Knowledge

Perfect graph

Source 📝

322:
this characterization remains invariant under complementation of graphs, it implies the perfect graph theorem. One direction of this characterization follows easily from the original definition of perfect: the number of vertices in any graph equals the sum of the sizes of the color classes in an optimal coloring, and is less than or equal to the number of colors multiplied by the independence number. In a perfect graph, the number of colors equals the clique number, and can be replaced by the clique number in this inequality. The other direction can be proved directly, but it also follows from the strong perfect graph theorem: if a graph is not perfect, it contains an odd cycle or its complement, and in these subgraphs the product of the clique number and independence number is one less than the number of vertices.
902: 1860: 218: 2774:; for Berge graphs, this follows from the definition, while for perfect graphs it follows from the characterization using the product of the clique number and independence number. After the strong perfect graph theorem was proved, Chudnovsky, Cornuéjols, Liu, Seymour, and Vušković discovered a polynomial time algorithm for testing the existence of odd holes or anti-holes. By the strong perfect graph theorem, this can be used to test whether a given graph is perfect, in polynomial time. 1982: 22: 479: 1675: 181: 756: 1508:
the graphs that are both comparability and incomparability graphs. A clique, in a permutation graph, is a subsequence of elements that appear in increasing order in the given permutation, and an independent set is a subsequence of elements that appear in decreasing order. In any perfect graph, the product of the clique number and independence number are at least the number of vertices; the special case of this inequality for permutation graphs is the
1382:
easier to prove directly than Dilworth's theorem: if each element is labeled by the size of the largest chain in which it is maximal, then the subsets with equal labels form a partition into antichains, with the number of antichains equal to the size of the largest chain overall. Every bipartite graph is a comparability graph. Thus, Kőnig's theorem can be seen as a special case of Dilworth's theorem, connected through the theory of perfect graphs.
1386: 1516: 398:, and published by them in 2006. This work won its authors the 2009 Fulkerson Prize. The perfect graph theorem has a short proof, but the proof of the strong perfect graph theorem is long and technical, based on a deep structural decomposition of Berge graphs. Related decomposition techniques have also borne fruit in the study of other graph classes, and in particular for the 350:, in German, and the first use of the phrase "perfect graph" appears to be in a 1963 paper of Berge. In these works he unified Gallai's result with several similar results by defining perfect graphs, and he conjectured both the perfect graph theorem and the strong perfect graph theorem. In formulating these concepts, Berge was motivated by the concept of the 507:(as many disjoint edges as possible) together with one-vertex cliques for all remaining vertices, and its size is the number of vertices minus the number of matching edges. Therefore, this equality can be expressed equivalently as an equality between the size of the maximum matching and the minimum vertex cover in bipartite graphs, the usual formulation of 293:(the fewest number of cliques needed in a clique cover). More strongly, the same thing is true in every induced subgraph of the complement graph. This provides an alternative and equivalent definition of the perfect graphs: they are the graphs for which, in each induced subgraph, the independence number equals the clique cover number. 2645:, and for any graph the Lovász number is sandwiched between the chromatic number and clique number. Because these two numbers equal each other in perfect graphs, they also equal the Lovász number. Thus, they can be computed by approximating the Lovász number accurately enough and rounding the result to the nearest integer. 2656:. It leads to a polynomial time algorithm for computing the chromatic number and clique number in perfect graphs. However, solving these problems using the Lovász number and the ellipsoid method is complicated and has a high polynomial exponent. More efficient combinatorial algorithms are known for many special cases. 354:, by the fact that for (co-)perfect graphs it equals the independence number, and by the search for minimal examples of graphs for which this is not the case. Until the strong perfect graph theorem was proven, the graphs described by it (that is, the graphs with no odd hole and no odd antihole) were called 2769:
Beyond solving these problems, another important computational problem concerning perfect graphs is their recognition, the problem of testing whether a given graph is perfect. For many years the complexity of recognizing Berge graphs and perfect graphs were considered separately (as they were not yet
1381:
states that for every finite partial order, the size of the largest chain equals the minimum number of antichains into which the elements can be partitioned, or that every finite incomparability graph is perfect. These two theorems are equivalent via the perfect graph theorem, but Mirsky's theorem is
743:
of the underlying bipartite graph, the minimum number of colors needed to color the edges so that touching edges have different colors. Each color class forms a matching, and the chromatic index is the minimum number of matchings needed to cover all edges. The equality of maximum degree and chromatic
2659:
This method can also be generalized to find the maximum weight of a clique, in a weighted graph, instead of the clique number. A maximum or maximum weight clique itself, and an optimal coloring of the graph, can also be found by these methods, and a maximum independent set can be found by applying
2008:
have equal parity: either they are all even in length, or they are all odd in length. These include the distance-hereditary graphs, in which all induced paths between two vertices have the same length, and bipartite graphs, for which all paths (not just induced paths) between any two vertices have
1507:
in both the given sequence and its permutation. The complement of a permutation graph is another permutation graph, for the reverse of the given permutation. Therefore, as well as being incomparability graphs, permutation graphs are comparability graphs. In fact, the permutation graphs are exactly
1377:, in the theory of partial orders, states that for every finite partial order, the size of the largest antichain equals the minimum number of chains into which the elements can be partitioned. In the language of graphs, this can be stated as: every finite comparability graph is perfect. Similarly, 321:
These results can be combined in another characterization of perfect graphs: they are the graphs for which the product of the clique number and independence number is greater than or equal to the number of vertices, and for which the same is true for all induced subgraphs. Because the statement of
888:
The bipartite graphs, their complements, and the line graphs of bipartite graphs and their complements form four basic classes of perfect graphs that play a key role in the proof of the strong perfect graph theorem. According to the structural decomposition of perfect graphs used as part of this
209:
of a graph is the minimum number of colors in any coloring. The colorings shown are optimal, so the chromatic number is three for the 7-cycle and four for the other graph shown. The vertices of any clique must have different colors, so the chromatic number is always greater than or equal to the
304:
and their complements within a given graph. A cycle of odd length, greater than three, is not perfect: its clique number is two, but its chromatic number is three. By the perfect graph theorem, the complement of an odd cycle of length greater than three is also not perfect. The complement of a
1930:(connected to all other vertices). They are special cases of the split graphs and the trivially perfect graphs. They are exactly the graphs that are both trivially perfect and the complement of a trivially perfect graph; they are also exactly the graphs that are both cographs and split graphs. 1690:
is a graph that can be partitioned into a clique and an independent set. It can be colored by assigning a separate color to each vertex of a maximal clique, and then coloring each remaining vertex the same as a non-adjacent clique vertex. Therefore, these graphs have equal clique numbers and
1641:
whenever the two intervals have a point in common. Coloring these graphs can be used to model problems of assigning resources to tasks (such as classrooms to classes) with intervals describing the scheduled time of each task. Both interval graphs and permutation graphs are generalized by the
1950:, the graphs for which there exists an ordering that, when restricted to any induced subgraph, causes greedy coloring to be optimal. The cographs are exactly the graphs for which all vertex orderings have this property. Another subclass of perfectly orderable graphs are the complements of 1831:
are the graphs formed by a construction of this type in which, at the time a vertex is added, its neighbors form a clique. Chordal graphs may also be characterized as the graphs that have no holes (even or odd). They include as special cases the forests, the interval graphs, and the
1822:
Several families of perfect graphs can be characterized by an incremental construction in which the graphs in the family are built up by adding one vertex at a time, according to certain rules, which guarantee that after each vertex is added the graph remains perfect.
2414:, with a coefficient that is one in the columns of vertices that belong to the clique and zero in the remaining columns. The integral linear programs encoded by this matrix seek the maximum-weight independent set of the given graph, with weights given by the vector 724:. Therefore, in line graphs of bipartite graphs, the independence number and clique cover number are equal. Induced subgraphs of line graphs of bipartite graphs are line graphs of subgraphs, so the line graphs of bipartite graphs are perfect. Examples include the 491:(with at least one edge) the chromatic number and clique number both equal two. Their induced subgraphs remain bipartite, so bipartite graphs are perfect. Other important families of graphs are bipartite, and therefore also perfect, including for instance the 2009:
equal parity. Parity graphs are Meyniel graphs, and therefore perfect: if a long odd cycle had only one chord, the two parts of the cycle between the endpoints of the chord would be induced paths of different parity. The prism over any parity graph (its
2798:
are defined as graphs in which, in every induced subgraph, the smallest dominating set (a set of vertices adjacent to all remaining vertices) equals the size of the smallest independent set that is a dominating set. These include, for instance, the
94:. In all graphs, the chromatic number is greater than or equal to the size of the maximum clique, but they can be far apart. A graph is perfect when these numbers are equal, and remain equal after the deletion of arbitrary subsets of vertices. 365:
in 1972, who in the same year proved the stronger inequality between the number of vertices and the product of the clique number and independence number, without benefit of the strong perfect graph theorem. In 1991, Alfred Lehman won the
317:
that are not triangles are called "holes", and their complements are called "antiholes", so the strong perfect graph theorem can be stated more succinctly: a graph is perfect if and only if it has neither an odd hole nor an odd antihole.
1942:. Similarly, if the vertices of a distance-hereditary graph are colored in the order of an incremental construction sequence, the resulting coloring will be optimal. If the vertices of a comparability graph are colored in the order of a 210:
clique number. For some graphs, they are equal; for others, such as the ones shown, they are unequal. The perfect graphs are defined as the graphs for which these two numbers are equal, not just in the graph itself, but in every
889:
proof, every perfect graph that is not already in one of these four classes can be decomposed by partitioning its vertices into subsets, in one of four ways, called a 2-join, the complement of a 2-join, a homogeneous pair, or a
1441:), which form the vertices of the graph. The edges of a permutation graph connect pairs of elements whose ordering is reversed by the given permutation. These are naturally incomparability graphs, for a partial order in which 1289:
Finite comparability graphs (and their complementary incomparability graphs) are always perfect. A clique, in a comparability graph, comes from a subset of elements that are all pairwise comparable; such a subset is called a
1654:. These have been used to model human preferences under the assumption that, when items have utilities that are very close to each other, they will be incomparable. Intervals where every pair is nested or disjoint produce 1372:
is an antichain in the order and an independent set in the graph. Thus, a coloring of a comparability graph is a partition of its elements into antichains, and a clique cover is a partition of its elements into chains.
2409:
with this property is (up to removal of irrelevant "dominated" rows) the maximal clique versus vertex incidence matrix of a perfect graph. This matrix has a column for each vertex of the graph, and a row for each
1875:
are formed, starting from a single-vertex graph, by repeatedly adding degree-one vertices ("pendant vertices") or copies of existing vertices (with the same neighbors). Each vertex and its copy may be adjacent
482:
A bipartite graph (left) and its line graph (right). The shaded cliques in the line graph correspond to the vertices of the underlying bipartite graph, and have size equal to the degree of the corresponding
184:
A seven-vertex cycle and its complement, showing in each case an optimal coloring and a maximum clique (shown with heavy edges). Neither graph uses a number of colors equal to its clique size, so neither is
2793:
The equality of the clique number and chromatic number in perfect graphs has motivated the definition of other graph classes, in which other graph invariants are set equal to each other. For instance, the
1682:, obtained by giving each vertex of a maximal clique (heavy vertices and edges) a separate color, and then giving each remaining vertex the same color as a clique vertex to which it is not adjacent 2548:
corresponding to the maximal cliques in the graph. The perfect graphs are the only graphs for which the two polytopes defined in this way from independent sets and from maximal cliques coincide.
1907:. They have a restricted form of the distance-hereditary construction sequence, in which a false twin can only be added when its neighbors would form a clique. They include as special cases the 1699:, a disjoint union of cliques. These include also the bipartite graphs, for which the cluster graph is just a single clique. The unipolar graphs and their complements together form the class of 1750:
Other limiting properties of almost all perfect graphs can be determined by studying the generalized split graphs. In this way, it has been shown that almost all perfect graphs contain a
499:. By the perfect graph theorem, maximum independent sets in bipartite graphs have the same size as their minimum clique covers. The maximum independent set is complementary to a minimum 233:
of a perfect graph is itself perfect. The complement graph has an edge between two vertices if and only if the given graph does not. A clique, in the complement graph, corresponds to an
2580:, so that each two non-adjacent vertices have perpendicular labels, and so that all of the vectors lie in a cone with as small an opening angle as possible. Then, the Lovász number is 1978:, every vertex belongs to such an independent set. The Meyniel graphs can also be characterized as the graphs in which every odd cycle of length five or more has at least two chords. 2786:
if the chromatic number of the graphs in the class can be bounded by a function of their clique number. The perfect graphs are exactly the graphs for which this function is the
2619: 1884:). In every connected induced subgraph of these graphs, the distances between vertices are the same as in the whole graph. If only the twin operations are used, the result is a 346:, a much earlier result relating matchings and vertex covers in bipartite graphs. The first formulation of the concept of perfect graphs more generally was in a 1961 paper by 313:
for the perfect graphs: a graph is perfect if and only if its induced subgraphs include neither an odd cycle nor an odd anticycle of five or more vertices. In this context,
4142:
Skrien, Dale J. (1982). "A relationship between triangulated graphs, comparability graphs, proper interval graphs, proper circular-arc graphs, and nested interval graphs".
3192:
For the relation between the strong perfect graph theorem and the product characterization of perfect graphs, see remarks preceding Theorem 2.1 and following Theorem 2.2.
1272: 1338: 735:
Because line graphs of bipartite graphs are perfect, their clique number equals their chromatic number. The clique number of the line graph of a bipartite graph is the
2530: 2138: 2083: 2639: 2501: 2204:
are given as two vectors. Although linear programs and integer programs are specified in this same way, they differ in that, in a linear program, the solution vector
2109: 1559: 1465: 1370: 1248: 1222: 1152: 1126: 1100: 1044: 1018: 988: 64: 382:. The conjectured strong perfect graph theorem became the focus of research in the theory of perfect graphs for many years, until its proof was announced in 2002 by 938: 879: 788: 841: 702: 613: 564: 2762:
The algorithm for finding an optimal coloring is more complicated, and depends on the duality theory of linear programs, using this clique-finding algorithm as a
1070: 2751: 2731: 2705: 2682: 2475: 2455: 2432: 2407: 2380: 2356: 2336: 2301: 2281: 2261: 2222: 2202: 2182: 2158: 2054: 1812: 1792: 1772: 1745: 1725: 1639: 1619: 1599: 1579: 1505: 1485: 1439: 1419: 1192: 1172: 962: 812: 722: 673: 653: 633: 584: 532: 279: 259: 2307:
if an optimal solution to the integer program is also optimal for the linear program. (Otherwise, the ratio between the two solution values is called the
5061:
Jansen, Klaus (1998). "A new characterization for parity graphs and a coloring problem with costs". In Lucchesi, Claudio L.; Moura, Arnaldo V. (eds.).
4799:
Gavril, Fanica (1972). "Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and maximum independent set of a chordal graph".
4475:
Graphs and Combinatorics: Proceedings of the Capital Conference on Graph Theory and Combinatorics at the George Washington University, June 18–22, 1973
885:, sets of triangles sharing an edge. These components are perfect, and their combination preserves perfection, so every line perfect graph is perfect. 462:. Other important classes of graphs, defined by having a structure related to the holes and antiholes of the strong perfect graph theorem, include the 3207: 197:
is a subset of its vertices that are all adjacent to each other, such as the subsets of vertices connected by heavy edges in the illustration. The
1282:
of a partially ordered set has the set elements as its vertices, with an edge connecting any two comparable elements. Its complement is called an
2303:
are used to define both a linear program and an integer program, they commonly have different optimal solutions. The linear program is called an
402:. The symmetric characterization of perfect graphs in terms of the product of clique number and independence number was originally suggested by 1286:. Different partial orders may have the same comparability graph; for instance, reversing all comparisons changes the order but not the graph. 4512:
Proceedings of the Eighth Southeastern Conference on Combinatorics, Graph Theory and Computing (Louisiana State Univ., Baton Rouge, La., 1977)
2641:
is the half-angle of this cone. Despite this complicated definition, an accurate numerical value of the Lovász number can be computed using
1298:
by the given partial order. An independent set comes from a subset of elements no two of which are comparable; such a subset is called an
3482:
Surveys in combinatorics 2005. Papers from the 20th British combinatorial conference, University of Durham, Durham, UK, July 10–15, 2005
2228:
as its coefficients, whereas in an integer program these unknown coefficients must be integers. This makes a very big difference in the
5118: 4973: 4587: 300:
gives a different way of defining perfect graphs, by their structure instead of by their properties. It is based on the existence of
4278: 201:
is the number of vertices in the largest clique: two in the illustrated seven-vertex cycle, and three in the other graph shown. A
1389:
The permutation graph of the permutation (4,3,5,1,2) connects pairs of elements whose ordering is reversed by the permutation.
1938:
algorithm, the result will be an optimal coloring. The reverse of the vertex ordering used in this construction is called an
205:
assigns a color to each vertex so that each two adjacent vertices have different colors, also shown in the illustration. The
414:
Many well-studied families of graphs are perfect, and in many cases the fact that these graphs are perfect corresponds to a
2660:
the same approach to the complement of the graph. For instance, a maximum clique can be found by the following algorithm:
508: 427: 343: 138: 418:
for some kinds of combinatorial structure defined by these graphs. Examples of this phenomenon include the perfection of
1946:
of its underlying partial order, the resulting coloring will be optimal. This property is generalized in the family of
5483: 5313: 5280: 5063:
LATIN '98: Theoretical Informatics, Third Latin American Symposium, Campinas, Brazil, April, 20-24, 1998, Proceedings
4947: 4490: 3826: 3752: 3489: 371: 739:
of any vertex of the underlying bipartite graph. The chromatic number of the line graph of a bipartite graph is the
305:
length-5 cycle is another length-5 cycle, but for larger odd lengths the complement is not a cycle; it is called an
2034: 310: 165: 4685: 4538: 3948: 3095: 2565: 2013:
with a single edge) is another parity graph, and the parity graphs are the only graphs whose prisms are perfect.
110: 5391:. Proceedings of the International Conference on Combinatorial Analysis and its Applications (Pokrzywna, 1985). 5016:
Cicerone, Serafino; Di Stefano, Gabriele (1999). "Graph classes between parity and distance-hereditary graphs".
2304: 1814:
is not a generalized split graph, is unipolar or co-unipolar but not both, or is both unipolar and co-unipolar.
5427: 4192: 3632: 3327: 3005: 2908: 2831: 2576:
of these graphs. The Lovász number of any graph can be determined by labeling its vertices by high dimensional
387: 241:, a partition of the vertices of the given graph into cliques. The fact that the complement of a perfect graph 234: 1889: 375: 1934:
If the vertices of a chordal graph are colored in the order of an incremental construction sequence using a
1509: 146: 5337: 5018: 4834: 4629: 4065: 3886: 3470: 3300:; note that Chudnovsky et al define capacity using the complement of the graphs used for the definition in 3013: 3009: 2839: 2835: 395: 391: 297: 161: 79: 1855:-vertex clique and repeatedly adding a vertex so that it and its neighbors form a clique of the same size. 3301: 2010: 351: 66:) is perfect. Here it is colored with three colors, with one of its 3-vertex maximum cliques highlighted. 2583: 4864: 4801: 1990: 1947: 1872: 1864: 1833: 169: 4113:
Proof Techniques in Graph Theory (Proc. Second Ann Arbor Graph Theory Conf., Ann Arbor, Mich., 1968)
1966:
are graphs in which, in every induced subgraph, there exists an independent set that intersects all
4010: 3576: 3174: 2795: 2642: 2229: 1893: 729: 149:
on monotonic sequences, can be expressed in terms of the perfection of certain associated graphs.
5516: 5260: 4923: 4896: 4187: 4144: 4056: 2312: 1904: 1655: 1646:. Systems of intervals in which no two are nested produce a more restricted class of graphs, the 286: 142: 97:
The perfect graphs include many important families of graphs and serve to unify results relating
1257: 5341: 5333: 5187:. North-Holland Mathematics Studies. Vol. 88. North-Holland, Amsterdam. pp. 325–356. 4001: 2954: 2561: 2557: 1963: 1794:
occurs as an induced subgraph of a large random perfect graph is 0, 1/2, or 1, respectively as
1305: 991: 106: 102: 5381: 3400:
Mackenzie, Dana (July 5, 2002). "Mathematics: Graph theory uncovers the roots of perfection".
2710:
Use semidefinite programming to determine the clique number of the resulting induced subgraph.
2506: 2114: 2062: 1836:. The split graphs are exactly the graphs that are chordal and have a chordal complement. The 4507: 3684: 3022: 2624: 2480: 2088: 1892:
and can also be formed by a different construction process combining complementation and the
1538: 1444: 1374: 1343: 1227: 1201: 1131: 1105: 1079: 1023: 997: 967: 917: 848: 736: 459: 443: 226: 190: 153: 134: 126: 36: 5489: 5301: 5221: 5172: 3474: 3090: 2903: 362: 5450: 5404: 5385: 5237: 5200: 5139: 5088: 5039: 4994: 4957: 4753: 4708: 4650: 4559: 4519: 4444: 4420: 4360: 4299: 4258: 4213: 4165: 4120: 4086: 4033: 3971: 3909: 3855: 3796: 3762: 3713: 3653: 3597: 3499: 3350: 3228: 3116: 3053: 3017: 2976: 2929: 2870: 2161: 1291: 923: 857: 766: 451: 5245: 5147: 5096: 5079: 5047: 5002: 4761: 4716: 4658: 4610: 4567: 4376: 4315: 4221: 4173: 4128: 4094: 4041: 3979: 3917: 3863: 3804: 3770: 3705: 3661: 3613: 3507: 3358: 3244: 3124: 3069: 2984: 2937: 2886: 817: 678: 589: 540: 117:, despite their greater complexity for non-perfect graphs. In addition, several important 8: 5473: 5225: 5176: 5113: 2386: 2026: 1378: 1279: 1073: 1049: 910: 882: 749: 492: 447: 439: 290: 282: 130: 5467: 5217: 5168: 3372: 901: 5363: 4934:. Cambridge Studies in Advanced Mathematics. Vol. 89. Cambridge University Press. 4470: 4448: 4364: 4338: 4303: 3843: 3717: 3601: 3427: 3232: 3057: 3031: 2962: 2874: 2736: 2716: 2690: 2667: 2653: 2648:
The solution method for semidefinite programs, used by this algorithm, is based on the
2460: 2440: 2417: 2392: 2365: 2341: 2321: 2286: 2266: 2246: 2207: 2187: 2167: 2143: 2057: 2039: 2022: 1797: 1777: 1757: 1730: 1710: 1707:
perfect graphs are generalized split graphs, in the sense that the fraction of perfect
1647: 1624: 1604: 1584: 1564: 1490: 1470: 1424: 1404: 1177: 1157: 947: 941: 844: 797: 760: 707: 658: 638: 618: 569: 517: 264: 244: 5441: 5422: 5192: 5031: 2338:(that is, matrices where all coefficients are 0 or 1) with the following property: if 5309: 5276: 5131: 4986: 4943: 4848: 4829: 4642: 4601: 4582: 4551: 4486: 4452: 4406: 4205: 4078: 3997: 3748: 3721: 3485: 3431: 3419: 3402: 3261:(1961). "Färbung von Graphen deren sämtliche bzw. deren ungerade Kreise starr sind". 3236: 3108: 3061: 2959:
Proceedings of the International Congress of Mathematicians, Vol. III (Beijing, 2002)
2921: 2787: 2763: 2533: 1751: 1659: 1394: 4514:. Congressus Numerantium. Vol. XIX. Winnipeg: Utilitas Math. pp. 311–315. 4393:
Rose, Donald J. (December 1970). "Triangulated graphs and the elimination process".
4368: 4307: 3605: 5436: 5367: 5355: 5329: 5268: 5241: 5188: 5143: 5127: 5092: 5074: 5066: 5043: 5027: 4998: 4982: 4935: 4905: 4876: 4843: 4810: 4775: 4757: 4712: 4694: 4654: 4638: 4606: 4596: 4563: 4547: 4478: 4432: 4402: 4372: 4348: 4311: 4287: 4246: 4217: 4201: 4169: 4153: 4124: 4090: 4074: 4037: 4019: 3975: 3957: 3913: 3895: 3859: 3835: 3800: 3766: 3740: 3701: 3693: 3675: 3657: 3641: 3609: 3585: 3545: 3503: 3466: 3411: 3354: 3336: 3240: 3216: 3183: 3154: 3120: 3104: 3065: 3041: 3001: 2980: 2933: 2917: 2882: 2878: 2858: 2827: 2649: 2545: 2541: 1943: 1927: 1859: 745: 504: 431: 383: 335: 230: 211: 206: 194: 157: 91: 3521: 2573: 732:. Every line graph of a bipartite graph is an induced subgraph of a rook's graph. 403: 5501: 5446: 5400: 5233: 5196: 5135: 5084: 5065:. Lecture Notes in Computer Science. Vol. 1380. Springer. pp. 249–260. 5035: 4990: 4953: 4894:
Gyárfás, A.; Lehel, J. (June 1988). "On-line and first fit colorings of graphs".
4749: 4734: 4730: 4704: 4646: 4555: 4536:
Bandelt, Hans-Jürgen; Mulder, Henry Martyn (1986). "Distance-hereditary graphs".
4515: 4440: 4356: 4295: 4273: 4254: 4209: 4161: 4116: 4108: 4082: 4029: 3967: 3905: 3851: 3792: 3758: 3709: 3649: 3630:; Gurvich, V. (2006). "Perfect graphs, kernels, and cores of cooperative games". 3593: 3495: 3346: 3224: 3112: 3049: 2972: 2925: 2866: 2843: 2800: 2569: 2359: 2308: 2233: 1994: 1951: 1935: 1923: 1919: 1900: 1643: 740: 725: 503:, a set of vertices that touches all edges. A minimum clique cover consists of a 488: 419: 415: 399: 367: 339: 118: 114: 3415: 635:
that share an endpoint. Line graphs have two kinds of cliques: sets of edges in
4735:"Linear-time certifying recognition algorithms and forbidden induced subgraphs" 4676: 3935: 3645: 3341: 3322: 3045: 2411: 2316: 2030: 1967: 1908: 1663: 1532: 1528: 1520: 1275: 890: 852: 379: 217: 202: 98: 87: 83: 5359: 4291: 3900: 3881: 3739:. Advances in Mathematics. Vol. 7. New York: Springer. pp. 353–368. 2862: 2770:
known to be equivalent) and both remained open. They were both known to be in
5510: 5418: 5346: 4939: 4624: 4237: 3877: 3744: 3445: 3145: 3143:
Gasparian, G. S. (June 1996). "Minimal imperfect graphs: A simple approach".
2713:
If this clique number is the same as for the whole graph, permanently remove
1971: 1828: 1727:-vertex graphs that are generalized split graphs goes to one in the limit as 1696: 1401:
on a totally ordered sequence of elements (conventionally, the integers from
906: 467: 463: 314: 198: 122: 5272: 4627:; Lerchs, H.; Stewart Burlingham, L. (1981). "Complement reducible graphs". 4909: 4880: 4699: 4680: 4466: 4157: 3993: 3962: 3944:"Transitive orientation of graphs and identification of permutation graphs" 3943: 3784: 3423: 3280: 3258: 3202: 2005: 2001: 1986: 500: 496: 435: 347: 331: 238: 71: 26: 5479: 5304:(1983). "Perfect graphs". In Beineke, Lowell W.; Wilson, Robin J. (eds.). 3680:"Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre" 2783: 1302:. For instance, in the illustrated partial order and comparability graph, 5497: 3939: 3931: 3821: 3627: 2577: 2537: 2315:
for the integer program.) Perfect graphs may be used to characterize the
2225: 1981: 1912: 1687: 1679: 1398: 1295: 301: 21: 101:
and cliques in those families. For instance, in all perfect graphs, the
5070: 4482: 4477:. Lecture Notes in Mathematics. Vol. 406. Springer. pp. 1–9. 4436: 4250: 4060: 3847: 3697: 3589: 3220: 3187: 3158: 1704: 535: 478: 423: 30: 4352: 4235:
Hammer, Peter L.; Simeone, Bruno (1981). "The splittance of a graph".
4024: 4005: 1674: 180: 4927: 3036: 2967: 1844: 1651: 1299: 755: 455: 378:, for his work on generalizations of the theory of perfect graphs to 342:
is perfect; this result can also be viewed as a simple equivalent of
5250:
See especially chapter 9, "Stable Sets in Graphs", pp. 273–303.
4814: 3839: 3679: 1899:
The graphs that are both chordal and distance-hereditary are called
1385: 675:. In bipartite graphs, there are no triangles, so a clique cover in 4425:
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
4343: 3304:, and include a logarithm that the linked article does not include. 1691:
chromatic numbers, and are perfect. A broader class of graphs, the
309:. The strong perfect graph theorem asserts that these are the only 3172:
Padberg, Manfred W. (December 1974). "Perfect zero-one matrices".
2758:
Return the subgraph that remains after all the permanent removals.
237:
in the given. A coloring of the complement graph corresponds to a
4583:"On a class of posets and the corresponding comparability graphs" 4329:
McDiarmid, Colin; Yolov, Nikola (2019). "Random perfect graphs".
3992: 3882:"Remarks on Dilworth's theorem in relation to transversal theory" 2237: 1885: 1515: 4867:(September 1989). "Some classes of perfectly orderable graphs". 3297: 3263:
Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe
3000: 2826: 2004:
is defined by the property that between every two vertices, all
4623: 2906:(1972). "Normal hypergraphs and the perfect graph conjecture". 2790:, both for the graph itself and for all its induced subgraphs. 2016: 1837: 1535:, orderings defined by sets of intervals on the real line with 334:
that in modern language can be interpreted as stating that the
5328: 5180: 1922:
are formed from an empty graph by repeatedly adding either an
748:. In arbitrary simple graphs, they can differ by one; this is 2782:
Generalizing the perfect graphs, a graph class is said to be
2771: 2029:. Both linear programs and integer programs are expressed in 1601:. In the corresponding interval graph, there is an edge from 920:
is defined by its set of elements, and a comparison relation
330:
The theory of perfect graphs developed from a 1958 result of
3373:"The 1991 D. R. Fulkerson Prizes in Discrete Mathematics" 1911:
consisting of cliques joined at a single vertex, and the
1669: 1340:
is a chain in the order and a clique in the graph, while
5259: 5216: 5167: 4780:
Information System on Graph Classes and their Inclusions
3526:
Information System on Graph Classes and their Inclusions
3287:. Calcutta: Indian Statistical Institute. pp. 1–21. 2664:
Loop through the vertices of the graph. For each vertex
1662:. In them, the independence number equals the number of 5116:(1975). "On certain polytopes associated with graphs". 2232:
of these problems: linear programming can be solved in
5417: 3824:(1971). "A dual of Dilworth's decomposition theorem". 2457:
defined in this way from a perfect graph, the vectors
2021:
Perfect graphs are closely connected to the theory of
2961:. Beijing: Higher Education Press. pp. 547–559. 2739: 2719: 2693: 2670: 2627: 2586: 2509: 2483: 2463: 2443: 2420: 2395: 2368: 2344: 2324: 2289: 2269: 2249: 2210: 2190: 2170: 2146: 2117: 2091: 2065: 2042: 1800: 1780: 1774:
is an arbitrary graph, the limiting probability that
1760: 1733: 1713: 1627: 1607: 1587: 1567: 1541: 1493: 1473: 1447: 1427: 1407: 1346: 1308: 1260: 1230: 1204: 1180: 1160: 1134: 1108: 1082: 1052: 1026: 1000: 970: 950: 926: 860: 820: 800: 769: 710: 681: 661: 641: 621: 592: 572: 543: 520: 267: 247: 164:
characterizes the perfect graphs in terms of certain
39: 5386:"Problems from the world surrounding perfect graphs" 3438: 3380:
Optima: Mathematical Optimization Society Newsletter
3365: 763:, with black bipartite biconnected components, blue 175: 5230:
Geometric Algorithms and Combinatorial Optimization
4971:Hoàng, C. T. (1987). "On a conjecture of Meyniel". 4054: 473: 5015: 3574:Trotter, L. E. Jr. (1977). "Line perfect graphs". 2745: 2725: 2699: 2676: 2633: 2613: 2572:. The algorithm for the general case involves the 2524: 2495: 2469: 2449: 2426: 2401: 2374: 2350: 2330: 2295: 2275: 2255: 2216: 2196: 2176: 2152: 2132: 2103: 2077: 2048: 1806: 1786: 1766: 1739: 1719: 1633: 1613: 1593: 1573: 1553: 1499: 1479: 1459: 1433: 1413: 1364: 1332: 1266: 1242: 1216: 1186: 1166: 1146: 1120: 1094: 1064: 1038: 1012: 982: 956: 932: 873: 835: 806: 782: 744:index, in bipartite graphs, is another theorem of 716: 696: 667: 647: 627: 607: 578: 558: 526: 273: 253: 58: 4395:Journal of Mathematical Analysis and Applications 3735:Harzheim, Egbert (2005). "Comparability graphs". 3465: 3208:Acta Mathematica Academiae Scientiarum Hungaricae 2949: 2947: 534:, is the same thing as an independent set in the 5508: 4729: 4681:"A characterization of certain ptolemaic graphs" 3930: 3484:. Cambridge University Press. pp. 153–171. 3316: 3314: 3312: 3310: 3093:(1972). "A characterization of perfect graphs". 1915:in which each biconnected component is a clique. 5108: 5106: 4276:(1992). "Almost all Berge graphs are perfect". 4063:(1988). "Trapezoid graphs and their coloring". 3569: 3567: 3565: 3563: 2957:(2002). "The strong perfect graph conjecture". 1888:. The cographs are the comparability graphs of 1847:, are chordal graphs formed by starting with a 5300: 4328: 4115:. New York: Academic Press. pp. 139–146. 3816: 3814: 3393: 3205:(1958). "Maximum-minimum Sätze über Graphen". 3085: 3083: 3081: 3079: 2944: 2898: 2896: 5421:; Flandrin, Evelyne; Ryjáček, Zdeněk (1997). 5253: 4922: 4827: 4535: 4234: 4180: 3728: 3307: 3257: 566:, a graph that has a vertex for each edge in 5498:Information System on Graph Class Inclusions 5374: 5103: 4893: 4828:Hammer, Peter L.; Maffray, Frédéric (1990). 4674: 4505: 4271: 4101: 3870: 3791:. London: Academic Press. pp. 155–165. 3626: 3560: 2017:Matrices, polyhedra, and integer programming 1817: 1359: 1347: 1327: 1309: 5294: 5265:Algorithmic Graph Theory and Perfect Graphs 5212: 5210: 5163: 5161: 5159: 5157: 5054: 4792: 4135: 3811: 3138: 3136: 3134: 3076: 2996: 2994: 2893: 2822: 2820: 2818: 2816: 438:in bipartite graphs, and the perfection of 214:obtained by deleting some of its vertices. 5322: 5181:"Polynomial algorithms for perfect graphs" 4964: 4670: 4668: 4531: 4529: 4228: 3787:(1967). "Some classes of perfect graphs". 3777: 3668: 3538: 3273: 3195: 2953: 2382:the resulting linear program is integral. 5440: 5119:Journal of Combinatorial Theory, Series B 5078: 4974:Journal of Combinatorial Theory, Series B 4862: 4847: 4768: 4698: 4617: 4600: 4588:Journal of Combinatorial Theory, Series B 4574: 4459: 4342: 4023: 3986: 3961: 3899: 3514: 3399: 3340: 3251: 3142: 3035: 2966: 655:with a common endpoint, and triangles in 16:Graph with tight clique-coloring relation 5411: 5207: 5154: 4279:Combinatorics, Probability and Computing 4186: 4048: 3924: 3734: 3320: 3131: 2991: 2813: 1980: 1858: 1673: 1514: 1384: 1254:otherwise. For instance, set inclusion ( 900: 754: 477: 361:The perfect graph theorem was proven by 216: 179: 172:for testing whether a graph is perfect. 160:of a perfect graph is also perfect. The 90:, both in the graph itself and in every 20: 5380: 5306:Selected Topics in Graph Theory, Vol. 2 5112: 5009: 4916: 4723: 4665: 4526: 4388: 4386: 4322: 4265: 4107: 3876: 3620: 3573: 3459: 3171: 2544:of independent sets in the graph, with 1954:, a generalization of interval graphs. 1695:can be partitioned into a clique and a 896: 5509: 5060: 4798: 4469:(1974). "Recent results on trees". In 4465: 4141: 3820: 3201: 3165: 2477:satisfying the system of inequalities 1670:Split graphs and random perfect graphs 1581:is completely to the left of interval 4970: 4419: 4413: 3783: 3674: 3544: 3279: 409: 5344:(2005). "Recognizing Berge graphs". 5183:. In Berge, C.; Chvátal, V. (eds.). 4887: 4856: 4821: 4580: 4499: 4392: 4383: 4190:(1978). "Trivially perfect graphs". 3789:Graph Theory and Theoretical Physics 2085:, subject to the linear constraints 1957: 1863:Three types of vertex addition in a 909:of a partially ordered set, and its 586:and an edge between two vertices in 4423:(1961). "On rigid circuit graphs". 3475:"The structure of claw-free graphs" 3448:. Mathematical Optimization Society 2777: 13: 5308:. Academic Press. pp. 55–87. 4331:Random Structures & Algorithms 3018:"The strong perfect graph theorem" 2614:{\displaystyle 1/\cos ^{2}\theta } 1531:are the incomparability graphs of 14: 5528: 5484:American Institute of Mathematics 5461: 3827:The American Mathematical Monthly 1926:(connected to nothing else) or a 704:corresponds to a vertex cover in 372:Mathematical Optimization Society 261:is also perfect implies that, in 176:Definitions and characterizations 5469:The Strong Perfect Graph Theorem 4004:; Spieksma, Frits C. R. (2007). 2311:, and is important in analyzing 1650:, the incomparability graphs of 474:Bipartite graphs and line graphs 221:Two complementary perfect graphs 5494:, maintained by Václav Chvátal. 5480:Open problems on perfect graphs 4686:Canadian Journal of Mathematics 4539:Journal of Combinatorial Theory 4111:(1969). "Indifference graphs". 4006:"Interval scheduling: a survey" 3949:Canadian Journal of Mathematics 3446:"2009 Fulkerson Prize Citation" 3291: 3096:Journal of Combinatorial Theory 2684:, perform the following steps: 2566:maximum independent set problem 1903:, because their distances obey 1843:, central to the definition of 111:maximum independent set problem 5289:Annals of Discrete Mathematics 5080:11858/00-001M-0000-0014-7BE2-3 3548:(1931). "Gráfok és mátrixok". 1890:series-parallel partial orders 1658:, the comparability graphs of 830: 824: 691: 685: 602: 596: 553: 547: 1: 5442:10.1016/S0012-365X(96)00045-3 5423:"Claw-free graphs — A survey" 5193:10.1016/S0304-0208(08)72943-8 5032:10.1016/S0166-218X(99)00075-X 4830:"Completely separable graphs" 2806: 2551: 2236:, but integer programming is 2224:is allowed to have arbitrary 1523:and the intervals defining it 847:. These are the graphs whose 376:American Mathematical Society 5132:10.1016/0095-8956(75)90041-6 5019:Discrete Applied Mathematics 4987:10.1016/0095-8956(87)90047-5 4849:10.1016/0166-218x(90)90131-u 4835:Discrete Applied Mathematics 4643:10.1016/0166-218X(81)90013-5 4630:Discrete Applied Mathematics 4602:10.1016/0095-8956(78)90013-8 4552:10.1016/0095-8956(86)90043-2 4407:10.1016/0022-247x(70)90282-9 4206:10.1016/0012-365X(78)90178-4 4079:10.1016/0166-218X(88)90032-7 4066:Discrete Applied Mathematics 3887:Glasgow Mathematical Journal 3550:Matematikai és Fizikai Lapok 3109:10.1016/0095-8956(72)90045-7 2922:10.1016/0012-365X(72)90006-4 2844:"Progress on perfect graphs" 1976:very strongly perfect graphs 298:strong perfect graph theorem 162:strong perfect graph theorem 7: 4742:Nordic Journal of Computing 3416:10.1126/science.297.5578.38 3323:"Classes of perfect graphs" 3302:Shannon capacity of a graph 2556:In all perfect graphs, the 2243:When the same given values 851:are bipartite graphs, the 370:, sponsored jointly by the 352:Shannon capacity of a graph 311:forbidden induced subgraphs 166:forbidden induced subgraphs 10: 5533: 4733:; Kratsch, Dieter (2007). 4002:Papadimitriou, Christos H. 3646:10.1016/j.disc.2005.12.031 3342:10.1016/j.disc.2006.05.021 3285:Six Papers on Graph Theory 3283:(1963). "Perfect graphs". 3046:10.4007/annals.2006.164.51 2362:, then for all choices of 1948:perfectly orderable graphs 1873:distance-hereditary graphs 1834:maximal outerplanar graphs 1267:{\displaystyle \subseteq } 790:, and red triangular books 615:for each pair of edges in 325: 5360:10.1007/s00493-005-0012-8 4802:SIAM Journal on Computing 4292:10.1017/S0963548300000079 3901:10.1017/S0017089500003931 3378:. 1991 Prize Recipients. 3321:Hougardy, Stefan (2006). 2863:10.1007/s10107-003-0449-8 2796:domination perfect graphs 1865:distance-hereditary graph 1818:Incremental constructions 1747:grows arbitrarily large. 1333:{\displaystyle \{A,B,C\}} 730:complete bipartite graphs 514:A matching, in any graph 170:polynomial time algorithm 5261:Golumbic, Martin Charles 5185:Topics on perfect graphs 4940:10.1017/CBO9780511542985 4924:Golumbic, Martin Charles 4510:(1977). "Split graphs". 4473:; Harary, Frank (eds.). 4188:Golumbic, Martin Charles 4057:Golumbic, Martin Charles 4011:Naval Research Logistics 3745:10.1007/0-387-24222-8_12 3577:Mathematical Programming 3382:(35): 4–8. November 1991 3298:Chudnovsky et al. (2003) 3175:Mathematical Programming 2851:Mathematical Programming 2643:semidefinite programming 2525:{\displaystyle Ax\leq 1} 2313:approximation algorithms 2230:computational complexity 2133:{\displaystyle Ax\leq b} 2078:{\displaystyle c\cdot x} 2056:that maximizes a linear 1894:disjoint union of graphs 1701:generalized split graphs 1656:trivially perfect graphs 814:of a perfect line graph 470:, and their subclasses. 5399:(3–4): 413–441 (1988). 5393:Zastosowania Matematyki 5273:10.1016/C2013-0-10739-8 4897:Journal of Graph Theory 4869:Journal of Graph Theory 4145:Journal of Graph Theory 2634:{\displaystyle \theta } 2496:{\displaystyle x\geq 0} 2305:integral linear program 2104:{\displaystyle x\geq 0} 1964:strongly perfect graphs 1554:{\displaystyle x\leq y} 1460:{\displaystyle x\leq y} 1365:{\displaystyle \{C,D\}} 1274:) partially orders any 1243:{\displaystyle y\leq x} 1217:{\displaystyle x\leq y} 1147:{\displaystyle x\leq z} 1121:{\displaystyle y\leq z} 1095:{\displaystyle x\leq y} 1039:{\displaystyle y\leq x} 1013:{\displaystyle x\leq y} 983:{\displaystyle x\leq x} 287:maximum independent set 86:equals the size of the 59:{\displaystyle K_{3,3}} 4910:10.1002/jgt.3190120212 4881:10.1002/jgt.3190130407 4748:(1–2): 87–108 (2008). 4700:10.4153/CJM-1965-034-0 4508:Hammer, Peter Ladislaw 4158:10.1002/jgt.3190060307 3963:10.4153/CJM-1971-016-5 2747: 2727: 2701: 2678: 2635: 2615: 2562:maximum clique problem 2558:graph coloring problem 2526: 2497: 2471: 2451: 2428: 2403: 2376: 2352: 2332: 2297: 2277: 2257: 2218: 2198: 2178: 2154: 2134: 2105: 2079: 2050: 1997: 1867: 1808: 1788: 1768: 1741: 1721: 1683: 1678:Optimal coloring of a 1635: 1615: 1595: 1575: 1555: 1524: 1510:Erdős–Szekeres theorem 1501: 1481: 1461: 1435: 1415: 1390: 1366: 1334: 1268: 1244: 1218: 1188: 1168: 1148: 1122: 1096: 1066: 1040: 1014: 984: 958: 934: 913: 875: 849:biconnected components 837: 808: 791: 784: 718: 698: 669: 649: 629: 609: 580: 560: 528: 484: 460:partially ordered sets 406:and proven by Lovász. 275: 255: 222: 186: 147:Erdős–Szekeres theorem 135:partially ordered sets 107:maximum clique problem 103:graph coloring problem 67: 60: 4272:Prömel, Hans Jürgen; 3685:Mathematische Annalen 3023:Annals of Mathematics 2748: 2733:; otherwise, restore 2728: 2702: 2679: 2636: 2616: 2568:can all be solved in 2527: 2498: 2472: 2452: 2429: 2404: 2389:proved, every matrix 2377: 2353: 2333: 2298: 2278: 2258: 2219: 2199: 2179: 2155: 2135: 2106: 2080: 2051: 1984: 1862: 1809: 1789: 1769: 1742: 1722: 1677: 1636: 1616: 1596: 1576: 1556: 1518: 1502: 1482: 1462: 1436: 1416: 1388: 1367: 1335: 1284:incomparability graph 1269: 1245: 1219: 1189: 1169: 1149: 1123: 1097: 1067: 1041: 1015: 985: 959: 935: 933:{\displaystyle \leq } 918:partially ordered set 904: 876: 874:{\displaystyle K_{4}} 838: 809: 794:The underlying graph 785: 783:{\displaystyle K_{4}} 758: 728:, the line graphs of 719: 699: 670: 650: 630: 610: 581: 561: 529: 481: 276: 256: 227:perfect graph theorem 220: 183: 154:perfect graph theorem 113:can all be solved in 61: 24: 5482:, maintained by the 5428:Discrete Mathematics 5226:Schrijver, Alexander 5177:Schrijver, Alexander 4581:Jung, H. A. (1978). 4193:Discrete Mathematics 3640:(19–20): 2336–2354. 3633:Discrete Mathematics 3335:(19–20): 2529–2571. 3328:Discrete Mathematics 2909:Discrete Mathematics 2737: 2717: 2691: 2668: 2625: 2584: 2507: 2481: 2461: 2441: 2418: 2393: 2366: 2342: 2322: 2287: 2267: 2247: 2208: 2188: 2168: 2144: 2115: 2089: 2063: 2040: 1905:Ptolemy's inequality 1798: 1778: 1758: 1731: 1711: 1625: 1605: 1585: 1565: 1539: 1491: 1471: 1445: 1425: 1405: 1344: 1306: 1258: 1228: 1202: 1178: 1158: 1132: 1106: 1080: 1050: 1024: 998: 968: 948: 924: 897:Comparability graphs 858: 836:{\displaystyle L(G)} 818: 798: 767: 708: 697:{\displaystyle L(G)} 679: 659: 639: 619: 608:{\displaystyle L(G)} 590: 570: 559:{\displaystyle L(G)} 541: 518: 440:comparability graphs 265: 245: 37: 5291:57, Elsevier, 2004. 5232:. Springer-Verlag. 3994:Kolen, Antoon W. J. 2857:(1-2(B)): 405–422. 2687:Tentatively remove 2027:integer programming 1991:distance-hereditary 1880:) or non-adjacent ( 1648:indifference graphs 1280:comparability graph 1065:{\displaystyle x=y} 911:comparability graph 291:clique cover number 283:independence number 5342:Vušković, Kristina 5334:Cornuéjols, Gérard 5267:. Academic Press. 5071:10.1007/BFb0054326 4776:"Threshold graphs" 4506:Földes, Stéphane; 4483:10.1007/bfb0066429 4437:10.1007/BF02992776 4251:10.1007/BF02579333 3998:Lenstra, Jan Karel 3698:10.1007/BF01456961 3590:10.1007/BF01593791 3522:"Bipartite graphs" 3221:10.1007/BF02020271 3188:10.1007/bf01580235 3159:10.1007/bf01844846 2955:Cornuéjols, Gérard 2743: 2723: 2697: 2674: 2654:linear programming 2631: 2611: 2522: 2493: 2467: 2447: 2424: 2399: 2372: 2348: 2328: 2293: 2273: 2253: 2214: 2194: 2174: 2150: 2130: 2101: 2075: 2058:objective function 2046: 2023:linear programming 1998: 1868: 1804: 1784: 1764: 1737: 1717: 1684: 1631: 1611: 1591: 1571: 1561:whenever interval 1551: 1525: 1497: 1477: 1457: 1431: 1411: 1397:is defined from a 1391: 1375:Dilworth's theorem 1362: 1330: 1264: 1240: 1214: 1184: 1164: 1144: 1118: 1092: 1062: 1036: 1010: 980: 954: 944:(for all elements 930: 914: 871: 845:line perfect graph 833: 804: 792: 780: 761:line perfect graph 714: 694: 665: 645: 625: 605: 576: 556: 524: 485: 444:Dilworth's theorem 442:, associated with 426:, associated with 410:Families of graphs 271: 251: 223: 187: 127:Dilworth's theorem 68: 56: 5330:Chudnovsky, Maria 5218:Grötschel, Martin 5169:Grötschel, Martin 4353:10.1002/rsa.20770 4025:10.1002/nav.20231 3467:Chudnovsky, Maria 3002:Chudnovsky, Maria 2828:Chudnovsky, Maria 2764:separation oracle 2746:{\displaystyle v} 2726:{\displaystyle v} 2700:{\displaystyle v} 2677:{\displaystyle v} 2542:indicator vectors 2534:integral polytope 2470:{\displaystyle x} 2450:{\displaystyle A} 2427:{\displaystyle c} 2402:{\displaystyle A} 2375:{\displaystyle c} 2351:{\displaystyle b} 2331:{\displaystyle A} 2296:{\displaystyle c} 2276:{\displaystyle b} 2256:{\displaystyle A} 2217:{\displaystyle x} 2197:{\displaystyle c} 2177:{\displaystyle b} 2153:{\displaystyle A} 2049:{\displaystyle x} 2011:Cartesian product 1958:Strong perfection 1940:elimination order 1807:{\displaystyle H} 1787:{\displaystyle H} 1767:{\displaystyle H} 1752:Hamiltonian cycle 1740:{\displaystyle n} 1720:{\displaystyle n} 1634:{\displaystyle y} 1614:{\displaystyle x} 1594:{\displaystyle y} 1574:{\displaystyle x} 1500:{\displaystyle y} 1480:{\displaystyle x} 1434:{\displaystyle n} 1414:{\displaystyle 1} 1395:permutation graph 1187:{\displaystyle y} 1167:{\displaystyle x} 957:{\displaystyle x} 807:{\displaystyle G} 717:{\displaystyle G} 668:{\displaystyle G} 648:{\displaystyle G} 628:{\displaystyle G} 579:{\displaystyle G} 527:{\displaystyle G} 432:maximum matchings 285:(the size of its 274:{\displaystyle G} 254:{\displaystyle G} 229:asserts that the 25:The graph of the 5524: 5491:Perfect Problems 5455: 5454: 5444: 5415: 5409: 5408: 5390: 5378: 5372: 5371: 5336:; Liu, Xinming; 5326: 5320: 5319: 5298: 5292: 5287:Second edition, 5286: 5257: 5251: 5249: 5214: 5205: 5204: 5165: 5152: 5151: 5110: 5101: 5100: 5082: 5058: 5052: 5051: 5026:(1–3): 197–216. 5013: 5007: 5006: 4968: 4962: 4961: 4932:Tolerance graphs 4920: 4914: 4913: 4891: 4885: 4884: 4860: 4854: 4853: 4851: 4825: 4819: 4818: 4796: 4790: 4789: 4787: 4786: 4772: 4766: 4765: 4739: 4731:Heggernes, Pinar 4727: 4721: 4720: 4702: 4672: 4663: 4662: 4621: 4615: 4614: 4604: 4578: 4572: 4571: 4533: 4524: 4523: 4503: 4497: 4496: 4463: 4457: 4456: 4417: 4411: 4410: 4390: 4381: 4380: 4346: 4326: 4320: 4319: 4274:Steger, Angelika 4269: 4263: 4262: 4232: 4226: 4225: 4184: 4178: 4177: 4139: 4133: 4132: 4109:Roberts, Fred S. 4105: 4099: 4098: 4061:Pinter, Ron Yair 4052: 4046: 4045: 4027: 3990: 3984: 3983: 3965: 3928: 3922: 3921: 3903: 3874: 3868: 3867: 3818: 3809: 3808: 3781: 3775: 3774: 3732: 3726: 3725: 3672: 3666: 3665: 3624: 3618: 3617: 3571: 3558: 3557: 3542: 3536: 3535: 3533: 3532: 3518: 3512: 3511: 3479: 3463: 3457: 3456: 3454: 3453: 3442: 3436: 3435: 3397: 3391: 3390: 3388: 3387: 3377: 3369: 3363: 3362: 3344: 3318: 3305: 3295: 3289: 3288: 3277: 3271: 3270: 3255: 3249: 3248: 3215:(3–4): 395–434. 3199: 3193: 3191: 3169: 3163: 3162: 3140: 3129: 3128: 3087: 3074: 3073: 3039: 2998: 2989: 2988: 2970: 2951: 2942: 2941: 2900: 2891: 2890: 2848: 2824: 2801:claw-free graphs 2778:Related concepts 2752: 2750: 2749: 2744: 2732: 2730: 2729: 2724: 2706: 2704: 2703: 2698: 2683: 2681: 2680: 2675: 2650:ellipsoid method 2640: 2638: 2637: 2632: 2620: 2618: 2617: 2612: 2604: 2603: 2594: 2531: 2529: 2528: 2523: 2502: 2500: 2499: 2494: 2476: 2474: 2473: 2468: 2456: 2454: 2453: 2448: 2433: 2431: 2430: 2425: 2408: 2406: 2405: 2400: 2381: 2379: 2378: 2373: 2357: 2355: 2354: 2349: 2337: 2335: 2334: 2329: 2302: 2300: 2299: 2294: 2282: 2280: 2279: 2274: 2262: 2260: 2259: 2254: 2223: 2221: 2220: 2215: 2203: 2201: 2200: 2195: 2183: 2181: 2180: 2175: 2159: 2157: 2156: 2151: 2139: 2137: 2136: 2131: 2110: 2108: 2107: 2102: 2084: 2082: 2081: 2076: 2055: 2053: 2052: 2047: 1989:that is neither 1952:tolerance graphs 1944:linear extension 1928:universal vertex 1920:threshold graphs 1901:Ptolemaic graphs 1854: 1840: 1813: 1811: 1810: 1805: 1793: 1791: 1790: 1785: 1773: 1771: 1770: 1765: 1746: 1744: 1743: 1738: 1726: 1724: 1723: 1718: 1644:trapezoid graphs 1640: 1638: 1637: 1632: 1620: 1618: 1617: 1612: 1600: 1598: 1597: 1592: 1580: 1578: 1577: 1572: 1560: 1558: 1557: 1552: 1506: 1504: 1503: 1498: 1486: 1484: 1483: 1478: 1466: 1464: 1463: 1458: 1440: 1438: 1437: 1432: 1420: 1418: 1417: 1412: 1379:Mirsky's theorem 1371: 1369: 1368: 1363: 1339: 1337: 1336: 1331: 1296:linearly ordered 1273: 1271: 1270: 1265: 1249: 1247: 1246: 1241: 1223: 1221: 1220: 1215: 1193: 1191: 1190: 1185: 1173: 1171: 1170: 1165: 1153: 1151: 1150: 1145: 1127: 1125: 1124: 1119: 1101: 1099: 1098: 1093: 1071: 1069: 1068: 1063: 1045: 1043: 1042: 1037: 1019: 1017: 1016: 1011: 989: 987: 986: 981: 963: 961: 960: 955: 939: 937: 936: 931: 883:triangular books 880: 878: 877: 872: 870: 869: 842: 840: 839: 834: 813: 811: 810: 805: 789: 787: 786: 781: 779: 778: 750:Vizing's theorem 723: 721: 720: 715: 703: 701: 700: 695: 674: 672: 671: 666: 654: 652: 651: 646: 634: 632: 631: 626: 614: 612: 611: 606: 585: 583: 582: 577: 565: 563: 562: 557: 533: 531: 530: 525: 505:maximum matching 489:bipartite graphs 448:Mirsky's theorem 420:bipartite graphs 400:claw-free graphs 384:Maria Chudnovsky 380:logical matrices 280: 278: 277: 272: 260: 258: 257: 252: 231:complement graph 212:induced subgraph 207:chromatic number 195:undirected graph 158:complement graph 156:states that the 131:Mirsky's theorem 119:minimax theorems 92:induced subgraph 84:chromatic number 65: 63: 62: 57: 55: 54: 5532: 5531: 5527: 5526: 5525: 5523: 5522: 5521: 5507: 5506: 5464: 5459: 5458: 5435:(1–3): 87–147. 5416: 5412: 5388: 5379: 5375: 5327: 5323: 5316: 5299: 5295: 5283: 5258: 5254: 5215: 5208: 5166: 5155: 5114:Chvátal, Václav 5111: 5104: 5059: 5055: 5014: 5010: 4969: 4965: 4950: 4921: 4917: 4892: 4888: 4861: 4857: 4826: 4822: 4815:10.1137/0201013 4797: 4793: 4784: 4782: 4774: 4773: 4769: 4737: 4728: 4724: 4677:Chartrand, Gary 4675:Kay, David C.; 4673: 4666: 4622: 4618: 4579: 4575: 4534: 4527: 4504: 4500: 4493: 4464: 4460: 4418: 4414: 4391: 4384: 4327: 4323: 4270: 4266: 4233: 4229: 4185: 4181: 4140: 4136: 4106: 4102: 4053: 4049: 3991: 3987: 3929: 3925: 3875: 3871: 3840:10.2307/2316481 3819: 3812: 3782: 3778: 3755: 3733: 3729: 3673: 3669: 3625: 3621: 3572: 3561: 3543: 3539: 3530: 3528: 3520: 3519: 3515: 3492: 3477: 3464: 3460: 3451: 3449: 3444: 3443: 3439: 3398: 3394: 3385: 3383: 3375: 3371: 3370: 3366: 3319: 3308: 3296: 3292: 3278: 3274: 3256: 3252: 3200: 3196: 3170: 3166: 3141: 3132: 3089: 3088: 3077: 3006:Robertson, Neil 2999: 2992: 2952: 2945: 2902: 2901: 2894: 2846: 2832:Robertson, Neil 2825: 2814: 2809: 2780: 2738: 2735: 2734: 2718: 2715: 2714: 2707:from the graph. 2692: 2689: 2688: 2669: 2666: 2665: 2626: 2623: 2622: 2599: 2595: 2590: 2585: 2582: 2581: 2570:polynomial time 2554: 2508: 2505: 2504: 2482: 2479: 2478: 2462: 2459: 2458: 2442: 2439: 2438: 2419: 2416: 2415: 2394: 2391: 2390: 2367: 2364: 2363: 2360:all-ones vector 2343: 2340: 2339: 2323: 2320: 2319: 2317:(0, 1) matrices 2309:integrality gap 2288: 2285: 2284: 2268: 2265: 2264: 2248: 2245: 2244: 2234:polynomial time 2209: 2206: 2205: 2189: 2186: 2185: 2169: 2166: 2165: 2145: 2142: 2141: 2116: 2113: 2112: 2090: 2087: 2086: 2064: 2061: 2060: 2041: 2038: 2037: 2019: 1968:maximal cliques 1960: 1936:greedy coloring 1924:isolated vertex 1909:windmill graphs 1848: 1838: 1820: 1799: 1796: 1795: 1779: 1776: 1775: 1759: 1756: 1755: 1732: 1729: 1728: 1712: 1709: 1708: 1693:unipolar graphs 1672: 1664:maximal cliques 1626: 1623: 1622: 1606: 1603: 1602: 1586: 1583: 1582: 1566: 1563: 1562: 1540: 1537: 1536: 1533:interval orders 1529:interval graphs 1492: 1489: 1488: 1472: 1469: 1468: 1446: 1443: 1442: 1426: 1423: 1422: 1406: 1403: 1402: 1345: 1342: 1341: 1307: 1304: 1303: 1259: 1256: 1255: 1229: 1226: 1225: 1203: 1200: 1199: 1179: 1176: 1175: 1159: 1156: 1155: 1133: 1130: 1129: 1107: 1104: 1103: 1081: 1078: 1077: 1051: 1048: 1047: 1025: 1022: 1021: 999: 996: 995: 969: 966: 965: 949: 946: 945: 925: 922: 921: 899: 865: 861: 859: 856: 855: 819: 816: 815: 799: 796: 795: 774: 770: 768: 765: 764: 741:chromatic index 709: 706: 705: 680: 677: 676: 660: 657: 656: 640: 637: 636: 620: 617: 616: 591: 588: 587: 571: 568: 567: 542: 539: 538: 519: 516: 515: 509:Kőnig's theorem 476: 428:Kőnig's theorem 416:minimax theorem 412: 368:Fulkerson Prize 344:Kőnig's theorem 340:bipartite graph 328: 266: 263: 262: 246: 243: 242: 235:independent set 178: 168:, leading to a 139:Kőnig's theorem 115:polynomial time 44: 40: 38: 35: 34: 17: 12: 11: 5: 5530: 5520: 5519: 5517:Perfect graphs 5505: 5504: 5495: 5487: 5477: 5474:Václav Chvátal 5463: 5462:External links 5460: 5457: 5456: 5419:Faudree, Ralph 5410: 5373: 5354:(2): 143–186. 5321: 5314: 5302:Lovász, László 5293: 5281: 5252: 5222:Lovász, László 5206: 5173:Lovász, László 5153: 5126:(2): 138–154. 5102: 5053: 5008: 4981:(3): 302–312. 4963: 4948: 4915: 4904:(2): 217–227. 4886: 4875:(4): 445–463. 4863:Hoáng, C. T.; 4855: 4842:(1–2): 85–99. 4820: 4809:(2): 180–187. 4791: 4767: 4722: 4664: 4637:(3): 163–174. 4625:Corneil, D. G. 4616: 4595:(2): 125–133. 4573: 4546:(2): 182–208. 4525: 4498: 4491: 4458: 4431:(1–2): 71–76. 4412: 4401:(3): 597–609. 4382: 4337:(1): 148–186. 4321: 4264: 4245:(3): 275–284. 4227: 4200:(1): 105–107. 4179: 4152:(3): 309–316. 4134: 4100: 4047: 4018:(5): 530–543. 3985: 3923: 3878:Perfect, Hazel 3869: 3834:(8): 876–877. 3810: 3776: 3753: 3727: 3692:(4): 453–465. 3667: 3619: 3584:(2): 255–259. 3559: 3537: 3513: 3490: 3458: 3437: 3392: 3364: 3306: 3290: 3272: 3250: 3194: 3182:(1): 180–196. 3164: 3153:(2): 209–212. 3130: 3091:Lovász, László 3075: 2990: 2943: 2916:(3): 253–267. 2904:Lovász, László 2892: 2811: 2810: 2808: 2805: 2779: 2776: 2760: 2759: 2756: 2755: 2754: 2742: 2722: 2711: 2708: 2696: 2673: 2630: 2610: 2607: 2602: 2598: 2593: 2589: 2553: 2550: 2521: 2518: 2515: 2512: 2492: 2489: 2486: 2466: 2446: 2423: 2412:maximal clique 2398: 2387:Václav Chvátal 2371: 2347: 2327: 2292: 2272: 2252: 2213: 2193: 2173: 2160:is given as a 2149: 2129: 2126: 2123: 2120: 2100: 2097: 2094: 2074: 2071: 2068: 2045: 2031:canonical form 2018: 2015: 1972:Meyniel graphs 1959: 1956: 1932: 1931: 1916: 1897: 1857: 1856: 1829:chordal graphs 1819: 1816: 1803: 1783: 1763: 1736: 1716: 1671: 1668: 1630: 1610: 1590: 1570: 1550: 1547: 1544: 1521:interval graph 1496: 1487:occurs before 1476: 1456: 1453: 1450: 1430: 1410: 1361: 1358: 1355: 1352: 1349: 1329: 1326: 1323: 1320: 1317: 1314: 1311: 1276:family of sets 1263: 1239: 1236: 1233: 1213: 1210: 1207: 1183: 1163: 1143: 1140: 1137: 1117: 1114: 1111: 1091: 1088: 1085: 1061: 1058: 1055: 1035: 1032: 1029: 1009: 1006: 1003: 979: 976: 973: 953: 929: 898: 895: 891:skew partition 868: 864: 853:complete graph 832: 829: 826: 823: 803: 777: 773: 737:maximum degree 713: 693: 690: 687: 684: 664: 644: 624: 604: 601: 598: 595: 575: 555: 552: 549: 546: 523: 475: 472: 468:Meyniel graphs 464:chordal graphs 411: 408: 388:Neil Robertson 327: 324: 315:induced cycles 289:), equals its 270: 250: 203:graph coloring 177: 174: 88:maximum clique 53: 50: 47: 43: 15: 9: 6: 4: 3: 2: 5529: 5518: 5515: 5514: 5512: 5503: 5502:perfect graph 5499: 5496: 5493: 5492: 5488: 5485: 5481: 5478: 5475: 5471: 5470: 5466: 5465: 5452: 5448: 5443: 5438: 5434: 5430: 5429: 5424: 5420: 5414: 5406: 5402: 5398: 5394: 5387: 5383: 5377: 5369: 5365: 5361: 5357: 5353: 5349: 5348: 5347:Combinatorica 5343: 5339: 5338:Seymour, Paul 5335: 5331: 5325: 5317: 5315:0-12-086202-6 5311: 5307: 5303: 5297: 5290: 5284: 5282:0-444-51530-5 5278: 5274: 5270: 5266: 5262: 5256: 5247: 5243: 5239: 5235: 5231: 5227: 5223: 5219: 5213: 5211: 5202: 5198: 5194: 5190: 5186: 5182: 5178: 5174: 5170: 5164: 5162: 5160: 5158: 5149: 5145: 5141: 5137: 5133: 5129: 5125: 5121: 5120: 5115: 5109: 5107: 5098: 5094: 5090: 5086: 5081: 5076: 5072: 5068: 5064: 5057: 5049: 5045: 5041: 5037: 5033: 5029: 5025: 5021: 5020: 5012: 5004: 5000: 4996: 4992: 4988: 4984: 4980: 4976: 4975: 4967: 4959: 4955: 4951: 4949:0-521-82758-2 4945: 4941: 4937: 4933: 4929: 4928:Trenk, Ann N. 4925: 4919: 4911: 4907: 4903: 4899: 4898: 4890: 4882: 4878: 4874: 4870: 4866: 4859: 4850: 4845: 4841: 4837: 4836: 4831: 4824: 4816: 4812: 4808: 4804: 4803: 4795: 4781: 4777: 4771: 4763: 4759: 4755: 4751: 4747: 4743: 4736: 4732: 4726: 4718: 4714: 4710: 4706: 4701: 4696: 4692: 4688: 4687: 4682: 4678: 4671: 4669: 4660: 4656: 4652: 4648: 4644: 4640: 4636: 4632: 4631: 4626: 4620: 4612: 4608: 4603: 4598: 4594: 4590: 4589: 4584: 4577: 4569: 4565: 4561: 4557: 4553: 4549: 4545: 4541: 4540: 4532: 4530: 4521: 4517: 4513: 4509: 4502: 4494: 4492:9783540378099 4488: 4484: 4480: 4476: 4472: 4471:Bari, Ruth A. 4468: 4467:Harary, Frank 4462: 4454: 4450: 4446: 4442: 4438: 4434: 4430: 4426: 4422: 4416: 4408: 4404: 4400: 4396: 4389: 4387: 4378: 4374: 4370: 4366: 4362: 4358: 4354: 4350: 4345: 4340: 4336: 4332: 4325: 4317: 4313: 4309: 4305: 4301: 4297: 4293: 4289: 4285: 4281: 4280: 4275: 4268: 4260: 4256: 4252: 4248: 4244: 4240: 4239: 4238:Combinatorica 4231: 4223: 4219: 4215: 4211: 4207: 4203: 4199: 4195: 4194: 4189: 4183: 4175: 4171: 4167: 4163: 4159: 4155: 4151: 4147: 4146: 4138: 4130: 4126: 4122: 4118: 4114: 4110: 4104: 4096: 4092: 4088: 4084: 4080: 4076: 4072: 4068: 4067: 4062: 4058: 4051: 4043: 4039: 4035: 4031: 4026: 4021: 4017: 4013: 4012: 4007: 4003: 3999: 3995: 3989: 3981: 3977: 3973: 3969: 3964: 3959: 3955: 3951: 3950: 3945: 3941: 3937: 3933: 3927: 3919: 3915: 3911: 3907: 3902: 3897: 3893: 3889: 3888: 3883: 3879: 3873: 3865: 3861: 3857: 3853: 3849: 3845: 3841: 3837: 3833: 3829: 3828: 3823: 3817: 3815: 3806: 3802: 3798: 3794: 3790: 3786: 3785:Berge, Claude 3780: 3772: 3768: 3764: 3760: 3756: 3754:0-387-24219-8 3750: 3746: 3742: 3738: 3731: 3723: 3719: 3715: 3711: 3707: 3703: 3699: 3695: 3691: 3687: 3686: 3681: 3677: 3671: 3663: 3659: 3655: 3651: 3647: 3643: 3639: 3635: 3634: 3629: 3623: 3615: 3611: 3607: 3603: 3599: 3595: 3591: 3587: 3583: 3579: 3578: 3570: 3568: 3566: 3564: 3555: 3551: 3547: 3541: 3527: 3523: 3517: 3509: 3505: 3501: 3497: 3493: 3491:0-521-61523-2 3487: 3483: 3476: 3472: 3471:Seymour, Paul 3468: 3462: 3447: 3441: 3433: 3429: 3425: 3421: 3417: 3413: 3409: 3405: 3404: 3396: 3381: 3374: 3368: 3360: 3356: 3352: 3348: 3343: 3338: 3334: 3330: 3329: 3324: 3317: 3315: 3313: 3311: 3303: 3299: 3294: 3286: 3282: 3281:Berge, Claude 3276: 3268: 3264: 3260: 3259:Berge, Claude 3254: 3246: 3242: 3238: 3234: 3230: 3226: 3222: 3218: 3214: 3210: 3209: 3204: 3203:Gallai, Tibor 3198: 3189: 3185: 3181: 3177: 3176: 3168: 3160: 3156: 3152: 3148: 3147: 3146:Combinatorica 3139: 3137: 3135: 3126: 3122: 3118: 3114: 3110: 3106: 3102: 3098: 3097: 3092: 3086: 3084: 3082: 3080: 3071: 3067: 3063: 3059: 3055: 3051: 3047: 3043: 3038: 3033: 3030:(1): 51–229. 3029: 3025: 3024: 3019: 3015: 3014:Thomas, Robin 3011: 3010:Seymour, Paul 3007: 3003: 2997: 2995: 2986: 2982: 2978: 2974: 2969: 2964: 2960: 2956: 2950: 2948: 2939: 2935: 2931: 2927: 2923: 2919: 2915: 2911: 2910: 2905: 2899: 2897: 2888: 2884: 2880: 2876: 2872: 2868: 2864: 2860: 2856: 2852: 2845: 2841: 2840:Thomas, Robin 2837: 2836:Seymour, Paul 2833: 2829: 2823: 2821: 2819: 2817: 2812: 2804: 2802: 2797: 2791: 2789: 2785: 2775: 2773: 2767: 2765: 2757: 2753:to the graph. 2740: 2720: 2712: 2709: 2694: 2686: 2685: 2671: 2663: 2662: 2661: 2657: 2655: 2651: 2646: 2644: 2628: 2608: 2605: 2600: 2596: 2591: 2587: 2579: 2575: 2574:Lovász number 2571: 2567: 2563: 2559: 2549: 2547: 2543: 2539: 2535: 2519: 2516: 2513: 2510: 2490: 2487: 2484: 2464: 2444: 2437:For a matrix 2435: 2421: 2413: 2396: 2388: 2383: 2369: 2361: 2345: 2325: 2318: 2314: 2310: 2306: 2290: 2270: 2250: 2241: 2239: 2235: 2231: 2227: 2211: 2191: 2171: 2163: 2147: 2127: 2124: 2121: 2118: 2098: 2095: 2092: 2072: 2069: 2066: 2059: 2043: 2036: 2033:as seeking a 2032: 2028: 2024: 2014: 2012: 2007: 2006:induced paths 2003: 1996: 1992: 1988: 1983: 1979: 1977: 1973: 1969: 1965: 1955: 1953: 1949: 1945: 1941: 1937: 1929: 1925: 1921: 1917: 1914: 1910: 1906: 1902: 1898: 1895: 1891: 1887: 1883: 1879: 1874: 1870: 1869: 1866: 1861: 1852: 1846: 1842: 1835: 1830: 1826: 1825: 1824: 1815: 1801: 1781: 1761: 1753: 1748: 1734: 1714: 1706: 1702: 1698: 1697:cluster graph 1694: 1689: 1681: 1676: 1667: 1665: 1661: 1660:ordered trees 1657: 1653: 1649: 1645: 1628: 1608: 1588: 1568: 1548: 1545: 1542: 1534: 1530: 1522: 1517: 1513: 1511: 1494: 1474: 1454: 1451: 1448: 1428: 1408: 1400: 1396: 1387: 1383: 1380: 1376: 1356: 1353: 1350: 1324: 1321: 1318: 1315: 1312: 1301: 1297: 1293: 1287: 1285: 1281: 1277: 1261: 1253: 1237: 1234: 1231: 1211: 1208: 1205: 1197: 1181: 1161: 1141: 1138: 1135: 1115: 1112: 1109: 1089: 1086: 1083: 1075: 1059: 1056: 1053: 1033: 1030: 1027: 1007: 1004: 1001: 993: 992:antisymmetric 977: 974: 971: 951: 943: 927: 919: 912: 908: 907:Hasse diagram 903: 894: 892: 886: 884: 866: 862: 854: 850: 846: 827: 821: 801: 775: 771: 762: 757: 753: 751: 747: 742: 738: 733: 731: 727: 726:rook's graphs 711: 688: 682: 662: 642: 622: 599: 593: 573: 550: 544: 537: 521: 512: 510: 506: 502: 498: 497:median graphs 494: 490: 480: 471: 469: 465: 461: 457: 453: 449: 445: 441: 437: 436:vertex covers 433: 429: 425: 421: 417: 407: 405: 401: 397: 393: 389: 385: 381: 377: 373: 369: 364: 363:László Lovász 359: 357: 353: 349: 345: 341: 337: 333: 323: 319: 316: 312: 308: 303: 299: 294: 292: 288: 284: 268: 248: 240: 236: 232: 228: 219: 215: 213: 208: 204: 200: 199:clique number 196: 192: 182: 173: 171: 167: 163: 159: 155: 150: 148: 144: 140: 136: 132: 128: 124: 123:combinatorics 120: 116: 112: 108: 104: 100: 95: 93: 89: 85: 82:in which the 81: 77: 76:perfect graph 73: 51: 48: 45: 41: 32: 28: 23: 19: 5490: 5468: 5432: 5426: 5413: 5396: 5392: 5376: 5351: 5345: 5324: 5305: 5296: 5288: 5264: 5255: 5229: 5184: 5123: 5117: 5062: 5056: 5023: 5017: 5011: 4978: 4972: 4966: 4931: 4918: 4901: 4895: 4889: 4872: 4868: 4858: 4839: 4833: 4823: 4806: 4800: 4794: 4783:. Retrieved 4779: 4770: 4745: 4741: 4725: 4690: 4684: 4634: 4628: 4619: 4592: 4586: 4576: 4543: 4542:. Series B. 4537: 4511: 4501: 4474: 4461: 4428: 4424: 4421:Dirac, G. A. 4415: 4398: 4394: 4334: 4330: 4324: 4286:(1): 53–79. 4283: 4277: 4267: 4242: 4236: 4230: 4197: 4191: 4182: 4149: 4143: 4137: 4112: 4103: 4073:(1): 35–46. 4070: 4064: 4055:Dagan, Ido; 4050: 4015: 4009: 3988: 3953: 3947: 3926: 3894:(1): 19–22. 3891: 3885: 3872: 3831: 3825: 3822:Mirsky, Leon 3788: 3779: 3737:Ordered Sets 3736: 3730: 3689: 3683: 3676:Kőnig, Dénes 3670: 3637: 3631: 3622: 3581: 3575: 3553: 3549: 3546:Kőnig, Dénes 3540: 3529:. Retrieved 3525: 3516: 3481: 3461: 3450:. Retrieved 3440: 3410:(5578): 38. 3407: 3401: 3395: 3384:. Retrieved 3379: 3367: 3332: 3326: 3293: 3284: 3275: 3266: 3262: 3253: 3212: 3206: 3197: 3179: 3173: 3167: 3150: 3144: 3103:(2): 95–98. 3100: 3099:. Series B. 3094: 3037:math/0212070 3027: 3021: 2968:math/0304464 2958: 2913: 2907: 2854: 2850: 2792: 2781: 2768: 2761: 2658: 2647: 2578:unit vectors 2555: 2536:. It is the 2436: 2384: 2242: 2226:real numbers 2020: 2002:parity graph 1999: 1987:parity graph 1975: 1961: 1939: 1933: 1913:block graphs 1881: 1877: 1850: 1821: 1749: 1700: 1692: 1685: 1526: 1392: 1294:, and it is 1288: 1283: 1252:incomparable 1251: 1195: 1154:). Elements 915: 887: 793: 734: 513: 501:vertex cover 486: 413: 396:Robin Thomas 392:Paul Seymour 360: 356:Berge graphs 355: 348:Claude Berge 332:Tibor Gallai 329: 320: 306: 302:cycle graphs 295: 281:itself, the 239:clique cover 224: 188: 151: 125:, including 96: 75: 72:graph theory 69: 27:3-3 duoprism 18: 5382:Gyárfás, A. 4865:Reed, B. A. 4693:: 342–346. 3956:: 160–175. 2538:convex hull 1882:false twins 1688:split graph 1680:split graph 1399:permutation 746:Dénes Kőnig 424:line graphs 5246:0634.05001 5148:0277.05139 5097:0910.05028 5048:0933.05144 5003:0634.05058 4785:2023-02-12 4762:1169.68653 4717:0139.17301 4659:0463.05057 4611:0382.05045 4568:0605.05024 4377:1405.05165 4344:1604.00890 4316:0793.05063 4222:0384.05057 4174:0495.05027 4129:0193.24205 4095:0658.05067 4042:1143.90337 3980:0204.24604 3936:Lempel, A. 3932:Pnueli, A. 3918:0428.06001 3864:0263.06002 3805:0203.26403 3771:1072.06001 3706:46.0146.03 3662:1103.05034 3614:0366.05043 3556:: 116–119. 3531:2023-01-24 3508:1109.05092 3452:2023-01-21 3386:2023-01-21 3359:1104.05029 3245:0084.19603 3125:0241.05107 3070:1112.05042 2985:1004.05034 2938:0239.05111 2887:1028.05035 2807:References 2552:Algorithms 1878:true twins 1705:Almost all 1652:semiorders 1196:comparable 1074:transitive 536:line graph 456:antichains 422:and their 336:complement 145:, and the 31:line graph 4453:120608513 3722:121097364 3628:Boros, E. 3432:116891342 3237:123953062 3062:119151552 2784:χ-bounded 2629:θ 2609:θ 2606:⁡ 2517:≤ 2488:≥ 2125:≤ 2096:≥ 2070:⋅ 1995:bipartite 1970:. In the 1845:treewidth 1546:≤ 1467:whenever 1452:≤ 1300:antichain 1262:⊆ 1235:≤ 1209:≤ 1139:≤ 1113:≤ 1087:≤ 1031:≤ 1005:≤ 975:≤ 942:reflexive 928:≤ 430:relating 307:anticycle 143:matchings 99:colorings 5511:Category 5384:(1987). 5263:(1980). 5228:(1988). 5179:(1984). 4930:(2004). 4679:(1965). 4369:53489550 4308:28696495 3942:(1971). 3940:Even, S. 3880:(1980). 3678:(1916). 3606:38906333 3473:(2005). 3424:12098683 3016:(2006). 2842:(2003). 2788:identity 2621:, where 2532:form an 2140:. Here, 940:that is 185:perfect. 5451:1432221 5405:0951359 5368:2229369 5238:0936633 5201:0778770 5140:0371732 5089:1635464 5040:1708837 4995:0888682 4958:2051713 4754:2460558 4709:0175113 4651:0619603 4560:0859310 4520:0505860 4445:0130190 4361:3884617 4300:1167295 4259:0637832 4214:0522739 4166:0666799 4121:0252267 4087:0953414 4034:2335544 3972:0292717 3910:0558270 3856:0288054 3848:2316481 3797:0232694 3763:2127991 3714:1511872 3654:2261906 3598:0457293 3500:2187738 3403:Science 3351:2261918 3229:0124238 3117:0309780 3054:2233847 2977:1957560 2930:0302480 2879:5226655 2871:2004404 2540:of the 2358:is the 2238:NP-hard 1886:cograph 1128:, then 1046:, then 483:vertex. 326:History 5449:  5403:  5366:  5312:  5279:  5244:  5236:  5199:  5146:  5138:  5095:  5087:  5046:  5038:  5001:  4993:  4956:  4946:  4760:  4752:  4715:  4707:  4657:  4649:  4609:  4566:  4558:  4518:  4489:  4451:  4443:  4375:  4367:  4359:  4314:  4306:  4298:  4257:  4220:  4212:  4172:  4164:  4127:  4119:  4093:  4085:  4040:  4032:  3978:  3970:  3916:  3908:  3862:  3854:  3846:  3803:  3795:  3769:  3761:  3751:  3720:  3712:  3704:  3660:  3652:  3612:  3604:  3596:  3506:  3498:  3488:  3430:  3422:  3357:  3349:  3269:: 114. 3243:  3235:  3227:  3123:  3115:  3068:  3060:  3052:  2983:  2975:  2936:  2928:  2885:  2877:  2869:  2564:, and 2546:facets 2283:, and 2164:, and 2162:matrix 2035:vector 1841:-trees 1278:. The 1250:, and 1072:, and 881:, and 452:chains 404:Hajnal 394:, and 193:in an 191:clique 109:, and 5389:(PDF) 5364:S2CID 4738:(PDF) 4449:S2CID 4365:S2CID 4339:arXiv 4304:S2CID 3844:JSTOR 3718:S2CID 3602:S2CID 3478:(PDF) 3428:S2CID 3376:(PDF) 3233:S2CID 3058:S2CID 3032:arXiv 2963:arXiv 2875:S2CID 2847:(PDF) 2772:co-NP 1754:. If 1292:chain 843:is a 493:trees 338:of a 80:graph 78:is a 29:(the 5310:ISBN 5277:ISBN 4944:ISBN 4487:ISBN 3749:ISBN 3486:ISBN 3420:PMID 2652:for 2184:and 2111:and 2025:and 1993:nor 1962:The 1918:The 1871:The 1853:+ 1) 1827:The 1527:The 1194:are 1174:and 1102:and 1076:(if 1020:and 994:(if 905:The 495:and 454:and 446:and 434:and 374:and 296:The 225:The 152:The 129:and 74:, a 5472:by 5437:doi 5433:164 5356:doi 5269:doi 5242:Zbl 5189:doi 5144:Zbl 5128:doi 5093:Zbl 5075:hdl 5067:doi 5044:Zbl 5028:doi 4999:Zbl 4983:doi 4936:doi 4906:doi 4877:doi 4844:doi 4811:doi 4758:Zbl 4713:Zbl 4695:doi 4655:Zbl 4639:doi 4607:Zbl 4597:doi 4564:Zbl 4548:doi 4479:doi 4433:doi 4403:doi 4373:Zbl 4349:doi 4312:Zbl 4288:doi 4247:doi 4218:Zbl 4202:doi 4170:Zbl 4154:doi 4125:Zbl 4091:Zbl 4075:doi 4038:Zbl 4020:doi 3976:Zbl 3958:doi 3914:Zbl 3896:doi 3860:Zbl 3836:doi 3801:Zbl 3767:Zbl 3741:doi 3702:JFM 3694:doi 3658:Zbl 3642:doi 3638:306 3610:Zbl 3586:doi 3504:Zbl 3412:doi 3408:297 3355:Zbl 3337:doi 3333:306 3241:Zbl 3217:doi 3184:doi 3155:doi 3121:Zbl 3105:doi 3066:Zbl 3042:doi 3028:164 2981:Zbl 2934:Zbl 2918:doi 2883:Zbl 2859:doi 2597:cos 2385:As 1974:or 1621:to 1519:An 1421:to 1224:or 1198:if 990:), 487:In 458:in 450:on 141:on 133:on 121:in 70:In 33:of 5513:: 5500:: 5447:MR 5445:. 5431:. 5425:. 5401:MR 5397:19 5395:. 5362:. 5352:25 5350:. 5340:; 5332:; 5275:. 5240:. 5234:MR 5224:; 5220:; 5209:^ 5197:MR 5195:. 5175:; 5171:; 5156:^ 5142:. 5136:MR 5134:. 5124:18 5122:. 5105:^ 5091:. 5085:MR 5083:. 5073:. 5042:. 5036:MR 5034:. 5024:95 5022:. 4997:. 4991:MR 4989:. 4979:42 4977:. 4954:MR 4952:. 4942:. 4926:; 4902:12 4900:. 4873:13 4871:. 4840:27 4838:. 4832:. 4805:. 4778:. 4756:. 4750:MR 4746:14 4744:. 4740:. 4711:. 4705:MR 4703:. 4691:17 4689:. 4683:. 4667:^ 4653:. 4647:MR 4645:. 4633:. 4605:. 4593:24 4591:. 4585:. 4562:. 4556:MR 4554:. 4544:41 4528:^ 4516:MR 4485:. 4447:. 4441:MR 4439:. 4429:25 4427:. 4399:32 4397:. 4385:^ 4371:. 4363:. 4357:MR 4355:. 4347:. 4335:54 4333:. 4310:. 4302:. 4296:MR 4294:. 4282:. 4255:MR 4253:. 4241:. 4216:. 4210:MR 4208:. 4198:24 4196:. 4168:. 4162:MR 4160:. 4148:. 4123:. 4117:MR 4089:. 4083:MR 4081:. 4071:21 4069:. 4059:; 4036:. 4030:MR 4028:. 4016:54 4014:. 4008:. 4000:; 3996:; 3974:. 3968:MR 3966:. 3954:23 3952:. 3946:. 3938:; 3934:; 3912:. 3906:MR 3904:. 3892:21 3890:. 3884:. 3858:. 3852:MR 3850:. 3842:. 3832:78 3830:. 3813:^ 3799:. 3793:MR 3765:. 3759:MR 3757:. 3747:. 3716:. 3710:MR 3708:. 3700:. 3690:77 3688:. 3682:. 3656:. 3650:MR 3648:. 3636:. 3608:. 3600:. 3594:MR 3592:. 3582:12 3580:. 3562:^ 3554:38 3552:. 3524:. 3502:. 3496:MR 3494:. 3480:. 3469:; 3426:. 3418:. 3406:. 3353:. 3347:MR 3345:. 3331:. 3325:. 3309:^ 3267:10 3265:. 3239:. 3231:. 3225:MR 3223:. 3211:. 3178:. 3151:16 3149:. 3133:^ 3119:. 3113:MR 3111:. 3101:13 3078:^ 3064:. 3056:. 3050:MR 3048:. 3040:. 3026:. 3020:. 3012:; 3008:; 3004:; 2993:^ 2979:. 2973:MR 2971:. 2946:^ 2932:. 2926:MR 2924:. 2912:. 2895:^ 2881:. 2873:. 2867:MR 2865:. 2855:97 2853:. 2849:. 2838:; 2834:; 2830:; 2815:^ 2803:. 2766:. 2560:, 2503:, 2434:. 2263:, 2240:. 2000:A 1985:A 1703:. 1686:A 1666:. 1512:. 1393:A 964:, 916:A 893:. 759:A 752:. 511:. 466:, 390:, 386:, 358:. 189:A 137:, 105:, 5486:. 5476:. 5453:. 5439:: 5407:. 5370:. 5358:: 5318:. 5285:. 5271:: 5248:. 5203:. 5191:: 5150:. 5130:: 5099:. 5077:: 5069:: 5050:. 5030:: 5005:. 4985:: 4960:. 4938:: 4912:. 4908:: 4883:. 4879:: 4852:. 4846:: 4817:. 4813:: 4807:1 4788:. 4764:. 4719:. 4697:: 4661:. 4641:: 4635:3 4613:. 4599:: 4570:. 4550:: 4522:. 4495:. 4481:: 4455:. 4435:: 4409:. 4405:: 4379:. 4351:: 4341:: 4318:. 4290:: 4284:1 4261:. 4249:: 4243:1 4224:. 4204:: 4176:. 4156:: 4150:6 4131:. 4097:. 4077:: 4044:. 4022:: 3982:. 3960:: 3920:. 3898:: 3866:. 3838:: 3807:. 3773:. 3743:: 3724:. 3696:: 3664:. 3644:: 3616:. 3588:: 3534:. 3510:. 3455:. 3434:. 3414:: 3389:. 3361:. 3339:: 3247:. 3219:: 3213:9 3190:. 3186:: 3180:6 3161:. 3157:: 3127:. 3107:: 3072:. 3044:: 3034:: 2987:. 2965:: 2940:. 2920:: 2914:2 2889:. 2861:: 2741:v 2721:v 2695:v 2672:v 2601:2 2592:/ 2588:1 2520:1 2514:x 2511:A 2491:0 2485:x 2465:x 2445:A 2422:c 2397:A 2370:c 2346:b 2326:A 2291:c 2271:b 2251:A 2212:x 2192:c 2172:b 2148:A 2128:b 2122:x 2119:A 2099:0 2093:x 2073:x 2067:c 2044:x 1896:. 1876:( 1851:k 1849:( 1839:k 1802:H 1782:H 1762:H 1735:n 1715:n 1629:y 1609:x 1589:y 1569:x 1549:y 1543:x 1495:y 1475:x 1455:y 1449:x 1429:n 1409:1 1360:} 1357:D 1354:, 1351:C 1348:{ 1328:} 1325:C 1322:, 1319:B 1316:, 1313:A 1310:{ 1238:x 1232:y 1212:y 1206:x 1182:y 1162:x 1142:z 1136:x 1116:z 1110:y 1090:y 1084:x 1060:y 1057:= 1054:x 1034:x 1028:y 1008:y 1002:x 978:x 972:x 952:x 867:4 863:K 831:) 828:G 825:( 822:L 802:G 776:4 772:K 712:G 692:) 689:G 686:( 683:L 663:G 643:G 623:G 603:) 600:G 597:( 594:L 574:G 554:) 551:G 548:( 545:L 522:G 269:G 249:G 52:3 49:, 46:3 42:K

Index


3-3 duoprism
line graph
graph theory
graph
chromatic number
maximum clique
induced subgraph
colorings
graph coloring problem
maximum clique problem
maximum independent set problem
polynomial time
minimax theorems
combinatorics
Dilworth's theorem
Mirsky's theorem
partially ordered sets
Kőnig's theorem
matchings
Erdős–Szekeres theorem
perfect graph theorem
complement graph
strong perfect graph theorem
forbidden induced subgraphs
polynomial time algorithm

clique
undirected graph
clique number

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.