:x 1524:2 1519:y 1509:1 1504:y 1499:+ 1494:3 1489:y 1479:2 1474:x 1464:1 1459:y 1449:3 1444:y 1434:2 1429:y 1419:1 1414:x 1409:+ 1404:3 1399:x 1389:2 1384:x 1374:1 1369:x 1364:= 1359:A 1325:} 1322:0 1319:{ 1309:m 1305:I 1300:F 1291:m 1286:a 1262:M 1257:a 1241:1 1236:a 1211:– 1193:2 1189:F 1178:n 1174:I 1169:F 1158:m 1154:I 1149:F 1093:R 1073:R 1053:M 1047:m 1041:1 1017:m 1013:I 1006:F 995:r 992:, 989:m 984:a 960:R 950:r 922:, 917:r 914:, 911:C 906:a 890:r 887:, 884:c 879:a 866:r 863:, 860:2 855:a 845:r 842:, 839:1 834:a 824:r 821:, 818:0 813:a 806:r 796:R 791:1 788:= 785:r 777:= 772:A 747:r 727:R 717:C 715:= 713:M 709:M 691:C 687:I 672:1 668:I 659:0 655:I 648:F 637:A 603:M 599:i 592:, 587:m 583:i 579:, 573:, 568:2 564:i 560:, 555:1 551:i 544:A 517:M 513:i 506:, 501:m 497:i 493:, 487:, 482:2 478:i 474:, 469:1 465:i 460:a 435:M 431:I 419:m 415:I 403:2 399:I 390:1 386:I 380:C 370:A 348:M 326:A 300:A 278:a 254:M 248:m 242:1 220:m 216:I 207:m 203:i 196:1 176:I 170:i 164:1 141:A 121:a 63:K 59:K 49:R 45:R 39:R 20:)

Index

CP decomposition
multilinear algebra
linguistics
chemometrics
Frank Lauren Hitchcock
higher-order singular value decomposition
econometrics
signal processing
computer vision
computer graphics
psychometrics
NP-hard
Kronecker
Weierstrass
matrix pencil
higher-order singular value decomposition
complex conjugate
field extension
Zariski topology
dense set
Euclidean topology
Volker Strassen
almost everywhere
almost everywhere
Zariski topology
matrix multiplication algorithms
W state
computer-assisted proof
Frobenius norm
inner product

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.