Knowledge

Microbial rhodopsin

Source đź“ť

928:
desensitization is accelerated by extracellular H and a negative membrane potential. It may be a photoreceptor for dark adapted cells. A transient increase in hydration of transmembrane α-helices with a t(1/2) = 60 μs tallies with the onset of cation permeation. Aspartate 253 accepts the proton released by the Schiff base (t(1/2) = 10 μs), with the latter being reprotonated by aspartic acid 156 (t(1/2) = 2 ms). The internal proton acceptor and donor groups, corresponding to D212 and D115 in bacteriorhodopsin, are clearly different from other microbial rhodopsins, indicating that their spatial positions in the protein were relocated during evolution. E90 deprotonates exclusively in the nonconductive state. The observed proton transfer reactions and the protein conformational changes relate to the gating of the cation channel.
879:. It is a light-driven proton pump. Trigonal and hexagonal crystals revealed that trimers are arranged on a honeycomb lattice. In these crystals, bacterioruberin binds to crevices between the subunits of the trimer. The polyene chain of the second chromophore is inclined from the membrane normal by an angle of about 20 degrees and, on the cytoplasmic side, it is surrounded by helices AB and DE of neighboring subunits. This peculiar binding mode suggests that bacterioruberin plays a structural role for the trimerization of AR2. When compared with the aR2 structure in another crystal form containing no bacterioruberin, the proton release channel takes a more closed conformation in the P321 or P6(3) crystal; i.e., the native conformation of protein is stabilized in the trimeric protein-bacterioruberin complex. 20: 847: 2982: 392:(GPCR) gene family, which itself arose after the divergence of plants, fungi, choanoflagellates and sponges from the earliest animals. The retinal chromophore is found solely in the opsin branch of this large gene family, meaning its occurrence elsewhere represents convergent evolution, not homology. Microbial rhodopsins are, by sequence, very different from any of the GPCR families. 60: 751:
sensory rhodopsins in any one halophilic archaeon, one (SRI) that responds positively to orange light but negatively to blue light, the other (SRII) that responds only negatively to blue light. Each transducer is specific for its cognate receptor. An x-ray structure of SRII complexed with its transducer (HtrII) at 1.94 Ă… resolution is available (
838:
lipids is highly conserved between archaerhodopsin-2 and bacteriorhodopsin. Since a transmembrane helix facing this space undergoes a large conformational change during the proton pumping cycle, it is feasible that trimerization is an important strategy to capture special lipid components that are relevant to the protein activity.
1147:
Okhrimenko, Ivan S.; Kovalev, Kirill; Petrovskaya, Lada E.; Ilyinsky, Nikolay S.; Alekseev, Alexey A.; Marin, Egor; Rokitskaya, Tatyana I.; Antonenko, Yuri N.; Siletsky, Sergey A.; Popov, Petr A.; Zagryadskaya, Yuliya A.; Soloviov, Dmytro V.; Chizhov, Igor V.; Zabelskii, Dmitrii V.; Ryzhykau, Yury L.
907:
is closely related to the archaeal sensory rhodopsins. It has 712 aas with a signal peptide, followed by a short amphipathic region, and then a hydrophobic N-terminal domain with seven probable TMSs (residues 76-309) followed by a long hydrophilic C-terminal domain of about 400 residues. Part of the
788:
Most of the MR family homologues in yeast and fungi are of about the same size and topology as the archaeal proteins (283-344 amino acyl residues; 7 putative transmembrane α-helical segments), but they are heat shock- and toxic solvent-induced proteins of unknown biochemical function. They have been
387:
to this protein. In a broad non-genetic sense, rhodopsin refers to any molecule, whether related by genetic descent or not (mostly not), consisting of an opsin and a chromophore (generally a variant of retinal). All animal rhodopsins arose (by gene duplication and divergence) late in the history of
927:
is channelrhodopsin-2 (ChR2; Chop2; Cop4; CSOB). This protein is 57% identical, 10% similar to ChR1. It forms a cation-selective ion channel activated by light absorption. It transports both monovalent and divalent cations. It desensitizes to a small conductance in continuous light. Recovery from
919:
gene, or a truncated form of that gene encoding only the hydrophobic core (residues 1-346 or 1–517) in frog oocytes in the presence of all-trans retinal produces a light-gated conductance that shows characteristics of a channel passively but selectively permeable to protons. This channel activity
750:
The association of sensory rhodopsins with their transducer proteins appears to determine whether they function as transporters or receptors. Association of a sensory rhodopsin receptor with its transducer occurs via the transmembrane helical domains of the two interacting proteins. There are two
837:
Most residues participating in the trimerization are not conserved in bacteriorhodopsin, a homologous protein capable of forming a trimeric structure in the absence of bacterioruberin. Despite a large alteration in the amino acid sequence, the shape of the intratrimer hydrophobic space filled by
834:. The changes provide rationales for how relaxation of the distorted retinal causes movements of water and protein atoms that result in vectorial proton transfers to and from the Schiff base. Helix deformation is coupled to vectorial proton transport in the photocycle of bacteriorhodopsin. 942:
Bacteriorhodopsin pumps one Cl ion, from the extracellular medium into the cytosol, per photon absorbed. Although the ions move in the opposite direction, the current generated (as defined by the movement of positive charge) is the same as for bacteriorhodopsin and the archaerhodopsins.
775:, retinal-containing proton pumps isolated from marine bacteria, a green light-activated photoreceptor in cyanobacteria that does not pump ions and interacts with a small (14 kDa) soluble transducer protein and light-gated H channels from the green alga, 1288:
Nordström KJ, Sällman Almén M, Edstam MM, Fredriksson R, Schiöth HB (September 2011). "Independent HHsearch, Needleman--Wunsch-based, and motif analyses reveal the overall hierarchy for most of the G protein-coupled receptor families".
2675:
Schobert B, Brown LS, Lanyi JK (July 2003). "Crystallographic structures of the M and N intermediates of bacteriorhodopsin: assembly of a hydrogen-bonded chain of water molecules between Asp-96 and the retinal Schiff base".
641:
light-driven ion translocation across microbial cytoplasmic membranes or serve as light receptors. Most proteins of the MR family are all of about the same size (250-350 amino acyl residues) and possess seven
829:
Six structural models describe the transformations of the retinal and its interaction with water 402, Asp85, and Asp212 in atomic detail, as well as the displacements of functional residues farther from the
1936:
Zhai Y, Heijne WH, Smith DW, Saier MH (April 2001). "Homologues of archaeal rhodopsins in plants, animals and fungi: structural and functional predications for a putative fungal chaperone protein".
2274:
Gordeliy VI, Labahn J, Moukhametzianov R, Efremov R, Granzin J, Schlesinger R, et al. (October 2002). "Molecular basis of transmembrane signalling by sensory rhodopsin II-transducer complex".
815:
Bacteriorhodopsin pumps one H ion, from the cytosol to the extracellular medium, per photon absorbed. Specific transport mechanisms and pathways have been proposed. The mechanism involves:
2640:
Lanyi JK, Schobert B (April 2003). "Mechanism of proton transport in bacteriorhodopsin from crystallographic structures of the K, L, M1, M2, and M2' intermediates of the photocycle".
2711:
Royant A, Edman K, Ursby T, Pebay-Peyroula E, Landau EM, Neutze R (August 2000). "Helix deformation is coupled to vectorial proton transport in the photocycle of bacteriorhodopsin".
860:
Archaerhodopsins are light-driven H ion transporters. They differ from bacteriorhodopsin in that the claret membrane, in which they are expressed, includes bacterioruberin, a second
789:
suggested to function as pmf-driven chaperones that fold extracellular proteins, but only indirect evidence supports this postulate. The MR family is distantly related to the 7 TMS
670:
Sensory rhodopsins, which normally function as receptors for phototactic behavior, are capable of pumping protons out of the cell if dissociated from their transducer proteins;
951:
A marine bacterial rhodopsin has been reported to function as a proton pump. However, it also resembles sensory rhodopsin II of archaea as well as an Orf from the fungus
219: 2407:
BĂ©jĂ  O, Aravind L, Koonin EV, Suzuki MT, Hadd A, Nguyen LP, et al. (September 2000). "Bacterial rhodopsin: evidence for a new type of phototrophy in the sea".
2014:
Luecke H, Schobert B, Richter HT, Cartailler JP, Lanyi JK (October 1999). "Structural changes in bacteriorhodopsin during ion transport at 2 angstrom resolution".
911:
Chop1 serves as a light-gated proton channel and mediates phototaxis and photophobic responses in green algae. Based on this phenotype, Chop1 could be assigned to
270:
and other bacteria. They are integral membrane proteins with seven transmembrane helices, the last of which contains the attachment point (a conserved lysine) for
1694:
Kato HE, Inoue K, Abe-Yoshizumi R, Kato Y, Ono H, Konno M, et al. (May 2015). "Structural basis for Na(+) transport mechanism by a light-driven Na(+) pump".
915:, but because it belongs to a family in which well-characterized homologues catalyze active ion transport, it is assigned to the MR family. Expression of the 2504:
Nagel G, Ollig D, Fuhrmann M, Kateriya S, Musti AM, Bamberg E, Hegemann P (June 2002). "Channelrhodopsin-1: a light-gated proton channel in green algae".
1853: 175: 163: 673:
the Fungal Chaperones are stress-induced proteins of ill-defined biochemical function, but this subfamily also includes a H-pumping rhodopsin;
785:
NOP-1 protein exhibits a photocycle and conserved H translocation residues that suggest that this putative photoreceptor is a slow H pump.
2171:
Kolbe M, Besir H, Essen LO, Oesterhelt D (May 2000). "Structure of the light-driven chloride pump halorhodopsin at 1.8 A resolution".
2054:"Structures of the archaerhodopsin-3 transporter reveal that disordering of internal water networks underpins receptor sensitization" 107: 757:​). Molecular and evolutionary aspects of the light-signal transduction by microbial sensory receptors have been reviewed. 1786:"The rhodopsin-guanylyl cyclase of the aquatic fungus Blastocladiella emersonii enables fast optical control of cGMP signaling" 1536:"A microbial rhodopsin with a unique retinal composition shows both sensory rhodopsin II and bacteriorhodopsin-like properties" 2765:
Yoshimura K, Kouyama T (February 2008). "Structural role of bacterioruberin in the trimeric structure of archaerhodopsin-2".
1394: 1265: 131: 239: 790: 1979:
Sharma AK, Spudich JL, Doolittle WF (November 2006). "Microbial rhodopsins: functional versatility and genetic mobility".
1428:"Functional characterization of flavobacteria rhodopsins reveals a unique class of light-driven chloride pump in bacteria" 3037: 3027: 2802:"Archaerhodopsin variants with enhanced voltage-sensitive fluorescence in mammalian and Caenorhabditis elegans neurons" 274:. Most microbial rhodopsins pump inwards, however "mirror rhodopsins" which function outwards. have been discovered. 822:
deprotonation of the retinal Schiff base and the coupled release of a proton to the extracellular membrane surface,
908:
C-terminal hydrophilic domain is homologous to intersection (EH and SH3 domain protein 1A) of animals (AAD30271).
3022: 2598:"Fungal rhodopsins and opsin-related proteins: eukaryotic homologues of bacteriorhodopsin with unknown functions" 1063:
Oesterhelt D, Tittor J (February 1989). "Two pumps, one principle: light-driven ion transport in halobacteria".
227: 3007: 2916:
LĂłrenz-FonfrĂ­a VA, Resler T, Krause N, Nack M, Gossing M, Fischer von Mollard G, et al. (April 2013).
3032: 112: 3017: 3002: 2972: 389: 223: 3012: 777: 144: 2368:"Heme histidine ligands within gp91(phox) modulate proton conduction by the phagocyte NADPH oxidase" 705: 872:
structure that has been observed at the N-terminus of the structures of several archaerhodopsins.
850:
Ground state structure of Archaerhodopsin-3, showing the covalently bound retinal group: PDB:6S6C.
421:
Below is a list of some of the more well-known microbial rhodopsins and some of their properties.
1485:
Zhang F, Vierock J, Yizhar O, Fenno LE, Tsunoda S, Kianianmomeni A, et al. (December 2011).
704:
A phylogenetic analysis of microbial rhodopsins and a detailed analysis of potential examples of
405: 2857:
Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, et al. (November 2003).
2800:
Flytzanis NC, Bedbrook CN, Chiu H, Engqvist MK, Xiao C, Chan KY, et al. (September 2014).
1326:"Enlightening the life sciences: the history of halobacterial and microbial rhodopsin research" 345: 36: 2109:
Royant A, Nollert P, Edman K, Neutze R, Landau EM, Pebay-Peyroula E, Navarro J (August 2001).
1384: 1207:"MicRhoDE: a curated database for the analysis of microbial rhodopsin diversity and evolution" 2366:
Maturana A, Arnaudeau S, Ryser S, Banfi B, Hossle JP, Schlegel W, et al. (August 2001).
1747:"Regulation of transcription by light in Neurospora crassa: A model for fungal photobiology?" 716:
Among the high resolution structures for members of the MR Family are the archaeal proteins,
1255: 2929: 2918:"Transient protonation changes in channelrhodopsin-2 and their relevance to channel gating" 2870: 2813: 2720: 2513: 2416: 2283: 2230: 2180: 2122: 2065: 2052:
Bada Juarez JF, Judge PJ, Adam S, Axford D, Vinals J, Birch J, et al. (January 2021).
1885: 1703: 1598: 1534:
Sudo Y, Ihara K, Kobayashi S, Suzuki D, Irieda H, Kikukawa T, et al. (February 2011).
1439: 1027: 765:
Homologues include putative fungal chaperone proteins, a retinal-containing rhodopsin from
725: 643: 571: 259: 206: 1784:
Scheib U, Stehfest K, Gee CE, Körschen HG, Fudim R, Oertner TG, Hegemann P (August 2015).
8: 1835: 383:. This is still the meaning of rhodopsin in the narrow sense, any protein evolutionarily 2933: 2874: 2817: 2724: 2517: 2420: 2287: 2234: 2217:
Vogeley L, Sineshchekov OA, Trivedi VD, Sasaki J, Spudich JL, Luecke H (November 2004).
2184: 2126: 2069: 1889: 1707: 1602: 1443: 1182: 1149: 1031: 825:
the switch event that allows reprotonation of the Schiff base from the cytoplasmic side.
2952: 2917: 2834: 2801: 2744: 2537: 2481: 2307: 2251: 2218: 2086: 2053: 1961: 1908: 1873: 1813: 1727: 1632: 1619: 1586: 1562: 1535: 1511: 1486: 1462: 1427: 1231: 1206: 1115: 1040: 1015: 688: 384: 364: 44: 2893: 2858: 2689: 2653: 1949: 1426:
Yoshizawa S, Kumagai Y, Kim H, Ogura Y, Hayashi T, Iwasaki W, et al. (May 2014).
1124: 1099: 2957: 2898: 2839: 2782: 2736: 2693: 2657: 2619: 2578: 2541: 2529: 2473: 2468: 2451: 2432: 2389: 2348: 2299: 2256: 2196: 2150: 2145: 2110: 2091: 2031: 1996: 1953: 1913: 1847: 1805: 1766: 1746: 1719: 1676: 1636: 1624: 1567: 1516: 1467: 1390: 1347: 1342: 1325: 1306: 1261: 1236: 1187: 1169: 1129: 1080: 1076: 1045: 985: 810: 767: 739: 717: 658: 444: 400: 294: 214: 168: 136: 40: 24: 2485: 1817: 1585:
Morizumi T, Ou WL, Van Eps N, Inoue K, Kandori H, Brown LS, Ernst OP (August 2019).
88: 2947: 2937: 2888: 2878: 2829: 2821: 2774: 2748: 2728: 2685: 2649: 2609: 2568: 2521: 2463: 2424: 2379: 2338: 2311: 2291: 2246: 2238: 2188: 2140: 2130: 2081: 2073: 2023: 1988: 1965: 1945: 1903: 1893: 1797: 1758: 1731: 1711: 1666: 1614: 1606: 1557: 1547: 1506: 1498: 1457: 1447: 1337: 1298: 1226: 1218: 1177: 1161: 1119: 1111: 1072: 1035: 900: 895: 798: 667:
pump chloride (and other anions such as bromide, iodide and nitrate) into the cell;
515: 202: 2428: 2192: 794: 409:. Since then, other microbial rhodopsins have been discovered, rendering the term 180: 2343: 2326: 2027: 990: 855: 721: 677: 634: 624: 474: 459: 376: 318: 298: 156: 100: 399:
originally referred to the first microbial rhodopsin discovered, known today as
2986: 2922:
Proceedings of the National Academy of Sciences of the United States of America
2863:
Proceedings of the National Academy of Sciences of the United States of America
2115:
Proceedings of the National Academy of Sciences of the United States of America
2077: 1878:
Proceedings of the National Academy of Sciences of the United States of America
1610: 1587:"X-ray Crystallographic Structure and Oligomerization of Gloeobacter Rhodopsin" 1502: 1432:
Proceedings of the National Academy of Sciences of the United States of America
1165: 912: 865: 2859:"Channelrhodopsin-2, a directly light-gated cation-selective membrane channel" 2778: 1992: 1874:"Leptosphaeria rhodopsin: bacteriorhodopsin-like proton pump from a eukaryote" 1801: 1762: 1222: 2996: 1770: 1680: 1173: 1098:
Blanck A, Oesterhelt D, Ferrando E, Schegk ES, Lottspeich F (December 1989).
937: 729: 664: 543: 306: 263: 2942: 2883: 2525: 2242: 1898: 1552: 1452: 1302: 963:
The generalized transport reaction for bacterio- and sensory rhodopsins is:
19: 2961: 2902: 2843: 2786: 2740: 2697: 2661: 2623: 2582: 2573: 2557:"Photochemical reaction cycle and proton transfers in Neurospora rhodopsin" 2556: 2533: 2477: 2436: 2393: 2384: 2367: 2352: 2303: 2260: 2200: 2154: 2135: 2095: 2035: 2000: 1957: 1917: 1809: 1723: 1628: 1571: 1520: 1471: 1351: 1310: 1240: 1191: 1049: 883: 819:
photo-isomerization of the retinal and its initial configurational changes,
310: 309:, a light-driven chloride pump; and sensory rhodopsin, which mediates both 290: 286: 278: 267: 28: 1133: 1084: 680:, is a light-driven proton pump that functions as does bacteriorhodopsins; 140: 861: 846: 831: 314: 302: 2295: 1715: 403:. The first bacteriorhodopsin turned out to be of archaeal origin, from 2825: 2555:
Brown LS, Dioumaev AK, Lanyi JK, Spudich EN, Spudich JL (August 2001).
1365: 1287: 1100:"Primary structure of sensory rhodopsin I, a prokaryotic photoreceptor" 869: 651: 647: 586: 372: 124: 753: 317:(in the ultra-violet) responses. Proteins from other bacteria include 2732: 2614: 2597: 638: 380: 360: 333: 282: 2327:"Molecular and evolutionary aspects of microbial sensory rhodopsins" 2273: 1671: 1654: 1146: 955:(AF290180). These proteins exhibit 20-30% identity with each other. 2981: 1785: 1744: 734: 613: 329: 95: 2219:"Anabaena sensory rhodopsin: a photochromic color sensor at 2.0 A" 1659:
Wiley Interdisciplinary Reviews: Membrane Transport and Signaling
1205:
Boeuf D, Audic S, Brillet-Guéguen L, Caron C, Jeanthon C (2015).
341: 325: 271: 119: 32: 2216: 1016:"Molecular ecology of extremely halophilic Archaea and Bacteria" 2013: 882:
Mutants of Archaerhodopsin-3 (AR3) are widely used as tools in
694:
the green algal light-gated proton channel, Channelrhodopsin-1;
368: 234: 2915: 2710: 1204: 1097: 2799: 2111:"X-ray structure of sensory rhodopsin II at 2.1-A resolution" 1836:"3.E.1 The ion-translocating microbial rhodopsin (MR) family" 995: 337: 1745:
Olmedo M, Ruger-Herreros C, Luque EM, Corrochano LM (2013).
2365: 1257:
Optogenetics: Light-Sensing Proteins and Their Applications
875:
Archaerhodopsin-2 (AR2) is found in the claret membrane of
797:). Representative members of MR family can be found in the 324:
As their name indicates, microbial rhodopsins are found in
289:, as well as light sensors. For example, the proteins from 196: 151: 83: 59: 2503: 2051: 1693: 2554: 2170: 1783: 654:
on the inside. There are 9 subfamilies in the MR family:
2856: 2108: 1738: 1533: 1425: 2406: 1484: 1421: 1419: 1417: 1415: 1413: 1978: 1871: 1584: 2970: 2452:"Demonstration of a sensory rhodopsin in eubacteria" 1935: 1872:
Waschuk SA, Bezerra AG, Shi L, Brown LS (May 2005).
1410: 2331:
Biochimica et Biophysica Acta (BBA) - Bioenergetics
1056: 903:-1 (ChR1) or channelopsin-1 (Chop1; Cop3; CSOA) of 2674: 2449: 2324: 2166: 2164: 1938:Biochimica et Biophysica Acta (BBA) - Biomembranes 1253: 1487:"The microbial opsin family of optogenetic tools" 1323: 620:ion-translocating microbial rhodopsin (MR) family 2994: 2764: 1478: 1062: 637:of secondary carriers. Members of the MR family 614:The ion-translocating microbial rhodopsin family 2161: 1648: 1646: 2450:Jung KH, Trivedi VD, Spudich JL (March 2003). 2047: 2045: 1840:Transporter Classification Database (tcdb.org) 1247: 629:Transporter Classification Database (tcdb.org) 2639: 2318: 1687: 1527: 1198: 946: 2602:Photochemical & Photobiological Sciences 1852:: CS1 maint: multiple names: authors list ( 1643: 1372:. Oxford University Press. 19 December 2012. 1254:Yawo H, Kandori H, Koizumi A (5 June 2015). 2042: 1281: 1777: 1091: 700:Light-activated rhodopsin/guanylyl cyclase 277:This protein family includes light-driven 2951: 2941: 2892: 2882: 2833: 2793: 2613: 2572: 2467: 2383: 2342: 2325:Inoue K, Tsukamoto T, Sudo Y (May 2014). 2250: 2144: 2134: 2085: 1907: 1897: 1670: 1618: 1561: 1551: 1510: 1461: 1451: 1341: 1230: 1181: 1123: 1039: 920:probably generates bioelectric currents. 1842:. Saier Lab Bioinformatics Group (SDSC). 1652: 845: 687:retinal-containing receptor serves as a 367:(light-sensitive molecule) found in the 18: 1376: 1007: 2995: 1324:Grote M, O'Malley MA (November 2011). 738:cyanobacterial sensory rhodopsin (TC# 697:Sensory rhodopsins from cyanobacteria. 2760: 2758: 2635: 2633: 2595: 2499: 2497: 2495: 2212: 2210: 1931: 1929: 1927: 1867: 1865: 1863: 1829: 1827: 1382: 958: 1013: 889: 804: 344:; although they are rare in complex 53:Archaeal/bacterial/fungal rhodopsins 2561:The Journal of Biological Chemistry 2372:The Journal of Biological Chemistry 1540:The Journal of Biological Chemistry 868:. Bacteriorhodopsin also lacks the 799:Transporter Classification Database 530:Krokinobacter eikastus rhodopsin 2 13: 2755: 2630: 2492: 2207: 1924: 1860: 1824: 1116:10.1002/j.1460-2075.1989.tb08579.x 1041:10.1111/j.1574-6941.2002.tb00900.x 841: 14: 3049: 1833: 931: 2980: 2469:10.1046/j.1365-2958.2003.03395.x 1655:"Plant and fungal photopigments" 1343:10.1111/j.1574-6976.2011.00281.x 676:the bacterial rhodopsin, called 58: 2909: 2850: 2704: 2668: 2589: 2548: 2443: 2400: 2359: 2267: 2102: 2007: 1972: 1578: 1291:Molecular Biology and Evolution 351: 1358: 1317: 1140: 1065:Trends in Biochemical Sciences 359:was originally a synonym for " 1: 2690:10.1016/s0022-2836(03)00576-x 2654:10.1016/s0022-2836(03)00263-8 2429:10.1126/science.289.5486.1902 2193:10.1126/science.288.5470.1390 1950:10.1016/s0005-2736(00)00389-8 1001: 771:, a H-pumping rhodopsin from 760: 661:pump protons out of the cell; 262:that provide light-dependent 191:Available protein structures: 2767:Journal of Molecular Biology 2678:Journal of Molecular Biology 2642:Journal of Molecular Biology 2344:10.1016/j.bbabio.2013.05.005 2028:10.1126/science.286.5438.255 1077:10.1016/0968-0004(89)90044-3 711: 646:helical spanners with their 7: 1260:. Springe r. pp. 3–4. 979: 971:That for halorhodopsin is: 886:for neuroscience research. 864:thought to protect against 745: 602:rhodopsin guanylyl cyclase 10: 3054: 3038:Integral membrane proteins 3028:Transmembrane transporters 2078:10.1038/s41467-020-20596-0 1611:10.1038/s41598-019-47445-5 1503:10.1016/j.cell.2011.12.004 1166:10.1038/s42004-023-00884-8 947:Marine Bacterial Rhodopsin 935: 893: 853: 808: 390:G-protein coupled receptor 2779:10.1016/j.jmb.2007.11.039 1993:10.1016/j.tim.2006.09.006 1802:10.1126/scisignal.aab0611 1763:10.1016/j.fbr.2013.02.004 1330:FEMS Microbiology Reviews 1150:"Mirror proteorhodopsins" 1020:FEMS Microbiology Ecology 778:Chlamydomonas reinhardtii 650:on the outside and their 301:, which are light-driven 266:and sensory functions in 233: 213: 195: 190: 186: 174: 162: 150: 130: 118: 106: 94: 82: 74: 69: 57: 52: 1389:. OUP USA. p. 375. 1154:Communications Chemistry 975:Cl (out) + hν → Cl (in). 706:horizontal gene transfer 416: 260:retinal-binding proteins 64:Bacteriorhodopsin trimer 16:Retinal-binding proteins 2943:10.1073/pnas.1219502110 2884:10.1073/pnas.1936192100 2526:10.1126/science.1072068 2243:10.1126/science.1103943 1899:10.1073/pnas.0409659102 1553:10.1074/jbc.M110.190058 1453:10.1073/pnas.1403051111 1383:Mason P (26 May 2011). 1223:10.1093/database/bav080 1014:Oren A (January 2002). 923:A homologue of ChR1 in 599:light-activated enzyme 406:Halobacterium salinarum 379:, and usually found in 346:multicellular organisms 3023:Transmembrane proteins 2596:Brown LS (June 2004). 2574:10.1074/jbc.M102652200 2456:Molecular Microbiology 2385:10.1074/jbc.M010438200 2136:10.1073/pnas.181203898 1981:Trends in Microbiology 1751:Fungal Biology Reviews 967:H (in) + hν → H (out). 953:Leptosphaeria maculans 851: 773:Leptosphaeria maculans 502:Gloeobacter rhodopsin 47: 37:salt evaporation ponds 2806:Nature Communications 2058:Nature Communications 1303:10.1093/molbev/msr061 849: 708:have been published. 691:(Neurospora ospin I); 633:) is a member of the 22: 1386:Medical Neurobiology 726:sensory rhodopsin II 572:sensory rhodopsin II 558:sensory rhodopsin I 256:bacterial rhodopsins 252:Microbial rhodopsins 3008:Biological pigments 2934:2013PNAS..110E1273L 2875:2003PNAS..10013940N 2818:2014NatCo...5.4894F 2725:2000Natur.406..645R 2518:2002Sci...296.2395N 2421:2000Sci...289.1902B 2296:10.1038/nature01109 2288:2002Natur.419..484G 2235:2004Sci...306.1390V 2185:2000Sci...288.1390K 2127:2001PNAS...9810131R 2070:2021NatCo..12..629B 1890:2005PNAS..102.6879W 1716:10.1038/nature14322 1708:2015Natur.521...48K 1653:Heintzen C (2012). 1603:2019NatSR...911283M 1444:2014PNAS..111.6732Y 1032:2002FEMME..39....1O 512:cation channel (+) 411:bacterial rhodopsin 397:bacterial rhodopsin 371:of frogs and other 3033:Transport proteins 2826:10.1038/ncomms5894 1591:Scientific Reports 959:Transport Reaction 852: 659:Bacteriorhodopsins 527:cation pump (Na+) 48: 45:Newark, California 3018:Membrane proteins 3003:Sensory receptors 2567:(35): 32495–505. 1834:Saier, M.H., Jr. 1790:Science Signaling 1396:978-0-19-533997-0 1267:978-4-431-55516-2 986:Bacteriorhodopsin 890:Channelrhodopsins 811:Bacteriorhodopsin 805:Bacteriorhodopsin 768:Neurospora crassa 718:bacteriorhodopsin 685:Neurospora crassa 611: 610: 540:anion pump (Cl-) 499:proton pump (H+) 486:proton pump (H+) 471:proton pump (H+) 456:proton pump (H+) 445:bacteriorhodopsin 441:proton pump (H+) 401:bacteriorhodopsin 313:(in the red) and 295:bacteriorhodopsin 249: 248: 245: 244: 240:structure summary 41:San Francisco Bay 25:bacteriorhodopsin 3045: 3013:Protein families 2985: 2984: 2976: 2966: 2965: 2955: 2945: 2928:(14): E1273-81. 2913: 2907: 2906: 2896: 2886: 2854: 2848: 2847: 2837: 2797: 2791: 2790: 2762: 2753: 2752: 2733:10.1038/35020599 2708: 2702: 2701: 2672: 2666: 2665: 2637: 2628: 2627: 2617: 2615:10.1039/b315527g 2593: 2587: 2586: 2576: 2552: 2546: 2545: 2512:(5577): 2395–8. 2501: 2490: 2489: 2471: 2447: 2441: 2440: 2415:(5486): 1902–6. 2404: 2398: 2397: 2387: 2378:(32): 30277–84. 2363: 2357: 2356: 2346: 2322: 2316: 2315: 2271: 2265: 2264: 2254: 2229:(5700): 1390–3. 2214: 2205: 2204: 2179:(5470): 1390–6. 2168: 2159: 2158: 2148: 2138: 2106: 2100: 2099: 2089: 2049: 2040: 2039: 2022:(5438): 255–61. 2011: 2005: 2004: 1976: 1970: 1969: 1933: 1922: 1921: 1911: 1901: 1869: 1858: 1857: 1851: 1843: 1831: 1822: 1821: 1781: 1775: 1774: 1742: 1736: 1735: 1691: 1685: 1684: 1674: 1650: 1641: 1640: 1622: 1582: 1576: 1575: 1565: 1555: 1531: 1525: 1524: 1514: 1482: 1476: 1475: 1465: 1455: 1423: 1408: 1407: 1405: 1403: 1380: 1374: 1373: 1362: 1356: 1355: 1345: 1321: 1315: 1314: 1285: 1279: 1278: 1276: 1274: 1251: 1245: 1244: 1234: 1202: 1196: 1195: 1185: 1144: 1138: 1137: 1127: 1104:The EMBO Journal 1095: 1089: 1088: 1060: 1054: 1053: 1043: 1011: 913:TC category #1.A 901:Channelrhodopsin 896:Channelrhodopsin 756: 732:, as well as an 632: 516:channelrhodopsin 489:xanthorhodopsin 424: 423: 377:dim-light vision 254:, also known as 188: 187: 62: 50: 49: 3053: 3052: 3048: 3047: 3046: 3044: 3043: 3042: 2993: 2992: 2991: 2979: 2971: 2969: 2914: 2910: 2869:(24): 13940–5. 2855: 2851: 2798: 2794: 2763: 2756: 2719:(6796): 645–8. 2709: 2705: 2673: 2669: 2638: 2631: 2594: 2590: 2553: 2549: 2502: 2493: 2448: 2444: 2405: 2401: 2364: 2360: 2323: 2319: 2282:(6906): 484–7. 2272: 2268: 2215: 2208: 2169: 2162: 2121:(18): 10131–6. 2107: 2103: 2050: 2043: 2012: 2008: 1977: 1973: 1934: 1925: 1884:(19): 6879–83. 1870: 1861: 1845: 1844: 1832: 1825: 1782: 1778: 1743: 1739: 1702:(7550): 48–53. 1692: 1688: 1672:10.1002/wmts.36 1651: 1644: 1583: 1579: 1532: 1528: 1483: 1479: 1424: 1411: 1401: 1399: 1397: 1381: 1377: 1366:"rhodopsin, n." 1364: 1363: 1359: 1322: 1318: 1286: 1282: 1272: 1270: 1268: 1252: 1248: 1203: 1199: 1145: 1141: 1110:(13): 3963–71. 1096: 1092: 1061: 1057: 1012: 1008: 1004: 991:Proteorhodopsin 982: 961: 949: 940: 934: 898: 892: 858: 856:Archaerhodopsin 844: 842:Archaerhodopsin 813: 807: 763: 752: 748: 722:archaerhodopsin 714: 678:Proteorhodopsin 635:TOG Superfamily 623: 616: 475:archaerhodopsin 460:proteorhodopsin 419: 354: 319:proteorhodopsin 311:photoattractant 299:archaerhodopsin 164:OPM superfamily 65: 17: 12: 11: 5: 3051: 3041: 3040: 3035: 3030: 3025: 3020: 3015: 3010: 3005: 2990: 2989: 2968: 2967: 2908: 2849: 2792: 2773:(5): 1267–81. 2754: 2703: 2667: 2629: 2588: 2547: 2491: 2462:(6): 1513–22. 2442: 2399: 2358: 2317: 2266: 2206: 2160: 2101: 2041: 2006: 1971: 1923: 1859: 1823: 1776: 1737: 1686: 1665:(4): 411–432. 1642: 1577: 1546:(8): 5967–76. 1526: 1497:(7): 1446–57. 1477: 1438:(18): 6732–7. 1409: 1395: 1375: 1357: 1336:(6): 1082–99. 1316: 1297:(9): 2471–80. 1280: 1266: 1246: 1197: 1148:(2023-05-02). 1139: 1090: 1055: 1005: 1003: 1000: 999: 998: 993: 988: 981: 978: 977: 976: 969: 968: 960: 957: 948: 945: 936:Main article: 933: 932:Halorhodopsins 930: 925:C. reinhardtii 905:C. reinhardtii 894:Main article: 891: 888: 866:photobleaching 854:Main article: 843: 840: 827: 826: 823: 820: 809:Main article: 806: 803: 762: 759: 747: 744: 742:) and others. 713: 710: 702: 701: 698: 695: 692: 681: 674: 671: 668: 665:Halorhodopsins 662: 615: 612: 609: 608: 606: 603: 600: 596: 595: 593: 590: 584: 580: 579: 577: 574: 569: 565: 564: 562: 559: 556: 552: 551: 549: 546: 541: 537: 536: 534: 531: 528: 524: 523: 521: 518: 513: 509: 508: 506: 503: 500: 496: 495: 493: 490: 487: 483: 482: 480: 477: 472: 468: 467: 465: 462: 457: 453: 452: 450: 447: 442: 438: 437: 434: 431: 428: 418: 415: 353: 350: 332:, and also in 247: 246: 243: 242: 237: 231: 230: 217: 211: 210: 200: 193: 192: 184: 183: 178: 172: 171: 166: 160: 159: 154: 148: 147: 134: 128: 127: 122: 116: 115: 110: 104: 103: 98: 92: 91: 86: 80: 79: 76: 72: 71: 67: 66: 63: 55: 54: 15: 9: 6: 4: 3: 2: 3050: 3039: 3036: 3034: 3031: 3029: 3026: 3024: 3021: 3019: 3016: 3014: 3011: 3009: 3006: 3004: 3001: 3000: 2998: 2988: 2983: 2978: 2977: 2974: 2963: 2959: 2954: 2949: 2944: 2939: 2935: 2931: 2927: 2923: 2919: 2912: 2904: 2900: 2895: 2890: 2885: 2880: 2876: 2872: 2868: 2864: 2860: 2853: 2845: 2841: 2836: 2831: 2827: 2823: 2819: 2815: 2811: 2807: 2803: 2796: 2788: 2784: 2780: 2776: 2772: 2768: 2761: 2759: 2750: 2746: 2742: 2738: 2734: 2730: 2726: 2722: 2718: 2714: 2707: 2699: 2695: 2691: 2687: 2684:(3): 553–70. 2683: 2679: 2671: 2663: 2659: 2655: 2651: 2648:(2): 439–50. 2647: 2643: 2636: 2634: 2625: 2621: 2616: 2611: 2608:(6): 555–65. 2607: 2603: 2599: 2592: 2584: 2580: 2575: 2570: 2566: 2562: 2558: 2551: 2543: 2539: 2535: 2531: 2527: 2523: 2519: 2515: 2511: 2507: 2500: 2498: 2496: 2487: 2483: 2479: 2475: 2470: 2465: 2461: 2457: 2453: 2446: 2438: 2434: 2430: 2426: 2422: 2418: 2414: 2410: 2403: 2395: 2391: 2386: 2381: 2377: 2373: 2369: 2362: 2354: 2350: 2345: 2340: 2337:(5): 562–77. 2336: 2332: 2328: 2321: 2313: 2309: 2305: 2301: 2297: 2293: 2289: 2285: 2281: 2277: 2270: 2262: 2258: 2253: 2248: 2244: 2240: 2236: 2232: 2228: 2224: 2220: 2213: 2211: 2202: 2198: 2194: 2190: 2186: 2182: 2178: 2174: 2167: 2165: 2156: 2152: 2147: 2142: 2137: 2132: 2128: 2124: 2120: 2116: 2112: 2105: 2097: 2093: 2088: 2083: 2079: 2075: 2071: 2067: 2063: 2059: 2055: 2048: 2046: 2037: 2033: 2029: 2025: 2021: 2017: 2010: 2002: 1998: 1994: 1990: 1987:(11): 463–9. 1986: 1982: 1975: 1967: 1963: 1959: 1955: 1951: 1947: 1944:(2): 206–23. 1943: 1939: 1932: 1930: 1928: 1919: 1915: 1910: 1905: 1900: 1895: 1891: 1887: 1883: 1879: 1875: 1868: 1866: 1864: 1855: 1849: 1841: 1837: 1830: 1828: 1819: 1815: 1811: 1807: 1803: 1799: 1795: 1791: 1787: 1780: 1772: 1768: 1764: 1760: 1756: 1752: 1748: 1741: 1733: 1729: 1725: 1721: 1717: 1713: 1709: 1705: 1701: 1697: 1690: 1682: 1678: 1673: 1668: 1664: 1660: 1656: 1649: 1647: 1638: 1634: 1630: 1626: 1621: 1616: 1612: 1608: 1604: 1600: 1596: 1592: 1588: 1581: 1573: 1569: 1564: 1559: 1554: 1549: 1545: 1541: 1537: 1530: 1522: 1518: 1513: 1508: 1504: 1500: 1496: 1492: 1488: 1481: 1473: 1469: 1464: 1459: 1454: 1449: 1445: 1441: 1437: 1433: 1429: 1422: 1420: 1418: 1416: 1414: 1398: 1392: 1388: 1387: 1379: 1371: 1367: 1361: 1353: 1349: 1344: 1339: 1335: 1331: 1327: 1320: 1312: 1308: 1304: 1300: 1296: 1292: 1284: 1269: 1263: 1259: 1258: 1250: 1242: 1238: 1233: 1228: 1224: 1220: 1216: 1212: 1208: 1201: 1193: 1189: 1184: 1179: 1175: 1171: 1167: 1163: 1159: 1155: 1151: 1143: 1135: 1131: 1126: 1121: 1117: 1113: 1109: 1105: 1101: 1094: 1086: 1082: 1078: 1074: 1070: 1066: 1059: 1051: 1047: 1042: 1037: 1033: 1029: 1025: 1021: 1017: 1010: 1006: 997: 994: 992: 989: 987: 984: 983: 974: 973: 972: 966: 965: 964: 956: 954: 944: 939: 938:Halorhodopsin 929: 926: 921: 918: 914: 909: 906: 902: 897: 887: 885: 880: 878: 877:Halorubrum sp 873: 871: 867: 863: 857: 848: 839: 835: 833: 824: 821: 818: 817: 816: 812: 802: 800: 796: 792: 786: 784: 780: 779: 774: 770: 769: 758: 755: 743: 741: 737: 736: 731: 730:halorhodopsin 727: 723: 719: 709: 707: 699: 696: 693: 690: 689:photoreceptor 686: 682: 679: 675: 672: 669: 666: 663: 660: 657: 656: 655: 653: 649: 645: 644:transmembrane 640: 636: 630: 626: 621: 607: 604: 601: 598: 597: 594: 591: 588: 585: 582: 581: 578: 575: 573: 570: 567: 566: 563: 560: 557: 554: 553: 550: 547: 545: 544:halorhodopsin 542: 539: 538: 535: 532: 529: 526: 525: 522: 519: 517: 514: 511: 510: 507: 504: 501: 498: 497: 494: 491: 488: 485: 484: 481: 478: 476: 473: 470: 469: 466: 463: 461: 458: 455: 454: 451: 448: 446: 443: 440: 439: 435: 432: 429: 426: 425: 422: 414: 412: 408: 407: 402: 398: 393: 391: 386: 382: 378: 374: 370: 366: 362: 361:visual purple 358: 349: 347: 343: 339: 335: 331: 327: 322: 320: 316: 312: 308: 307:halorhodopsin 304: 300: 296: 292: 288: 284: 280: 275: 273: 269: 265: 264:ion transport 261: 257: 253: 241: 238: 236: 232: 229: 225: 221: 218: 216: 212: 208: 204: 201: 198: 194: 189: 185: 182: 179: 177: 173: 170: 167: 165: 161: 158: 155: 153: 149: 146: 142: 138: 135: 133: 129: 126: 123: 121: 117: 114: 111: 109: 105: 102: 99: 97: 93: 90: 87: 85: 81: 78:Bac_rhodopsin 77: 73: 68: 61: 56: 51: 46: 43:, located at 42: 38: 34: 30: 26: 21: 2925: 2921: 2911: 2866: 2862: 2852: 2809: 2805: 2795: 2770: 2766: 2716: 2712: 2706: 2681: 2677: 2670: 2645: 2641: 2605: 2601: 2591: 2564: 2560: 2550: 2509: 2505: 2459: 2455: 2445: 2412: 2408: 2402: 2375: 2371: 2361: 2334: 2330: 2320: 2279: 2275: 2269: 2226: 2222: 2176: 2172: 2118: 2114: 2104: 2061: 2057: 2019: 2015: 2009: 1984: 1980: 1974: 1941: 1937: 1881: 1877: 1839: 1796:(389): rs8. 1793: 1789: 1779: 1757:(1): 10–18. 1754: 1750: 1740: 1699: 1695: 1689: 1662: 1658: 1597:(1): 11283. 1594: 1590: 1580: 1543: 1539: 1529: 1494: 1490: 1480: 1435: 1431: 1402:21 September 1400:. Retrieved 1385: 1378: 1369: 1360: 1333: 1329: 1319: 1294: 1290: 1283: 1273:30 September 1271:. Retrieved 1256: 1249: 1214: 1210: 1200: 1157: 1153: 1142: 1107: 1103: 1093: 1071:(2): 57–61. 1068: 1064: 1058: 1023: 1019: 1009: 970: 962: 952: 950: 941: 924: 922: 916: 910: 904: 899: 884:optogenetics 881: 876: 874: 859: 836: 828: 814: 787: 782: 776: 772: 766: 764: 749: 733: 715: 703: 684: 628: 619: 617: 583:photosensor 568:photosensor 555:photosensor 420: 410: 404: 396: 394: 363:", a visual 356: 355: 352:Nomenclature 323: 303:proton pumps 291:halobacteria 287:ion channels 279:proton pumps 276: 255: 251: 250: 29:Halobacteria 862:chromophore 832:Schiff base 625:"TC# 3.E.1" 413:ambiguous. 375:, used for 373:vertebrates 315:photophobic 176:OPM protein 70:Identifiers 2997:Categories 2064:(1): 629. 1370:OED Online 1217:: bav080. 1026:(1): 1–7. 1002:References 870:omega loop 795:TC# 2.A.43 791:LCT family 761:Homologues 587:Neurospora 388:the large 385:homologous 268:halophilic 203:structures 2542:206506942 1771:1749-4613 1681:2190-460X 1637:199389292 1174:2399-3669 1160:(1): 88. 783:N. crassa 740:3.E.1.1.6 712:Structure 652:C-termini 648:N-termini 427:Function 395:The term 381:rod cells 357:Rhodopsin 336:(such as 334:Eukaryota 283:ion pumps 125:PDOC00291 101:IPR001425 2962:23509282 2903:14615590 2844:25222271 2812:: 4894. 2787:18082767 2741:10949307 2698:12842471 2662:12691752 2624:15170485 2583:11435422 2534:12089443 2486:12052542 2478:12622809 2437:10988064 2394:11389135 2353:23732219 2304:12368857 2261:15459346 2201:10827943 2155:11504917 2096:33504778 2036:10514362 2001:17008099 1958:11286964 1918:15860584 1848:cite web 1818:13140205 1810:26268609 1724:25849775 1629:31375689 1572:21135094 1521:22196724 1472:24706784 1352:21623844 1311:21402729 1241:26286928 1211:Database 1192:37130895 1183:10154332 1050:19709178 980:See also 746:Function 735:Anabaena 639:catalyze 589:opsin I 330:Bacteria 293:include 220:RCSB PDB 96:InterPro 2987:Biology 2953:3619329 2930:Bibcode 2871:Bibcode 2835:4166526 2814:Bibcode 2749:4345380 2721:Bibcode 2514:Bibcode 2506:Science 2417:Bibcode 2409:Science 2312:4425659 2284:Bibcode 2252:5017883 2231:Bibcode 2223:Science 2181:Bibcode 2173:Science 2123:Bibcode 2087:7840839 2066:Bibcode 2016:Science 1966:7931370 1909:1100770 1886:Bibcode 1732:4451644 1704:Bibcode 1620:6677831 1599:Bibcode 1563:3057805 1512:4166436 1463:4020065 1440:Bibcode 1232:4539915 1134:2591367 1085:2468194 1028:Bibcode 369:retinas 365:pigment 342:viruses 326:Archaea 272:retinal 120:PROSITE 113:SM01021 89:PF01036 33:Cargill 23:Purple 2973:Portal 2960:  2950:  2901:  2894:283525 2891:  2842:  2832:  2785:  2747:  2739:  2713:Nature 2696:  2660:  2622:  2581:  2540:  2532:  2484:  2476:  2435:  2392:  2351:  2310:  2302:  2276:Nature 2259:  2249:  2199:  2153:  2143:  2094:  2084:  2034:  1999:  1964:  1956:  1916:  1906:  1816:  1808:  1769:  1730:  1722:  1696:Nature 1679:  1635:  1627:  1617:  1570:  1560:  1519:  1509:  1470:  1460:  1393:  1350:  1309:  1264:  1239:  1229:  1190:  1180:  1172:  1132:  1125:401571 1122:  1083:  1048:  781:. The 592:NOP-I 576:SR-II 433:Abbr. 340:) and 258:, are 235:PDBsum 209:  199:  145:SUPFAM 75:Symbol 2745:S2CID 2538:S2CID 2482:S2CID 2308:S2CID 2146:56927 1962:S2CID 1814:S2CID 1728:S2CID 1633:S2CID 996:Opsin 917:chop1 605:RhGC 561:SR-I 479:Arch 436:Ref. 430:Name 417:Table 338:algae 157:3.E.1 141:SCOPe 132:SCOP2 108:SMART 2958:PMID 2899:PMID 2840:PMID 2783:PMID 2737:PMID 2694:PMID 2658:PMID 2620:PMID 2579:PMID 2530:PMID 2474:PMID 2433:PMID 2390:PMID 2349:PMID 2335:1837 2300:PMID 2257:PMID 2197:PMID 2151:PMID 2092:PMID 2032:PMID 1997:PMID 1954:PMID 1942:1511 1914:PMID 1854:link 1806:PMID 1767:ISSN 1720:PMID 1677:ISSN 1625:PMID 1568:PMID 1517:PMID 1491:Cell 1468:PMID 1404:2015 1391:ISBN 1348:PMID 1307:PMID 1275:2015 1262:ISBN 1237:PMID 1215:2015 1188:PMID 1170:ISSN 1130:PMID 1081:PMID 1046:PMID 754:1H2S 683:the 618:The 533:KR2 520:ChR 328:and 297:and 285:and 228:PDBj 224:PDBe 207:ECOD 197:Pfam 181:1vgo 152:TCDB 137:2brd 84:Pfam 2948:PMC 2938:doi 2926:110 2889:PMC 2879:doi 2867:100 2830:PMC 2822:doi 2775:doi 2771:375 2729:doi 2717:406 2686:doi 2682:330 2650:doi 2646:328 2610:doi 2569:doi 2565:276 2522:doi 2510:296 2464:doi 2425:doi 2413:289 2380:doi 2376:276 2339:doi 2292:doi 2280:419 2247:PMC 2239:doi 2227:306 2189:doi 2177:288 2141:PMC 2131:doi 2082:PMC 2074:doi 2024:doi 2020:286 1989:doi 1946:doi 1904:PMC 1894:doi 1882:102 1798:doi 1759:doi 1712:doi 1700:521 1667:doi 1615:PMC 1607:doi 1558:PMC 1548:doi 1544:286 1507:PMC 1499:doi 1495:147 1458:PMC 1448:doi 1436:111 1338:doi 1299:doi 1227:PMC 1219:doi 1178:PMC 1162:doi 1120:PMC 1112:doi 1073:doi 1036:doi 548:HR 505:GR 492:xR 464:PR 449:BR 215:PDB 39:in 35:'s 31:at 27:in 2999:: 2956:. 2946:. 2936:. 2924:. 2920:. 2897:. 2887:. 2877:. 2865:. 2861:. 2838:. 2828:. 2820:. 2808:. 2804:. 2781:. 2769:. 2757:^ 2743:. 2735:. 2727:. 2715:. 2692:. 2680:. 2656:. 2644:. 2632:^ 2618:. 2604:. 2600:. 2577:. 2563:. 2559:. 2536:. 2528:. 2520:. 2508:. 2494:^ 2480:. 2472:. 2460:47 2458:. 2454:. 2431:. 2423:. 2411:. 2388:. 2374:. 2370:. 2347:. 2333:. 2329:. 2306:. 2298:. 2290:. 2278:. 2255:. 2245:. 2237:. 2225:. 2221:. 2209:^ 2195:. 2187:. 2175:. 2163:^ 2149:. 2139:. 2129:. 2119:98 2117:. 2113:. 2090:. 2080:. 2072:. 2062:12 2060:. 2056:. 2044:^ 2030:. 2018:. 1995:. 1985:14 1983:. 1960:. 1952:. 1940:. 1926:^ 1912:. 1902:. 1892:. 1880:. 1876:. 1862:^ 1850:}} 1846:{{ 1838:. 1826:^ 1812:. 1804:. 1792:. 1788:. 1765:. 1755:27 1753:. 1749:. 1726:. 1718:. 1710:. 1698:. 1675:. 1661:. 1657:. 1645:^ 1631:. 1623:. 1613:. 1605:. 1593:. 1589:. 1566:. 1556:. 1542:. 1538:. 1515:. 1505:. 1493:. 1489:. 1466:. 1456:. 1446:. 1434:. 1430:. 1412:^ 1368:. 1346:. 1334:35 1332:. 1328:. 1305:. 1295:28 1293:. 1235:. 1225:. 1213:. 1209:. 1186:. 1176:. 1168:. 1156:. 1152:. 1128:. 1118:. 1106:. 1102:. 1079:. 1069:14 1067:. 1044:. 1034:. 1024:39 1022:. 1018:. 801:. 728:, 724:, 720:, 627:. 348:. 321:. 305:; 281:, 226:; 222:; 205:/ 143:/ 139:/ 2975:: 2964:. 2940:: 2932:: 2905:. 2881:: 2873:: 2846:. 2824:: 2816:: 2810:5 2789:. 2777:: 2751:. 2731:: 2723:: 2700:. 2688:: 2664:. 2652:: 2626:. 2612:: 2606:3 2585:. 2571:: 2544:. 2524:: 2516:: 2488:. 2466:: 2439:. 2427:: 2419:: 2396:. 2382:: 2355:. 2341:: 2314:. 2294:: 2286:: 2263:. 2241:: 2233:: 2203:. 2191:: 2183:: 2157:. 2133:: 2125:: 2098:. 2076:: 2068:: 2038:. 2026:: 2003:. 1991:: 1968:. 1948:: 1920:. 1896:: 1888:: 1856:) 1820:. 1800:: 1794:8 1773:. 1761:: 1734:. 1714:: 1706:: 1683:. 1669:: 1663:1 1639:. 1609:: 1601:: 1595:9 1574:. 1550:: 1523:. 1501:: 1474:. 1450:: 1442:: 1406:. 1354:. 1340:: 1313:. 1301:: 1277:. 1243:. 1221:: 1194:. 1164:: 1158:6 1136:. 1114:: 1108:8 1087:. 1075:: 1052:. 1038:: 1030:: 793:( 631:. 622:( 169:6

Index


bacteriorhodopsin
Halobacteria
Cargill
salt evaporation ponds
San Francisco Bay
Newark, California

Pfam
PF01036
InterPro
IPR001425
SMART
SM01021
PROSITE
PDOC00291
SCOP2
2brd
SCOPe
SUPFAM
TCDB
3.E.1
OPM superfamily
6
OPM protein
1vgo
Pfam
structures
ECOD
PDB

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑