Knowledge

Young tableau

Source 📝

1138: 177: 375: 169: 461: 590: 754:
While the map from partitions to their Young diagrams is injective, this is not the case for the map from skew shapes to skew diagrams; therefore the shape of a skew diagram cannot always be determined from the set of filled squares only. Although many properties of skew tableaux only depend on the filled squares, some operations defined on them do require explicit knowledge of
1801: 272:; however, French notation differs from that convention by placing the vertical coordinate first. The figure on the right shows, using the English notation, the Young diagram corresponding to the partition (5, 4, 1) of the number 10. The conjugate partition, measuring the column lengths, is (3, 2, 2, 2, 1). 267:
advises readers preferring the French convention to "read this book upside down in a mirror" (Macdonald 1979, p. 2). This nomenclature probably started out as jocular. The English notation corresponds to the one universally used for matrices, while the French notation is closer to the convention
753:
is obtained by filling the squares of the corresponding skew diagram; such a tableau is semistandard if entries increase weakly along each row, and increase strictly down each column, and it is standard if moreover all numbers from 1 to the number of squares of the skew diagram occur exactly once.
242:
There is almost universal agreement that in labeling boxes of Young diagrams by pairs of integers, the first index selects the row of the diagram, and the second index selects the box within the row. Nevertheless, two distinct conventions exist to display these diagrams, and consequently tableaux:
1049:
are built. Many facts about a representation can be deduced from the corresponding diagram. Below, we describe two examples: determining the dimension of a representation and restricted representations. In both cases, we will see that some properties of a representation can be determined by using
766:, so it is important that skew tableaux do record this information: two distinct skew tableaux may differ only in their shape, while they occupy the same set of squares, each filled with the same entries. Young tableaux can be identified with skew tableaux in which 1446: 1640: 1614: 2079:, but also in (infinitely) many other ways. In general any skew diagram whose set of non-empty rows (or of non-empty columns) is not contiguous or does not contain the first row (respectively column) will be associated to more than one skew shape. 1327: 1225:
is the number of boxes that are in the same row to the right of it plus those boxes in the same column below it, plus one (for the box itself). By the hook-length formula, the dimension of an irreducible representation is
192:, particularly when represented using dots) is a finite collection of boxes, or cells, arranged in left-justified rows, with the row lengths in non-increasing order. Listing the number of boxes in each row gives a 1338: 573:
There are several variations of this definition: for example, in a row-strict tableau the entries strictly increase along the rows and weakly increase down the columns. Also, tableaux with
1924:
by removing just one box (which must be at the end both of its row and of its column); the restricted representation then decomposes as a direct sum of the irreducible representations of
837:, and it is in fact possible to define (skew) semistandard tableaux as such sequences, as is done by Macdonald (Macdonald 1979, p. 4). This definition incorporates the partitions 1796:{\displaystyle \dim W(\lambda )={\frac {7\cdot 8\cdot 9\cdot 10\cdot 11\cdot 6\cdot 7\cdot 8\cdot 9\cdot 5}{7\cdot 5\cdot 4\cdot 3\cdot 1\cdot 5\cdot 3\cdot 2\cdot 1\cdot 1}}=66528.} 478:, if the entries weakly increase along each row and strictly increase down each column. Recording the number of times each number appears in a tableau gives a sequence known as the 1137: 1497: 1239: 539: 559: 509: 1184:
is equal to the number of different standard Young tableaux that can be obtained from the diagram of the representation. This number can be calculated by the
581:. There are also generalizations such as domino tableaux or ribbon tableaux, in which several boxes may be grouped together before assigning entries to them. 1121:
play a central role, rather than standard tableaux; in particular it is the number of those tableaux that determines the dimension of the representation.
243:
the first places each row below the previous one, the second stacks each row on top of the previous one. Since the former convention is mainly used by
482:
of the tableau. Thus the standard Young tableaux are precisely the semistandard tableaux of weight (1,1,...,1), which requires every integer up to
2124:
have the same (empty) set of entries; for skew tableaux however such distinction is necessary even in cases where the set of entries is not empty.
2505: 881: 827:. Any pair of successive shapes in such a sequence is a skew shape whose diagram contains at most one box in each column; such shapes are called 2138: 1050:
just its diagram. Young tableaux are involved in the use of the symmetric group in quantum chemistry studies of atoms, molecules and solids.
2425: 1046: 1024: 470:
In other applications, it is natural to allow the same number to appear more than once (or not at all) in a tableau. A tableau is called
455: 1627:
the column of a box. For instance, for the partition (5,4,1) we get as dimension of the corresponding irreducible representation of
422: 2241: 1945: 2065:
For instance the skew diagram consisting of a single square at position (2,4) can be obtained by removing the diagram of
1897:
The question of determining this decomposition of the restricted representation of a given irreducible representation of
1441:{\displaystyle \dim \pi _{\lambda }={\frac {10!}{7\cdot 5\cdot 4\cdot 3\cdot 1\cdot 5\cdot 3\cdot 2\cdot 1\cdot 1}}=288.} 2389: 2281: 2206: 2145: 1974: 1918:, is answered as follows. One forms the set of all Young diagrams that can be obtained from the diagram of shape 2213: 2194: 978: 213:, and it carries the same information as that partition. Containment of one Young diagram in another defines a 130: 1332:
The figure on the right shows hook-lengths for all boxes in the diagram of the partition 10 = 5 + 4 + 1. Thus
869:. Various ways of counting Young tableaux have been explored and lead to the definition of and identities for 2409: 2225: 1871: 435:
if the entries in each row and each column are increasing. The number of distinct standard Young tableaux on
142: 2510: 791:
with positive integer entries gives rise to a sequence of partitions (or Young diagrams), by starting with
106: 1609:{\displaystyle \dim W(\lambda )=\prod _{(i,j)\in Y(\lambda )}{\frac {r+j-i}{\operatorname {hook} (i,j)}},} 939:
are parametrized by the set of semistandard Young tableaux of a fixed shape over the alphabet {1, 2, ...,
2515: 2404: 2276:
Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford, 1979. viii+180 pp.
954: 239:; one obtains a Young diagram of that shape by reflecting the original diagram along its main diagonal. 2217: 1030: 922: 1887: 1322:{\displaystyle \dim \pi _{\lambda }={\frac {n!}{\prod _{x\in Y(\lambda )}\operatorname {hook} (x)}}.} 2399: 2317: 918: 114: 1950: 1891: 244: 1233:
divided by the product of the hook lengths of all boxes in the diagram of the representation:
1095: 862: 421:..., but now one usually uses a set of numbers for brevity. In their original application to 269: 225:. Listing the number of boxes of a Young diagram in each column gives another partition, the 86: 2444: 2170: 2344: 2251: 1074: 1054: 926: 102: 94: 2352: 2287: 996:
into irreducible components is formulated in terms of certain skew semistandard tableaux.
888:
product on the set of all semistandard Young tableaux, giving it the structure called the
8: 1185: 1130: 1012: 518: 391: 176: 158:
Note: this article uses the English convention for displaying Young diagrams and tableaux
966: 866: 544: 494: 260: 222: 146: 2313:"A probabilistic proof of a formula for the number of Young tableaux of a given shape" 386:
is obtained by filling in the boxes of the Young diagram with symbols taken from some
2385: 2335: 2312: 2277: 2255: 2237: 2202: 2141: 2048: 1042: 1000: 442: 431:
distinct entries, arbitrarily assigned to boxes of the diagram. A tableau is called
207:, the total number of boxes of the diagram. The Young diagram is said to be of shape 193: 90: 2417: 2462: 2348: 2330: 2304: 2270: 2229: 2038: 2007: 1008: 946: 870: 374: 264: 214: 30: 1053:
Young diagrams also parametrize the irreducible polynomial representations of the
168: 2469: 2340: 2284: 2247: 1034: 970: 962: 908: 578: 218: 189: 134: 118: 98: 2027:"On the eigenvalues of representations of reflection groups and wreath products" 876:
Many combinatorial algorithms on tableaux are known, including Schützenberger's
2475: 2395: 1038: 1004: 982: 974: 950: 890: 126: 122: 2233: 2011: 803:
places further in the sequence the one whose diagram is obtained from that of
121:
in 1903. Their theory was further developed by many mathematicians, including
2499: 2300: 2259: 2052: 2043: 2026: 877: 858: 281: 138: 110: 82: 1145:
of the boxes for the partition 10 = 5 + 4 + 1
2485: 2308: 1970: 958: 460: 2377: 1936:
corresponding to those diagrams, each occurring exactly once in the sum.
885: 248: 117:, in 1900. They were then applied to the study of the symmetric group by 20: 1115:
nonempty rows). In these cases semistandard tableaux with entries up to
105:
groups and to study their properties. Young tableaux were introduced by
2267:
Howard Georgi, Lie Algebras in Particle Physics, 2nd Edition - Westview
2199:
Young Tableaux, with Applications to Representation Theory and Geometry
589: 2228:, Readings in Mathematics. Vol. 129. New York: Springer-Verlag. 2364: 2088:
A somewhat similar situation arises for matrices: the 3-by-0 matrix
1995: 251:, it is customary to refer to these conventions respectively as the 2360: 2326: 1094:
nonempty rows), or the irreducible complex representations of the
1976:
The Art of Computer Programming, Vol. III: Sorting and Searching
2294:
Symmetric Functions, Schubert Polynomials, and Degeneracy Loci
1483:
parts) is the number of semistandard Young tableaux of shape
593:
Skew tableau of shape (5, 4, 2, 2) / (2, 1), English notation
448:
1, 1, 2, 4, 10, 26, 76, 232, 764, 2620, 9496, ... (sequence
2489: 2479: 1886:. These representations are then called the factors of the 1451:
Similarly, the dimension of the irreducible representation
450: 69: 48: 1073:
nonempty rows), or the irreducible representations of the
901:
In representation theory, standard Young tableaux of size
809:
by adding all the boxes that contain a value  ≤ 
394:. Originally that alphabet was a set of indexed variables 1981:
Such arrangements were introduced by Alfred Young in 1900
715:
is the set-theoretic difference of the Young diagrams of
60: 36: 2174: 1018: 772:
is the empty partition (0) (the unique partition of 0).
577:
entries have been considered, notably, in the theory of
2449:
Group Theory: Birdtracks, Lie's, and Exceptional Groups
2176:
Group Theory: Birdtracks, Lie's, and Exceptional Groups
2369:
Discrete Mathematics and Theoretical Computer Science
1643: 1500: 1341: 1242: 1029:
Young diagrams are in one-to-one correspondence with
981:
describing (among other things) the decomposition of
907:
describe bases in irreducible representations of the
547: 521: 497: 306:
in the diagram λ in English notation. Similarly, the
1874:
of several representations that are irreducible for
831:. This sequence of partitions completely determines 66: 63: 57: 45: 42: 33: 2365:
A direct bijective proof of the Hook-length formula
2299: 1828:is also a representation of the symmetric group on 727:: the set of squares that belong to the diagram of 54: 39: 2169: 1795: 1608: 1440: 1321: 1041:. They provide a convenient way of specifying the 821:; this partition eventually becomes equal to  553: 533: 503: 172:Young diagram of shape (5, 4, 1), English notation 999:Applications to algebraic geometry center around 217:on the set of all partitions, which is in fact a 180:Young diagram of shape (5, 4, 1), French notation 2497: 2037:(2). Mathematical Sciences Publishers: 353–396. 1150:The dimension of the irreducible representation 1124: 464:All standard Young tableaux with at most 5 boxes 280:In many applications, for example when defining 93:. It provides a convenient way to describe the 16:A combinatorial object in representation theory 2000:Proceedings of the London Mathematical Society 1491:), which is given by the hook-length formula: 677:, then the containment of diagrams means that 2094:must be distinguished from the 0-by-3 matrix 1806: 857:Young tableaux have numerous applications in 2426:Notices of the American Mathematical Society 2212: 1979:(2nd ed.), Addison-Wesley, p. 48, 1847:. However, an irreducible representation of 1025:Representation theory of the symmetric group 1811:A representation of the symmetric group on 852: 378:A standard Young tableau of shape (5, 4, 1) 344:itself; in other words, the hook length is 2024: 1136: 1015:and described in terms of Young tableaux. 2472:." From MathWorld—A Wolfram Web Resource. 2465:". From MathWorld—A Wolfram Web Resource. 2334: 2274:Symmetric functions and Hall polynomials. 2042: 1996:"On quantitative substitutional analysis" 849:in the data comprising the skew tableau. 491:In a standard Young tableau, the integer 2158:The Symmetric Group in Quantum Chemistry 884:. Lascoux and Schützenberger studied an 588: 561:. The sum of the descents is called the 459: 373: 175: 167: 2394: 2137:, 2nd ed. NRC Research Press, Ottawa 2133:Philip R. Bunker and Per Jensen (1998) 1487:(containing only the entries from 1 to 945:}. This has important consequences for 882:Robinson–Schensted–Knuth correspondence 340:in English notation, including the box 332:is the number of boxes to the right of 302:as the number of boxes to the right of 247:while the latter is often preferred by 2506:Representation theory of finite groups 2498: 423:representations of the symmetric group 2222:Representation theory. A first course 1993: 1969: 1019:Applications in representation theory 275: 2415: 2201:. Cambridge University Press, 1997, 2018: 390:, which is usually required to be a 2451:. Princeton University Press, 2008. 2135:Molecular Symmetry and Spectroscopy 13: 985:of irreducible representations of 14: 2527: 2455: 2416:Yong, Alexander (February 2007). 2296:. American Mathematical Society. 1946:Robinson–Schensted correspondence 613:) such that the Young diagram of 284:, it is convenient to define the 2160:, CRC Press, Boca Raton, Florida 2106:is a 3-by-3 (zero) matrix while 2015:. See in particular p. 133. 1634:(traversing the boxes by rows): 584: 541:appears in a row strictly below 29: 2112:is the 0-by-0 matrix, but both 2025:Stembridge, John (1989-12-01). 1906:, corresponding to a partition 1471:corresponding to the partition 797:, and taking for the partition 320:) is the number of boxes below 259:; for instance, in his book on 2363:, Alexander V. Stoyanovskii, " 2163: 2150: 2127: 2082: 2059: 2031:Pacific Journal of Mathematics 1987: 1963: 1659: 1653: 1597: 1585: 1554: 1548: 1539: 1527: 1516: 1510: 1310: 1304: 1293: 1287: 1108:(again when they have at most 775:Any skew semistandard tableau 619:contains the Young diagram of 152: 1: 2226:Graduate Texts in Mathematics 2188: 2179:. Princeton University Press. 1172:corresponding to a partition 1125:Dimension of a representation 568: 2418:"What is...a Young Tableau?" 2336:10.1016/0001-8708(79)90023-9 949:, starting from the work of 7: 2405:Encyclopedia of Mathematics 2181:, eq. 9.28 and appendix B.4 1939: 1858:may not be irreducible for 1047:irreducible representations 1031:irreducible representations 955:homogeneous coordinate ring 369: 163: 10: 2532: 1807:Restricted representations 1128: 1022: 979:Littlewood–Richardson rule 923:irreducible representation 201:of a non-negative integer 143:Marcel-Paul Schützenberger 2359:Jean-Christophe Novelli, 2234:10.1007/978-1-4612-0979-9 1888:restricted representation 601:is a pair of partitions ( 2044:10.2140/pjm.1989.140.353 1956: 1087:(when they have at most 1067:(when they have at most 961:and further explored by 921:in a finite-dimensional 853:Overview of applications 441:entries is given by the 2374:(1997), pp. 53–67. 2318:Advances in Mathematics 2012:10.1112/plms/s1-33.1.97 1870:. Instead, it may be a 1161:of the symmetric group 919:standard monomial basis 488:to occur exactly once. 2070: = (5,3,2,1) 1892:induced representation 1797: 1610: 1442: 1323: 1011:can be represented by 594: 555: 535: 505: 465: 425:, Young tableaux have 379: 181: 173: 2476:Semistandard tableaux 1798: 1611: 1443: 1324: 1096:special unitary group 1003:on Grassmannians and 863:representation theory 592: 556: 536: 506: 463: 377: 270:Cartesian coordinates 179: 171: 95:group representations 87:representation theory 2468:Eric W. Weisstein. " 2461:Eric W. Weisstein. " 1641: 1498: 1339: 1240: 1075:special linear group 1055:general linear group 1013:Schubert polynomials 1007:. Certain important 965:with collaborators, 927:general linear group 545: 519: 495: 221:structure, known as 115:Cambridge University 2511:Symmetric functions 2382:The Symmetric Group 1186:hook length formula 1131:Hook length formula 896:le monoïde plaxique 733:but not to that of 625:; it is denoted by 534:{\displaystyle k+1} 392:totally ordered set 261:symmetric functions 2516:Integer partitions 2445:Predrag Cvitanović 2384:. Springer, 2001, 2171:Predrag Cvitanović 1994:Young, A. (1900), 1951:Schur–Weyl duality 1793: 1623:gives the row and 1606: 1558: 1438: 1319: 1297: 1043:Young symmetrizers 1009:cohomology classes 867:algebraic geometry 595: 551: 531: 501: 466: 443:involution numbers 380: 276:Arm and leg length 182: 174: 147:Richard P. Stanley 2486:Standard tableaux 2305:Nijenhuis, Albert 2292:Laurent Manivel. 2243:978-0-387-97495-8 1785: 1601: 1522: 1430: 1314: 1273: 1208:in Young diagram 1001:Schubert calculus 829:horizontal strips 554:{\displaystyle k} 504:{\displaystyle k} 131:G. de B. Robinson 91:Schubert calculus 85:object useful in 2523: 2441: 2439: 2438: 2422: 2412: 2356: 2338: 2325:(1). Amsterdam: 2309:Wilf, Herbert S. 2271:Macdonald, I. G. 2263: 2182: 2180: 2167: 2161: 2156:R.Pauncz (1995) 2154: 2148: 2131: 2125: 2123: 2117: 2111: 2105: 2099: 2093: 2086: 2080: 2078: 2072:from the one of 2071: 2063: 2057: 2056: 2046: 2022: 2016: 2014: 1991: 1985: 1983: 1971:Knuth, Donald E. 1967: 1935: 1923: 1917: 1911: 1885: 1869: 1857: 1846: 1834: 1827: 1816: 1802: 1800: 1799: 1794: 1786: 1784: 1725: 1666: 1633: 1619:where the index 1615: 1613: 1612: 1607: 1602: 1600: 1577: 1560: 1557: 1470: 1461: 1447: 1445: 1444: 1439: 1431: 1429: 1370: 1362: 1357: 1356: 1328: 1326: 1325: 1320: 1315: 1313: 1296: 1271: 1263: 1258: 1257: 1232: 1224: 1218: 1207: 1201: 1183: 1177: 1171: 1160: 1154: 1140: 1120: 1114: 1107: 1093: 1086: 1072: 1066: 995: 947:invariant theory 944: 938: 916: 906: 848: 842: 836: 826: 820: 814: 808: 802: 796: 790: 780: 771: 765: 759: 752: 738: 732: 726: 720: 714: 705:of a skew shape 700: 696: 676: 655: 634: 624: 618: 612: 606: 579:plane partitions 565:of the tableau. 560: 558: 557: 552: 540: 538: 537: 532: 510: 508: 507: 502: 487: 453: 440: 430: 420: 411: 402: 253:English notation 238: 215:partial ordering 212: 206: 200: 76: 75: 72: 71: 68: 65: 62: 59: 56: 51: 50: 47: 44: 41: 38: 35: 2531: 2530: 2526: 2525: 2524: 2522: 2521: 2520: 2496: 2495: 2463:Ferrers Diagram 2458: 2436: 2434: 2420: 2400:"Young tableau" 2244: 2214:Fulton, William 2191: 2186: 2185: 2168: 2164: 2155: 2151: 2132: 2128: 2119: 2113: 2107: 2101: 2095: 2089: 2087: 2083: 2073: 2066: 2064: 2060: 2023: 2019: 1992: 1988: 1968: 1964: 1959: 1942: 1934: 1925: 1919: 1913: 1907: 1905: 1884: 1875: 1868: 1859: 1856: 1848: 1845: 1836: 1829: 1826: 1818: 1812: 1809: 1726: 1667: 1665: 1642: 1639: 1638: 1632: 1628: 1578: 1561: 1559: 1526: 1499: 1496: 1495: 1469: 1463: 1452: 1371: 1363: 1361: 1352: 1348: 1340: 1337: 1336: 1277: 1272: 1264: 1262: 1253: 1249: 1241: 1238: 1237: 1227: 1220: 1209: 1203: 1195: 1179: 1173: 1170: 1162: 1159: 1152: 1151: 1148: 1147: 1146: 1133: 1127: 1116: 1109: 1106: 1098: 1088: 1085: 1077: 1068: 1065: 1057: 1045:from which the 1039:complex numbers 1035:symmetric group 1027: 1021: 994: 986: 983:tensor products 963:Gian-Carlo Rota 940: 937: 929: 912: 909:symmetric group 902: 871:Schur functions 855: 844: 838: 832: 822: 816: 810: 804: 798: 792: 782: 776: 767: 761: 755: 744: 734: 728: 722: 716: 706: 698: 695: 686: 678: 674: 667: 657: 653: 646: 636: 626: 620: 614: 608: 602: 587: 571: 546: 543: 542: 520: 517: 516: 496: 493: 492: 483: 449: 436: 426: 419: 413: 410: 404: 401: 395: 372: 361: 350: 315: 293: 278: 257:French notation 234: 223:Young's lattice 208: 202: 196: 190:Ferrers diagram 188:(also called a 166: 155: 135:Gian-Carlo Rota 119:Georg Frobenius 53: 32: 28: 17: 12: 11: 5: 2529: 2519: 2518: 2513: 2508: 2494: 2493: 2483: 2473: 2466: 2457: 2456:External links 2454: 2453: 2452: 2442: 2413: 2392: 2378:Bruce E. Sagan 2375: 2357: 2301:Greene, Curtis 2297: 2290: 2268: 2265: 2242: 2210: 2195:William Fulton 2190: 2187: 2184: 2183: 2162: 2149: 2126: 2081: 2058: 2017: 1986: 1961: 1960: 1958: 1955: 1954: 1953: 1948: 1941: 1938: 1929: 1901: 1879: 1863: 1852: 1840: 1822: 1808: 1805: 1804: 1803: 1792: 1789: 1783: 1780: 1777: 1774: 1771: 1768: 1765: 1762: 1759: 1756: 1753: 1750: 1747: 1744: 1741: 1738: 1735: 1732: 1729: 1724: 1721: 1718: 1715: 1712: 1709: 1706: 1703: 1700: 1697: 1694: 1691: 1688: 1685: 1682: 1679: 1676: 1673: 1670: 1664: 1661: 1658: 1655: 1652: 1649: 1646: 1630: 1617: 1616: 1605: 1599: 1596: 1593: 1590: 1587: 1584: 1581: 1576: 1573: 1570: 1567: 1564: 1556: 1553: 1550: 1547: 1544: 1541: 1538: 1535: 1532: 1529: 1525: 1521: 1518: 1515: 1512: 1509: 1506: 1503: 1479:(with at most 1465: 1449: 1448: 1437: 1434: 1428: 1425: 1422: 1419: 1416: 1413: 1410: 1407: 1404: 1401: 1398: 1395: 1392: 1389: 1386: 1383: 1380: 1377: 1374: 1369: 1366: 1360: 1355: 1351: 1347: 1344: 1330: 1329: 1318: 1312: 1309: 1306: 1303: 1300: 1295: 1292: 1289: 1286: 1283: 1280: 1276: 1270: 1267: 1261: 1256: 1252: 1248: 1245: 1166: 1155: 1141: 1135: 1134: 1129:Main article: 1126: 1123: 1102: 1081: 1061: 1020: 1017: 1005:flag varieties 990: 933: 891:plactic monoid 854: 851: 691: 682: 672: 665: 651: 644: 586: 583: 570: 567: 550: 530: 527: 524: 500: 468: 467: 417: 408: 399: 371: 368: 359: 348: 313: 291: 282:Jack functions 277: 274: 165: 162: 154: 151: 127:W. V. D. Hodge 123:Percy MacMahon 103:general linear 15: 9: 6: 4: 3: 2: 2528: 2517: 2514: 2512: 2509: 2507: 2504: 2503: 2501: 2491: 2488:entry in the 2487: 2484: 2481: 2478:entry in the 2477: 2474: 2471: 2470:Young Tableau 2467: 2464: 2460: 2459: 2450: 2446: 2443: 2432: 2428: 2427: 2419: 2414: 2411: 2407: 2406: 2401: 2397: 2396:Vinberg, E.B. 2393: 2391: 2390:0-387-95067-2 2387: 2383: 2379: 2376: 2373: 2370: 2366: 2362: 2358: 2354: 2350: 2346: 2342: 2337: 2332: 2328: 2324: 2320: 2319: 2314: 2310: 2306: 2302: 2298: 2295: 2291: 2289: 2286: 2283: 2282:0-19-853530-9 2279: 2275: 2272: 2269: 2266: 2261: 2257: 2253: 2249: 2245: 2239: 2235: 2231: 2227: 2223: 2219: 2215: 2211: 2208: 2207:0-521-56724-6 2204: 2200: 2196: 2193: 2192: 2178: 2177: 2172: 2166: 2159: 2153: 2147: 2146:9780660196282 2143: 2139: 2136: 2130: 2122: 2116: 2110: 2104: 2098: 2092: 2085: 2076: 2069: 2062: 2054: 2050: 2045: 2040: 2036: 2032: 2028: 2021: 2013: 2009: 2006:(1): 97–145, 2005: 2001: 1997: 1990: 1982: 1978: 1977: 1972: 1966: 1962: 1952: 1949: 1947: 1944: 1943: 1937: 1932: 1928: 1922: 1916: 1910: 1904: 1900: 1895: 1893: 1889: 1882: 1878: 1873: 1866: 1862: 1855: 1851: 1843: 1839: 1832: 1825: 1821: 1815: 1790: 1787: 1781: 1778: 1775: 1772: 1769: 1766: 1763: 1760: 1757: 1754: 1751: 1748: 1745: 1742: 1739: 1736: 1733: 1730: 1727: 1722: 1719: 1716: 1713: 1710: 1707: 1704: 1701: 1698: 1695: 1692: 1689: 1686: 1683: 1680: 1677: 1674: 1671: 1668: 1662: 1656: 1650: 1647: 1644: 1637: 1636: 1635: 1626: 1622: 1603: 1594: 1591: 1588: 1582: 1579: 1574: 1571: 1568: 1565: 1562: 1551: 1545: 1542: 1536: 1533: 1530: 1523: 1519: 1513: 1507: 1504: 1501: 1494: 1493: 1492: 1490: 1486: 1482: 1478: 1474: 1468: 1459: 1455: 1435: 1432: 1426: 1423: 1420: 1417: 1414: 1411: 1408: 1405: 1402: 1399: 1396: 1393: 1390: 1387: 1384: 1381: 1378: 1375: 1372: 1367: 1364: 1358: 1353: 1349: 1345: 1342: 1335: 1334: 1333: 1316: 1307: 1301: 1298: 1290: 1284: 1281: 1278: 1274: 1268: 1265: 1259: 1254: 1250: 1246: 1243: 1236: 1235: 1234: 1230: 1223: 1216: 1212: 1206: 1199: 1194: 1189: 1187: 1182: 1176: 1169: 1165: 1158: 1144: 1139: 1132: 1122: 1119: 1112: 1105: 1101: 1097: 1091: 1084: 1080: 1076: 1071: 1064: 1060: 1056: 1051: 1048: 1044: 1040: 1036: 1032: 1026: 1016: 1014: 1010: 1006: 1002: 997: 993: 989: 984: 980: 976: 972: 968: 964: 960: 956: 952: 948: 943: 936: 932: 928: 924: 920: 917:letters. The 915: 910: 905: 899: 897: 893: 892: 887: 883: 879: 878:jeu de taquin 874: 872: 868: 864: 860: 859:combinatorics 850: 847: 841: 835: 830: 825: 819: 813: 807: 801: 795: 789: 785: 779: 773: 770: 764: 758: 751: 747: 742: 737: 731: 725: 719: 713: 709: 704: 694: 690: 687: ≤  685: 681: 671: 664: 660: 650: 643: 639: 633: 629: 623: 617: 611: 605: 600: 591: 585:Skew tableaux 582: 580: 576: 566: 564: 548: 528: 525: 522: 514: 498: 489: 486: 481: 477: 476:column strict 473: 462: 457: 452: 447: 446: 445: 444: 439: 434: 429: 424: 416: 407: 398: 393: 389: 385: 384:Young tableau 376: 367: 365: 358: 354: 347: 343: 339: 335: 331: 327: 323: 319: 312: 309: 305: 301: 297: 290: 287: 283: 273: 271: 266: 262: 258: 254: 250: 246: 240: 237: 233:partition of 232: 228: 224: 220: 216: 211: 205: 199: 195: 191: 187: 186:Young diagram 178: 170: 161: 159: 150: 148: 144: 140: 139:Alain Lascoux 136: 132: 128: 124: 120: 116: 112: 111:mathematician 108: 104: 100: 96: 92: 88: 84: 83:combinatorial 80: 74: 26: 25:Young tableau 22: 2448: 2435:. Retrieved 2433:(2): 240–241 2430: 2424: 2403: 2381: 2371: 2368: 2322: 2316: 2293: 2273: 2221: 2198: 2175: 2165: 2157: 2152: 2134: 2129: 2120: 2114: 2108: 2102: 2096: 2090: 2084: 2074: 2067: 2061: 2034: 2030: 2020: 2003: 2002:, Series 1, 1999: 1989: 1980: 1975: 1965: 1930: 1926: 1920: 1914: 1908: 1902: 1898: 1896: 1880: 1876: 1864: 1860: 1853: 1849: 1841: 1837: 1830: 1823: 1819: 1813: 1810: 1624: 1620: 1618: 1488: 1484: 1480: 1476: 1472: 1466: 1457: 1453: 1450: 1331: 1228: 1221: 1214: 1210: 1204: 1197: 1192: 1190: 1180: 1174: 1167: 1163: 1156: 1149: 1143:Hook-lengths 1142: 1117: 1110: 1103: 1099: 1089: 1082: 1078: 1069: 1062: 1058: 1052: 1028: 998: 991: 987: 959:Grassmannian 941: 934: 930: 913: 903: 900: 895: 889: 875: 856: 845: 839: 833: 828: 823: 817: 811: 805: 799: 793: 787: 783: 777: 774: 768: 762: 756: 749: 745: 741:skew tableau 740: 735: 729: 723: 717: 711: 707: 703:skew diagram 702: 692: 688: 683: 679: 669: 662: 658: 648: 641: 637: 631: 627: 621: 615: 609: 603: 598: 596: 574: 572: 562: 512: 490: 484: 479: 475: 472:semistandard 471: 469: 437: 432: 427: 414: 405: 396: 387: 383: 381: 363: 356: 352: 345: 341: 337: 333: 329: 325: 321: 317: 310: 307: 303: 299: 295: 288: 285: 279: 256: 252: 249:Francophones 241: 235: 230: 226: 209: 203: 197: 185: 183: 157: 156: 107:Alfred Young 78: 24: 18: 2329:: 104–109. 2218:Harris, Joe 2140:pp.198-202. 2077:= (5,4,2,1) 1193:hook length 886:associative 563:major index 326:hook length 298:) of a box 245:Anglophones 153:Definitions 21:mathematics 2500:Categories 2437:2008-01-16 2353:0398.05008 2189:References 1890:(see also 1872:direct sum 1835:elements, 1817:elements, 1023:See also: 967:de Concini 599:skew shape 575:decreasing 569:Variations 308:leg length 286:arm length 77:; plural: 2410:EMS Press 2398:(2001) , 2264:Lecture 4 2260:246650103 2053:0030-8730 1779:⋅ 1773:⋅ 1767:⋅ 1761:⋅ 1755:⋅ 1749:⋅ 1743:⋅ 1737:⋅ 1731:⋅ 1720:⋅ 1714:⋅ 1708:⋅ 1702:⋅ 1696:⋅ 1690:⋅ 1684:⋅ 1678:⋅ 1672:⋅ 1657:λ 1648:⁡ 1583:⁡ 1572:− 1552:λ 1543:∈ 1524:∏ 1514:λ 1505:⁡ 1424:⋅ 1418:⋅ 1412:⋅ 1406:⋅ 1400:⋅ 1394:⋅ 1388:⋅ 1382:⋅ 1376:⋅ 1354:λ 1350:π 1346:⁡ 1302:⁡ 1291:λ 1282:∈ 1275:∏ 1255:λ 1251:π 1247:⁡ 1219:of shape 1202:of a box 1037:over the 894:(French: 781:of shape 743:of shape 336:or below 328:of a box 265:Macdonald 231:transpose 227:conjugate 194:partition 99:symmetric 2492:database 2490:FindStat 2482:database 2480:FindStat 2361:Igor Pak 2327:Elsevier 2311:(1979). 2220:(1991). 2173:(2008). 2100:, since 1973:(1973), 1940:See also 975:Eisenbud 880:and the 697:for all 433:standard 388:alphabet 370:Tableaux 255:and the 164:Diagrams 79:tableaux 2345:0521470 2252:1153249 1033:of the 971:Procesi 957:of the 953:on the 925:of the 513:descent 454:in the 451:A000085 366:) + 1. 219:lattice 97:of the 81:) is a 2388:  2351:  2343:  2288:553598 2280:  2258:  2250:  2240:  2205:  2144:  2051:  1791:66528. 977:. The 973:, and 865:, and 701:. The 675:, ...) 654:, ...) 635:. If 480:weight 324:. The 2421:(PDF) 1957:Notes 1196:hook( 951:Hodge 511:is a 474:, or 2386:ISBN 2278:ISBN 2256:OCLC 2238:ISBN 2203:ISBN 2142:ISBN 2118:and 2049:ISSN 1580:hook 1436:288. 1299:hook 969:and 843:and 760:and 739:. A 721:and 656:and 456:OEIS 355:) + 145:and 109:, a 101:and 89:and 23:, a 2367:", 2349:Zbl 2331:doi 2230:doi 2039:doi 2035:140 2008:doi 1912:of 1894:). 1833:− 1 1645:dim 1502:dim 1475:of 1462:of 1343:dim 1244:dim 1178:of 1113:− 1 1092:− 1 911:on 898:). 815:in 661:= ( 640:= ( 515:if 268:of 229:or 113:at 19:In 2502:: 2447:, 2431:54 2429:. 2423:. 2408:, 2402:, 2380:. 2347:. 2341:MR 2339:. 2323:31 2321:. 2315:. 2307:; 2303:; 2285:MR 2254:. 2248:MR 2246:. 2236:. 2224:. 2216:; 2197:. 2109:BA 2103:AB 2047:. 2033:. 2029:. 2004:33 1998:, 1933:−1 1883:−1 1867:−1 1844:−1 1693:11 1687:10 1629:GL 1464:GL 1365:10 1191:A 1188:. 1100:SU 1079:SL 1059:GL 988:GL 931:GL 873:. 861:, 668:, 647:, 607:, 597:A 458:). 412:, 403:, 382:A 263:, 184:A 160:. 149:. 141:, 137:, 133:, 129:, 125:, 70:oʊ 49:oʊ 2440:. 2372:1 2355:. 2333:: 2262:. 2232:: 2209:. 2121:B 2115:A 2097:B 2091:A 2075:λ 2068:μ 2055:. 2041:: 2010:: 1984:. 1931:n 1927:S 1921:λ 1915:n 1909:λ 1903:n 1899:S 1881:n 1877:S 1865:n 1861:S 1854:n 1850:S 1842:n 1838:S 1831:n 1824:n 1820:S 1814:n 1788:= 1782:1 1776:1 1770:2 1764:3 1758:5 1752:1 1746:3 1740:4 1734:5 1728:7 1723:5 1717:9 1711:8 1705:7 1699:6 1681:9 1675:8 1669:7 1663:= 1660:) 1654:( 1651:W 1631:7 1625:j 1621:i 1604:, 1598:) 1595:j 1592:, 1589:i 1586:( 1575:i 1569:j 1566:+ 1563:r 1555:) 1549:( 1546:Y 1540:) 1537:j 1534:, 1531:i 1528:( 1520:= 1517:) 1511:( 1508:W 1489:r 1485:λ 1481:r 1477:n 1473:λ 1467:r 1460:) 1458:λ 1456:( 1454:W 1433:= 1427:1 1421:1 1415:2 1409:3 1403:5 1397:1 1391:3 1385:4 1379:5 1373:7 1368:! 1359:= 1317:. 1311:) 1308:x 1305:( 1294:) 1288:( 1285:Y 1279:x 1269:! 1266:n 1260:= 1231:! 1229:n 1222:λ 1217:) 1215:λ 1213:( 1211:Y 1205:x 1200:) 1198:x 1181:n 1175:λ 1168:n 1164:S 1157:λ 1153:π 1118:n 1111:n 1104:n 1090:n 1083:n 1070:n 1063:n 992:n 942:n 935:n 914:k 904:k 846:μ 840:λ 834:T 824:λ 818:T 812:i 806:μ 800:i 794:μ 788:μ 786:/ 784:λ 778:T 769:μ 763:μ 757:λ 750:μ 748:/ 746:λ 736:μ 730:λ 724:μ 718:λ 712:μ 710:/ 708:λ 699:i 693:i 689:λ 684:i 680:μ 673:2 670:μ 666:1 663:μ 659:μ 652:2 649:λ 645:1 642:λ 638:λ 632:μ 630:/ 628:λ 622:μ 616:λ 610:μ 604:λ 549:k 529:1 526:+ 523:k 499:k 485:n 438:n 428:n 418:3 415:x 409:2 406:x 400:1 397:x 364:s 362:( 360:λ 357:l 353:s 351:( 349:λ 346:a 342:s 338:s 334:s 330:s 322:s 318:s 316:( 314:λ 311:l 304:s 300:s 296:s 294:( 292:λ 289:a 236:λ 210:λ 204:n 198:λ 73:/ 67:l 64:b 61:æ 58:t 55:ˈ 52:, 46:l 43:b 40:ˈ 37:æ 34:t 31:/ 27:(

Index

mathematics
/tæˈbl,ˈtæbl/
combinatorial
representation theory
Schubert calculus
group representations
symmetric
general linear
Alfred Young
mathematician
Cambridge University
Georg Frobenius
Percy MacMahon
W. V. D. Hodge
G. de B. Robinson
Gian-Carlo Rota
Alain Lascoux
Marcel-Paul Schützenberger
Richard P. Stanley


Ferrers diagram
partition
partial ordering
lattice
Young's lattice
Anglophones
Francophones
symmetric functions
Macdonald

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.