Knowledge

Apodization

Source đź“ť

184:, ion transient signal may not be stable until the ions settle into their oscillations. Toward the end, subtle ion collisions have added up to cause noticeable dephasing. This presents a problem for the Fourier transformation, as it averages the oscillatory signal across the length of the time-domain measurement. The software allows “apodization”, the removal of the front and back section of the transient signal from consideration in the FT calculation. Thus, apodization improves the resolution of the resulting mass spectrum. Another way to improve the quality of the transient is to wait to collect data until ions have settled into stable oscillatory motion within the trap. 90: 213: 36: 274:
Some lenses use other methods to reduce the amount of light let in. For example, the Minolta/Sony STF 135mm f/2.8 T4.5 lens however, has a special design introduced in 1999, which accomplishes this by utilizing a concave neutral-gray tinted lens element as an apodization filter, thereby producing a
270:
which decrease the amount of light coming into the camera. These are not strictly an example of apodization, since the diaphragm does not produce a smooth transition to zero intensity, nor does it provide shaping of the intensity profile (beyond the obvious all-or-nothing, "top hat" transmission of
242:
Since side lobes of the Airy disk are responsible for degrading the image, techniques for suppressing them are utilized. If the imaging beam has Gaussian distribution, when the truncation ratio (the ratio of the diameter of the Gaussian beam to the diameter of the truncating aperture) is set to 1,
344:
Apodization is used in telescope optics in order to improve the dynamic range of the image. For example, stars with low intensity in the close vicinity of very bright stars can be made visible using this technique, and even images of planets can be obtained when otherwise obscured by the bright
217: 216: 218: 345:
atmosphere of the star they orbit. Generally, apodization reduces the resolution of an optical image; however because it reduces diffraction edge effects, it can actually enhance certain small details. In fact, the notion of resolution, as it is commonly defined with the
357:, is connected to a circular pupil, without any obstruction, and with a uniform transmission. Any change in the shape of the pupil (for example a square instead of a circle), or its transmission, results in an alteration in the associated diffraction pattern. 215: 200:. Typically, NMR signals are truncated due to time constraints (indirect dimension) or to obtain a higher signal-to-noise ratio. In order to reduce truncation artifacts, the signals are subjected to apodization with different types of 222:
Modifying how much a lens transmits as a function of the lateral position, leads to a slightly wider and weaker focus, but at the same time removes the rings around it, thus limiting imaging artifacts.
580: 234:, and it may be a complicated function to tailor the system to certain properties. Usually, it refers to a non-uniform illumination or transmission profile that approaches zero at the edges. 214: 394: 572: 349:, is in this case partially irrelevant. One has to understand that the image formed in the focal plane of a lens (or a mirror) is modeled through the 145: 665: 635: 386: 487: 76: 558: 300: 653:
FIRST RESULTS FROM VERY LARGE TELESCOPE NACO APODIZING PHASE PLATE: 4 μm IMAGES OF THE EXOPLANET β PICTORIS b*
346: 312: 113:. The function may represent an electrical signal, an optical transmission, or a mechanical structure. In 17: 683: 511: 193: 280: 165: 54: 526: 247: 153: 482:. Marshall, Gerald F., Stutz, Glenn E. (2nd ed.). Boca Raton, Florida: CRC Press. 2012. 255: 110: 156:
analyzer to smooth the discontinuities at the beginning and end of the sampled time record.
366: 8: 350: 46: 505: 434: 409: 320: 267: 668:
spacefellowship.com Note: this article includes several images of such a phase plate
631: 493: 483: 439: 284: 197: 98: 573:"Neu von Sony: E-Mount-Objektive 100 mm F2.8 STF GM, FE 85 mm F1.8; Blitz HVL-F45RM" 168:
instead of the more common brick-wall filters, in order to reduce the pre- and post-
538: 429: 421: 288: 169: 58: 651: 201: 134: 602: 543: 243:
the side-lobes become negligible and the beam profile becomes purely Gaussian.
231: 106: 457: 89: 677: 497: 327: 443: 425: 333: 316: 308: 292: 251: 187: 149: 122: 408:
Savaryn, John P.; Toby, Timothy K.; Kelleher, Neil L. (September 2016).
336:
provide a relatively easy way to achieve tailored optical apodization.
230:
function is used to purposely change the input intensity profile of an
354: 118: 296: 181: 148:
signal processing. An example of apodization is the use of the
299:
announced a lens utilizing a similar apodization filter in the
114: 531:
Continuing Education in Anaesthesia, Critical Care & Pain
459:
NMR data processing: Phase correction, Scaling of first point
276: 410:"A researcher's guide to mass spectrometry-based proteomics" 330:
laser beam input profile is also an example of apodization.
559:""Bokeh-Gigant": Fujinon XF 1,2/56 mm R APD (aktualisiert)" 304: 144:
The term apodization is used frequently in publications on
109:"removing the foot") is the modification of the shape of a 258:
elements using variable voltages in apodization process.
279:. The same optical effect can be achieved by combining 387:"MQA Time-domain Accuracy & Digital Audio Quality" 188:
Apodization in nuclear magnetic resonance spectroscopy
525:
Ng, Alexander; Swanevelder, Justiaan (October 2011).
407: 175: 139: 353:formalism. The classical diffraction pattern, the 675: 565: 159: 125:around an intensity peak, improving the focus. 666:Planet hunters no longer blinded by the light. 524: 261: 128: 57:. There might be a discussion about this on 339: 542: 433: 237: 77:Learn how and when to remove this message 625: 603:"Photon sieves benefit space telescopes" 384: 211: 207: 88: 14: 676: 600: 480:Handbook of optical and laser scanning 619: 29: 397:from the original on 10 March 2023. 164:An apodizing filter can be used in 24: 656:The Astrophysical Journal (Letter) 527:"Resolution in ultrasound imaging" 25: 695: 601:Hewett, Jacqueline (2007-06-01). 146:Fourier-transform infrared (FTIR) 117:, it is primarily used to remove 630:(2nd ed.). Addison Wesley. 176:Apodization in mass spectrometry 140:Apodization in signal processing 34: 659: 645: 583:from the original on 2017-02-11 301:Fujinon XF 56mm F1.2 R APD lens 594: 551: 518: 472: 450: 401: 385:Robjohns, Hugh (August 2016). 378: 254:can be reduced by activating 13: 1: 372: 313:Sony FE 100mm F2.8 STF GM OSS 226:In optical design jargon, an 180:During oscillation within an 27:Function in signal processing 319:) based on the same optical 172:that the latter introduces. 160:Apodization in digital audio 7: 360: 266:Most camera lenses contain 10: 700: 262:Apodization in photography 192:Apodization is applied to 132: 129:Apodization in electronics 579:(in German). 2017-02-07. 281:depth-of-field bracketing 544:10.1093/bjaceaccp/mkr030 340:Apodization in astronomy 287:, as implemented in the 196:signals before discrete 166:digital audio processing 248:medical ultrasonography 510:: CS1 maint: others ( 426:10.1002/pmic.201600113 238:Apodization in imaging 223: 198:Fourier Transformation 154:fast Fourier transform 94: 256:ultrasonic transducer 221: 208:Apodization in optics 133:Further information: 111:mathematical function 92: 367:Apodization function 47:confusing or unclear 351:Fresnel diffraction 55:clarify the article 393:. Sound On Sound. 347:Rayleigh criterion 321:Smooth Trans Focus 224: 95: 684:Signal processing 637:978-0-201-11609-0 626:E. Hecht (1987). 420:(18): 2435–2443. 219: 99:signal processing 87: 86: 79: 16:(Redirected from 691: 669: 663: 657: 649: 643: 641: 623: 617: 616: 614: 613: 598: 592: 591: 589: 588: 569: 563: 562: 555: 549: 548: 546: 522: 516: 515: 509: 501: 476: 470: 469: 468: 467: 454: 448: 447: 437: 405: 399: 398: 391:soundonsound.com 382: 326:Simulation of a 311:full-frame lens 289:Minolta Maxxum 7 250:, the effect of 220: 202:window functions 82: 75: 71: 68: 62: 38: 37: 30: 21: 699: 698: 694: 693: 692: 690: 689: 688: 674: 673: 672: 664: 660: 650: 646: 642:Section 11.3.3. 638: 624: 620: 611: 609: 599: 595: 586: 584: 571: 570: 566: 557: 556: 552: 523: 519: 503: 502: 490: 478: 477: 473: 465: 463: 456: 455: 451: 406: 402: 383: 379: 375: 363: 342: 307:introduced the 271:its aperture). 264: 240: 212: 210: 190: 178: 162: 142: 137: 135:Window function 131: 83: 72: 66: 63: 52: 39: 35: 28: 23: 22: 15: 12: 11: 5: 697: 687: 686: 671: 670: 658: 644: 636: 618: 593: 564: 550: 537:(5): 186–192. 517: 488: 471: 449: 400: 376: 374: 371: 370: 369: 362: 359: 341: 338: 285:multi exposure 263: 260: 239: 236: 232:optical system 209: 206: 189: 186: 177: 174: 161: 158: 141: 138: 130: 127: 85: 84: 42: 40: 33: 26: 9: 6: 4: 3: 2: 696: 685: 682: 681: 679: 667: 662: 655: 654: 648: 639: 633: 629: 622: 608: 604: 597: 582: 578: 574: 568: 561:. 2001-11-30. 560: 554: 545: 540: 536: 532: 528: 521: 513: 507: 499: 495: 491: 489:9781439808795 485: 481: 475: 462:, 9 July 2021 461: 460: 453: 445: 441: 436: 431: 427: 423: 419: 415: 411: 404: 396: 392: 388: 381: 377: 368: 365: 364: 358: 356: 352: 348: 337: 335: 334:Photon sieves 331: 329: 324: 322: 318: 314: 310: 306: 302: 298: 294: 290: 286: 282: 278: 272: 269: 259: 257: 253: 252:grating lobes 249: 244: 235: 233: 229: 205: 203: 199: 195: 185: 183: 173: 171: 167: 157: 155: 151: 147: 136: 126: 124: 120: 116: 112: 108: 104: 100: 91: 81: 78: 70: 60: 59:the talk page 56: 50: 48: 43:This article 41: 32: 31: 19: 661: 652: 647: 627: 621: 610:. Retrieved 606: 596: 585:. Retrieved 576: 567: 553: 534: 530: 520: 479: 474: 464:, retrieved 458: 452: 417: 413: 403: 390: 380: 343: 332: 325: 317:SEL-100F28GM 293:STF function 273: 265: 245: 241: 227: 225: 191: 179: 163: 143: 102: 96: 73: 64: 53:Please help 44: 323:principle. 303:. In 2017, 295:. In 2014, 228:apodization 150:Hann window 123:diffraction 103:apodization 18:Apodisation 612:2007-06-05 607:Optics.org 587:2017-02-10 577:Photoscala 466:2022-01-17 414:Proteomics 373:References 268:diaphragms 121:caused by 119:Airy disks 49:to readers 506:cite book 498:756724023 355:Airy disk 275:pleasant 93:Airy disk 678:Category 581:Archived 444:27553853 395:Archived 361:See also 328:Gaussian 297:Fujifilm 182:Orbitrap 67:May 2010 435:5198776 309:E-mount 170:ringing 152:in the 45:may be 634:  628:Optics 496:  486:  442:  432:  115:optics 105:(from 283:with 277:bokeh 107:Greek 632:ISBN 512:link 494:OCLC 484:ISBN 440:PMID 305:Sony 539:doi 430:PMC 422:doi 291:'s 246:In 204:. 194:NMR 97:In 680:: 605:. 575:. 535:11 533:. 529:. 508:}} 504:{{ 492:. 438:. 428:. 418:16 416:. 412:. 389:. 101:, 640:. 615:. 590:. 547:. 541:: 514:) 500:. 446:. 424:: 315:( 80:) 74:( 69:) 65:( 61:. 51:. 20:)

Index

Apodisation
confusing or unclear
clarify the article
the talk page
Learn how and when to remove this message

signal processing
Greek
mathematical function
optics
Airy disks
diffraction
Window function
Fourier-transform infrared (FTIR)
Hann window
fast Fourier transform
digital audio processing
ringing
Orbitrap
NMR
Fourier Transformation
window functions
optical system
medical ultrasonography
grating lobes
ultrasonic transducer
diaphragms
bokeh
depth-of-field bracketing
multi exposure

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑