Knowledge

Yield (engineering)

Source 📝

29: 1057:
impurities dislocations in the material. To move this defect (plastically deforming or yielding the material), a larger stress must be applied. This thus causes a higher yield stress in the material. While many material properties depend only on the composition of the bulk material, yield strength is extremely sensitive to the materials processing as well.
1056:
There are several ways in which crystalline materials can be engineered to increase their yield strength. By altering dislocation density, impurity levels, grain size (in crystalline materials), the yield strength of the material can be fine-tuned. This occurs typically by introducing defects such as
1866:
That experimentally measured yield strength is significantly lower than the expected theoretical value can be explained by the presence of dislocations and defects in the materials. Indeed, whiskers with perfect single crystal structure and defect-free surfaces have been shown to demonstrate yield
1043:
correlates roughly linearly with tensile strength for most steels, but measurements on one material cannot be used as a scale to measure strengths on another. Hardness testing can therefore be an economical substitute for tensile testing, as well as providing local variations in yield strength due
880:
Beyond the elastic limit, permanent deformation will occur. The elastic limit is, therefore, the lowest stress point at which permanent deformation can be measured. This requires a manual load-unload procedure, and the accuracy is critically dependent on the equipment used and operator skill. For
1402:
Where the presence of a secondary phase will increase yield strength by blocking the motion of dislocations within the crystal. A line defect that, while moving through the matrix, will be forced against a small particle or precipitate of the material. Dislocations can move through this particle
2348:
When these conditions are undesirable, it is essential for suppliers to be informed to provide appropriate materials. The presence of YPE is influenced by chemical composition and mill processing methods such as skin passing or temper rolling, which temporarily eliminate YPE and improve surface
1870:
The theoretical yield strength can be estimated by considering the process of yield at the atomic level. In a perfect crystal, shearing results in the displacement of an entire plane of atoms by one interatomic separation distance, b, relative to the plane below. In order for the atoms to move,
1636:
Where a buildup of dislocations at a grain boundary causes a repulsive force between dislocations. As grain size decreases, the surface area to volume ratio of the grain increases, allowing more buildup of dislocations at the grain edge. Since it requires a lot of energy to move dislocations to
2336:
Yield Point Elongation (YPE) significantly impacts the usability of steel. In the context of tensile testing and the engineering stress-strain curve, the Yield Point is the initial stress level, below the maximum stress, at which an increase in strain occurs without an increase in stress. This
2344:
YPE can lead to issues such as coil breaks, edge breaks, fluting, stretcher strain, and reel kinks or creases, which can affect both aesthetics and flatness. Coil and edge breaks may occur during either initial or subsequent customer processing, while fluting and stretcher strain arise during
1023:
Yielded structures have a lower stiffness, leading to increased deflections and decreased buckling strength. The structure will be permanently deformed when the load is removed, and may have residual stresses. Engineering metals display strain hardening, which implies that the yield stress is
1044:
to, e.g., welding or forming operations. For critical situations, tension testing is often done to eliminate ambiguity. However, it is possible to obtain stress-strain curves from indentation-based procedures, provided certain conditions are met. These procedures are grouped under the term
1010:, reach an upper yield point before dropping rapidly to a lower yield point. The material response is linear up until the upper yield point, but the lower yield point is used in structural engineering as a conservative value. If a metal is only stressed to the upper yield point, and beyond, 1212:
the material, impurity atoms in low concentrations will occupy a lattice position directly below a dislocation, such as directly below an extra half plane defect. This relieves a tensile strain directly below the dislocation by filling that empty lattice space with the impurity atom.
2101: 1871:
considerable force must be applied to overcome the lattice energy and move the atoms in the top plane over the lower atoms and into a new lattice site. The applied stress to overcome the resistance of a perfect lattice to shear is the theoretical yield strength, τ
1467: 1094:, which increases their density in the material. This increases the yield strength of the material since now more stress must be applied to move these dislocations through a crystal lattice. Dislocations can also interact with each other, becoming entangled. 1539: 2181: 1867:
stress approaching the theoretical value. For example, nanowhiskers of copper were shown to undergo brittle fracture at 1 GPa, a value much higher than the strength of bulk copper and approaching the theoretical value.
1944: 1278: 2332:
exhibit a distinct upper yield point or a delay in work hardening. These tensile testing phenomena, wherein the strain increases but stress does not increase as expected, are two types of yield point elongation.
1032:
Yield strength testing involves taking a small sample with a fixed cross-section area and then pulling it with a controlled, gradually increasing force until the sample changes shape or breaks. This is called a
1000:
is multiplied by a factor of safety to obtain a lower value of the offset yield point. High strength steel and aluminum alloys do not exhibit a yield point, so this offset yield point is used on these materials.
1975: 1705: 1637:
another grain, these dislocations build up along the boundary, and increase the yield stress of the material. Also known as Hall-Petch strengthening, this type of strengthening is governed by the formula:
1144: 410: 2271: 1598: 1878:
The stress displacement curve of a plane of atoms varies sinusoidally as stress peaks when an atom is forced over the atom below and then falls as the atom slides into the next lattice point.
1412: 1626: 1570: 971: 938: 2315: 885:, such as rubber, the elastic limit is much larger than the proportionality limit. Also, precise strain measurements have shown that plastic strain begins at very low stresses. 998: 344:, which is the load-bearing capacity for a given material. The ratio of yield strength to ultimate tensile strength is an important parameter for applications such steel for 1969:
is the interatomic separation distance. Since τ = G γ and dτ/dγ = G at small strains (i.e. Single atomic distance displacements), this equation becomes:
2211: 302:
and is the stress corresponding to the yield point at which the material begins to deform plastically. The yield strength is often used to determine the maximum allowable
1738: 1174: 1392: 89: 65: 2337:
characteristic is typical of certain materials, indicating the presence of YPE. The mechanism for YPE has been related to carbon diffusion, and more specifically to
1372: 1301: 1198: 1967: 1782: 1760: 1345: 1325: 306:
in a mechanical component, since it represents the upper limit to forces that can be applied without producing permanent deformation. For most metals, such as
1478: 238: 2547: 2800: 2112: 2411:"Automated Calculation of Strain Hardening Parameters from Tensile Stress vs. Strain Data for Low Carbon Steel Exhibiting Yield Point Elongation" 1403:
either by shearing the particle or by a process known as bowing or ringing, in which a new ring of dislocations is created around the particle.
1884: 2876: 1222: 2483: 2096:{\displaystyle G={\frac {d\tau }{dx}}={\frac {2\pi }{b}}\tau _{\max }\cos \left({\frac {2\pi x}{b}}\right)={\frac {2\pi }{b}}\tau _{\max }} 907:
is arbitrarily defined. The value for this is commonly set at 0.1% or 0.2% plastic strain. The offset value is given as a subscript, e.g.,
3069: 2448: 1643: 689: 283:
is removed. Once the yield point is passed, some fraction of the deformation will be permanent and non-reversible and is known as
860:
move. This definition is rarely used since dislocations move at very low stresses, and detecting such movement is very difficult.
1863:
The theoretical yield strength of a perfect crystal is much higher than the observed stress at the initiation of plastic flow.
231: 2578: 3060: 3027: 2991: 2957: 2935: 2914: 2627: 1103: 317:, there is a gradual onset of non-linear behavior, and no precise yield point. In such a case, the offset yield point (or 362: 284: 276: 2223: 1575: 2776: 3045: 3010: 2976: 224: 2521: 1462:{\displaystyle \Delta \tau ={\frac {r_{\text{particle}}}{l_{\text{interparticle}}}}\gamma _{\text{particle-matrix}}} 3104: 2374: 2106:
For small displacement of γ=x/a, where a is the spacing of atoms on the slip plane, this can be rewritten as:
2814:
Richter, Gunther (2009). "Ultrahigh Strength Single-Crystalline Nanowhiskers Grown by Physical Vapor Deposition".
1603: 2349:
quality. However, YPE can return over time due to aging, which is holding at a temperature usually 200-400 °C.
2345:
forming. Reel kinks, transverse ridges on successive inner wraps of a coil, are caused by the coiling process.
3094: 3084: 2326: 3109: 2554: 1547: 1079: 1069: 891:
The point in the stress-strain curve at which the curve levels off and plastic deformation begins to occur.
299: 1074: 943: 910: 187: 2279: 177: 2379: 976: 522: 349: 341: 192: 2836: 3099: 2189: 1716: 1152: 1045: 903:
When a yield point is not easily defined on the basis of the shape of the stress-strain curve an
846: 197: 32: 20: 2487: 2831: 2357: 1377: 167: 74: 849:
exhibited by real materials. In addition, there are several possible ways to define yielding:
2619: 2613: 2384: 1037:
Longitudinal and/or transverse strain is recorded using mechanical or optical extensometers.
101: 50: 2452: 2823: 2728: 2369: 1350: 1286: 1183: 1040: 326: 272: 268: 8: 2338: 359:, the yield point can be specified in terms of the three-dimensional principal stresses ( 321:) is taken as the stress at which 0.2% plastic deformation occurs. Yielding is a gradual 264: 182: 147: 2827: 2732: 1534:{\displaystyle \Delta \tau ={\frac {Gb}{l_{\text{interparticle}}-2r_{\text{particle}}}}} 870:), so the stress-strain graph is a straight line, and the gradient will be equal to the 3089: 2794: 2746: 1952: 1767: 1745: 1330: 1310: 280: 172: 152: 96: 68: 44: 2656: 3056: 3041: 3023: 3006: 2987: 2972: 2953: 2931: 2924:
Avallone, Eugene A.; Baumeister, Theodore; Sadegh, Ali; Marks, Lionel Simeon (2006).
2910: 2849: 2782: 2772: 2750: 2643:
Barnes, Howard (1999). "The yield stress—a review or 'παντα ρει'—everything flows?".
2623: 2430: 252: 142: 40: 2841: 2736: 2652: 2422: 330: 3017: 2947: 2925: 1034: 871: 588: 549: 356: 303: 2589:
A. M. Howatson, P. G. Lund and J. D. Todd, "Engineering Tables and Data", p. 41.
2426: 1177: 1176:
is the yield stress, G is the shear elastic modulus, b is the magnitude of the
1064: 867: 574: 112: 19:
This article is about the science of material yield. For predicting yield, see
2741: 2716: 2352:
Despite its drawbacks, YPE offers advantages in certain applications, such as
1011: 845:
It is often difficult to precisely define yielding due to the wide variety of
3078: 2786: 2717:"Correlation of Yield Strength and Tensile Strength with Hardness for Steels" 2525: 2434: 2410: 2389: 2176:{\displaystyle G={\frac {d\tau }{d\gamma }}={\frac {2\pi a}{b}}\tau _{\max }} 536: 413: 322: 202: 106: 2904: 2853: 2353: 1304: 509: 420:. A variety of yield criteria have been developed for different materials. 1091: 857: 640: 613: 311: 256: 1939:{\displaystyle \tau =\tau _{\max }\sin \left({\frac {2\pi x}{b}}\right)} 1007: 496: 472: 2845: 2409:
Scales, M.; Kornuta, J.A.; Switzner, N.; Veloo, P. (1 December 2023).
1273:{\displaystyle \Delta \tau =Gb{\sqrt {C_{s}}}\epsilon ^{\frac {3}{2}}} 882: 563: 447: 337: 307: 137: 3050: 830: 816: 788: 653: 345: 162: 132: 2946:
Beer, Ferdinand P.; Johnston, E. Russell; Dewolf, John T. (2001).
1394:
is the strain induced in the lattice due to adding the impurity.
774: 157: 866:
Up to this amount of stress, stress is proportional to strain (
760: 675: 671: 667: 1700:{\displaystyle \sigma _{y}=\sigma _{0}+kd^{-{\frac {1}{2}}}\,} 28: 2967:
Boresi, A. P., Schmidt, R. J., and Sidebottom, O. M. (1993).
2923: 2329: 1209: 627: 340:
materials, the yield strength is typically distinct from the
314: 1600:
is the surface tension between the matrix and the particle,
2905:
Avallone, Eugene A. & Baumeister III, Theodore (1996).
702: 207: 2408: 2982:
Degarmo, E. Paul; Black, J T.; Kohser, Ronald A. (2003).
802: 2930:(11th, Illustrated ed.). McGraw-Hill Professional. 279:
and will return to its original shape when the applied
2325:
During monotonic tensile testing, some metals such as
2276:
The theoretical yield strength can be approximated as
2282: 2226: 2192: 2115: 1978: 1955: 1887: 1770: 1748: 1719: 1646: 1606: 1578: 1550: 1481: 1415: 1397: 1380: 1353: 1333: 1313: 1289: 1225: 1186: 1155: 1106: 979: 946: 913: 365: 77: 53: 2611: 1139:{\displaystyle \Delta \sigma _{y}=Gb{\sqrt {\rho }}} 3053:
Roark's Formulas for Stress and Strain, 7th edition
3051:Young, Warren C. & Budynas, Richard G. (2002). 3001:Oberg, E., Jones, F. D., and Horton, H. L. (1984). 1060:These mechanisms for crystalline materials include 405:{\displaystyle \sigma _{1},\sigma _{2},\sigma _{3}} 2981: 2945: 2508: 2309: 2266:{\displaystyle \tau _{\max }={\frac {Gb}{2\pi a}}} 2265: 2205: 2175: 2095: 1961: 1938: 1776: 1754: 1732: 1699: 1620: 1593:{\displaystyle \gamma _{\text{particle-matrix}}\,} 1592: 1564: 1533: 1461: 1386: 1366: 1339: 1319: 1295: 1272: 1192: 1168: 1138: 1018: 992: 965: 932: 404: 83: 59: 16:Phenomenon of deformation due to structural stress 2927:Mark's Standard Handbook for Mechanical Engineers 2907:Mark's Standard Handbook for Mechanical Engineers 275:behavior. Below the yield point, a material will 3076: 2721:Journal of Materials Engineering and Performance 2360:. Generally, steel with YPE is highly formable. 2288: 2232: 2198: 2168: 2088: 2028: 1899: 2714: 2320: 1631: 1203: 348:, and has been found to be proportional to the 2877:"Yield Point Elongation (YPE) – Pros and Cons" 1024:increased after unloading from a yield state. 1788: 1097:The governing formula for this mechanism is: 232: 2799:: CS1 maint: multiple names: authors list ( 2618:. Boston: Houghton Mifflin Company. p.  2615:Engineering Materials and their Applications 1740:is the stress required to move dislocations, 1216:The relationship of this mechanism goes as: 1090:Where deforming the material will introduce 3036:Shigley, J. E., and Mischke, C. R. (1989). 2612:Flinn, Richard A.; Trojan, Paul K. (1975). 1051: 2762: 2760: 1621:{\displaystyle l_{\text{interparticle}}\,} 973:MPa. For most practical engineering uses, 239: 225: 2835: 2740: 2680: 2678: 1696: 1617: 1589: 1561: 2984:Materials and Processes in Manufacturing 2645:Journal of Non-Newtonian Fluid Mechanics 2636: 27: 2909:(8th ed.). New York: McGraw-Hill. 2813: 2757: 1628:is the distance between the particles. 3077: 2715:Pavlina, E.J.; Van Tyne, C.J. (2008). 2675: 2642: 2592: 2522:"Technical Product Data Sheets UHMWPE" 1347:are the same as in the above example, 2971:, 5th edition John Wiley & Sons. 2871: 2869: 2867: 2865: 2863: 1565:{\displaystyle r_{\text{particle}}\,} 438: 433: 3015: 2684: 2669: 1374:is the concentration of solute and 966:{\displaystyle R_{\text{p0.2}}=350} 933:{\displaystyle R_{\text{p0.1}}=310} 616:10% Ni, 1.6% Fe, 1% Mn, balance Cu 13: 3005:, 22nd edition. Industrial Press. 2860: 2766: 2310:{\displaystyle \tau _{\max }=G/30} 1802:Experimental shear strength (GPa) 1482: 1416: 1398:Particle/precipitate strengthening 1226: 1107: 14: 3121: 1799:Theoretical shear strength (GPa) 1085: 2769:Mechanical behavior of materials 2509:Beer, Johnston & Dewolf 2001 2375:Specified minimum yield strength 1472:and the bowing/ringing formula: 471:Steel, high strength alloy ASTM 2969:Advanced Mechanics of Materials 2898: 2807: 2708: 2699: 2690: 2663: 2605: 1307:, related to the yield stress, 1019:Usage in structural engineering 993:{\displaystyle R_{\text{p0.2}}} 2583: 2572: 2540: 2514: 2502: 2476: 2467: 2441: 2402: 1406:The shearing formula goes as: 877:Elastic limit (yield strength) 423: 271:behavior and the beginning of 1: 3038:Mechanical Engineering Design 2952:(3rd ed.). McGraw-Hill. 2881:www.baileymetalprocessing.com 2767:H., Courtney, Thomas (2005). 2657:10.1016/S0377-0257(98)00094-9 2395: 2206:{\displaystyle \tau _{\max }} 3040:, 5th edition. McGraw Hill. 3022:. City: Albion/Horwood Pub. 2321:Yield point elongation (YPE) 1632:Grain boundary strengthening 1204:Solid solution strengthening 1200:is the dislocation density. 1080:Grain boundary strengthening 1070:Solid solution strengthening 1003:Upper and lower yield points 485:Steel, prestressing strands 267:that indicates the limit of 7: 2363: 1762:is a material constant, and 1733:{\displaystyle \sigma _{0}} 1169:{\displaystyle \sigma _{y}} 1075:Precipitation strengthening 856:The lowest stress at which 427: 188:Metal-induced embrittlement 10: 3126: 2427:10.1007/s40799-023-00626-4 1789:Theoretical yield strength 1027: 178:Liquid metal embrittlement 18: 3055:. New York: McGraw-Hill. 2742:10.1007/s11665-008-9225-5 2380:Ultimate tensile strength 1387:{\displaystyle \epsilon } 523:High-density polyethylene 350:strain hardening exponent 342:ultimate tensile strength 193:Stress corrosion cracking 84:{\displaystyle \epsilon } 67:, shown as a function of 1572:is the particle radius, 1052:Strengthening mechanisms 125:Mechanical failure modes 3105:Deformation (mechanics) 2986:(9th ed.). Wiley. 2548:"unitex-deutschland.eu" 2415:Experimental Techniques 1046:Indentation plastometry 552:AISI 302 – cold-rolled 198:Sulfide stress cracking 60:{\displaystyle \sigma } 21:Material failure theory 2949:Mechanics of Materials 2311: 2267: 2207: 2177: 2097: 1963: 1940: 1778: 1756: 1734: 1701: 1622: 1594: 1566: 1535: 1463: 1388: 1368: 1341: 1321: 1297: 1274: 1194: 1170: 1140: 994: 967: 934: 406: 325:which is normally not 168:Hydrogen embrittlement 119: 85: 61: 2600:Mechanical Metallurgy 2385:Yield curve (physics) 2312: 2268: 2208: 2178: 2098: 1964: 1941: 1779: 1757: 1735: 1702: 1623: 1595: 1567: 1536: 1464: 1389: 1369: 1367:{\displaystyle C_{s}} 1342: 1322: 1298: 1296:{\displaystyle \tau } 1275: 1195: 1193:{\displaystyle \rho } 1171: 1141: 1006:Some metals, such as 995: 968: 935: 863:Proportionality limit 407: 102:Proportionality limit 91:): 86: 62: 31: 3095:Plasticity (physics) 3085:Elasticity (physics) 3003:Machinery's Handbook 2370:Plasticity (physics) 2339:Cottrell atmospheres 2280: 2224: 2190: 2113: 1976: 1953: 1885: 1768: 1746: 1717: 1644: 1604: 1576: 1548: 1479: 1413: 1378: 1351: 1331: 1311: 1287: 1223: 1184: 1153: 1104: 1041:Indentation hardness 977: 944: 911: 894:Offset yield point ( 847:stress–strain curves 727:Aluminium (annealed) 363: 75: 51: 3110:Structural analysis 3070:Engineer's Handbook 3019:Mechanics of Solids 2828:2009NanoL...9.3048R 2733:2008JMEP...17..888P 2602:, McGraw-Hill, 1986 1544:In these formulas, 285:plastic deformation 265:stress-strain curve 183:Mechanical overload 33:Stress–strain curve 2771:. Waveland Press. 2528:on 14 October 2011 2473:ASTM A228-A228M-14 2307: 2263: 2203: 2186:Giving a value of 2173: 2093: 1959: 1936: 1784:is the grain size. 1774: 1752: 1730: 1697: 1618: 1590: 1562: 1531: 1459: 1384: 1364: 1337: 1317: 1293: 1270: 1190: 1166: 1136: 990: 963: 930: 905:offset yield point 853:True elastic limit 566:4.5% C, ASTM A-48 460:Steel, API 5L X65 402: 277:deform elastically 263:is the point on a 120: 97:True elastic limit 81: 57: 3062:978-0-07-072542-3 3029:978-1-898563-67-9 3016:Ross, C. (1999). 2993:978-0-471-65653-1 2959:978-0-07-365935-0 2937:978-0-07-142867-5 2916:978-0-07-004997-0 2846:10.1021/nl9015107 2629:978-0-395-18916-0 2261: 2161: 2140: 2081: 2059: 2021: 2003: 1962:{\displaystyle b} 1930: 1861: 1860: 1777:{\displaystyle d} 1755:{\displaystyle k} 1692: 1614: 1586: 1558: 1529: 1525: 1509: 1456: 1447: 1444: 1434: 1340:{\displaystyle b} 1320:{\displaystyle G} 1267: 1253: 1134: 987: 954: 921: 843: 842: 738:Copper (annealed) 439:Ultimate strength 300:material property 253:materials science 249: 248: 143:Corrosion fatigue 41:nonferrous alloys 3117: 3066: 3033: 2997: 2963: 2941: 2920: 2892: 2891: 2889: 2887: 2873: 2858: 2857: 2839: 2822:(8): 3048–3052. 2811: 2805: 2804: 2798: 2790: 2764: 2755: 2754: 2744: 2712: 2706: 2705:Degarmo, p. 377. 2703: 2697: 2694: 2688: 2682: 2673: 2667: 2661: 2660: 2651:(1–2): 133–178. 2640: 2634: 2633: 2609: 2603: 2596: 2590: 2587: 2581: 2576: 2570: 2569: 2567: 2565: 2560:on 25 March 2012 2559: 2553:. Archived from 2552: 2544: 2538: 2537: 2535: 2533: 2524:. Archived from 2518: 2512: 2506: 2500: 2499: 2497: 2495: 2486:. Archived from 2480: 2474: 2471: 2465: 2464: 2462: 2460: 2451:. Archived from 2445: 2439: 2438: 2421:(6): 1311–1322. 2406: 2316: 2314: 2313: 2308: 2303: 2292: 2291: 2272: 2270: 2269: 2264: 2262: 2260: 2249: 2241: 2236: 2235: 2212: 2210: 2209: 2204: 2202: 2201: 2182: 2180: 2179: 2174: 2172: 2171: 2162: 2157: 2146: 2141: 2139: 2131: 2123: 2102: 2100: 2099: 2094: 2092: 2091: 2082: 2077: 2069: 2064: 2060: 2055: 2044: 2032: 2031: 2022: 2017: 2009: 2004: 2002: 1994: 1986: 1968: 1966: 1965: 1960: 1945: 1943: 1942: 1937: 1935: 1931: 1926: 1915: 1903: 1902: 1793: 1792: 1783: 1781: 1780: 1775: 1761: 1759: 1758: 1753: 1739: 1737: 1736: 1731: 1729: 1728: 1706: 1704: 1703: 1698: 1695: 1694: 1693: 1685: 1669: 1668: 1656: 1655: 1627: 1625: 1624: 1619: 1616: 1615: 1612: 1599: 1597: 1596: 1591: 1588: 1587: 1584: 1571: 1569: 1568: 1563: 1560: 1559: 1556: 1540: 1538: 1537: 1532: 1530: 1528: 1527: 1526: 1523: 1511: 1510: 1507: 1500: 1492: 1468: 1466: 1465: 1460: 1458: 1457: 1454: 1448: 1446: 1445: 1442: 1436: 1435: 1432: 1426: 1393: 1391: 1390: 1385: 1373: 1371: 1370: 1365: 1363: 1362: 1346: 1344: 1343: 1338: 1326: 1324: 1323: 1318: 1302: 1300: 1299: 1294: 1279: 1277: 1276: 1271: 1269: 1268: 1260: 1254: 1252: 1251: 1242: 1199: 1197: 1196: 1191: 1175: 1173: 1172: 1167: 1165: 1164: 1145: 1143: 1142: 1137: 1135: 1130: 1119: 1118: 999: 997: 996: 991: 989: 988: 985: 972: 970: 969: 964: 956: 955: 952: 939: 937: 936: 931: 923: 922: 919: 899: 898: 874:of the material. 716:Nylon, type 6/6 602:Copper 99.9% Cu 428: 411: 409: 408: 403: 401: 400: 388: 387: 375: 374: 331:ultimate failure 241: 234: 227: 122: 121: 90: 88: 87: 82: 66: 64: 63: 58: 35:showing typical 3125: 3124: 3120: 3119: 3118: 3116: 3115: 3114: 3100:Solid mechanics 3075: 3074: 3063: 3030: 2994: 2960: 2938: 2917: 2901: 2896: 2895: 2885: 2883: 2875: 2874: 2861: 2837:10.1.1.702.1801 2812: 2808: 2792: 2791: 2779: 2765: 2758: 2713: 2709: 2704: 2700: 2696:ISO 6892-1:2009 2695: 2691: 2683: 2676: 2668: 2664: 2641: 2637: 2630: 2610: 2606: 2597: 2593: 2588: 2584: 2577: 2573: 2563: 2561: 2557: 2550: 2546: 2545: 2541: 2531: 2529: 2520: 2519: 2515: 2507: 2503: 2493: 2491: 2490:on 19 July 2011 2482: 2481: 2477: 2472: 2468: 2458: 2456: 2455:on 22 June 2012 2447: 2446: 2442: 2407: 2403: 2398: 2366: 2323: 2299: 2287: 2283: 2281: 2278: 2277: 2250: 2242: 2240: 2231: 2227: 2225: 2222: 2221: 2216: 2197: 2193: 2191: 2188: 2187: 2167: 2163: 2147: 2145: 2132: 2124: 2122: 2114: 2111: 2110: 2087: 2083: 2070: 2068: 2045: 2043: 2039: 2027: 2023: 2010: 2008: 1995: 1987: 1985: 1977: 1974: 1973: 1954: 1951: 1950: 1916: 1914: 1910: 1898: 1894: 1886: 1883: 1882: 1874: 1791: 1769: 1766: 1765: 1747: 1744: 1743: 1724: 1720: 1718: 1715: 1714: 1684: 1680: 1676: 1664: 1660: 1651: 1647: 1645: 1642: 1641: 1634: 1611: 1607: 1605: 1602: 1601: 1585:particle-matrix 1583: 1579: 1577: 1574: 1573: 1555: 1551: 1549: 1546: 1545: 1522: 1518: 1506: 1502: 1501: 1493: 1491: 1480: 1477: 1476: 1455:particle-matrix 1453: 1449: 1441: 1437: 1431: 1427: 1425: 1414: 1411: 1410: 1400: 1379: 1376: 1375: 1358: 1354: 1352: 1349: 1348: 1332: 1329: 1328: 1312: 1309: 1308: 1288: 1285: 1284: 1259: 1255: 1247: 1243: 1241: 1224: 1221: 1220: 1206: 1185: 1182: 1181: 1160: 1156: 1154: 1151: 1150: 1129: 1114: 1110: 1105: 1102: 1101: 1088: 1054: 1030: 1021: 984: 980: 978: 975: 974: 951: 947: 945: 942: 941: 918: 914: 912: 909: 908: 896: 895: 872:elastic modulus 749:Iron (annealed) 589:Aluminium alloy 550:Stainless steel 440: 435: 426: 418:yield criterion 396: 392: 383: 379: 370: 366: 364: 361: 360: 357:solid mechanics 245: 118: 117: 76: 73: 72: 52: 49: 48: 24: 17: 12: 11: 5: 3123: 3113: 3112: 3107: 3102: 3097: 3092: 3087: 3073: 3072: 3067: 3061: 3048: 3034: 3028: 3013: 2999: 2992: 2979: 2965: 2958: 2943: 2936: 2921: 2915: 2900: 2897: 2894: 2893: 2859: 2806: 2778:978-1577664253 2777: 2756: 2727:(6): 888–893. 2707: 2698: 2689: 2674: 2662: 2635: 2628: 2604: 2591: 2582: 2571: 2539: 2513: 2511:, p. 746. 2501: 2484:"complore.com" 2475: 2466: 2440: 2400: 2399: 2397: 2394: 2393: 2392: 2387: 2382: 2377: 2372: 2365: 2362: 2356:, and reduces 2322: 2319: 2306: 2302: 2298: 2295: 2290: 2286: 2274: 2273: 2259: 2256: 2253: 2248: 2245: 2239: 2234: 2230: 2214: 2200: 2196: 2184: 2183: 2170: 2166: 2160: 2156: 2153: 2150: 2144: 2138: 2135: 2130: 2127: 2121: 2118: 2104: 2103: 2090: 2086: 2080: 2076: 2073: 2067: 2063: 2058: 2054: 2051: 2048: 2042: 2038: 2035: 2030: 2026: 2020: 2016: 2013: 2007: 2001: 1998: 1993: 1990: 1984: 1981: 1958: 1947: 1946: 1934: 1929: 1925: 1922: 1919: 1913: 1909: 1906: 1901: 1897: 1893: 1890: 1872: 1859: 1858: 1855: 1852: 1848: 1847: 1844: 1841: 1837: 1836: 1833: 1830: 1826: 1825: 1822: 1819: 1815: 1814: 1811: 1808: 1804: 1803: 1800: 1797: 1790: 1787: 1786: 1785: 1773: 1763: 1751: 1741: 1727: 1723: 1708: 1707: 1691: 1688: 1683: 1679: 1675: 1672: 1667: 1663: 1659: 1654: 1650: 1633: 1630: 1610: 1582: 1554: 1542: 1541: 1521: 1517: 1514: 1505: 1499: 1496: 1490: 1487: 1484: 1470: 1469: 1452: 1440: 1430: 1424: 1421: 1418: 1399: 1396: 1383: 1361: 1357: 1336: 1316: 1292: 1281: 1280: 1266: 1263: 1258: 1250: 1246: 1240: 1237: 1234: 1231: 1228: 1205: 1202: 1189: 1178:Burgers vector 1163: 1159: 1147: 1146: 1133: 1128: 1125: 1122: 1117: 1113: 1109: 1087: 1086:Work hardening 1084: 1083: 1082: 1077: 1072: 1067: 1065:Work hardening 1053: 1050: 1029: 1026: 1020: 1017: 1016: 1015: 1004: 1001: 983: 962: 959: 950: 929: 926: 917: 901: 892: 889: 886: 878: 875: 864: 861: 854: 841: 840: 837: 834: 827: 826: 823: 820: 813: 812: 809: 806: 799: 798: 795: 792: 785: 784: 781: 778: 771: 770: 767: 764: 757: 756: 753: 750: 746: 745: 742: 739: 735: 734: 731: 728: 724: 723: 720: 717: 713: 712: 709: 706: 699: 698: 695: 692: 686: 685: 682: 679: 664: 663: 660: 657: 650: 649: 646: 643: 637: 636: 633: 630: 624: 623: 620: 617: 610: 609: 606: 603: 599: 598: 595: 592: 585: 584: 581: 578: 577:(6% Al, 4% V) 575:Titanium alloy 571: 570: 567: 560: 559: 556: 553: 546: 545: 542: 539: 533: 532: 529: 526: 519: 518: 515: 513: 506: 505: 502: 499: 493: 492: 489: 486: 482: 481: 478: 475: 468: 467: 464: 461: 457: 456: 453: 450: 443: 442: 437: 434:Yield strength 432: 425: 422: 399: 395: 391: 386: 382: 378: 373: 369: 292:yield strength 247: 246: 244: 243: 236: 229: 221: 218: 217: 216: 215: 210: 205: 200: 195: 190: 185: 180: 175: 170: 165: 160: 155: 150: 145: 140: 135: 127: 126: 116: 115: 113:yield strength 109: 104: 99: 93: 92: 80: 56: 15: 9: 6: 4: 3: 2: 3122: 3111: 3108: 3106: 3103: 3101: 3098: 3096: 3093: 3091: 3088: 3086: 3083: 3082: 3080: 3071: 3068: 3064: 3058: 3054: 3049: 3047: 3046:0-07-056899-5 3043: 3039: 3035: 3031: 3025: 3021: 3020: 3014: 3012: 3011:0-8311-1155-0 3008: 3004: 3000: 2995: 2989: 2985: 2980: 2978: 2977:0-471-55157-0 2974: 2970: 2966: 2961: 2955: 2951: 2950: 2944: 2939: 2933: 2929: 2928: 2922: 2918: 2912: 2908: 2903: 2902: 2882: 2878: 2872: 2870: 2868: 2866: 2864: 2855: 2851: 2847: 2843: 2838: 2833: 2829: 2825: 2821: 2817: 2810: 2802: 2796: 2788: 2784: 2780: 2774: 2770: 2763: 2761: 2752: 2748: 2743: 2738: 2734: 2730: 2726: 2722: 2718: 2711: 2702: 2693: 2687:, p. 59. 2686: 2681: 2679: 2672:, p. 56. 2671: 2666: 2658: 2654: 2650: 2646: 2639: 2631: 2625: 2621: 2617: 2616: 2608: 2601: 2595: 2586: 2580: 2575: 2556: 2549: 2543: 2527: 2523: 2517: 2510: 2505: 2489: 2485: 2479: 2470: 2454: 2450: 2449:"ussteel.com" 2444: 2436: 2432: 2428: 2424: 2420: 2416: 2412: 2405: 2401: 2391: 2390:Yield surface 2388: 2386: 2383: 2381: 2378: 2376: 2373: 2371: 2368: 2367: 2361: 2359: 2355: 2350: 2346: 2342: 2340: 2334: 2331: 2328: 2318: 2304: 2300: 2296: 2293: 2284: 2257: 2254: 2251: 2246: 2243: 2237: 2228: 2220: 2219: 2218: 2194: 2164: 2158: 2154: 2151: 2148: 2142: 2136: 2133: 2128: 2125: 2119: 2116: 2109: 2108: 2107: 2084: 2078: 2074: 2071: 2065: 2061: 2056: 2052: 2049: 2046: 2040: 2036: 2033: 2024: 2018: 2014: 2011: 2005: 1999: 1996: 1991: 1988: 1982: 1979: 1972: 1971: 1970: 1956: 1932: 1927: 1923: 1920: 1917: 1911: 1907: 1904: 1895: 1891: 1888: 1881: 1880: 1879: 1876: 1868: 1864: 1856: 1853: 1850: 1849: 1845: 1842: 1839: 1838: 1834: 1831: 1828: 1827: 1823: 1820: 1817: 1816: 1812: 1809: 1806: 1805: 1801: 1798: 1795: 1794: 1771: 1764: 1749: 1742: 1725: 1721: 1713: 1712: 1711: 1689: 1686: 1681: 1677: 1673: 1670: 1665: 1661: 1657: 1652: 1648: 1640: 1639: 1638: 1629: 1613:interparticle 1608: 1580: 1552: 1519: 1515: 1512: 1508:interparticle 1503: 1497: 1494: 1488: 1485: 1475: 1474: 1473: 1450: 1443:interparticle 1438: 1428: 1422: 1419: 1409: 1408: 1407: 1404: 1395: 1381: 1359: 1355: 1334: 1314: 1306: 1290: 1264: 1261: 1256: 1248: 1244: 1238: 1235: 1232: 1229: 1219: 1218: 1217: 1214: 1211: 1201: 1187: 1179: 1161: 1157: 1131: 1126: 1123: 1120: 1115: 1111: 1100: 1099: 1098: 1095: 1093: 1081: 1078: 1076: 1073: 1071: 1068: 1066: 1063: 1062: 1061: 1058: 1049: 1047: 1042: 1038: 1036: 1035:tensile test. 1025: 1013: 1009: 1005: 1002: 981: 960: 957: 948: 927: 924: 915: 906: 902: 893: 890: 887: 884: 879: 876: 873: 869: 865: 862: 859: 855: 852: 851: 850: 848: 838: 835: 832: 829: 828: 824: 821: 818: 815: 814: 810: 807: 804: 801: 800: 796: 793: 790: 787: 786: 782: 779: 776: 773: 772: 768: 765: 762: 759: 758: 754: 751: 748: 747: 743: 740: 737: 736: 732: 729: 726: 725: 721: 718: 715: 714: 710: 707: 704: 701: 700: 696: 693: 691: 688: 687: 683: 680: 677: 673: 669: 666: 665: 661: 658: 655: 652: 651: 647: 644: 642: 639: 638: 634: 631: 629: 626: 625: 621: 618: 615: 612: 611: 607: 604: 601: 600: 596: 593: 590: 587: 586: 582: 579: 576: 573: 572: 568: 565: 562: 561: 557: 554: 551: 548: 547: 543: 540: 538: 537:Polypropylene 535: 534: 530: 527: 524: 521: 520: 516: 514: 511: 508: 507: 503: 500: 498: 495: 494: 490: 487: 484: 483: 479: 476: 474: 470: 469: 465: 462: 459: 458: 454: 451: 449: 445: 444: 430: 429: 421: 419: 415: 414:yield surface 397: 393: 389: 384: 380: 376: 371: 367: 358: 353: 351: 347: 343: 339: 334: 332: 328: 324: 320: 316: 313: 309: 305: 301: 297: 293: 288: 286: 282: 278: 274: 270: 266: 262: 258: 254: 242: 237: 235: 230: 228: 223: 222: 220: 219: 214: 211: 209: 206: 204: 203:Thermal shock 201: 199: 196: 194: 191: 189: 186: 184: 181: 179: 176: 174: 171: 169: 166: 164: 161: 159: 156: 154: 151: 149: 146: 144: 141: 139: 136: 134: 131: 130: 129: 128: 124: 123: 114: 110: 108: 107:Elastic limit 105: 103: 100: 98: 95: 94: 78: 70: 54: 46: 42: 39:behavior for 38: 34: 30: 26: 22: 3052: 3037: 3018: 3002: 2983: 2968: 2948: 2926: 2906: 2899:Bibliography 2884:. Retrieved 2880: 2819: 2816:Nano Letters 2815: 2809: 2768: 2724: 2720: 2710: 2701: 2692: 2665: 2648: 2644: 2638: 2614: 2607: 2599: 2594: 2585: 2574: 2562:. Retrieved 2555:the original 2542: 2530:. Retrieved 2526:the original 2516: 2504: 2494:10 September 2492:. Retrieved 2488:the original 2478: 2469: 2457:. Retrieved 2453:the original 2443: 2418: 2414: 2404: 2354:roll forming 2351: 2347: 2343: 2335: 2324: 2275: 2185: 2105: 1948: 1877: 1869: 1865: 1862: 1709: 1635: 1543: 1471: 1405: 1401: 1305:shear stress 1282: 1215: 1207: 1148: 1096: 1092:dislocations 1089: 1059: 1055: 1039: 1031: 1022: 1014:can develop. 1012:Lüders bands 904: 897:proof stress 858:dislocations 844: 510:Carbon fiber 417: 354: 335: 327:catastrophic 323:failure mode 319:proof stress 318: 296:yield stress 295: 291: 289: 260: 250: 212: 36: 25: 2598:G. Dieter, 888:Yield point 868:Hooke's law 641:Spider silk 614:Cupronickel 424:Definitions 312:cold-worked 261:yield point 257:engineering 3079:Categories 2579:matweb.com 2396:References 2358:springback 2217:equal to: 1851:α-Fe 1008:mild steel 883:elastomers 833:(annealed) 819:(annealed) 805:(annealed) 791:(annealed) 777:(annealed) 763:(annealed) 512:(CF, CFK) 504:1740–3300 497:Piano wire 3090:Mechanics 2832:CiteSeerX 2795:cite book 2787:894800884 2751:135890256 2685:Ross 1999 2670:Ross 1999 2532:18 August 2435:1747-1567 2285:τ 2255:π 2229:τ 2195:τ 2165:τ 2152:π 2137:γ 2129:τ 2085:τ 2075:π 2050:π 2037:⁡ 2025:τ 2015:π 1992:τ 1921:π 1908:⁡ 1896:τ 1889:τ 1796:Material 1722:σ 1682:− 1662:σ 1649:σ 1581:γ 1513:− 1486:τ 1483:Δ 1451:γ 1420:τ 1417:Δ 1382:ϵ 1291:τ 1257:ϵ 1230:τ 1227:Δ 1188:ρ 1158:σ 1132:ρ 1112:σ 1108:Δ 780:5000–9000 645:1150 (??) 564:Cast iron 448:A36 steel 431:Material 412:) with a 394:σ 381:σ 368:σ 346:pipelines 329:, unlike 308:aluminium 138:Corrosion 79:ϵ 55:σ 2854:19637912 2364:See also 2327:annealed 1557:particle 1524:particle 1433:particle 1210:alloying 839:550–620 831:Tungsten 825:240–370 817:Titanium 789:Tantalum 769:140–195 654:Silkworm 591:2014-T6 544:19.7–80 213:Yielding 163:Fracture 133:Buckling 2886:16 June 2824:Bibcode 2729:Bibcode 2564:15 June 2459:15 June 1303:is the 1028:Testing 940:MPa or 822:100–225 811:15–200 783:  775:Silicon 708:104–121 705:(limb) 662:  525:(HDPE) 338:ductile 273:plastic 269:elastic 158:Fouling 153:Fatigue 111:Offset 71:,  47:,  3059:  3044:  3026:  3009:  2990:  2975:  2956:  2934:  2913:  2852:  2834:  2785:  2775:  2749:  2626:  2433:  2213:τ 1949:where 1710:where 1283:where 1180:, and 1149:where 761:Nickel 752:80–100 733:40–50 690:UHMWPE 676:Twaron 672:Kevlar 668:Aramid 632:200+ ~ 501:  441:(MPa) 436:(MPa) 281:stress 259:, the 173:Impact 69:strain 45:stress 2747:S2CID 2558:(PDF) 2551:(PDF) 2330:steel 1857:2.75 1835:0.49 1824:0.78 1813:0.37 766:14–35 730:15–20 684:3757 656:silk 648:1400 628:Brass 541:12–43 528:26–33 517:5650 491:1860 446:ASTM 416:or a 315:steel 298:is a 148:Creep 37:yield 3057:ISBN 3042:ISBN 3024:ISBN 3007:ISBN 2988:ISBN 2973:ISBN 2954:ISBN 2932:ISBN 2911:ISBN 2888:2024 2850:PMID 2801:link 2783:OCLC 2773:ISBN 2624:ISBN 2566:2011 2534:2010 2496:2010 2461:2011 2431:ISSN 1854:2.6 1846:3.2 1843:2.6 1832:1.4 1821:0.9 1810:1.0 1327:and 986:p0.2 953:p0.2 920:p0.1 808:9–14 797:200 755:350 744:210 711:130 703:Bone 681:3620 635:550 622:350 608:220 597:455 583:900 569:172 558:860 488:1650 480:760 473:A514 466:531 455:400 336:For 310:and 304:load 290:The 255:and 208:Wear 2842:doi 2737:doi 2653:doi 2423:doi 2289:max 2233:max 2215:max 2199:max 2169:max 2089:max 2034:cos 2029:max 1905:sin 1900:max 1873:max 1840:Ni 1829:Cu 1818:Al 1807:Ag 1208:By 961:350 928:310 836:550 803:Tin 794:180 722:75 697:35 674:or 659:500 619:130 594:400 580:830 555:520 531:37 477:690 463:448 452:250 355:In 333:. 294:or 251:In 3081:: 2879:. 2862:^ 2848:. 2840:. 2830:. 2818:. 2797:}} 2793:{{ 2781:. 2759:^ 2745:. 2735:. 2725:17 2723:. 2719:. 2677:^ 2649:81 2647:. 2622:. 2620:61 2429:. 2419:47 2417:. 2413:. 2341:. 2317:. 2305:30 1875:. 1048:. 741:33 719:45 694:20 678:) 605:70 352:. 287:. 3065:. 3032:. 2998:. 2996:. 2964:. 2962:. 2942:. 2940:. 2919:. 2890:. 2856:. 2844:: 2826:: 2820:9 2803:) 2789:. 2753:. 2739:: 2731:: 2659:. 2655:: 2632:. 2568:. 2536:. 2498:. 2463:. 2437:. 2425:: 2301:/ 2297:G 2294:= 2258:a 2252:2 2247:b 2244:G 2238:= 2159:b 2155:a 2149:2 2143:= 2134:d 2126:d 2120:= 2117:G 2079:b 2072:2 2066:= 2062:) 2057:b 2053:x 2047:2 2041:( 2019:b 2012:2 2006:= 2000:x 1997:d 1989:d 1983:= 1980:G 1957:b 1933:) 1928:b 1924:x 1918:2 1912:( 1892:= 1772:d 1750:k 1726:0 1690:2 1687:1 1678:d 1674:k 1671:+ 1666:0 1658:= 1653:y 1609:l 1553:r 1520:r 1516:2 1504:l 1498:b 1495:G 1489:= 1439:l 1429:r 1423:= 1360:s 1356:C 1335:b 1315:G 1265:2 1262:3 1249:s 1245:C 1239:b 1236:G 1233:= 1162:y 1127:b 1124:G 1121:= 1116:y 982:R 958:= 949:R 925:= 916:R 900:) 670:( 398:3 390:, 385:2 377:, 372:1 240:e 233:t 226:v 43:( 23:.

Index

Material failure theory

Stress–strain curve
yield
nonferrous alloys
stress
strain
True elastic limit
Proportionality limit
Elastic limit
yield strength
Buckling
Corrosion
Corrosion fatigue
Creep
Fatigue
Fouling
Fracture
Hydrogen embrittlement
Impact
Liquid metal embrittlement
Mechanical overload
Metal-induced embrittlement
Stress corrosion cracking
Sulfide stress cracking
Thermal shock
Wear
Yielding
v
t

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.