Knowledge

Antichain

Source đź“ť

557:
states that this bound can always be reached: there always exists an antichain, and a partition of the elements into chains, such that the number of chains equals the number of elements in the antichain, which must therefore also equal the width. Similarly, one can define the
942: 820: 994:
for distributive lattices states that every finite distributive lattice can be represented via join and meet operations on antichains of a finite partial order, or equivalently as union and intersection operations on the
722: 829: 294: 211: 489:
of a partially ordered set is the cardinality of a maximum antichain. Any antichain can intersect any chain in at most one element, so, if we can partition the elements of an order into
735: 345: 989: 455: 962: 646: 592: 547: 527: 507: 432: 412: 389: 365: 316: 251: 231: 164: 144: 124: 654: 1112: 566:
states that in any partial order of finite height, the height equals the smallest number of antichains into which the order may be partitioned.
728:) all lower sets have this form. The union of any two lower sets is another lower set, and the union operation corresponds in this way to a 1227:
Provan, J. Scott; Ball, Michael O. (1983), "The complexity of counting cuts and of computing the probability that a graph is connected",
1972: 620:
Even the empty set has two antichains in its power set: one containing a single set (the empty set itself) and one containing no sets.
613: 434:
in which each pair of different elements is incomparable; that is, there is no order relation between any two different elements in
1955: 1485: 1321: 63:, this also equals the minimum number of chains (totally ordered subsets) into which the set can be partitioned. Dually, the 17: 1802: 991: 82:. For the partially ordered system of all subsets of a finite set, ordered by set inclusion, the antichains are called 1938: 1797: 1792: 256: 173: 1428: 1510: 1829: 1749: 1076: 1614: 1543: 1423: 937:{\displaystyle A\wedge B=\{x\in L_{A}\cap L_{B}:\nexists y\in L_{A}\cap L_{B}{\mbox{ such that }}x<y\}.} 1517: 1505: 1468: 1443: 1418: 1372: 1341: 1814: 1448: 1438: 1314: 1787: 1453: 1229: 1153: 1110:
Kahn, Jeff (2002), "Entropy, independent sets and antichains: a new approach to Dedekind's problem",
725: 87: 94:
of elements. More generally, counting the number of antichains of a finite partially ordered set is
1719: 1346: 324: 1967: 1950: 1879: 1495: 1007:
A maximum antichain (and its size, the width of a given partially ordered set) can be found in
2005: 1857: 1692: 1683: 1552: 1433: 1387: 1351: 1307: 1037: 554: 462: 60: 54: 43: 1945: 1904: 1894: 1884: 1629: 1592: 1582: 1562: 1547: 1250: 1206: 1135: 965: 550: 79: 8: 1872: 1783: 1729: 1688: 1678: 1567: 1500: 1463: 1198: 815:{\displaystyle A\vee B=\{x\in A\cup B:\nexists y\in A\cup B{\mbox{ such that }}x<y\}.} 563: 68: 971: 437: 1984: 1911: 1764: 1673: 1663: 1604: 1522: 1458: 1210: 1093: 1054: 1032: 947: 631: 577: 532: 512: 492: 417: 397: 374: 350: 301: 236: 216: 149: 129: 109: 1824: 1181:"Recognition algorithms for orders of small width and graphs of small Dilworth number" 1921: 1899: 1759: 1744: 1724: 1527: 1268: 485:
is an antichain that has cardinality at least as large as every other antichain. The
1180: 1734: 1587: 1238: 1214: 1194: 1162: 1148: 1121: 1085: 1046: 458: 1166: 1126: 606:
2, 3, 6, 20, 168, 7581, 7828354, 2414682040998, 56130437228687557907788 (sequence
553:, there would be 2 of its elements belonging to the same chain, a contradiction). 1916: 1699: 1577: 1572: 1557: 1473: 1382: 1367: 1246: 1202: 1185: 1131: 1012: 1008: 944:
The join and meet operations on all finite antichains of finite subsets of a set
599: 95: 91: 47: 1834: 1819: 1809: 1668: 1646: 1624: 1271: 595: 83: 1999: 1933: 1889: 1867: 1739: 1609: 1597: 1402: 478: 167: 75: 53:
The size of the largest antichain in a partially ordered set is known as its
724:
In a finite partial order (or more generally a partial order satisfying the
74:
The family of all antichains in a finite partially ordered set can be given
1754: 1636: 1619: 1537: 1377: 1330: 213:
If two elements are not comparable, they are called incomparable; that is,
35: 826:
operation on antichains, corresponding to the intersection of lower sets:
1960: 1653: 1532: 1397: 1071: 368: 67:
of the partially ordered set (the length of its longest chain) equals by
31: 1011:. Counting the number of antichains in a given partially ordered set is 71:
the minimum number of antichains into which the set can be partitioned.
1928: 1862: 1703: 1291: 1097: 1058: 717:{\displaystyle L_{A}=\{x:\exists y\in A{\mbox{ such that }}x\leq y\}.} 1979: 1658: 1276: 996: 649: 1242: 1089: 1050: 1774: 1641: 1392: 1286: 1299: 392: 319: 1035:(1950), "A decomposition theorem for partially ordered sets", 598:. The number of different Sperner families is counted by the 562:
of a partial order to be the maximum cardinality of a chain.
608: 1179:
Felsner, Stefan; Raghavan, Vijay; Spinrad, Jeremy (2003),
574:
An antichain in the inclusion ordering of subsets of an
457:(However, some authors use the term "antichain" to mean 347:
in which each pair of elements is comparable; that is,
1178: 1074:(1971), "A dual of Dilworth's decomposition theorem", 913: 791: 693: 465:
smaller than two distinct elements of the antichain.)
46:
such that any two distinct elements in the subset are
974: 950: 832: 738: 657: 634: 580: 535: 515: 495: 440: 420: 400: 377: 353: 327: 304: 259: 239: 219: 176: 152: 132: 112: 509:chains then the width of the order must be at most 1266: 983: 956: 936: 814: 716: 640: 586: 541: 521: 501: 449: 426: 406: 383: 359: 339: 310: 288: 245: 225: 205: 158: 138: 118: 1997: 1113:Proceedings of the American Mathematical Society 461:, a subset such that there is no element of the 1315: 968:, the free distributive lattice generated by 289:{\displaystyle x\leq y{\text{ nor }}y\leq x.} 928: 845: 806: 751: 708: 671: 206:{\displaystyle a\leq b{\text{ or }}b\leq a.} 1002: 623: 1973:Positive cone of a partially ordered group 1322: 1308: 1226: 1172: 1125: 126:be a partially ordered set. Two elements 1956:Positive cone of an ordered vector space 1147: 1031: 1220: 1141: 1025: 14: 1998: 1070: 166:of a partially ordered set are called 1303: 1267: 1064: 602:, the first few of which numbers are 1109: 1103: 569: 468: 24: 1483:Properties & Types ( 1199:10.1023/B:ORDE.0000034609.99940.fb 680: 25: 2017: 1939:Positive cone of an ordered field 1260: 992:Birkhoff's representation theorem 1793:Ordered topological vector space 1329: 529:(if the antichain has more than 78:operations, making them into a 27:Subset of incomparable elements 477:is an antichain that is not a 101: 13: 1: 1750:Series-parallel partial order 1167:10.1215/S0012-7094-37-00334-X 1127:10.1090/S0002-9939-01-06058-0 1077:American Mathematical Monthly 1018: 1429:Cantor's isomorphism theorem 340:{\displaystyle C\subseteq S} 253:are incomparable if neither 7: 1469:Szpilrajn extension theorem 1444:Hausdorff maximal principle 1419:Boolean prime ideal theorem 822:Similarly, we can define a 594:-element set is known as a 10: 2022: 1815:Topological vector lattice 481:of any other antichain. A 1845: 1773: 1712: 1482: 1411: 1360: 1337: 1230:SIAM Journal on Computing 1154:Duke Mathematical Journal 1151:(1937), "Rings of sets", 732:operation on antichains: 726:ascending chain condition 88:free distributive lattice 1424:Cantor–Bernstein theorem 1003:Computational complexity 624:Join and meet operations 1968:Partially ordered group 1788:Specialization preorder 86:and their lattice is a 1454:Kruskal's tree theorem 1449:Knaster–Tarski theorem 1439:Dushnik–Miller theorem 999:of the partial order. 985: 958: 938: 816: 718: 642: 588: 543: 523: 503: 451: 428: 408: 385: 361: 341: 312: 290: 247: 227: 207: 160: 140: 120: 1193:(4): 351–364 (2004), 1038:Annals of Mathematics 986: 959: 939: 915: such that  817: 793: such that  719: 695: such that  643: 589: 544: 524: 504: 452: 429: 409: 386: 362: 342: 313: 291: 248: 228: 208: 161: 141: 121: 44:partially ordered set 18:Width (partial order) 1946:Ordered vector space 972: 966:distributive lattice 948: 830: 736: 655: 632: 578: 551:pigeonhole principle 533: 513: 493: 438: 418: 398: 375: 351: 325: 302: 257: 237: 217: 174: 150: 130: 110: 80:distributive lattice 1784:Alexandrov topology 1730:Lexicographic order 1689:Well-quasi-ordering 1033:Dilworth, Robert P. 1765:Transitive closure 1725:Converse/Transpose 1434:Dilworth's theorem 1269:Weisstein, Eric W. 984:{\displaystyle X.} 981: 954: 934: 917: 812: 795: 714: 697: 638: 584: 555:Dilworth's theorem 539: 519: 499: 450:{\displaystyle A.} 447: 424: 404: 381: 371:. An antichain in 357: 337: 308: 286: 243: 223: 203: 156: 136: 116: 61:Dilworth's theorem 1993: 1992: 1951:Partially ordered 1760:Symmetric closure 1745:Reflexive closure 1488: 1149:Birkhoff, Garrett 957:{\displaystyle X} 916: 794: 696: 648:corresponds to a 641:{\displaystyle A} 587:{\displaystyle n} 549:elements, by the 542:{\displaystyle k} 522:{\displaystyle k} 502:{\displaystyle k} 483:maximum antichain 475:maximal antichain 427:{\displaystyle S} 407:{\displaystyle A} 384:{\displaystyle S} 360:{\displaystyle C} 311:{\displaystyle S} 272: 246:{\displaystyle y} 226:{\displaystyle x} 189: 159:{\displaystyle b} 139:{\displaystyle a} 119:{\displaystyle S} 42:is a subset of a 34:, in the area of 16:(Redirected from 2013: 1735:Linear extension 1484: 1464:Mirsky's theorem 1324: 1317: 1310: 1301: 1300: 1296: 1282: 1281: 1254: 1253: 1224: 1218: 1217: 1176: 1170: 1169: 1145: 1139: 1138: 1129: 1107: 1101: 1100: 1068: 1062: 1061: 1029: 990: 988: 987: 982: 963: 961: 960: 955: 943: 941: 940: 935: 918: 914: 911: 910: 898: 897: 876: 875: 863: 862: 821: 819: 818: 813: 796: 792: 723: 721: 720: 715: 698: 694: 667: 666: 647: 645: 644: 639: 611: 600:Dedekind numbers 593: 591: 590: 585: 570:Sperner families 564:Mirsky's theorem 548: 546: 545: 540: 528: 526: 525: 520: 508: 506: 505: 500: 469:Height and width 459:strong antichain 456: 454: 453: 448: 433: 431: 430: 425: 413: 411: 410: 405: 390: 388: 387: 382: 366: 364: 363: 358: 346: 344: 343: 338: 317: 315: 314: 309: 295: 293: 292: 287: 273: 270: 252: 250: 249: 244: 232: 230: 229: 224: 212: 210: 209: 204: 190: 187: 165: 163: 162: 157: 145: 143: 142: 137: 125: 123: 122: 117: 84:Sperner families 69:Mirsky's theorem 21: 2021: 2020: 2016: 2015: 2014: 2012: 2011: 2010: 1996: 1995: 1994: 1989: 1985:Young's lattice 1841: 1769: 1708: 1558:Heyting algebra 1506:Boolean algebra 1478: 1459:Laver's theorem 1407: 1373:Boolean algebra 1368:Binary relation 1356: 1333: 1328: 1285: 1263: 1258: 1257: 1243:10.1137/0212053 1225: 1221: 1177: 1173: 1146: 1142: 1108: 1104: 1090:10.2307/2316481 1069: 1065: 1051:10.2307/1969503 1030: 1026: 1021: 1009:polynomial time 1005: 973: 970: 969: 949: 946: 945: 912: 906: 902: 893: 889: 871: 867: 858: 854: 831: 828: 827: 790: 737: 734: 733: 692: 662: 658: 656: 653: 652: 633: 630: 629: 626: 607: 579: 576: 575: 572: 534: 531: 530: 514: 511: 510: 494: 491: 490: 471: 439: 436: 435: 419: 416: 415: 399: 396: 395: 376: 373: 372: 369:totally ordered 352: 349: 348: 326: 323: 322: 303: 300: 299: 271: nor  269: 258: 255: 254: 238: 235: 234: 218: 215: 214: 186: 175: 172: 171: 151: 148: 147: 131: 128: 127: 111: 108: 107: 104: 92:Dedekind number 28: 23: 22: 15: 12: 11: 5: 2019: 2009: 2008: 1991: 1990: 1988: 1987: 1982: 1977: 1976: 1975: 1965: 1964: 1963: 1958: 1953: 1943: 1942: 1941: 1931: 1926: 1925: 1924: 1919: 1912:Order morphism 1909: 1908: 1907: 1897: 1892: 1887: 1882: 1877: 1876: 1875: 1865: 1860: 1855: 1849: 1847: 1843: 1842: 1840: 1839: 1838: 1837: 1832: 1830:Locally convex 1827: 1822: 1812: 1810:Order topology 1807: 1806: 1805: 1803:Order topology 1800: 1790: 1780: 1778: 1771: 1770: 1768: 1767: 1762: 1757: 1752: 1747: 1742: 1737: 1732: 1727: 1722: 1716: 1714: 1710: 1709: 1707: 1706: 1696: 1686: 1681: 1676: 1671: 1666: 1661: 1656: 1651: 1650: 1649: 1639: 1634: 1633: 1632: 1627: 1622: 1617: 1615:Chain-complete 1607: 1602: 1601: 1600: 1595: 1590: 1585: 1580: 1570: 1565: 1560: 1555: 1550: 1540: 1535: 1530: 1525: 1520: 1515: 1514: 1513: 1503: 1498: 1492: 1490: 1480: 1479: 1477: 1476: 1471: 1466: 1461: 1456: 1451: 1446: 1441: 1436: 1431: 1426: 1421: 1415: 1413: 1409: 1408: 1406: 1405: 1400: 1395: 1390: 1385: 1380: 1375: 1370: 1364: 1362: 1358: 1357: 1355: 1354: 1349: 1344: 1338: 1335: 1334: 1327: 1326: 1319: 1312: 1304: 1298: 1297: 1283: 1262: 1261:External links 1259: 1256: 1255: 1237:(4): 777–788, 1219: 1171: 1161:(3): 443–454, 1140: 1120:(2): 371–378, 1102: 1084:(8): 876–877, 1063: 1045:(1): 161–166, 1023: 1022: 1020: 1017: 1004: 1001: 980: 977: 953: 933: 930: 927: 924: 921: 909: 905: 901: 896: 892: 888: 885: 882: 879: 874: 870: 866: 861: 857: 853: 850: 847: 844: 841: 838: 835: 811: 808: 805: 802: 799: 789: 786: 783: 780: 777: 774: 771: 768: 765: 762: 759: 756: 753: 750: 747: 744: 741: 713: 710: 707: 704: 701: 691: 688: 685: 682: 679: 676: 673: 670: 665: 661: 637: 628:Any antichain 625: 622: 618: 617: 596:Sperner family 583: 571: 568: 561: 538: 518: 498: 488: 470: 467: 446: 443: 423: 403: 380: 356: 336: 333: 330: 307: 285: 282: 279: 276: 268: 265: 262: 242: 222: 202: 199: 196: 193: 188: or  185: 182: 179: 155: 135: 115: 103: 100: 26: 9: 6: 4: 3: 2: 2018: 2007: 2004: 2003: 2001: 1986: 1983: 1981: 1978: 1974: 1971: 1970: 1969: 1966: 1962: 1959: 1957: 1954: 1952: 1949: 1948: 1947: 1944: 1940: 1937: 1936: 1935: 1934:Ordered field 1932: 1930: 1927: 1923: 1920: 1918: 1915: 1914: 1913: 1910: 1906: 1903: 1902: 1901: 1898: 1896: 1893: 1891: 1890:Hasse diagram 1888: 1886: 1883: 1881: 1878: 1874: 1871: 1870: 1869: 1868:Comparability 1866: 1864: 1861: 1859: 1856: 1854: 1851: 1850: 1848: 1844: 1836: 1833: 1831: 1828: 1826: 1823: 1821: 1818: 1817: 1816: 1813: 1811: 1808: 1804: 1801: 1799: 1796: 1795: 1794: 1791: 1789: 1785: 1782: 1781: 1779: 1776: 1772: 1766: 1763: 1761: 1758: 1756: 1753: 1751: 1748: 1746: 1743: 1741: 1740:Product order 1738: 1736: 1733: 1731: 1728: 1726: 1723: 1721: 1718: 1717: 1715: 1713:Constructions 1711: 1705: 1701: 1697: 1694: 1690: 1687: 1685: 1682: 1680: 1677: 1675: 1672: 1670: 1667: 1665: 1662: 1660: 1657: 1655: 1652: 1648: 1645: 1644: 1643: 1640: 1638: 1635: 1631: 1628: 1626: 1623: 1621: 1618: 1616: 1613: 1612: 1611: 1610:Partial order 1608: 1606: 1603: 1599: 1598:Join and meet 1596: 1594: 1591: 1589: 1586: 1584: 1581: 1579: 1576: 1575: 1574: 1571: 1569: 1566: 1564: 1561: 1559: 1556: 1554: 1551: 1549: 1545: 1541: 1539: 1536: 1534: 1531: 1529: 1526: 1524: 1521: 1519: 1516: 1512: 1509: 1508: 1507: 1504: 1502: 1499: 1497: 1496:Antisymmetric 1494: 1493: 1491: 1487: 1481: 1475: 1472: 1470: 1467: 1465: 1462: 1460: 1457: 1455: 1452: 1450: 1447: 1445: 1442: 1440: 1437: 1435: 1432: 1430: 1427: 1425: 1422: 1420: 1417: 1416: 1414: 1410: 1404: 1403:Weak ordering 1401: 1399: 1396: 1394: 1391: 1389: 1388:Partial order 1386: 1384: 1381: 1379: 1376: 1374: 1371: 1369: 1366: 1365: 1363: 1359: 1353: 1350: 1348: 1345: 1343: 1340: 1339: 1336: 1332: 1325: 1320: 1318: 1313: 1311: 1306: 1305: 1302: 1294: 1293: 1288: 1284: 1279: 1278: 1273: 1270: 1265: 1264: 1252: 1248: 1244: 1240: 1236: 1232: 1231: 1223: 1216: 1212: 1208: 1204: 1200: 1196: 1192: 1188: 1187: 1182: 1175: 1168: 1164: 1160: 1156: 1155: 1150: 1144: 1137: 1133: 1128: 1123: 1119: 1115: 1114: 1106: 1099: 1095: 1091: 1087: 1083: 1079: 1078: 1073: 1067: 1060: 1056: 1052: 1048: 1044: 1040: 1039: 1034: 1028: 1024: 1016: 1014: 1010: 1000: 998: 993: 978: 975: 967: 951: 931: 925: 922: 919: 907: 903: 899: 894: 890: 886: 883: 880: 877: 872: 868: 864: 859: 855: 851: 848: 842: 839: 836: 833: 825: 809: 803: 800: 797: 787: 784: 781: 778: 775: 772: 769: 766: 763: 760: 757: 754: 748: 745: 742: 739: 731: 727: 711: 705: 702: 699: 689: 686: 683: 677: 674: 668: 663: 659: 651: 635: 621: 615: 610: 605: 604: 603: 601: 597: 581: 567: 565: 559: 556: 552: 536: 516: 496: 486: 484: 480: 479:proper subset 476: 466: 464: 460: 444: 441: 421: 401: 394: 378: 370: 354: 334: 331: 328: 321: 305: 296: 283: 280: 277: 274: 266: 263: 260: 240: 220: 200: 197: 194: 191: 183: 180: 177: 169: 153: 133: 113: 99: 97: 93: 89: 85: 81: 77: 76:join and meet 72: 70: 66: 62: 58: 57: 51: 49: 45: 41: 37: 33: 19: 2006:Order theory 1852: 1777:& Orders 1755:Star product 1684:Well-founded 1637:Prefix order 1593:Distributive 1583:Complemented 1553:Foundational 1518:Completeness 1474:Zorn's lemma 1378:Cyclic order 1361:Key concepts 1331:Order theory 1290: 1275: 1234: 1228: 1222: 1190: 1184: 1174: 1158: 1152: 1143: 1117: 1111: 1105: 1081: 1075: 1072:Mirsky, Leon 1066: 1042: 1036: 1027: 1006: 823: 729: 627: 619: 573: 482: 474: 472: 297: 105: 73: 64: 55: 52: 48:incomparable 39: 36:order theory 29: 1961:Riesz space 1922:Isomorphism 1798:Normal cone 1720:Composition 1654:Semilattice 1563:Homogeneous 1548:Equivalence 1398:Total order 1287:"Antichain" 1272:"Antichain" 1013:#P-complete 298:A chain in 102:Definitions 96:#P-complete 32:mathematics 1929:Order type 1863:Cofinality 1704:Well-order 1679:Transitive 1568:Idempotent 1501:Asymmetric 1292:PlanetMath 1019:References 997:lower sets 168:comparable 1980:Upper set 1917:Embedding 1853:Antichain 1674:Tolerance 1664:Symmetric 1659:Semiorder 1605:Reflexive 1523:Connected 1277:MathWorld 964:define a 900:∩ 887:∈ 881:∄ 865:∩ 852:∈ 837:∧ 785:∪ 779:∈ 773:∄ 764:∪ 758:∈ 743:∨ 703:≤ 687:∈ 681:∃ 650:lower set 332:⊆ 278:≤ 264:≤ 195:≤ 181:≤ 90:, with a 40:antichain 2000:Category 1775:Topology 1642:Preorder 1625:Eulerian 1588:Complete 1538:Directed 1528:Covering 1393:Preorder 1352:Category 1347:Glossary 1880:Duality 1858:Cofinal 1846:Related 1825:FrĂ©chet 1702:)  1578:Bounded 1573:Lattice 1546:)  1544:Partial 1412:Results 1383:Lattice 1251:0721012 1215:1363140 1207:2079151 1136:1862115 1098:2316481 1059:1969503 612:in the 609:A000372 1905:Subnet 1885:Filter 1835:Normed 1820:Banach 1786:& 1693:Better 1630:Strict 1620:Graded 1511:topics 1342:Topics 1249:  1213:  1205:  1134:  1096:  1057:  560:height 393:subset 320:subset 65:height 1895:Ideal 1873:Graph 1669:Total 1647:Total 1533:Dense 1211:S2CID 1186:Order 1094:JSTOR 1055:JSTOR 487:width 463:poset 391:is a 318:is a 59:. By 56:width 38:, an 1486:list 923:< 824:meet 801:< 730:join 614:OEIS 233:and 146:and 106:Let 1900:Net 1700:Pre 1239:doi 1195:doi 1163:doi 1122:doi 1118:130 1086:doi 1047:doi 414:of 367:is 170:if 30:In 2002:: 1289:. 1274:. 1247:MR 1245:, 1235:12 1233:, 1209:, 1203:MR 1201:, 1191:20 1189:, 1183:, 1157:, 1132:MR 1130:, 1116:, 1092:, 1082:78 1080:, 1053:, 1043:51 1041:, 1015:. 616:). 473:A 98:. 50:. 1698:( 1695:) 1691:( 1542:( 1489:) 1323:e 1316:t 1309:v 1295:. 1280:. 1241:: 1197:: 1165:: 1159:3 1124:: 1088:: 1049:: 979:. 976:X 952:X 932:. 929:} 926:y 920:x 908:B 904:L 895:A 891:L 884:y 878:: 873:B 869:L 860:A 856:L 849:x 846:{ 843:= 840:B 834:A 810:. 807:} 804:y 798:x 788:B 782:A 776:y 770:: 767:B 761:A 755:x 752:{ 749:= 746:B 740:A 712:. 709:} 706:y 700:x 690:A 684:y 678:: 675:x 672:{ 669:= 664:A 660:L 636:A 582:n 537:k 517:k 497:k 445:. 442:A 422:S 402:A 379:S 355:C 335:S 329:C 306:S 284:. 281:x 275:y 267:y 261:x 241:y 221:x 201:. 198:a 192:b 184:b 178:a 154:b 134:a 114:S 20:)

Index

Width (partial order)
mathematics
order theory
partially ordered set
incomparable
width
Dilworth's theorem
Mirsky's theorem
join and meet
distributive lattice
Sperner families
free distributive lattice
Dedekind number
#P-complete
comparable
subset
totally ordered
subset
strong antichain
poset
proper subset
pigeonhole principle
Dilworth's theorem
Mirsky's theorem
Sperner family
Dedekind numbers
A000372
OEIS
lower set
ascending chain condition

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑