Knowledge

Maxwell–Stefan diffusion

Source 📝

394: 53: 17: 389:{\displaystyle a_{i}{\frac {\nabla \mu _{i}}{R\,T}}=\nabla a_{i}=\sum _{j=1 \atop j\neq i}^{n}{{\frac {\chi _{j}}{{\mathfrak {D}}_{ij}}}({\vec {v}}_{j}-{\vec {v}}_{i})}=\sum _{j=1 \atop j\neq i}^{n}{{\frac {c_{j}}{c{\mathfrak {D}}_{ij}}}\left({\frac {{\vec {J}}_{j}}{c_{j}}}-{\frac {{\vec {J}}_{i}}{c_{i}}}\right)}} 589:
The basic assumption of the theory is that a deviation from equilibrium between the molecular friction and thermodynamic interactions leads to the diffusion flux. The molecular friction between two components is proportional to their difference in speed and their mole fractions. In the simplest case,
609:
and are therefore not tabulated. Only the diffusion coefficients for the binary and ternary case can be determined with reasonable effort. In a multicomponent system, a set of approximate formulas exist to predict the Maxwell–Stefan-diffusion coefficient.
613:
The Maxwell–Stefan theory is more comprehensive than the "classical" Fick's diffusion theory, as the former does not exclude the possibility of negative diffusion coefficients. It is possible to derive Fick's theory from the Maxwell–Stefan theory.
460: 572: 498: 527: 598:
solutions, and other drivers, such as a pressure gradient, the equation must be expanded to include additional terms for interactions.
40:
in multicomponent systems. The equations that describe these transport processes have been developed independently and in parallel by
763: 431: 623: 606: 684: 541: 467: 668:, Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften Wien, 2te Abteilung a, 1871, 602: 505: 418: 8: 530: 41: 758: 412: 33: 594:
of chemical potential is the driving force of diffusion. For complex systems, such as
605:, with the exception of the diffusion of dilute gases, do not correspond to the 736:
Measurement and calculation of multicomponent diffusion coefficients in liquids
752: 666:Über das Gleichgewicht und Bewegung, insbesondere die Diffusion von Gemischen 628: 406: 595: 583: 45: 20:
Thermal diffusion coefficients vs. temperature, for air at normal pressure
37: 591: 601:
A major disadvantage of the Maxwell–Stefan theory is that the
575: 586:, i.e., the neglect of time derivatives in the velocity. 400: 16: 544: 508: 470: 434: 56: 681: 682:Bird, R.B.; Stewart, W.E.; Lightfoot, E.N. (2007). 566: 521: 492: 454: 388: 750: 651:, The Scientific Papers of J. C. Maxwell, 1965, 697: 695: 701: 692: 48:for liquids. The Maxwell–Stefan equation is 730: 728: 719:Diffusion – Mass Transfer in Fluid Systems 721:(2 ed.). Cambridge University Press. 88: 641: 15: 725: 716: 658: 751: 710: 462:: Maxwell–Stefan-diffusion coefficient 455:{\displaystyle {\mathfrak {D}}_{ij}} 500:: Diffusion velocity of component i 438: 423:i, j: Indexes for component i and j 289: 166: 13: 675: 238: 119: 98: 70: 14: 775: 738:, Fluid Phase Equilibria, 2007, 702:Taylor, R.; Krishna, R. (1993). 649:On the dynamical theory of gases 567:{\displaystyle {\vec {J}}_{i}} 552: 493:{\displaystyle {\vec {v}}_{i}} 478: 356: 320: 226: 214: 192: 182: 1: 634: 607:Fick's diffusion coefficients 734:S. Rehfeldt, J. Stichlmair: 704:Multicomponent Mass Transfer 536:c: Total molar concentration 401:vector differential operator 7: 624:Advanced Simulation Library 617: 10: 780: 30:Stefan–Maxwell diffusion 26:Maxwell–Stefan diffusion 426:n: Number of components 717:Cussler, E.L. (1997). 603:diffusion coefficients 568: 523: 494: 456: 390: 268: 149: 21: 582:The equation assumes 569: 524: 522:{\displaystyle c_{i}} 495: 457: 391: 233: 114: 44:for dilute gases and 19: 688:(2 ed.). Wiley. 542: 506: 468: 432: 54: 764:James Clerk Maxwell 685:Transport Phenomena 531:Molar concentration 42:James Clerk Maxwell 564: 519: 490: 452: 413:Chemical potential 386: 22: 555: 481: 378: 359: 342: 323: 304: 261: 217: 195: 180: 142: 93: 771: 743: 732: 723: 722: 714: 708: 707: 699: 690: 689: 679: 673: 662: 656: 645: 573: 571: 570: 565: 563: 562: 557: 556: 548: 528: 526: 525: 520: 518: 517: 499: 497: 496: 491: 489: 488: 483: 482: 474: 461: 459: 458: 453: 451: 450: 442: 441: 395: 393: 392: 387: 385: 384: 380: 379: 377: 376: 367: 366: 361: 360: 352: 348: 343: 341: 340: 331: 330: 325: 324: 316: 312: 305: 303: 302: 301: 293: 292: 281: 280: 271: 267: 262: 260: 249: 229: 225: 224: 219: 218: 210: 203: 202: 197: 196: 188: 181: 179: 178: 170: 169: 162: 161: 152: 148: 143: 141: 130: 110: 109: 94: 92: 83: 82: 81: 68: 66: 65: 779: 778: 774: 773: 772: 770: 769: 768: 749: 748: 747: 746: 733: 726: 715: 711: 700: 693: 680: 676: 663: 659: 647:J. C. Maxwell: 646: 642: 637: 620: 558: 547: 546: 545: 543: 540: 539: 513: 509: 507: 504: 503: 484: 473: 472: 471: 469: 466: 465: 443: 437: 436: 435: 433: 430: 429: 372: 368: 362: 351: 350: 349: 347: 336: 332: 326: 315: 314: 313: 311: 310: 306: 294: 288: 287: 286: 282: 276: 272: 270: 269: 263: 250: 239: 237: 220: 209: 208: 207: 198: 187: 186: 185: 171: 165: 164: 163: 157: 153: 151: 150: 144: 131: 120: 118: 105: 101: 84: 77: 73: 69: 67: 61: 57: 55: 52: 51: 36:for describing 12: 11: 5: 777: 767: 766: 761: 745: 744: 724: 709: 691: 674: 657: 639: 638: 636: 633: 632: 631: 626: 619: 616: 580: 579: 578:of component i 561: 554: 551: 537: 534: 533:of component i 516: 512: 501: 487: 480: 477: 463: 449: 446: 440: 427: 424: 421: 415: 409: 403: 383: 375: 371: 365: 358: 355: 346: 339: 335: 329: 322: 319: 309: 300: 297: 291: 285: 279: 275: 266: 259: 256: 253: 248: 245: 242: 236: 232: 228: 223: 216: 213: 206: 201: 194: 191: 184: 177: 174: 168: 160: 156: 147: 140: 137: 134: 129: 126: 123: 117: 113: 108: 104: 100: 97: 91: 87: 80: 76: 72: 64: 60: 9: 6: 4: 3: 2: 776: 765: 762: 760: 757: 756: 754: 741: 737: 731: 729: 720: 713: 705: 698: 696: 687: 686: 678: 671: 667: 661: 654: 650: 644: 640: 630: 629:Pervaporation 627: 625: 622: 621: 615: 611: 608: 604: 599: 597: 593: 587: 585: 577: 559: 549: 538: 535: 532: 514: 510: 502: 485: 475: 464: 447: 444: 428: 425: 422: 420: 416: 414: 410: 408: 407:Mole fraction 404: 402: 398: 397: 396: 381: 373: 369: 363: 353: 344: 337: 333: 327: 317: 307: 298: 295: 283: 277: 273: 264: 257: 254: 251: 246: 243: 240: 234: 230: 221: 211: 204: 199: 189: 175: 172: 158: 154: 145: 138: 135: 132: 127: 124: 121: 115: 111: 106: 102: 95: 89: 85: 78: 74: 62: 58: 49: 47: 43: 39: 35: 31: 27: 18: 739: 735: 718: 712: 703: 683: 677: 669: 665: 660: 652: 648: 643: 612: 600: 596:electrolytic 588: 584:steady state 581: 50: 46:Josef Stefan 29: 25: 23: 664:J. Stefan: 753:Categories 635:References 759:Diffusion 672:, 63–124. 553:→ 479:→ 357:→ 345:− 321:→ 255:≠ 235:∑ 215:→ 205:− 193:→ 155:χ 136:≠ 116:∑ 99:∇ 75:μ 71:∇ 38:diffusion 742:, 99–104 706:. Wiley. 655:, 26–78. 618:See also 592:gradient 419:Activity 32:) is a 34:model 590:the 576:Flux 28:(or 24:The 740:256 417:a: 411:μ: 405:χ: 399:∇: 755:: 727:^ 694:^ 670:63 574:: 529:: 653:2 560:i 550:J 515:i 511:c 486:i 476:v 448:j 445:i 439:D 382:) 374:i 370:c 364:i 354:J 338:j 334:c 328:j 318:J 308:( 299:j 296:i 290:D 284:c 278:j 274:c 265:n 258:i 252:j 247:1 244:= 241:j 231:= 227:) 222:i 212:v 200:j 190:v 183:( 176:j 173:i 167:D 159:j 146:n 139:i 133:j 128:1 125:= 122:j 112:= 107:i 103:a 96:= 90:T 86:R 79:i 63:i 59:a

Index


model
diffusion
James Clerk Maxwell
Josef Stefan
vector differential operator
Mole fraction
Chemical potential
Activity
Molar concentration
Flux
steady state
gradient
electrolytic
diffusion coefficients
Fick's diffusion coefficients
Advanced Simulation Library
Pervaporation
Transport Phenomena




Categories
Diffusion
James Clerk Maxwell

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.