Knowledge

Mirsky's theorem

Source đź“ť

156:
different antichains, so the number of antichains is always greater than or equal to the height; another formulation of Mirsky's theorem is that there always exists a partition for which the number of antichains equals the height. Again, in the example of positive integers ordered by divisibility, the numbers can be partitioned into the antichains {1}, {2,3}, {4,5,6,7}, etc. There are
236:, is an antichain, and these antichains partition the partial order into a number of antichains equal to the size of the largest chain. In his original proof, Mirsky constructs the same partition inductively, by choosing an antichain of the maximal elements of longest chains, and showing that the length of the longest chain among the remaining elements is reduced by one. 285:
of a partially ordered set, a clique represents a chain and a coloring represents a partition into antichains, and induced subgraphs of comparability graphs are themselves comparability graphs, so Mirsky's theorem states that comparability graphs are perfect. Analogously, Dilworth's theorem states
155:
Mirsky's theorem states that, for every finite partially ordered set, the height also equals the minimum number of antichains (subsets in which no pair of elements are ordered) into which the set may be partitioned. In such a partition, every two elements of the longest chain must go into two
261:
ordering of points in general position in the plane is an antichain in the set of points formed by a 90° rotation from the original set, and vice versa) but for more general partial orders the two theorems differ, and (as Mirsky observes) Dilworth's theorem is more difficult to prove.
419:
Mirsky's theorem extends immediately to infinite partially ordered sets with finite height. However, the relation between the length of a chain and the number of antichains in a partition into antichains does not extend to infinite cardinalities: for every infinite
350:
gives the longest chain in the reachability ordering, and the sets of vertices with the same image in a homomorphism to a transitive tournament form a partition into antichains. This statement generalizes to the case that
199: 150: 253:, stating that, for every partially ordered set, the maximum size of an antichain equals the minimum number of chains in a partition of the set into chains. For sets of 201:
sets in this partition, and within each of these sets, every pair of numbers forms a ratio less than two, so no two numbers within one of these sets can be divisible.
298:
states that the complements of perfect graphs are always perfect, and can be used to deduce Dilworth's theorem from Mirsky's theorem and vice versa (
424:κ, there exist partially ordered sets that have no infinite chain and that do not have an antichain partition with κ or fewer antichains ( 204:
To prove the existence of a partition into a small number of antichains for an arbitrary finite partially ordered set, consider for every element
356: 64: 1315: 1298: 828: 664: 586: 1145: 1358: 1281: 1140: 484: 1135: 159: 110: 771: 853: 507: 1172: 1092: 533: 396: 76: 957: 886: 766: 860: 848: 811: 786: 761: 715: 684: 1157: 791: 781: 657: 364: 379:
It follows from either Dilworth's theorem or Mirsky's theorem that, in every partially ordered set of
1130: 796: 331: 1062: 689: 566: 403: + 1 totally ordered elements there must exist a monotonically increasing subsequence of 1353: 1310: 1293: 472: 1222: 838: 562: 311: 1348: 1200: 1035: 1026: 895: 776: 730: 694: 650: 443: 291: 265:
Mirsky's theorem and Dilworth's theorem are also related to each other through the theory of
250: 52: 36: 502: 1288: 1247: 1237: 1227: 972: 935: 925: 905: 890: 627: 596: 494: 107:
that lie within that range, from which it follows that the height of this partial order is
95:
subset of the given partial order. For instance, in the set of positive integers from 1 to
68: 8: 1215: 1126: 1072: 1031: 1021: 910: 843: 282: 60: 1327: 1254: 1107: 1016: 1006: 947: 865: 801: 631: 550: 460: 438: 395:
uses this observation, applied to a partial order of order dimension two, to prove the
319: 1167: 1264: 1242: 1102: 1087: 1067: 870: 582: 520: 480: 635: 87:
The height of a partially ordered set is defined to be the maximum cardinality of a
1077: 930: 615: 574: 542: 516: 452: 287: 278: 274: 1259: 1042: 920: 915: 900: 816: 725: 710: 623: 606: 592: 490: 421: 254: 573:, Algorithms and Combinatorics, vol. 28, Heidelberg: Springer, p. 42, 1177: 1162: 1152: 1011: 989: 967: 360: 72: 619: 578: 1342: 1276: 1232: 1210: 1082: 952: 940: 745: 270: 266: 56: 28: 1097: 979: 962: 880: 720: 673: 315: 258: 104: 100: 24: 1303: 996: 875: 740: 528: 92: 44: 20: 1271: 1205: 1046: 554: 464: 339: 1322: 1195: 1001: 604:
Schmerl, James H. (2002), "Obstacles to extending Mirsky's theorem",
407: + 1 elements or a monotonically decreasing subsequence of 88: 40: 546: 475:(1980), "5.7. Coloring and other problems on comparability graphs", 456: 1117: 984: 735: 642: 505:(1972), "Normal hypergraphs and the perfect graph conjecture", 441:(1950), "A Decomposition Theorem for Partially Ordered Sets", 39:
in terms of a partition of the order into a minimum number of
16:
Characterizes the height of any finite partially ordered set
334:
if and only if there does not exist a homomorphism from a (
346:. For, the largest path graph that has a homomorphism to 318:
of their vertices), as the statement that there exists a
561: 368: 531:(1971), "A dual of Dilworth's decomposition theorem", 383: + 1 elements, there must exist a chain of 162: 113: 232:), consisting of elements that have equal values of 305: 193: 144: 1340: 257:two, the two theorems coincide (a chain in the 479:, New York: Academic Press, pp. 132–135, 281:equals the size of the largest clique. In the 658: 310:Mirsky's theorem can be restated in terms of 571:Sparsity: Graphs, Structures, and Algorithms 194:{\displaystyle 1+\lfloor \log _{2}N\rfloor } 188: 169: 145:{\displaystyle 1+\lfloor \log _{2}N\rfloor } 139: 120: 103:, one of the largest chains consists of the 477:Algorithmic Graph Theory and Perfect Graphs 387: + 1 elements or an antichain of 1316:Positive cone of a partially ordered group 665: 651: 220:) denote the size of the largest of these 374: 314:(representing a partially ordered set by 290:of a comparability graph is perfect. The 1299:Positive cone of an ordered vector space 471: 437: 299: 55:on the widths of partial orders, to the 603: 425: 35:characterizes the height of any finite 1341: 527: 501: 392: 295: 48: 646: 355:is not acyclic, and is a form of the 244: 369:NešetĹ™il & Ossona de Mendez 2012 322:from a given directed acyclic graph 13: 826:Properties & Types ( 239: 212:as their largest element, and let 14: 1370: 1282:Positive cone of an ordered field 1136:Ordered topological vector space 672: 357:Gallai–Hasse–Roy–Vitaver theorem 306:Gallai–Hasse–Roy–Vitaver theorem 65:Gallai–Hasse–Roy–Vitaver theorem 224:-maximal chains. Then each set 82: 1: 1093:Series-parallel partial order 534:American Mathematical Monthly 431: 414: 772:Cantor's isomorphism theorem 521:10.1016/0012-365X(72)90006-4 51:) and is closely related to 7: 812:Szpilrajn extension theorem 787:Hausdorff maximal principle 762:Boolean prime ideal theorem 79:on monotonic subsequences. 10: 1375: 1158:Topological vector lattice 399:that in every sequence of 1359:Theorems in combinatorics 1188: 1116: 1055: 825: 754: 703: 680: 579:10.1007/978-3-642-27875-4 567:Ossona de Mendez, Patrice 411: + 1 elements. 391: + 1 elements. 269:. An undirected graph is 767:Cantor–Bernstein theorem 569:(2012), "Theorem 3.13", 473:Golumbic, Martin Charles 1311:Partially ordered group 1131:Specialization preorder 620:10.1023/A:1016541101728 338: + 1)-vertex 312:directed acyclic graphs 249:Mirsky was inspired by 797:Kruskal's tree theorem 792:Knaster–Tarski theorem 782:Dushnik–Miller theorem 397:ErdĹ‘s–Szekeres theorem 375:ErdĹ‘s–Szekeres theorem 195: 146: 77:ErdĹ‘s–Szekeres theorem 75:in graphs, and to the 444:Annals of Mathematics 332:transitive tournament 292:perfect graph theorem 208:the chains that have 196: 147: 37:partially ordered set 1289:Ordered vector space 508:Discrete Mathematics 160: 111: 61:comparability graphs 1127:Alexandrov topology 1073:Lexicographic order 1032:Well-quasi-ordering 439:Dilworth, Robert P. 283:comparability graph 1108:Transitive closure 1068:Converse/Transpose 777:Dilworth's theorem 563:NešetĹ™il, Jaroslav 320:graph homomorphism 251:Dilworth's theorem 245:Dilworth's theorem 191: 142: 53:Dilworth's theorem 43:. It is named for 23:, in the areas of 1336: 1335: 1294:Partially ordered 1103:Symmetric closure 1088:Reflexive closure 831: 588:978-3-642-27874-7 1366: 1078:Linear extension 827: 807:Mirsky's theorem 667: 660: 653: 644: 643: 638: 599: 557: 523: 497: 467: 288:complement graph 279:chromatic number 275:induced subgraph 200: 198: 197: 192: 181: 180: 151: 149: 148: 143: 132: 131: 33:Mirsky's theorem 1374: 1373: 1369: 1368: 1367: 1365: 1364: 1363: 1339: 1338: 1337: 1332: 1328:Young's lattice 1184: 1112: 1051: 901:Heyting algebra 849:Boolean algebra 821: 802:Laver's theorem 750: 716:Boolean algebra 711:Binary relation 699: 676: 671: 589: 547:10.2307/2316481 487: 457:10.2307/1969503 434: 422:cardinal number 417: 377: 361:graph colorings 308: 255:order dimension 247: 242: 240:Related results 176: 172: 161: 158: 157: 127: 123: 112: 109: 108: 93:totally ordered 85: 45:Leon Mirsky 17: 12: 11: 5: 1372: 1362: 1361: 1356: 1354:Perfect graphs 1351: 1334: 1333: 1331: 1330: 1325: 1320: 1319: 1318: 1308: 1307: 1306: 1301: 1296: 1286: 1285: 1284: 1274: 1269: 1268: 1267: 1262: 1255:Order morphism 1252: 1251: 1250: 1240: 1235: 1230: 1225: 1220: 1219: 1218: 1208: 1203: 1198: 1192: 1190: 1186: 1185: 1183: 1182: 1181: 1180: 1175: 1173:Locally convex 1170: 1165: 1155: 1153:Order topology 1150: 1149: 1148: 1146:Order topology 1143: 1133: 1123: 1121: 1114: 1113: 1111: 1110: 1105: 1100: 1095: 1090: 1085: 1080: 1075: 1070: 1065: 1059: 1057: 1053: 1052: 1050: 1049: 1039: 1029: 1024: 1019: 1014: 1009: 1004: 999: 994: 993: 992: 982: 977: 976: 975: 970: 965: 960: 958:Chain-complete 950: 945: 944: 943: 938: 933: 928: 923: 913: 908: 903: 898: 893: 883: 878: 873: 868: 863: 858: 857: 856: 846: 841: 835: 833: 823: 822: 820: 819: 814: 809: 804: 799: 794: 789: 784: 779: 774: 769: 764: 758: 756: 752: 751: 749: 748: 743: 738: 733: 728: 723: 718: 713: 707: 705: 701: 700: 698: 697: 692: 687: 681: 678: 677: 670: 669: 662: 655: 647: 641: 640: 614:(2): 209–211, 601: 587: 559: 541:(8): 876–877, 525: 515:(3): 253–267, 503:Lovász, LászlĂł 499: 485: 469: 451:(1): 161–166, 433: 430: 416: 413: 376: 373: 307: 304: 267:perfect graphs 246: 243: 241: 238: 190: 187: 184: 179: 175: 171: 168: 165: 141: 138: 135: 130: 126: 122: 119: 116: 84: 81: 15: 9: 6: 4: 3: 2: 1371: 1360: 1357: 1355: 1352: 1350: 1347: 1346: 1344: 1329: 1326: 1324: 1321: 1317: 1314: 1313: 1312: 1309: 1305: 1302: 1300: 1297: 1295: 1292: 1291: 1290: 1287: 1283: 1280: 1279: 1278: 1277:Ordered field 1275: 1273: 1270: 1266: 1263: 1261: 1258: 1257: 1256: 1253: 1249: 1246: 1245: 1244: 1241: 1239: 1236: 1234: 1233:Hasse diagram 1231: 1229: 1226: 1224: 1221: 1217: 1214: 1213: 1212: 1211:Comparability 1209: 1207: 1204: 1202: 1199: 1197: 1194: 1193: 1191: 1187: 1179: 1176: 1174: 1171: 1169: 1166: 1164: 1161: 1160: 1159: 1156: 1154: 1151: 1147: 1144: 1142: 1139: 1138: 1137: 1134: 1132: 1128: 1125: 1124: 1122: 1119: 1115: 1109: 1106: 1104: 1101: 1099: 1096: 1094: 1091: 1089: 1086: 1084: 1083:Product order 1081: 1079: 1076: 1074: 1071: 1069: 1066: 1064: 1061: 1060: 1058: 1056:Constructions 1054: 1048: 1044: 1040: 1037: 1033: 1030: 1028: 1025: 1023: 1020: 1018: 1015: 1013: 1010: 1008: 1005: 1003: 1000: 998: 995: 991: 988: 987: 986: 983: 981: 978: 974: 971: 969: 966: 964: 961: 959: 956: 955: 954: 953:Partial order 951: 949: 946: 942: 941:Join and meet 939: 937: 934: 932: 929: 927: 924: 922: 919: 918: 917: 914: 912: 909: 907: 904: 902: 899: 897: 894: 892: 888: 884: 882: 879: 877: 874: 872: 869: 867: 864: 862: 859: 855: 852: 851: 850: 847: 845: 842: 840: 839:Antisymmetric 837: 836: 834: 830: 824: 818: 815: 813: 810: 808: 805: 803: 800: 798: 795: 793: 790: 788: 785: 783: 780: 778: 775: 773: 770: 768: 765: 763: 760: 759: 757: 753: 747: 746:Weak ordering 744: 742: 739: 737: 734: 732: 731:Partial order 729: 727: 724: 722: 719: 717: 714: 712: 709: 708: 706: 702: 696: 693: 691: 688: 686: 683: 682: 679: 675: 668: 663: 661: 656: 654: 649: 648: 645: 637: 633: 629: 625: 621: 617: 613: 609: 608: 602: 598: 594: 590: 584: 580: 576: 572: 568: 564: 560: 556: 552: 548: 544: 540: 536: 535: 530: 526: 522: 518: 514: 510: 509: 504: 500: 496: 492: 488: 486:0-12-289260-7 482: 478: 474: 470: 466: 462: 458: 454: 450: 446: 445: 440: 436: 435: 429: 427: 423: 412: 410: 406: 402: 398: 394: 393:Mirsky (1971) 390: 386: 382: 372: 370: 366: 362: 358: 354: 349: 345: 341: 337: 333: 329: 325: 321: 317: 313: 303: 301: 300:Golumbic 1980 297: 296:Lovász (1972) 293: 289: 284: 280: 276: 273:if, in every 272: 268: 263: 260: 256: 252: 237: 235: 231: 227: 223: 219: 215: 211: 207: 202: 185: 182: 177: 173: 166: 163: 153: 136: 133: 128: 124: 117: 114: 106: 105:powers of two 102: 99:, ordered by 98: 94: 90: 80: 78: 74: 70: 69:longest paths 66: 62: 58: 54: 50: 46: 42: 38: 34: 30: 29:combinatorics 26: 22: 1349:Order theory 1120:& Orders 1098:Star product 1027:Well-founded 980:Prefix order 936:Distributive 926:Complemented 896:Foundational 861:Completeness 817:Zorn's lemma 806: 721:Cyclic order 704:Key concepts 674:Order theory 611: 605: 570: 538: 532: 529:Mirsky, Leon 512: 506: 476: 448: 442: 426:Schmerl 2002 418: 408: 404: 400: 388: 384: 380: 378: 365:orientations 352: 347: 343: 335: 327: 323: 316:reachability 309: 264: 259:majorization 248: 233: 229: 225: 221: 217: 213: 209: 205: 203: 154: 101:divisibility 96: 86: 32: 25:order theory 18: 1304:Riesz space 1265:Isomorphism 1141:Normal cone 1063:Composition 997:Semilattice 906:Homogeneous 891:Equivalence 741:Total order 286:that every 83:The theorem 21:mathematics 1343:Categories 1272:Order type 1206:Cofinality 1047:Well-order 1022:Transitive 911:Idempotent 844:Asymmetric 432:References 415:Extensions 340:path graph 57:perfection 41:antichains 1323:Upper set 1260:Embedding 1196:Antichain 1017:Tolerance 1007:Symmetric 1002:Semiorder 948:Reflexive 866:Connected 189:⌋ 183:⁡ 170:⌊ 140:⌋ 134:⁡ 121:⌊ 73:colorings 67:relating 63:, to the 1118:Topology 985:Preorder 968:Eulerian 931:Complete 881:Directed 871:Covering 736:Preorder 695:Category 690:Glossary 636:26514679 330:-vertex 1223:Duality 1201:Cofinal 1189:Related 1168:FrĂ©chet 1045:)  921:Bounded 916:Lattice 889:)  887:Partial 755:Results 726:Lattice 628:1922918 597:2920058 555:2316481 495:0562306 465:1969503 271:perfect 47: ( 1248:Subnet 1228:Filter 1178:Normed 1163:Banach 1129:& 1036:Better 973:Strict 963:Graded 854:topics 685:Topics 634:  626:  595:  585:  553:  493:  483:  463:  277:, the 1238:Ideal 1216:Graph 1012:Total 990:Total 876:Dense 632:S2CID 607:Order 551:JSTOR 461:JSTOR 326:to a 89:chain 829:list 583:ISBN 481:ISBN 363:and 91:, a 71:and 49:1971 27:and 1243:Net 1043:Pre 616:doi 575:doi 543:doi 517:doi 453:doi 428:). 371:). 359:on 342:to 302:). 294:of 174:log 125:log 59:of 19:In 1345:: 630:, 624:MR 622:, 612:19 610:, 593:MR 591:, 581:, 565:; 549:, 539:78 537:, 511:, 491:MR 489:, 459:, 449:51 447:, 401:rs 381:rs 152:. 31:, 1041:( 1038:) 1034:( 885:( 832:) 666:e 659:t 652:v 639:. 618:: 600:. 577:: 558:. 545:: 524:. 519:: 513:2 498:. 468:. 455:: 409:s 405:r 389:s 385:r 367:( 353:G 348:G 344:G 336:k 328:k 324:G 234:N 230:i 228:( 226:N 222:x 218:x 216:( 214:N 210:x 206:x 186:N 178:2 167:+ 164:1 137:N 129:2 118:+ 115:1 97:N

Index

mathematics
order theory
combinatorics
partially ordered set
antichains
Leon Mirsky
1971
Dilworth's theorem
perfection
comparability graphs
Gallai–Hasse–Roy–Vitaver theorem
longest paths
colorings
Erdős–Szekeres theorem
chain
totally ordered
divisibility
powers of two
Dilworth's theorem
order dimension
majorization
perfect graphs
perfect
induced subgraph
chromatic number
comparability graph
complement graph
perfect graph theorem
Lovász (1972)
Golumbic 1980

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑